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a b s t r a c t

Lie–Yamaguti algebras (or generalized Lie triple systems) are binary–ternary algebras
intimately related to reductive homogeneous spaces. The Lie–Yamaguti algebras which are
irreducible as modules over their Lie inner derivation algebra are the algebraic counterpart
of the isotropy irreducible homogeneous spaces.
These systems will be shown to split into three disjoint types: adjoint type, non-simple

type and generic type. The systems of the first two typeswill be classified andmost of them
will be shown to be related to a Generalized Tits Construction of Lie algebras.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a connected Lie group with Lie algebra g, H a closed subgroup of G, and let h be the associated subalgebra of g.
The corresponding homogeneous space M = G/H is said to be reductive ([23, Section 7]) in case there is a subspace m of g
such that g = h⊕ m and Ad(H)(m) ⊆ m.
In this situation, Nomizu proved [23, Theorem 8.1] that there is a one-to-one correspondence between the set of all G-

invariant affine connections onM and the set of bilinear multiplications α : m× m→ m such that the restriction of Ad(H)
to m is a subgroup of the automorphism group of the nonassociative algebra (m, α).
There exist natural binary and ternary products defined in m, given by

x · y = πm ([x, y]) ,
[x, y, z] = [πh([x, y]), z],

(1.1)

for any x, y, z ∈ m, where πh and πm denote the projections on h andm respectively, relative to the reductive decomposition
g = h ⊕ m. Note that the condition Ad(H)(m) ⊆ m implies the condition [h,m] ⊆ m, the converse being valid if H is
connected.
There are two distinguished invariant affine connections: the natural connection (or canonical connection of the first

kind), which corresponds to the bilinear multiplication given by α(x, y) = 1
2x · y for any x, y ∈ m, which has trivial torsion,

and the canonical connection corresponding to the trivial multiplication: α(x, y) = 0 for any x, y ∈ m. In case the reductive
homogeneous space is symmetric, so [m,m] ⊆ h, these two connections coincide. For the canonical connection, the torsion
and curvature tensors are given on the tangent space to the point eH ∈ M (e denotes the identity element of G), which can
be naturally identified with m, by

T (x, y) = −x · y, R(x, y)z = −[x, y, z],
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for any x, y, z ∈ m (see [23, Theorem 10.3]).
Moreover, Nomizu showed too that the affine connections on manifolds with parallel torsion and curvature are locally

equivalent to canonical connections on reductive homogeneous spaces.
Yamaguti [31] considered the properties of the torsion and curvature of these canonical connections (or alternatively, of

the binary and ternary multiplications in (1.1)), and thus defined what he called the general Lie triple systems, later renamed
as Lie triple algebras in [15]. We will follow here the notation in [18, Definition 5.1], and will call these systems Lie–Yamaguti
algebras:

Definition 1.1. A Lie–Yamaguti algebra (m, x ·y, [x , y , z ]) (LY-algebra for short) is a vector spacem equipped with a bilinear
operation · : m× m→ m and a trilinear operation [ , , ] : m× m× m→ m such that, for all x, y, z, u, v, w ∈ m:
(LY1) x · x = 0,
(LY2) [x, x, y] = 0,
(LY3)

∑
(x,y,z) ([x, y, z] + (x · y) · z) = 0,

(LY4)
∑

(x,y,z)[x · y, z, t] = 0,
(LY5) [x, y, u · v] = [x, y, u] · v + u · [x, y, v],
(LY6) [x, y, [u, v, w]] = [[x, y, u], v, w] + [u, [x, y, v], w] + [u, v, [x, y, w]].

Here
∑

(x,y,z) means the cyclic sum on x, y, z.
The LY-algebras with x ·y = 0 for any x, y are exactly the Lie triple systems, closely related with symmetric spaces, while

the LY-algebras with [x, y, z] = 0 are the Lie algebras. Less known examples can be found in [2] where a detailed analysis
on the algebraic structure of LY-algebras arising from homogeneous spaces which are quotients of the compact Lie group
G2 is given.
These nonassociative binary–ternary algebras have been treated by several authors in connection with geometric

problems on homogeneous spaces [16,17,24–26], but no much information on their algebraic structure is available yet.
Given a Lie–Yamaguti algebra (m, x · y, [x, y, z]) and any two elements x, y ∈ m, the linear map D(x, y) : m → m,

z 7→ D(x, y)(z) = [x, y, z] is, due to (LY5) and (LY6), a derivation of both the binary and ternary products. These derivations
will be called inner derivations. Moreover, let D(m,m) denote the linear span of the inner derivations. Then D(m,m) is closed
under commutation thanks to (LY6). Consider the vector space g(m) = D(m,m)⊕m, and endow itwith the anticommutative
multiplication given, for any x, y, z, t ∈ m, by:

[D(x, y),D(z, t)] = D([x, y, z], t)+ D(z, [x, y, t]),
[D(x, y), z] = D(x, y)(z) = [x, y, z],
[z, t] = D(z, t)+ z · t.

(1.2)

Note that the Lie algebra D(m,m) becomes a subalgebra of g(m).
Then it is straightforward [31] to check that g(m) is a Lie algebra, called the standard enveloping Lie algebra of the

Lie–Yamaguti algebra m. The binary and ternary products in m coincide with those given by (1.1), where h = D(m,m).
As was mentioned above, the Lie triple systems are precisely those LY-algebras with trivial binary product. These

correspond to the symmetric homogeneous spaces. Following [23, Section 16], a symmetric homogeneous space G/H is
said to be irreducible if the action of ad h on m is irreducible, where g = h ⊕ m is the canonical decomposition of the Lie
algebra g of G.
This suggests the following definition:

Definition 1.2. A Lie–Yamaguti algebra (m, x · y, [x, y, z]) is said to be irreducible if m is an irreducible module for its Lie
algebra of inner derivations D(m,m).

Geometrically, the irreducible LY-algebras correspond to the isotropy irreducible homogeneous spaces studied by
Wolf in [30] ‘‘as a first step toward understanding the geometry of the Riemannian homogeneous spaces’’. Likewise,
the classification of the irreducible LY-algebras constitutes a first step in our understanding of this variety of algebras.
Concerning the isotropy irreducible homogeneous spaces, Wolf remarks that ‘‘the results are surprising, for there are a large
number of nonsymmetric isotropy irreducible coset spaces G/K , and only a few examples had been known before. One of
the most interesting class is SO(dim K)/ ad K for an arbitrary compact simple Lie group K ’’. These spaces SO(dim K)/ ad K
show a clear pattern, but there appear many more examples in the classification, where no such clear pattern appears.
Here it will be shown that most of the irreducible LY-algebras follow clear patterns if several kinds of nonassociative

algebraic systems are used, not just Lie algebras. In fact, most of the irreducible LY-algebras will be shown, here and in the
forthcoming paper [3], to appear inside simple Lie algebras as orthogonal complements of subalgebras of derivations of Lie
and Jordan algebras, Freudenthal triple systems and Jordan pairs.
Let us fix some notation to be used throughout this paper. All the algebraic systems will be assumed to be finite

dimensional over an algebraically closed ground field k of characteristic 0. Unadorned tensor products will be considered
over this ground field k. Given a Lie algebra g and a subalgebra h, the pair (g, h)will be said to be a reductive pair (see [25])
if there is a complementary subspace m of h with [h,m] ⊆ m. The decomposition g = h⊕ m will then be called a reductive
decomposition of the Lie algebra g.
In particular, given an LY-algebra (m, x · y, [x, y, z]), the pair (g(m),D(m,m)) is a reductive pair.
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The following result is instrumental:

Proposition 1.3. Let g = h⊕m be a reductive decomposition of a simple Lie algebra g, withm 6= 0. Then g and h are isomorphic,
respectively, to the standard enveloping Lie algebra and the inner derivation algebra of the Lie–Yamaguti algebra (m, x·y, [x, y, z])
given by (1.1). Moreover, in case h is semisimple and m is irreducible as a module for h, either h and m are isomorphic as ad h-
modules or m = h⊥, the orthogonal complement of h relative to the Killing form of g.

Proof. For the first assertion it is enough to note that πh([m,m])⊕ m (= [m,m] + m) and {x ∈ h : [x,m] = 0} are ideals of
g. Hence, if g is simple, πh([m,m]) = h holds, and h embeds naturally in D(m,m) ⊆ Endk(m). From here it follows that the
map g → g(m) given by h ∈ h 7→ ad h |m and x ∈ m 7→ x is an isomorphism from g to g(m) which sends h onto D(m,m).
Moreover, in case h is semisimple, h is anisotropic with respect to the Killing form of g (by Cartan’s criterion, as g is a faithful
adg h-module), so g = h ⊕ h⊥ and the orthogonal projection, πh(m) from m onto h is an ideal of h. By irreducibility of m,
either πh(m) = 0 and therefore m = h⊥, or m is isomorphic to πh(m). In the latter case, since the action of h on m is faithful,
it follows that h = πh(m), as required. �

The paper is organized as follows. Section 2 will be devoted to establish the main structural features on Lie inner
derivations and standard enveloping Lie algebras of the irreducible LY-algebras. These will be split into three non-
overlapping types: adjoint, non-simple and generic. The final result in this section shows that LY-algebras of adjoint type are
essentially simple Lie algebras. The classification of the LY-algebras of non-simple type is the goal of the rest of the paper,
while the generic typewill be treated in a forthcoming paper. Section 3will give examples of irreducible LY-algebras,many of
them appearing inside Lie algebras obtained bymeans of the Tits construction of Lie algebras in [29] in terms of composition
algebras and suitable Jordan algebras. Then in Section 4 these exampleswill be shown to exhaust the irreducible LY-algebras
of non-simple type.

2. Irreducible Lie–Yamaguti algebras. Initial classification

For irreducible LY-algebras m, the irreducibility as a module for D(m,m), together with Schur’s Lemma, quickly leads to
the following result:

Theorem 2.1. Let (m, x · y, [x, y, z]) be an irreducible LY-algebra. Then D(m,m) is a semisimple and maximal subalgebra of the
standard enveloping Lie algebra g(m). Moreover, g(m) is simple in case m and D(m,m) are not isomorphic as D(m,m)-modules.

Proof. Any subalgebra M of g(m) containing D(m,m) decomposes as M = D(m,m) ⊕ (M ∩ m), thus M = D(m,m) or
g(m) by the irreducibility of m. Hence D(m,m) is a maximal subalgebra. The irreducibility of m also implies that D(m,m) is
a reductive algebra with dim Z(D(m,m)) ≤ 1 (see [11, Proposition 19.1]). If Z(D(m,m)) = Fz, Schur’s Lemma shows that
there is a scalar α ∈ k such that adg(m) z |m = αId holds. In this case, for any x, y ∈ mwe have

adg(m) z([x, y]) = 2α[x, y]. (2.1)

If α 6= 0, since 2α is not an eigenvalue of adg(m) z, from (2.1) it follows that [m,m] = 0, so D(m,m) = 0, a contradiction.
Hence α = 0 which implies z = 0 because m is a faithful module for D(m,m), and therefore D(m,m) is semisimple.
Finally, ifm is not the adjoint module for D(m,m), given a proper ideal I of g(m), we have I∩m = 0: otherwise, I∩m = m

and then g(m) = m+[m,m] ⊆ I , a contradiction. Hence [I ∩D(m,m),m] = 0 and therefore I ∩D(m,m) = 0. Bymaximality
of D(m,m), g(m) can be decomposed as

g(m) = D(m,m)⊕ I = D(m,m)⊕ m (2.2)

thus I is isomorphic to m as D(m,m)-modules. From (2.2), m ⊕ I is a D(m,m)-module isomorphic to m ⊕ m and it is easily
checked that P = (m ⊕ I) ∩ D(m,m) is a nonzero ideal of D(m,m) isomorphic to m. So that D(m,m) = P ⊕ Q (direct sum
of ideals). Now, as [P,Q ] = 0 and P is isomorphic to m as D(m,m)-modules, [Q ,m] = 0 follows, and therefore, since m is a
faithful module, Q = 0 and this contradicts the fact that m is not the adjoint module for D(m,m). �

Theprevious theorempoints out twodifferent situations depending on the LY-algebramodule behavior. This observation,
together with Proposition 1.3, leads to the following definition and structure result:

Definition 2.2. AnLY-algebram is said to be of adjoint type ifm is the adjointmodule for the inner derivation algebraD(m,m).

Corollary 2.3. The irreducible LY-algebras which are not of adjoint type are the orthogonal subspaces of their inner derivation
algebras relative to the Killing form of their standard enveloping Lie algebras. In particular, these irreducible LY-algebras are
contragredient modules for D(m,m). �

Note that Theorem 2.1 guarantees the simplicity of standard enveloping Lie algebras of the non-adjoint irreducible LY-
algebras. In the adjoint type, according to Theorem 2.4, the standard enveloping Lie algebras are never simple. So these
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results split the classification of irreducible LY-algebras into the following non-overlapping types:

Adjoint Type: m is the adjoint module for D(m,m)
Non-Simple Type: D(m,m) is not simple
Generic Type: Both g(m) and D(m,m) are simple

(2.3)

Moreover, the complete classification of the first type is easily obtained aswe shall show inwhat follows. The non-simple
type will be studied in Section 4, while the generic type will be the object of a forthcoming paper [3].
Given any irreducible LY-algebra of adjoint type (m, x · y, [x, y, z]), the inner derivation Lie algebra D(m,m) is simple.

Thus from [4] the subspace

HomD(m,m)(Λ2m,m) (2.4)

is one dimensional and spanned by the Lie bracket in D(m,m). So, given a D(m,m)-module isomorphism ϕ : D(m,m)→ m,
the maps

· : m× m→ m, (x, y) 7→ x · y (2.5)

and

D̃ : m× m→ m, (x, y) 7→ ϕ(D(x, y)) = ϕ([x, y,−]) (2.6)

belong to the vector space in (2.4), and hence there exist scalars α, β ∈ k, β 6= 0, such that

ϕ(x) · ϕ(y) = αϕ([x, y]) (2.7)

D̃(ϕ(x), ϕ(y)) = βϕ([x, y]) (2.8)

for any x, y ∈ D(m,m). Moreover, there is then an isomorphism of Lie algebras:

g(m) = D(m,m)⊕ ϕ(D(m,m)) ∼= K ⊗ D(m,m), (2.9)

where K is the quotient k[t]/(t2 − αt − β) of the polynomial ring on the variable t , that maps x+ ϕ(y) to 1⊗ x+ t̄ ⊗ y, for
any x, y ∈ D(m,m), where t̄ denotes the class of the variable t modulo the ideal (t2 − αt − β). Now, depending on α, two
different situations appear:

• If α = 0, it can be assumed that β = 1 (by taking 1
√
β
ϕ instead of ϕ). In this case, m is an LY-algebra with trivial binary

product, so a Lie triple system, isomorphic to the triple systemgiven by the Lie algebraD(m,m)with trivial binary product
and ternary product given by [x, y, z] = [[x, y], z]. In this case, g(m) is the direct sum of two copies of D(m,m).
• If α 6= 0, it can be assumed that α = 1 (by taking 1

α
ϕ instead of ϕ). Thenm is isomorphic to the LY-algebra D(m,m)with

binary and ternary products given by x · y = [x, y] and [x, y, z] := β[[x, y], z]. Moreover, if β 6= −1/4 (equivalently,
K ∼= k × k), g(m) is the direct sum of two copies of D(m,m). In case β = −1/4, the enveloping Lie algebra g(m) is
isomorphic to the Lie algebra k[t]/(t2)⊗ D(m,m), whose solvable (actually abelian) radical is (t)/(t2)⊗ D(m,m).

Now, from our previous discussion we obtain:

Theorem 2.4. Up to isomorphism, the LY-algebras of adjoint type are the simple Lie algebras L with binary and ternary products
of one of the following types:
(i) x · y = 0 and [x, y, z] = [[x, y], z]
(ii) x · y = [x, y] and [x, y, z] = β[[x, y], z], β 6= 0

where [x, y] is the Lie bracket in L. Moreover, the standard enveloping Lie algebra is a direct sum of two copies of the simple Lie
algebra L in case (i) or case (ii) with β 6= −1/4. In case (ii) with β = −1/4, the standard enveloping Lie algebra is isomorphic
to k[t]/(t2)⊗ L. �

Remark 2.5. This theorem, together with Theorem 2.1, shows that the adjoint type in (2.3) does not overlap with the other
two types, as the standard enveloping Lie algebra is never simple for the adjoint type, while it is always simple in the non-
simple and generic types. �

3. Examples of non-simple type irreducible LY-algebras

Several examples of irreducible LY-algebras and of its enveloping Lie algebras will be shown in this section. In the next
section, these examples will be proved to exhaust all the possibilities for non-simple type irreducible LY-algebras.

3.1. Classical examples

Given a vector space V and a nondegenerate ε-symmetric bilinear form ϕ on V (that is, ϕ is symmetric if ε = 1 and skew-
symmetric if ε = −1), consider the Lie algebra skew(V , ϕ) = {f ∈ gl(V ) : ϕ(f (v), w) = −ϕ(v, f (w)) ∀v,w ∈ V } of skew-
symmetric linear maps relative to ϕ. Thus, skew(V , ϕ) = so(V , ϕ) (respectively sp(V , ϕ)) if ϕ is symmetric (respectively
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skew-symmetric). This Lie algebra skew(V , ϕ) is spanned by the linear maps ϕv,w = ϕ(v, .)w − εϕ(w, .)v, for v,w ∈ V .
The bracket of two such linear maps is given by:

[ϕa,b, ϕx,y] = ϕϕa,b(x),y + ϕx,ϕa,b(y)

= ϕ(a, x)ϕb,y − ϕ(x, b)ϕa,y − ϕ(y, a)ϕb,x + ϕ(b, y)ϕa,x, (3.1)

for any a, b, x, y ∈ V .
Moreover, the subspace sym(V , ϕ) = {f ∈ Endk(V ) : ϕ(f (v), w) = ϕ(v, f (w)) ∀v,w ∈ V } of the symmetric linearmaps

relative to ϕ is closed under the symmetrized product:

f • g =
1
2
(fg + gf ).

(sym(V , ϕ) is a special Jordan algebra) Use will be made of the subspace of trace zero symmetric linear maps, which will be
denoted by sym0(V , ϕ). It is clear that sym(V , ϕ) = k1V ⊕ sym0(V , ϕ), where 1V denotes the identity map on V .

Example 3.1. Let (Vi, ϕi), i = 1, 2, be twovector spaces endowedwithnondegenerate ε-symmetric bilinear forms (ε = ±1),
with 1 ≤ dim V1 ≤ dim V2. Consider the direct sum V1 ⊕ V2 with the nondegenerate ε-symmetric bilinear form given by
the orthogonal sum ϕ = ϕ1 ⊥ ϕ2. Then, under the natural identifications,

skew(V1 ⊕ V2, ϕ) =
(
ϕV1,V1 ⊕ ϕV2,V2

)
⊕ ϕV1,V2

= (skew(V1, ϕ1)⊕ skew(V2, ϕ2))⊕ ϕV1,V2 .

This gives a Z2-grading of skew(V1 ⊕ V2, ϕ). As a module for the even part skew(V1, ϕ1)⊕ skew(V2, ϕ2), the odd part ϕV1,V2
is isomorphic to V1 ⊗ V2, and it is irreducible unless ε = 1 and either dim V1 = 1 and 1 ≤ dim V2 ≤ 2, or dim V1 = 2. The
Lie bracket of two basic elements in ϕV1,V2 is, due to (3.1) and since V1 and V2 are orthogonal, given by:

[ϕx1,x2 , ϕy1,y2 ] = ϕ2(x2, y2)(ϕ1)x1,y1 + ϕ1(x1, y1)(ϕ2)x2,y2 ,

for any x1, y1 ∈ V1 and x2, y2 ∈ V2.
Therefore, unless ε = 1 and either dim V1 = 1 and 1 ≤ dim V2 ≤ 2, or dim V1 = 2, m = V1 ⊗ V2 is an irreducible

LY-algebra (actually an irreducible Lie triple system) with trivial binary product, and ternary product given by (see (1.1)):

[x1 ⊗ x2, y1 ⊗ y2, z1 ⊗ z2] = ϕ2(x2, y2)
(
(ϕ1)x1,y1(z1)⊗ z2

)
+ ϕ1(x1, y1)

(
z1 ⊗ (ϕ2)x2,y2(z2)

)
. (3.2)

Example 3.2. Let (Vi, ϕi) be a vector space endowed with a nondegenerate εi-symmetric bilinear form (i = 1, 2), with
2 ≤ dim V1 ≤ dim V2. Then V1 ⊗ V2 is endowed with the nondegenerate ε1ε2-symmetric bilinear form ϕ = ϕ1 ⊗ ϕ2. For
i = 1, 2, we have:

gl(Vi) = skew(Vi, ϕi)⊕ sym(Vi, ϕi) = skew(Vi, ϕi)⊕ sym0(Vi, ϕi)⊕ k1Vi ,

and

skew(V1 ⊗ V2, ϕ) =
(
skew(V1, ϕ1)⊗ k1V2 ⊕ k1V1 ⊗ skew(V2, ϕ2)

)
⊕ ((skew(V1, ϕ1)⊗ sym0(V2, ϕ2))⊕ (sym0(V1, ϕ1)⊗ skew(V2, ϕ2))) .

This provides a reductive decomposition g = h ⊕ m of g = skew(V1 ⊗ V2, ϕ), where h ' skew(V1, ϕ1) ⊕ skew(V2, ϕ2) and
m = (skew(V1, ϕ1)⊗ sym0(V2, ϕ2))⊕ (sym0(V1, ϕ1)⊗ skew(V2, ϕ2)).
In this situation, if m is an irreducible module for h, then dim V1 = 2 and ε1 = −1 (which forces sym0(V1, ϕ1) to be

trivial).
Assuming dim V1 = 2, ε1 = −1, and dim V2 = n ≥ 2, thenm = sp(V1, ϕ1)⊗ sym0(V2, ϕ2) is an irreducible module for h

if and only if either ε2 = −1 and dim V2 = 2m ≥ 4, or ε2 = 1 and dim V2 ≥ 3.
With these assumptions, for a, b ∈ sp(V1, ϕ1) and f , g ∈ sym0(V2, ϕ2), ab+ ba = tr(ab)1V1 (as sp(V1, ϕ1) is isomorphic

to the Lie algebra sl2(k)), and hence ab = 1
2

(
[a, b] + tr(ab)1V1

)
and ba = 1

2

(
−[a, b] + tr(ab)1V1

)
hold. Moreover, if the

dimension of V2 is n, then for any f , g ∈ sym0(V2, ϕ2), the element fg + gf −
2
n tr(fg)1V2 also belongs to sym0(V2, ϕ2).

Now, for any a, b ∈ sp(V1, ϕ1) and f , g ∈ sym0(V2, ϕ2):

[a⊗ f , b⊗ g] = ab⊗ fg − ba⊗ gf

=
1
2
[a, b] ⊗ (fg + gf )+

1
2
tr(ab)1V1 ⊗ [f , g]

=

(
[a, b] ⊗

1
n
tr(fg)1V2 +

1
2
tr(ab)1V1 ⊗ [f , g]

)
+
1
2
[a, b] ⊗

(
fg + gf −

2
n
tr(fg)1V2

)
. (3.3)
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Therefore, the binary and ternary products in the irreducible LY-algebra m = skew(V1, ϕ1)⊗ sym0(V2, ϕ2) are given by:

(a⊗ f ) · (b⊗ g) =
1
2
[a, b] ⊗

(
fg + gf −

2
n
tr(fg)1V2

)
,

[a⊗ f , b⊗ g, c ⊗ h] =
1
n
tr(fg)[[a, b], c] ⊗ h+

1
2
tr(ab)c ⊗ [[f , g], h],

(3.4)

for any a, b, c ∈ skew(V1, ϕ1) = sl(V1) and f , g, h ∈ sym0(V2, ϕ2).
Note that for ε2 = −1 and dim V2 = 4, it is easily checked that [[a, b], c] = 2 tr(bc)a− 2 tr(ac)b for any a, b, c ∈ sl(V1),

while fg + gf − 1
2 tr(fg)1V2 = 0 and [[f , g], h] = tr(gh)f − tr(fh)g for any f , g, h ∈ sym0(V2, ϕ2). Hence (3.4) becomes in

this case

(a⊗ f ) · (b⊗ g) = 0,

[a⊗ f , b⊗ g, c ⊗ h] =
1
2
tr(fg) (tr(bc)a− tr(ac)b)⊗ h+

1
2
tr(ab)c ⊗ (tr(gh)f − tr(fh)g) ,

for any a, b, c ∈ skew(V1, ϕ1) = sl(V1) and f , g, h ∈ sym0(V2, ϕ2), and thus the triple product coincides with the expression
in (3.2) for ϕ1(a, b) = tr(ab) and ϕ2(f , g) = − 12 tr(fg). Therefore, the irreducible Lie–Yamaguti algebras obtained here
for dim V1 = 2, dim V2 = 4 and ε1 = −1 = ε2 coincides with the one obtained in Example 3.1 for two vector spaces of
dimension 3 and 5. �

Example 3.3. Let now V1 and V2 be two vector spaces with 2 ≤ dim V1 ≤ dim V2. The algebra of endomorphisms of the
tensor product V1⊗ V2 can be identified with the tensor product of the algebras of endomorphisms of V1 and V2. Moreover,
the general Lie algebra gl(Vi) decomposes as gl(Vi) = k1Vi ⊕ sl(Vi). Then

sl(V1 ⊗ V2) =
(
sl(V1)⊗ k1V2

)
⊕
(
k1V1 ⊗ sl(V2)

)
⊕ (sl(V1)⊗ sl(V2))

' (sl(V1)⊕ sl(V2))⊕ (sl(V1)⊗ sl(V2))

gives a reductive decomposition, and this shows thatm = sl(V1)⊗ sl(V2) is an irreducible LY-algebra. For a, b ∈ sl(V1), both
[a, b] = ab− ba and ab+ ba− 2

n1
tr(ab)1V1 belong to sl(V1), where ni denotes the dimension of Vi, i = 1, 2. Therefore, for

any a, b ∈ sl(V1) and f , g ∈ sl(V2):

[a⊗ f , b⊗ g] = ab⊗ fg − ba⊗ gf

=

(
[a, b] ⊗

1
n2
tr(fg)1V2 +

1
n1
tr(ab)1V1 ⊗ [f , g]

)
+

(
1
2
[a, b] ⊗

(
fg + gf −

2
n2
tr(fg)1V2

)
+

(
ab+ ba−

2
n1
tr(ab)1V1

)
⊗
1
2
[f , g]

)
. (3.5)

Hence, the binary and the ternary products in the irreducible LY-algebra m = sl(V1)⊗ sl(V2) are given by:

(a⊗ f ) · (b⊗ g) =
1
2
[a, b] ⊗

(
fg + gf −

2
n2
tr(fg)1V2

)
+

(
ab+ ba−

2
n1
tr(ab)1V1

)
⊗
1
2
[f , g],

[a⊗ f , b⊗ g, c ⊗ h] = [[a, b], c] ⊗
1
n2
tr(fg)h+

1
n1
tr(ab)c ⊗ [[f , g], h],

(3.6)

for any a, b, c ∈ sl(V1) and f , g, h ∈ sl(V2).
Note that, as noted in Example 3.2, if dim V1 = 2, then for any a, b, c ∈ sl(V1), ab + ba − tr(ab)1V1 = 0, while

[[a, b], c] = 2 tr(bc)a− 2 tr(ac)b. Hence, if dim V1 = dim V2 = 2, (3.6) becomes:

(a⊗ f ) · (b⊗ g) = 0,
[a⊗ f , b⊗ g, c ⊗ h] = tr(fg) (tr(bc)a− tr(ac)b)⊗ h+ tr(ab)c ⊗ (tr(gh)f − tr(fh)g) ,

for any a, b, c ∈ sl(V1) and f , g, h ∈ sl(V2), and thus the triple product coincides with the expression in (3.2) for ϕ1(a, b) =
tr(ab) and ϕ2(f , g) = − tr(fg). Therefore, the irreducible Lie–Yamaguti algebras obtained here for dim V1 = 2 = dim V2
coincides with the one obtained in Example 3.1 for two vector spaces of dimension 3. �

3.2. Generalized Tits Construction

Examples 3.1 and 3.2 can be seen as instances of a Generalized Tits Construction, due to Benkart and Zelmanov [5], which
will now be reviewed in a way suitable for our purposes.
Let X be a unital k-algebra endowed with a normalized trace t : X → k. This means that t is a linear map with t(1) = 1,

t(xy) = t(yx) and t((xy)z) = t(x(yz)) for any x, y, z ∈ X . Then X = k1 ⊕ X0, where X0 = {x ∈ X : t(x) = 0} is the set of
trace zero elements in X . For x, y ∈ X0, the element x∗y = xy−t(xy)1 lies in X0 too, and this defines a bilinearmultiplication
on X0. Assume that there is a skew-symmetric bilinear transformation D : X0×X0 → Der(X), where Der(X) denotes the Lie
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algebra of derivations of X , such that Dx,y leaves invariant X0 and [E,Dx,y] = DE(x),y+Dx,E(y), for any x, y ∈ X0 and E ∈ DX0,X0 .
Here DX0,X0 denotes the Lie subalgebra of Der(X) spanned by the image of the map D.
An easy example of this situation is given by the Jordan algebras of symmetric bilinear forms: let V be a vector space

endowed with a symmetric bilinear form ϕ, then J(V , ϕ) = k1⊕ V , with commutative multiplication given by

(α1+ v)(β1+ w) = (αβ + ϕ(v,w)) 1+ (αw + βv) ,

for any α, β ∈ k and v,w ∈ V . Here the normalized trace is given by t(1) = 1 and t(v) = 0 for any v ∈ V , while the
skew-symmetric map D is given by D(v,w) = ϕv,w for any v,w ∈ V .
Let Y = k1⊕ Y0 be another such algebra, with normalized trace also denoted by t , multiplication on Y0 denoted by ? and

analogous skew-symmetric bilinear map d : Y0 × Y0 → Der(Y ). Then the vector space

T (X, Y ) = DX0,X0 ⊕ (X0 ⊗ Y0)⊕ dY0,Y0 (3.7)

is an anticommutative algebra with multiplication defined by

DX0,X0 and dY0,Y0 are subalgebras of T (X, Y ),
[DX0,X0 , dY0,Y0 ] = 0,
[D, x⊗ y] = D(x)⊗ y,
[d, x⊗ y] = x⊗ d(y),

[x⊗ y, x′ ⊗ y′] = t(yy′)Dx,x′ + (x ∗ x′)⊗ (y ? y′)+ t(xx′)dy,y′ ,

(3.8)

for any x, x′ ∈ X0, y, y′ ∈ Y0, D ∈ DX0,X0 and d ∈ dY0,Y0 .

Proposition 3.4 ([5, Proposition 3.9]). The algebra T (X, Y ) above is a Lie algebra provided the following relations hold

(i)
∑

	

t ((x1 ∗ x2)x3) dy1?y2,y3 = 0,

(ii)
∑

	

t ((y1 ? y2)y3) Dx1∗x2,x3 = 0,

(iii)
∑

	

(
Dx1,x2(x3)⊗ t (y1y2) y3 + (x1 ∗ x2) ∗ x3 ⊗ (y1 ? y2) ? y3 + t(x1x2)x3 ⊗ dy1,y2(y3)

)
= 0

for any x1, x2, x3 ∈ X0 and any y1, y2, y3 ∈ Y0. The notation ‘‘
∑

	’’ indicates summation over the cyclic permutation of the
indices.

Note that, in case T (X, Y ) is a Lie algebra, then X0 ⊗ Y0 becomes an LY-algebra with binary and ternary products given
by

(x1 ⊗ y1) · (x2 ⊗ y2) = (x1 ∗ x2)⊗ (y1 ? y2),
[x1 ⊗ y1, x2 ⊗ y2, x3 ⊗ y3] = Dx1,x2(x3)⊗ t(y1y2)y3 + t(x1x2)x3 ⊗ dy1,y2(y3),

(3.9)

for any x1, x2, x3 ∈ X0 and y1, y2, y3 ∈ Y0. This will be called the Lie–Yamaguti algebra inside T (X, Y ).

Remark 3.5. An important example where T (X, Y ) is a Lie algebra arises when Jordan algebras of symmetric bilinear forms
are used as the ingredients [5, 3.28]. If (V1, ϕ1) and (V2, ϕ2) are two vector spaces endowed with nondegenerate symmetric
bilinear forms andJ1 = J(V1, ϕ1) andJ2 = J(V2, ϕ2) are the corresponding Jordan algebras, thenD(Ji)0,(Ji)0 = so(Vi, ϕi) =
skew(Vi, ϕi), i = 1, 2, and the reductive decomposition

T (J1,J2) =
(
D(J1)0,(J1)0 ⊕ D(J2)0,(J2)0

)
⊕ ((J1)0 ⊗ (J2)0)

' (so(V1, ϕ1)⊕ so(V2, ϕ2))⊕ (V1 ⊗ V2)

coincides, with the natural identifications, with the reductive decomposition in Example 3.1 with ε = 1. Therefore, the
LY-algebras in Example 3.1 with ε = 1, are the LY-algebras obtained inside the Generalized Tits Construction T (J1,J2),
where J1 and J2 are Jordan algebras of nondegenerate symmetric bilinear forms.
Moreover, the Generalized Tits Construction T (X, Y ) can be assumed to be associated with algebras (X0, ∗) and (Y0, ?)

having skew-symmetric bilinear forms, and with symmetric maps D and d (see [5, 3.33]). In particular, it works when
Ji = k1 ⊕ Vi is the Jordan superalgebra of a nondegenerate skew-symmetric bilinear form ϕi, i = 1, 2. Here the even
part of the superalgebra Ji is just k1, while the odd part is Vi. With exactly the same arguments as above, it is checked that
the LY-algebras in Example 3.1 with ε = −1, are exactly the LY-algebras obtained inside the Generalized Tits Construction
T (J1,J2), where J1 and J2 are Jordan superalgebras of nondegenerate skew-symmetric bilinear forms. �

But the Generalized Tits Construction has its origin in the Classical Tits Construction in [29], which is the source of further
examples of LY-algebras.
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Table 1
Freudenthal’s magic square

T (C,J) H3(k) H3(K) H3(Q) H3(O)

k A1 A2 C3 F4
K A2 A2 ⊕ A2 A5 E6
Q C3 A5 D6 E7
O F4 E6 E7 E8

Example 3.6 (Classical Tits Construction). Let C be a unital composition algebra with norm n (see [12]). Thus, C is a finite-
dimensional unital k-algebra, with the nondegenerate quadratic form n : C → k such that n(ab) = n(a)n(b) for any
a, b ∈ C. Then, each element satisfies the degree 2 equation

a2 − tr(a)a+ n(a)1 = 0, (3.10)

where tr(a) = n(a, 1) (= n(a+ 1)− n(a)− n(1)) is called the trace. The subspace of trace zero elements will be denoted
by C0. The algebra C is endowed of a canonical involution, given by x̄ = tr(x)1− x.
Moreover, for any a, b ∈ C, the linear map Da,b : C → C given by

Da,b(c) =
1
4
([[a, b], c] + 3(a, c, b)) (3.11)

where [a, b] = ab− ba is the commutator, and (a, c, b) = (ac)b− a(cb) the associator, is a derivation: the inner derivation
determined by the elements a, b (see [27, Chapter III, Section 8]). These derivations span thewhole Lie algebra of derivations
Der(C). Moreover, they satisfy

Da,b = −Db,a, Dab,c + Dbc,a + Dca,b = 0, (3.12)

for any a, b, c ∈ C. The normalized trace here is t = 1
2 tr, and themultiplication ∗ onC0 is just a∗b = ab− t(ab)1 = 1

2 [a, b],
since ab+ ba = tr(ab)1, for any a, b ∈ C0.
The only unital composition algebras (recall that the ground field is being assumed to be algebraically closed) are, up to

isomorphism, the ground field k, the cartesian product of two copies of the ground fieldK = k × k, the split quaternion
algebra, which is the algebra of two by two matrices Q = Mat2(k), and the split octonion algebra O (see, for instance, [33,
Chapter 2]).
On the other hand, given a finite-dimensional unital Jordan algebra J of degree n (see [13]), we denote by T (x) its generic

trace (T (1) = n), by N(x) its generic norm and by J0 the subspace of trace zero elements. Then t = 1
nT is a normalized trace.

If Rx is the right multiplication by x, the map dx,y : J→ J given by

dx,y(z) = [Rx, Ry] (3.13)

is a derivation.
Now, given a unital composition algebraC, onemay consider the subspaceHn(C) of n×n hermitianmatrices overC with

respect to the standard involution (xij)∗ = (x̄ji). This is a Jordan algebra with the symmetrized product x • y = 1
2 (xy+ yx) if

either C is associative or n ≤ 3. For C = k, this is just the algebra of symmetric n×nmatrices, for C = K this is isomorphic
to the algebra Matn(k) with the symmetrized product, while for C = Q this is the algebra of symmetric matrices for the
symplectic involution in Matn(Mat2(k)) ' Mat2n(k).
Up to isomorphisms, the simple Jordan algebras are the following:

degree 1: The ground field k.
degree 2: The Jordan algebras of nondegenerate symmetric bilinear forms J(V , ϕ).
degree n ≥ 3: The Jordan algebras Hn(k), Hn(K) and Hn(Q), plus the degree three Jordan algebra H3(O).
For the simple Jordan algebras, the derivations dx,y’s span the whole Lie algebra of derivations Der(J).
It turns out that the conditions in Proposition 3.4 are satisfied if X = C is a unital composition algebra and Y = J is a

degree three Jordan algebra (see [29] and [5, Proposition 3.24]). This is the Classical Tits Construction, which gives rise to
Freudenthal’s Magic Square (Table 1), if the simple Jordan algebras of degree three are taken as the second ingredient.
In the third and fourth rows of this Magic Square (that is, if the composition algebras Q and O are considered), there

appears the reductive decomposition:

T (C,J) = (Der(C)⊕ Der(J))⊕ (C0 ⊗ J0) ,

and this shows that, with dimC being either 4 or 8 andJ being a simple degree three Jordan algebra,C0⊗J0 is an irreducible
LY-algebra with binary and ternary products given by

(a⊗ x) · (b⊗ y) =
1
2
[a, b] ⊗ (x • y− t(x • y)1),

[a1 ⊗ x1, a2 ⊗ x2, a3 ⊗ x3] = Da1,a2(a3)⊗ t(x1 • x2)x3 + t(a1a2)a3 ⊗ dx1,x2(x3)
(3.14)

for any a, b, a1, a2, a3 ∈ C and x, y, x1, x2, x3 ∈ J. �
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Consider the third row of the Classical Tits Construction, with an arbitrary unital Jordan algebra of degree n. Since
Q is associative, the inner derivation Da,b in (3.11) is just 14 ad[a,b], thus Der(Q) can be identified to Q0. The linear map
(Q0 ⊗ J)⊕ Der(J)→ T (Q,J), which is the identity on Der(J) and takes a⊗ 1 to ada ∈ Der(Q) and a⊗ x to 2(a⊗ x), for
any a ∈ Q0 and x ∈ J0, is then a bijection. Under this bijection, the anticommutative product on T (Q,J) is transferred to
the following product on g = (Q0 ⊗ J)⊕ Der(J):

Der(J) is a subalgebra of g,
[d, a⊗ x] = a⊗ d(x),
[a⊗ x, b⊗ y] = ([a, b] ⊗ x • y)+ 2 tr(ab)dx,y

(3.15)

for any a, b ∈ Q0, x, y ∈ J and d ∈ Der(J).
For any Jordan algebra J, Tits showed in [28] that this bracket gives a Lie algebra g. This is the well-known

Tits–Kantor–Koecher Lie algebra attached to J (see [28,14,19]). Therefore, the third row of the Classical Tits Construction is
valid for any unital Jordan algebra, not just for degree three Jordan algebras.

Remark 3.7. Take, for instance, the Jordan algebra J = Hn(K), which can be identified with the algebra of n× nmatrices
Matn(k), but with the Jordan product x • y = 1

2 (xy + yx) =
1
2 (lx + rx)(y), where lx and rx denote, respectively, the

left and right multiplication in the associative algebra Matn(k). Then for any x, y ∈ J, the inner derivation dx,y equals
1
4 [lx + rx, ly + ry] =

1
4 ad[x,y]. Since Q = Mat2(k), for any a, b ∈ Q0 and x, y ∈ J0, the Lie bracket in (3.15) gives, for

any a, b ∈ Q0 = sl2(k) and x, y ∈ J0 = sln(k):

[a⊗ x, b⊗ y] =
1
n
tr(xy)[a, b] +

1
2
[a, b] ⊗

(
xy+ yx−

2
n
tr(xy)1

)
+
1
2
tr(ab)[x, y].

This is exactly the multiplication in (3.5) with n1 = 2 and n2 = n.
Actually, we can think of the construction in Example 3.3 as a sort of Generalized Tits Construction T (Hn1(K),Hn2(K)).
On the other hand, let (V2, ϕ2) be a vector space endowed with a nondegenerate ε-symmetric bilinear form. Then

J = sym(V2, ϕ2) is a Jordan algebra with the symmetrized product f • g = 1
2 (fg + gf ). If ε = 1 and dimW = n, then

J is isomorphic to Hn(k), while if ε = −1 and dimW = 2n, then J is isomorphic to Hn(Q). As in the previous remark, and
since Q0 = sl2(k) ' sp(V1, ϕ1), where V1 is a two-dimensional vector space endowed with a nonzero skew-symmetric
bilinear form ϕ1, the Lie bracket in (3.15) is exactly the multiplication in (3.3). This means that the irreducible LY-algebra in
Example 3.2 is the LY-algebra obtained inside T (Q, sym(V2, ϕ2)).
Finally, if again (V2, ϕ2) is a vector space endowed with a nondegenerate symmetric bilinear form and J2 = J(V2, ϕ2) is

the associated Jordan algebra, since adQ0 is isomorphic to the orthogonal Lie algebra so(Q0, n|Q0) (recall that n denotes the
norm of the composition algebra Q, which in this case coincides with the determinant of 2 × 2 matrices), it follows easily
that T (Q,J2) is isomorphic to T (J1,J2) (see Remark 3.5), where J1 is the Jordan algebra of the nondegenerate symmetric
bilinear form n|Q0 .
Therefore, concerning the LY-algebras inside the Classical Tits Construction, only the cases T (Q,H3(O)) and

T (O,H3(C)) for C = k,K ,Q, or O are not covered by the previous examples. �

3.3. Symplectic triple systems

There is another type of examples of irreducible LY-algebras (actually, of irreducible Lie triple systems) with exceptional
enveloping Lie algebra, which appears in terms of the so-called symplectic triple systems or, equivalently, of Freudenthal
triple systems.
Symplectic triple systems were introduced first in [32]. They are basic ingredients in the construction of some 5-graded

Lie algebras (and hence Z2-graded algebras). They consist of a vector space T endowed with a trilinear product {xyz} and a
nonzero skew-symmetric bilinear form (x, y) satisfying some conditions (seeDefinition 2.1 in [7] for a complete description).
Following [7], from any symplectic triple system T , a Lie algebra can be defined on the vector space

g(T ) = sp(V )⊕ (V ⊗ T )⊕ Inder(T ) (3.16)

where V is a two-dimensional space endowed with a nonzero skew-symmetric bilinear form ϕ and Inder T = span〈dx,y =
{xy·} : x, y ∈ T 〉 is the Lie algebra of inner derivations of T , by considering the anticommutative product given by:

• sp(V ) and Inder(T ) are Lie subalgebras of g(T ),
• [sp(V ), Inder(T )] = 0,
• [f + d, v ⊗ x] = f (v)⊗ x+ v ⊗ d(x),
• with ϕu,v = ϕ(u, .)v + ϕ(v, .)u (as usual),

[u⊗ x, v ⊗ y] = (x, y)ϕu,v + ϕ(u, v)dx,y (3.17)
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Table 2
g(TJ)-algebras

TJ Tk TH3(k) TH3(K) TH3(Q) TH3(O)
InderTJ A1 C3 A5 D6 E7
g(TJ) G2 F4 E6 E7 E8

for all f ∈ sp(V ), d ∈ Inder(T ), u, v ∈ V and x, y ∈ T . The decomposition g0̄ = sp(V )⊕ Inder(T ) and g1̄ = V ⊗ T provides
a Z2-graduation on g(T ), so the odd part g1̄ = V ⊗ T is a LY-algebra with trivial binary product (Lie triple system). The
simplicity of g(T ) is equivalent to that of T , which is characterized by the nondegeneracy of the associated bilinear form
(x, y). Note that viewing sp(V ) as sl(V ), and V as its natural module, a 5-grading is obtained by looking at the eigenspaces
of the adjoint action of a Cartan subalgebra in sl(V ). This feature relates symplectic triples with structurable algebras with
a one-dimensional space of skew-hermitian elements (see [1]).
Symplectic triple systems are also related to Freudenthal triple systems (see [22]) and to Faulkner ternary algebras

introduced in [8,9]. In fact, in the simple case all these systems are essentially equivalent (see [7]).
Among the simple symplectic triple systems (see [7]) use will be made of the following ones:

TJ =

{(
α a
b β

)
: α, β ∈ k, a, b ∈ J

}
(3.18)

whereJ = Jordan(n, c) is the Jordan algebra of a nondegenerate cubic form nwith basepoint (see [21, II.4.3] for a definition)
of one of the following types: J = k, n(α) = α3 and t(α, β) = 3αβ or J = H3(C) for a unital composition algebra C.
Theorem 2.21 in [7] displays carefully the product and bilinear form for the triple systems TJ and Theorem 2.30 describes
the structure of g(TJ). The information on the Lie algebras involved is given in Table 2.
From these symplectic triple systems, five new constructions of exceptional Lie algebras, exactly one for each simple

Jordan algebra J above, and hence a new family of LY-algebras appears:

Example 3.8. Let TJ be the symplectic triple system defined in (3.18) where either J is k with norm n(α) = α3, or it is
H3(C)with its generic norm for a unital composition algebra C. The Lie algebra g(TJ) given in (3.16) is simple and presents
the reductive decomposition g(TJ) = h⊕ m, where h = sp(V )⊕ Inder TJ and m = V ⊗ TJ . In these cases, h is isomorphic
to the semisimple Lie algebra of type A1⊕ L, with L = A1, C3, A5, D6 or E7 as in Table 2. Moreover, h acts irreducible onm and
therefore V ⊗TJ becomes an irreducible LY-algebra with trivial binary product (that is, it is an irreducible Lie triple system)
and ternary product given by:

[u⊗ x, v ⊗ y, w ⊗ z] = (x, y)ϕu,v(w)⊗ z + ϕ(u, v)w ⊗ {xyz} (3.19)

where (x, y) and {xyz} are the alternating form and the triple product of TJ . Its standard enveloping Lie algebra is, because
of Proposition 1.3, the Lie algebra g(TJ), whose type is given in Table 2 too. �

4. Classification

As shown in Section 2, the irreducible Lie–Yamaguti algebras of non-simple type are those for which the inner derivation
algebra is semisimple but not simple. According to Theorem 2.1, the standard enveloping Lie algebras of such LY-algebras
are simple Lie algebras, so following Proposition 1.3 the classification of such LY-algebras can be reduced to determine the
reductive decompositions g = h⊕ m satisfying

(a) g is a simple Lie algebra
(b) h is a semisimple but not simple subalgebra of g
(c) m is an irreducible ad h-module.

(4.1)

In this section we classify the irreducible LY-algebras of non-simple type and, first of all, the irreducible LY-algebras
whose standard enveloping is classical, that is, isomorphic to either sln(k) (special), n ≥ 2, son(k) (orthogonal), n ≥ 3, or
sp2n(k) (symplectic), n ≥ 1.

Theorem 4.1. Let (m, x · y, [x, y, z]) be an irreducible LY-algebra of non-simple type whose standard enveloping Lie algebra is
simple and classical. Then, up to isomorphism, either:
(i) m = sl(V1) ⊗ sl(V2) for some vector spaces V1 and V2 with 2 ≤ dim V1 ≤ dim V2 and (dim V1, dim V2) 6= (2, 2), as in
Example 3.3, with binary and ternary products given in (3.6).
In this case the standard enveloping Lie algebra is isomorphic to the special linear algebra sl(V1 ⊗ V2) and the inner

derivation algebra to sl(V1)⊕ sl(V2).
(ii) m = V1 ⊗ V2 for some vector spaces V1 and V2 endowed with nondegenerate symmetric bilinear forms with 3 ≤ dim V1 ≤
dim V2 as in Example 3.1. This is an irreducible Lie triple system, whose triple product is given in (3.2). Alternatively, this is the
LY-algebra inside the Tits construction T (J(V1),J(V2)) for two Jordan algebras of symmetric bilinear forms in Remark 3.5.
In this case the standard enveloping Lie algebra is isomorphic to the orthogonal Lie algebra so(V1 ⊕ V2) and the inner

derivation algebra to so(V1)⊕ so(V2).
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(iii) m = V1 ⊗ V2 for some vector spaces V1 and V2 endowed with nondegenerate skew-symmetric bilinear forms with
2 ≤ dim V1 ≤ dim V2 as in Example 3.1. This is an irreducible Lie triple system, whose triple product is given in (3.2).
Alternatively, this is the LY-algebra inside the Tits construction T (J(V1),J(V2)) for two Jordan superalgebras of skew-
symmetric bilinear forms in Remark 3.5.
In this case the standard enveloping Lie algebra is isomorphic to the symplectic Lie algebra sp(V1 ⊕ V2) and the inner

derivation algebra to sp(V1)⊕ sp(V2).
(iv) m = sp(V1)⊗ J0, where V1 is a two-dimensional vector space endowed with a nonzero skew-symmetric bilinear form and

J is the Jordan algebra Hn(k) for n ≥ 3 (that is, isomorphic to sym(V2, ϕ2), for a vector space V2 of dimension n endowed
with a nondegenerate symmetric bilinear form ϕ2). The binary and ternary products are given in (3.4). Alternatively, this is
the LY-algebra inside the Tits construction T (Q,Hn(k)) (see Remark 3.7).
In this case the standard enveloping Lie algebra is isomorphic to the symplectic Lie algebra sp(V1 ⊗ V2) ' sp2n(k), and

the inner derivation algebra to sp(V1)⊕ so(V2).
(v) m = sp(V1)⊗ J0, where V1 is a two-dimensional vector space endowed with a nonzero skew-symmetric bilinear form and

J is the Jordan algebra Hn(Q) for n ≥ 3 (that is, isomorphic to sym(V2, ϕ2), for a vector space V2 of dimension 2n endowed
with a nondegenerate skew-symmetric bilinear form ϕ2). The binary and ternary products are given in (3.4). Alternatively,
this is the LY-algebra inside the Tits construction T (Q,Hn(Q)) (see Remark 3.7).
In this case the standard enveloping Lie algebra is isomorphic to the orthogonal Lie algebra so(V1 ⊗ V2) ' so4n(k), and

the inner derivation algebra to sp(V1)⊕ sp(V2).
Proof. The irreducible LY-algebras of non-simple type with classical enveloping Lie algebras are those obtained from
reductive decompositions g = h ⊕ m satisfying (4.1), where g is a classical simple Lie algebra and h = h1 ⊕ h2, 0 6= hi
semisimple. In this case, h is a maximal subalgebra of g and Proposition 1.3 asserts that m is exactly the orthogonal
complement of hwith respect to the Killing form of g.
Suppose first that g is (isomorphic to) the special linear Lie algebra sl(V ) for some vector space V of dimension ≥ 2. If

V were not irreducible as a module for h, then by Weyl’s Theorem, there would exist h-invariant subspaces V1 and V2 with
V = V1⊕V2, but then hwould be contained in the subalgebra sl(V1)⊕sl(V2)which is notmaximal. Therefore,V is irreducible
too as a module for h. Hence, up to isomorphism, the h-module V decomposes as a tensor product V = V1 ⊗ V2 for some
irreducible module V1 for h1 and some irreducible module V2 for h2. It can be assumed that 2 ≤ dim V1 ≤ dim V2. Then h

is contained in the subalgebra sl(V1)⊗ k1V2 ⊕ k1V1 ⊗ sl(V2) of sl(V1 ⊗ V2) and, by maximality, h is exactly this subalgebra.
Hence, we are in the situation of Example 3.3 and Proposition 1.3 shows that the only complementary subspace to h in g

which is h-invariant is its orthogonal complement relative to the Killing form. This uniqueness shows that we are dealing
with the irreducible LY-algebra in Example 3.3, thus obtaining case (i).
Suppose now that g is isomorphic to the Lie algebra of skew-symmetric linear maps of a vector space V endowed with a

nondegenerate symmetric or skew-symmetric bilinear map ϕ.
If V is not irreducible as a module for h, and W is an irreducible h-submodule of V with ϕ(W ,W ) 6= 0, then by

irreducibility the restriction of ϕ to W is nondegenerate, so V is the orthogonal sum V = W ⊕ W⊥. By maximality of
h, h is precisely the subalgebra skew(W )⊕ skew(W⊥), and the situation of Example 3.1 appears. Because of the uniqueness
in Proposition 1.3, items (ii) (for symmetric ϕ) or (iii) (for skew-symmetric ϕ) are obtained.
On the other hand, if V is not irreducible as a module for h, and the restriction of ϕ to any irreducible h-submodule of V

is trivial then, byWeyl’s theorem on complete reducibility, given an irreducible submoduleW1, there is another irreducible
submodule W2 with ϕ(W1,W2) 6= 0. Since ϕ(W1,W1) = 0 = ϕ(W2,W2), W1 and W2 are contragredient modules and
V = (W1 ⊕ W2) ⊕ (W1 ⊕ W2)⊥. Proceeding in the same way with (W1 ⊕ W2)⊥, it is obtained that V = V1 ⊕ V2
for some h-invariant subspaces V1 and V2 such that the restrictions of ϕ to V1 and V2 are trivial. Then h is contained in
{f ∈ skew(V , ϕ) : f (Vi) ⊆ Vi, i = 1, 2}, which is ϕV1,V2 . But this contradicts the maximality of h, since ϕV1,V2 is contained in
the subalgebra ϕV1,V2 ⊕ ϕV1,V1 .
Finally, if V remains irreducible as a module for h then, as above, there is a decomposition V = V1⊗V2 for an irreducible

module Vi for hi, i = 1, 2, endowed with a nondegenerate symmetric or skew-symmetric bilinear form ϕi such that
ϕ = ϕ1 ⊗ ϕ2. By maximality of h and Proposition 1.3, we are in the situation of Example 3.2, thus obtaining cases (iv)
and (v) depending on ϕ being either skew-symmetric or symmetric respectively. �

Now it is time to deal with the irreducible LY-algebras with exceptional standard enveloping Lie algebras. These algebras
appear inside reductive decompositions g = h ⊕ m satisfying (4.1) with g a simple exceptional Lie algebra, and hence of
type G2, F4, E6, E7 or E8. Over the complex field, a thorough description of the maximal semisimple subalgebras of the simple
exceptional Lie algebras is given in [6]. The following result shows that the reductive decomposition we are looking for can
be transferred to the complex field, so the results in [6] can be used over our ground field to get the classification of the
exceptional irreducible LY-algebras of non-simple type.

Lemma 4.2. Let g = h⊕m be a reductive decomposition over our ground field k. Then there is an algebraically closed subfield k′
of k, an embedding ι : k′ → C and a Lie algebra g′ over k′ with a reductive decomposition g′ = h′ ⊕ m′ such that g = g′⊗k′ k,
h = h′⊗k′ k and m = m′⊗k′ k.
Proof. Let {xi : i = 1, . . . , n} be a basis of g over k such that {xi : i = 1, . . . ,m} is a basis of h and {xm+1, . . . , xn} is a
basis of m (1 < m < n). For any 1 ≤ i ≤ j ≤ n, [xi, xj] =

∑n
i=1 α

k
ijxk, for some α

k
ij ∈ k (the structure constants). Note that

the decomposition being reductive means that αkij = 0 for 1 ≤ i ≤ j ≤ m and m + 1 ≤ k ≤ n (h is a subalgebra), and
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for 1 ≤ i, k ≤ m and m + 1 ≤ j ≤ n. Let k′′ be the subfield of k generated (over the rational numbers) by the structure
constants. Since the transcendence degree of the extension C/Q is infinite, there is an embedding ι′′ : k′′ → C. Finally, let
k′ be the algebraic closure of k′′ on k. By uniqueness of the algebraic closure, ι′′ extends to an embedding ι : k′ → C. Now,
it is enough to take h′ =

∑m
i=1 k

′xi, m′ =
∑n
i=m+1 k

′xi and g′ = h′ ⊕ m′. �

Therefore, if g = h⊕ m is a reductive decomposition of a simple exceptional Lie algebra over our ground field k, with h

semisimple but not simple, andwithm an irreduciblemodule for h, take g′, h′ andm′ as in the previous Lemma4.2. Then there
exists the reductive decomposition g̃ = h̃ ⊕ m̃ over C, where g̃ = g′⊗k′ C (via ι) and also h̃ = h′⊗k′ C and m̃ = m′⊗k′ C.
Since g is simple and g′ is a form of g, g′ is simple too and of the same type as g, and hence so is g̃. In the same vein, h, h′ and
h̃ are semisimple Lie algebras of the same type, and the highest weights of m and m̃ ‘‘coincide’’, as both are obtained from
the highest weight of m′ relative to a Cartan subalgebra and an ordering of the roots for h′.
The displayed list of maximal subalgebras of complex semisimple Lie algebras given in [6] distinguishes the regular

maximal subalgebras and the so-called S-subalgebras. Following [6], a subalgebra r of a semisimple Lie algebra g is said to
be regular in case r has a basis formed by some elements of a Cartan subalgebra of g and some elements of its root spaces.
On the other hand, an S-subalgebra is a subalgebra s not contained in any regular subalgebra. We observe that maximal
subalgebras are either regular or S-subalgebras and regular maximal subalgebras have maximal rank, that is, the rank of the
semisimple algebras they are living in. Hence, the inner derivation Lie algebras of the irreducible LY-algebras belong to one
of these classes of subalgebras and, in the case of nonzero binary product, they are necessarily S-subalgebras:

Lemma 4.3. Let m be an irreducible LY-algebra which is not of adjoint type. If the binary product inm is not trivial, then the inner
derivation Lie algebra D(m,m) is a maximal semisimple S-subalgebra of the simple standard enveloping Lie algebra of m.

Proof. Following Theorem 2.1 and Corollary 2.3, D(m,m) is a maximal semisimple subalgebra of the simple enveloping Lie
algebra g(m) and m is a self-dual D(m,m)-module. Let λ be the highest weight of m as a module for D(m,m) with respect
to a Cartan subalgebra H of D(m,m) and an ordering of the roots, so m = V (λ) as a module. Then −λ is its lowest weight
(m is self-dual). Since the binary product on m is nonzero, so is the vector space HomD(m,m)(V (λ)⊗ V (λ), V (λ)). Moreover,
any map ϕ in this space is determined by ϕ(vλ ⊗ v−λ) ∈ V (λ)0 with vλ and v−λ weight vectors of weights λ and −λ, and
V (λ)0 the zero weight space in V (λ). Then V (λ)0 must be nontrivial and, as V (λ)0 is contained in the centralizer of H in
g(m), the subalgebra H is not a Cartan subalgebra of g(m). Therefore, D(m,m) is not a maximal rank subalgebra of g(m) and
hence it is an S-subalgebra. �

The irreducible LY-algebras of non-simple type whose standard enveloping Lie algebra is exceptional are classified in the
next result.

Theorem 4.4. Let (m, x · y, [x, y, z]) be an irreducible LY-algebra of non-simple type whose standard enveloping Lie algebra is a
simple exceptional Lie algebra. Then, up to isomorphism, either:
(i) m = V ⊗ TJ , where V is a two-dimensional vector space endowed with a nonzero skew-symmetric bilinear form and TJ is
the symplectic triple system associated to a Jordan algebra J isomorphic either to k, H3(k), H3(K), H3(Q) or H3(O), as in
Example 3.8. This is an irreducible Lie triple system whose ternary product is given in (3.19).
In this case, the standard enveloping Lie algebra is the exceptional simple Lie algebra of type G2 for J = k, F4 for

J = H3(k), E6 for J = H3(K), E7 for J = H3(Q) and E8 for J = H3(O), while its inner derivation Lie algebra is
isomorphic respectively to sl2(k)⊕ sl2(k), sl2(k)⊕ sp6(k), sl2(k)⊕ sl6(k), sl2(k)⊕ so12(k) and sl2(k)⊕ E7.

(ii) m = O0⊗J0, where J is one of the Jordan algebras H3(k), H3(K), H3(Q) or H3(O). This is the irreducible LY-algebra inside
the Classical Tits Construction T (O,J) in Example 3.6. The binary and ternary products are given in (3.14).
In this case, the standard enveloping Lie algebra is the exceptional simple Lie algebra of type F4 for J = H3(k), E6 for

J = H3(K), E7 for J = H3(Q) and E8 for J = H3(O), while its inner derivation Lie algebra is isomorphic respectively to
G2 ⊕ sl2(k), G2 ⊕ sl3(k), G2 ⊕ sp6(k) and G2 ⊕ F4.

(iii) m = Q0 ⊗ H3(O)0 is the irreducible LY-algebra inside the Classical Tits Construction T (Q,H3(O)) in Example 3.6. The
binary and ternary products are given in (3.14).
In this case, the standard enveloping Lie algebra is the exceptional simple Lie algebra of type E7, while its inner derivation

Lie algebra is isomorphic sl2(k)⊕ F4.

Proof. Following (4.1), we must find reductive decompositions g = h⊕mwith g exceptional simple, h semisimple but not
simple andm irreducible. In case the binary product is trivial,m is an irreducible Lie triple system. Up to isomorphism, these
triple systems fit into one of the following (g(m),D(m,m),m)possibilities (see [10]): (G2, A1×A1, V (λ1)⊗V (3µ1)), (F4, A1×
C3, V (λ1)⊗V (µ3)), (E6, A1×A5, V (λ1)⊗V (µ3)), (E7, A1×D6, V (λ1)⊗V (µ6)), (E8, A1×E7, V (λ1)⊗V (µ7)). In the above
list, V (λ)⊗ V (µ) indicates the irreducible module structure ofm, described by means of the fundamental weights λi andµi
relative to fixed Cartan subalgebras in each component of h = L1× L2. The notation follows [11]. In all these cases, g is a Z2-
graded simple Lie algebra inwhich the odd part contains a three-dimensional simple ideal of type A1 for which the even part
is a sum of copies of a two-dimensional irreducible module. Identifying A1 and V (λ1) with sp(V ) and V respectively, for a
two-dimensional vector space V endowed with a nonzero skew-symmetric bilinear form, the following general description
for these reductive decompositions follows:

g = sp(V )⊕ s⊕ (V ⊗ T ) (4.2)
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where s is a simple Lie algebra. Then, Theorem 2.9 in [7] shows that T is endowed with a structure of a simple symplectic
triple system obtained from the Lie bracket of g for which s = Inder(T ). It follows that g is the Lie algebra g(T ) in (3.16). An
inspection of the classification of the simple symplectic triple systems displayed in [7, Theorem 2.30] shows that the only
possibilities for T are those given in Example 3.8. Thus item (i) is obtained.
Now let us assume that the binary product is not trivial. From Lemma 4.3, it follows that h is a maximal semisimple S-

subalgebra of g. Because of [6, Theorem 14.1], there exist only eight possible pairs (g, h)with h not simple and g exceptional:
(F4,G2 ⊕ A1), (E6,G2 ⊕ A2), (E7,G2 ⊕ C3), (E7, F4 ⊕ A1), (E7,G2 ⊕ A1), (E7, A1 ⊕ A1), (E8,G2 ⊕ F4), (E8, A2 ⊕ A1). Now, the
irreducible and nontrivial action of h onm implies that this is a tensor productm = V (λ)⊗V (µ)with V (λ), V (µ) irreducible
modules of nonzero dominant weights λ and µ for each one of the simple components in h. Computing dimensions and
possible irreducible modules of the involved algebras, the following descriptions of m, as a module for h are obtained:

(F4,G2 ⊕ A1): Here dimm = 52−(14+3) = 35 = 7×5. The only possibility form is to be the tensor product of the seven-
dimensional irreducible module for G2 and the five-dimensional irreducible module for A1:m = V (λ1)⊗ V (4µ1).

(E6,G2 ⊕ A2): Here dimm = 78 − (14 + 8) = 56. The only possibility for m is to be the tensor product of the seven-
dimensional irreducible module for G2 and the adjoint module for A2: m = V (λ1)⊗ V (µ1 + µ2).

(E7,G2 ⊕ C3): Here dimm = 133 − (14 + 21) = 98. The only possibility for m is to be the tensor product of the seven-
dimensional irreduciblemodule forG2 and a fourteen-dimensionalmodule for C3:m = V (λ1)⊗V (µ2). (Theweight
µ3 for C3 cannot occur as this module is not self-dual.)

(E7, F4 ⊕ A1): Here dimm = 133− (52+ 3) = 78. The only possibility form is to be the tensor product of the twenty-six-
dimensional irreducible module for F4 and the adjoint module for A1: m = V (λ4)⊗ V (2µ1).

(E8,G2 ⊕ F4): Here dimm = 248 − (14 + 52) = 182. The only possibility for m is to be the tensor product of the seven-
dimensional irreducible module for G2 and the twenty-six-dimensional module for F4: m = V (λ1)⊗ V (µ4).

(E7,G2 ⊕ A1): Here dimm = 133− (14+ 3) = 116 = 22 × 29. As G2 has no irreducible modules of dimension 2, 4, 29 or
58, this case is not possible.

(E7, A1 ⊕ A1): Here dimm = 133− (3+ 3) = 127. Since 127 is prime, there is no possible factorization.
(E8, A2 ⊕ A1): Here dimm = 248 − (8 + 3) = 237 = 3 × 79. As A2 has no irreducible module of dimension 79 and its

modules of dimension 3 are not self-dual, this case is impossible too.

Note that the possible reductive decompositions above fit exactly into the Classical Tits Construction of exceptional
Lie algebras given in Example 3.6. By identifying G2 with Der(O) and V (λ1) with O0, and F4 with Der(H3(O)) and V (λ4)
with H3(O)0, the case (E8,G2 ⊕ F4) corresponds to T (O,H3(O)). Also, with the identifications A1 ' DerH3(k) and
V (4µ1) ' H3(k)0, A2 ' DerH3(K) and V (µ1 + µ2) ' H3(K)0 (recallK = k× k), C3 ' DerH3(Q) and V (µ2) ' H3(Q)0,
the cases (F4,G2 ⊕ A1), (E6,G2 ⊕ A2) and (E7,G2 ⊕ C3) are given by T (O,J)with J = H3(k), H3(K) or H3(Q). Finally, the
case (E7, F4 ⊕ A1) corresponds to T (Q,H3(O)) under the identifications F4 ' DerH3(O) and V (λ4) ' H3(O)0, A1 ' DerQ
and V (2µ1) ' Q0.
On the other hand, ifA denotes either the algebra of quaternions or octonions, the subspaces HomDerA(A0⊗A0,DerA),

HomDerA(A0 ⊗ A0, k) and HomDerA(A0 ⊗ A0,A0) are spanned by a ⊗ b 7→ Da,b, a ⊗ b 7→ tr(ab) and a ⊗ b 7→ [a, b]
respectively, where Da,b is defined in (3.11) and tr(a) is the trace form, while if J denotes one of the Jordan algebras H3(k),
H3(Q), or H3(O), the subspaces HomDerJ(J0⊗ J0,DerJ), HomDerJ(J0⊗ J0, k) and HomDerJ(J0⊗ J0,J0) are spanned by
x⊗ y 7→ dx,y, x⊗ y 7→ T (xy) and x⊗ y 7→ x ? y = x • y− 1

3T (xy)1, with dx,y as in (3.13) and T (x) the generic trace. Then,
by imposing the Jacobi identity, it is easily checked that, up to scalars, there exists only one way to introduce a Lie product
in the vector space (DerA⊕ DerJ)⊕ (A0 ⊗ J), forA = Q orA = O, with the natural actions of the derivation algebras
onA and J. This product is given by

[a⊗ x, b⊗ y] =
α2

3
T (xy)Da,b + 2α2 tr(ab)dx,y + α[a, b] ⊗ x ? y (4.3)

where α ∈ k. The resulting algebras for the same ingredients and different nonzero scalars α are all isomorphic and hence
isomorphic to the Classical Tits Construction T (O,J)with J 6= H3(K), or T (Q,H3(O)).
For J = H3(K) (which is isomorphic to the algebra Mat3(k) with the symmetrized product), J0 is isomorphic to the

adjoint module DerJ, and hence the subspaces HomDerJ(J0 ⊗ J0,J0) and HomDerJ(J0 ⊗ J0,DerJ) have dimension 2,
being spanned by the symmetric product x ? y and the skew product dx,y. Since the products in HomDerO(O0 ⊗ O0,O0)
are skew and symmetric in HomDerO(O0 ⊗ O0, k), the anticommutativity imposed in the construction of a Lie algebra on
the vector space (DerO ⊕ DerJ) ⊕ (O0 ⊗ J) with the natural actions of the derivation algebras on O and J, can only be
guaranteed if a symmetric product inHomDerJ(J0⊗J0,J0) and a skew-symmetric one inHomDerJ(J0⊗J0,DerJ) are used.
This yields again the Lie product in (4.3) and, up to isomorphism, the corresponding Classical Tits Construction T (O,H3(K))
given in Example 3.6. This provides cases (ii) and (iii) in the theorem. �

5. Concluding remarks

As mentioned in the introduction, concerning the isotropy irreducible homogeneous spaces, Wolf remarked in [30] that
only the irreducible homogeneous spaces SO(dim K)/ ad K for an arbitrary compact simple Lie group follow a clear pattern.
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These are related to the reductive pairs (so(L), ad L) for a simple Lie algebra L, so ad L = Der(L) = [Der(L),Der(L)], and
hence the reductive pair can be written as (so(L),Der(L)).
The examples in Section 3 follow clear patterns too. Moreover, a closer look at the classification of the non-simple type

irreducible LY-algebras shows that, apart from the irreducible Lie triple systems and the exceptional cases that appear related
to the Classical Tits Construction in Theorem 4.4, there are two more classes, that correspond to Examples 3.2 and 3.3.
Concerning the irreducible LY-algebras in Example 3.2, let (V1, ϕ1) be a two-dimensional vector space endowed with

a nonzero skew-symmetric bilinear form, and let (V2, ϕ2) be another vector space of dimension ≥ 3 endowed with a
nondegenerate ε-symmetric bilinear form. Then T = V1 ⊗ V2 is an irreducible Lie triple system, as in Example 3.1, whose
Lie algebra of derivations is Der(T ) = sp(V1, ϕ1) ⊕ skew(V2, ϕ2). Hence, the reductive pair (g, h) in Example 3.2 (or in
Theorem 4.1, items (iv) and (v)), is nothing else but (skew(T , ϕ1 ⊗ ϕ2),Der(T )).
Also, in Example 3.3 (or the first item in Theorem 4.1) two vector spaces V1 and V2 of dimension n1 and n2 are considered.

The tensor product V1 ⊗ V2 can be identified to kn1 ⊗ kn2 or to the space of rectangular matrices V = Matn1×n2(k). The
pair V = (V , V ) is a Jordan pair (see [20]) under the product given by {xyz} = xytz + zytx for any x, y, z ∈ V . The
Lie algebra of derivations is Der(V) = sln1(k) ⊕ sln2(k) ⊕ k, which acts naturally on V , and then its derived algebra is
Der0(V) = [Der(V),Der(V)] = sln1(k) ⊕ sln2(k). Hence the reductive pair associated to the irreducible LY-algebra in
Example 3.3 is the pair (sl(V ),Der0(V)).
This sort of patterns will explain most of the situations that arise in the generic case [3].
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