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.%BSTRACT 

The Hadalnard product of two matrices multiplied together elementwise is a rather 
neglected concept in matrix theory and has found only brief and scattered application 
in statistical analysis. We sur\‘ey the known results on Hadamard products in a 
historical perspective and obtain various extensions. New applications to multi- 
variate analysis are developed with complicated expressions appearing in closed 
form. These lead to new results concerning Hadamard products of positive definite 
matrices. The paper ends with an exhaustive bibliography of books and articles 
related to Hadamard products. 

1. INTRODUCTION 

If A = {uii) and B = {blj} are each m x n matrices, then their 

Hadamard prodzcct is the WL x n matrix of elementwise products 

A * B = {a,&~,~}. (1.1) 

[Matrices (which will all have real elements) are denoted by capital 

letters, vectors by lower case letters, and both appear in bold face print. 

Transposition will be indicated by a prime, with row vectors always 

appearing primed.] 

Halmos [13, p. 1441 appears to be the first to give the name Hadamard 

product to Eq. (1.1). It is not clear why this product was so named. The 

French mathematician Jacques Hadamard (1865-1963) wrote about 400 

scientific papers (cf. Hadamard [ll*], Cartwright [3*], Mandelbrojt and 

Schwartz [18*] as well as several books. The two references to Hadamard 
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most frequently cited by later writers in this area date to 1893 and 1903. 

In the first, Hadamard obtained an upper bound for an arbitrary deter- 

minant, the special case of which, for a positive semidefinite matrix, we 

give as Lemma 3.3. This result is used in establishing lower bounds for 

the determinant of A * B (Corollary 3.6 and Theorem 3.7). In the 1903 

book, Hadamard [12] considers quadratic forms of the type x’(A * B)x, 
but as far as we can determine only for the special case x = e, the column 

vector with each element unity. 

Apparently unaware of any previous work concerning the product 

(l.l), the German mathematician Issai Schur (18751941) proved (Theorem 

3.1) that whenever A and B are positive semidefinite, then so is A * B. 
Schur [30] also proved an interesting inequality (Theorem 3.4) concerning 

the characteristic roots of A * B which appears to have been overlooked 

by subsequent writers. 

Fan [7] introduced the product C = A o B where cii = aiibzi and 

ci3 = - a,$~,~, i # i, and related this concept to the Hadamard product. 

This was motivated by the property that when A and B are each an M- 

matrix, then so is A o B; an M-matrix is a square matrix of the form 

p1 - N, where N has nonnegative elements and the nonnegative real scalar 

p exceeds in absolute value every characteristic root of N. Lynn [16] 

generalized some of the theorems in Sect. 3 (in particular, Theorem 3.7) 

from positive semidefinite matrices to M-matrices. 

The product (1.1) merits the name Sclzur @duct, with Bellman (2, 

p. 301, Davis [4], Majindar [17], Lynn [16], and Srivastava [32] having 

used this term. Following Halmos [13, 141, later writers including Olkin 

and Pratt [25], Marcus and Khan [20], Fiedler [lo], Marcus and Thompson 

(221, Marcus and Mint 21, p. 1201, Djokovid [S], Ballantine [I], and Davis 

151 call Eq. (1.1) the Hadamard product. Other writers using the product 

fail to name it. 

The notation used in Eq. (1.1) follows that of Marcus and Mint [Zl, 

p. 1201 as well as Srivastava [32], Ballantine [l], and McDonald [23]. All 

the other literature on this topic that we have found uses a different 

notation. Fiedler [9, lo], Marcus and Khan [20], Davis [4], Marcus and 

Thompson [22], Lynn [16], and Davis [5] use A o B, while Mirsky [24, p. 4211, 

Olkin and Pratt [25], and Olkin and Siotani [26] use A x B. Djokovid [S] 

uses A 0 B and Rao [29] A q B. 
We have found only brief and scattered use of the Hadamard product 

in statistical analysis. Olkin and Pratt [25] use the Hadamard product 

of a matrix with itself in the context of multivariate Tchebycheff in- 



HADAMARD PRODUCTS 219 

equalities, while Srivastava [32] and Rao [29] use the Hadamard product 

of two different positive definite matrices in the study of general linear 

models. McDonald (231 represents a generalized factor analysis model 

using Hadamard products. Olkin and Siotani 1261, in an unpublished 

technical report, use the Hadamard product in the maximum likelihood 

equations (cf. Sec. 4) for the variances in a multivariate normal population. 

No other published use of the Hadamard product in statistical analysis 

has been found. 

We examine the algebra of matrices multiplied together elementwise 

and obtain expressions for the diagonal matrix and trace of a matrix 

which are useful in applications. In Sec. 3 we present the known results 

on Hadamard products. Most of these involve positive semidefinite 

matrices (which we define to be symmetric and to have nonnegative 

characteristic roots). New inequalities for the characteristic roots of the 

Hadamard product of two symmetric matrices are given as Theorems 3.11 

and 3.12. Applications in multivariate analysis are developed in Sec. 4 

with the study of maximum likelihood estimation in a multivariate normal 

population with known correlation matrix R. We show that R * R - 
2(R-1 * R + 1)-l is positive semidefinite using a probabilistic argument 

(Theorem 4.1) ; a matrix-theoretic proof has eluded us. Various extensions 

of this result are explored. Section 5 concludes the paper with an exhaustive 

bibliography of books and papers related to Hadamard products. 

We will use IA/ to denote determinant, tr(A), trace, and chj(A), the 

jth largest characteristic root of a square matrix A. When A is symmetric, 

the roots are real and we mean largest numerically. When the roots are 

possibly complex we mean largest in absolute value. Proofs terminate 

with (Q.E.D.). 

2. PRELIMINARIES 

The Hadamard product differs from the usual product in many ways. 

To begin with, conformability of the orders of the component matrices 

is quite different. When A and B are two matrices of orders m x n and 

p x q, respectively, then we can define A * B only when +YL = p and n = q, 

while AB is defined only if n = p, with no restrictions on m and q. 
For matrices of unit rank, however, the two kinds of product enjoy 

an interesting transitive property. Let A = uv’ and B = wx’, where u 

and w are nz x 1 and v’ and x’ are 1 x n. Then 

A * B = (uv’) x (wx’) = (u * w)(v * x)‘, (2.1) 
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so that the Hadamard product of two matrices of unit rank has rank at 

most one. 

The role of identity matrix in Hadamard products is taken by ee’, 

the matrix with each component unity 

A * (ee’) = A = (ee’) ;k A, (2.2) 

while the null matrix retains its role 

A*O=O. (2.3) 

Hadamard multiplication is commutative unlike regular matrix multi- 

plication 

A * B = B * A = {aijbij), (2.4) 

but the distributive property is retained 

(A + B) * C = A * C + B * C = {u,~c,~ + b,,c,,}, (2.5) 

where C has the same order as A and B. 

Diagonal matrices are conveniently handled in Hadamard products. 

The diagonal matrix formed from the square matrix A may be written 

Ads = A * I. (2.6) 

When A and B are both square, the row sums of A * B are the diagonal 

elements of AB’ or BA’. Hence we may write 

(A * B)e = (AB’),,e = [(AR’) * I]e = (BA’),,e = [(BA’) * I]e (2.7) 

which becomes (AB),,e = [(AB) * I]e, when B is symmetric, and (BA),,e = 

[(BA) * I]e, when A is symmetric. 

The trace of AB is the sum of all the elements of A * B’, or A * B when 

B is square and symmetric. Thus 

tr(AB) = e’(A * B’)e, (2.8) 

which also follows from Eq. (2.7). 

Multiplication of a Hadamard product by diagonal matrices enjoys 

a useful associative property. With D a diagonal matrix, we have 

D(A*B) = (DA)*B = A*(DB); (A*B)D = (AD)*B = A*(BD); (2.9) 
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D(A * B)D = (DAD) *B = A * (DBD) = (DA) * (BD) = (aD) * (DB). (2.10) 

If A has unit rank we may write A = uv’. Let D, and D, be diagonal 

matrices formed from u and v, respectively. Then 

A * B = (uv’) * B = (DUee’DV) * B = D,[(ee’) * BID, = D,BD,, (2.11) 

as noted by Ballantine [l] for II = v. 

3. RESULTS 

The most widely used and possibly most important result concerning 

Hadamard products was proved, probably for the first time, by Issai Schur 

[30] in 1911. We will assume throughout this section, unless stated to the 

contrary, that A = (u,~} and B = (bi3} are square symmetric matrices of 

order ~5. 

THEOREM 3.1 (Schur [30]). When B and B are fiositive semidefinite, 

then so is their Hadamard product A * B. When both .4 and B aye positive 

definite then so also is A * B. 

Proof. Suppose A and B are positive semidefinite, and consider the 

quadratic form 

x’(A * B)x, (3.1) 

where x is @ x 1, x # 0. There exists a matrix T, $J x p, such that B = TT’. 

Substituting in Eq. (3.1) gives 

where t, is the kth column of T. When B is nonsingular, so is T, and if in 

addition A is nonsingular, Eq. (3.2) is positive. (Q.E.D.) 

The above proof shortens the original version given by Schur [30], which 

is also given by Fejer [8], Polya and Szegii [28, p. 3071, Oppenheim [27], 

Halmos [13, pp. 143-1441, and [14, pp. 17331741, Mirsky [24, p. 4211, 

Bellman [2, p. 94 (1960), and p. 95 (1970)]. 
When A is positive definite but B is positive semidefinite and singular then 

A * B may or may not be positive definite. If B = ee’ then, as in Eq. (2.2), 
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A * B = A * (ee’) = A and A * B is positive definite. But if B = 0 then, as 

in Eq. (2.3), A * B = A * 0 = 0 and so A * B is not positive definite. 

Necessary and sufficient conditions on B for A * B to be positive definite 

were sought by DjokoviC [6] and found by Ballantine [l] ; these conditions 

are derived from Theorem 3.6 and so will be presented later (Theorem 3.8). 

A general result obtained by Ballantine [l] and Styan [33, 341 is 

THEOREM 3.2 (Ballantine [l]). Let A and B be matrices of order m x n. 

Then 

rank(A * B) < rank(A). rank(B). (3.3) 

Proof. Let A and B have rank a and b respectively. Then there exist 

matricesu = (ul,. . ., u,),m X a,V = (vl,. . . , v,), n X a, W = (wr,. . . , w,), 

m x b, and X = (xi,. . , x,), n x b, such that 

A = UV’ = i uivi’ ; B = WX’ = i wixi’. (3.4) 
i=l j=l 

Hence 

A * B = (3.5) 

using Eq. (2.1). Since there are ab terms in Eq. (34, Eq. (3.3) follows 

directly. (Q.E.D.) 

We note that equality in Eq. (3.3) is possible when the ranks exceed 

one [cf. Eq. (Z.l)]. If m = n = $, say, we must, however, have p > 4. 

When p = 4, 

ee’ 0 

A = 0 ee’ i 1 and B = 

where the matrices within the partitioning are all 2 x 2, we obtain 

A * B = I, which has rank 4. Since A and B each have rank 2, equality 

is attained in Eq. (3.3). 

An interesting alternate proof of Theorem 3.1 follows from the following 

lemma given by Marcus and Khan [20], Marcus and Mint [21, pp. 120-1211, 

Srivastava [32], and Davis [5]. The Kroneckerproduct A @ B, with Am x n 
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and B 9 x (I, is the mp x nq matrix {aijB}, with every element of A multi- 

plied by the matrix B. 

LEMMA 3.1 (Marcus and Khan [ZO]). The Hadamard prodztct is a 

@+&$a1 submatrix of the Kronecker product. 

Theorem 3.1 was extended in 1963 by Majindar [17], who showed that 

any positive definite matrix may be expressed as a Hadamard product 

of two positive definite matrices, though never uniquely. When the 

matrices are positive semidefinite and singular the result is immediate 

using ee‘ as a factor. 

THEOREM 3.3 (Schur [30], Majindar [17], DjokoviC [6]). A symmetric 

matrix is positive definite if and only if it can be written as the Hadamard 

product of two positive definite matrices. 

A further result proved by Issai Schur [30] in 1911 appears to have 

been overlooked by later writers : 

THEOREM 3.4 (Schur [30]). When A and B are positive semidefinite, 

ch,(A) . bmin < ch,(A * B) d chl(A) * b,,,, i = 1,. . .) p, (3.7) 

where chj( * ) denotes jth largest characteristic root, and bInin and b,,, aye the 

smallest and largest diagonal elements of B. 

Proof. We write tk as the kth column of T, with B = TT’. Using 

Eq. (3.2) gives 

x’(A * B)x = 2 ( x * tJ’A(x * tk) < ch,(A) 5 (x * tJ(x * tk) 
A=1 k=l 

= ch,(A)x’(B * 1)x < chl(A)bmaxx’x. (3.8) 

This proves the right side of Eq. (3.7). The left side follows similarly. 

(Q.E.D.) 

A positive semidefinite matrix with each diagonal entry 1 is called a 

correlation matrix. 
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COROLLARY 3.1. When R is a correlation matrix and A is positive semi- 

definite, 

ch,(A) < ch,(A * R) < ch,(A), i = 1,. .,p. (3.9) 

Since ch,(B) < bjj < chi(B), j = 1,. . ., $, whenever B is symmetric, 

Theorem 3.4 also implies 

COROLLARY 3.2. When A and R are positive semidefinite, 

ch,(A) ch,(B) < chJA * B) < ch,(A) ch,(B), i = 1,. . , p. (3.10) 

COROLLARY 3.3. When A is positive semidefinite, 

cho2(A) < amin ch,(A) < chj(A * -4) < arnax ch,(A) < chi2(.4), 

j = 1,. . .,p, (3.11) 

where amin and amax aye the smallest and largest diagonal elements of A. 

The assumption of A positive semidefinite in Theorem 3.4 and Corol- 

laries 3.1 and 3.2 may be relaxed to A symmetric but not negative definite, 

for in Eq. (3.8) we need only ch,(B) 3 0. When just symmetry is assumed 

for both A and B, Davis [4] obtained an upper bound for the absolute 

value of ch(A * B) ; this bound reduces to that in Eq. (3.7), i.e., ch,(A *B) < 

ch,(A) * k,,,~ when A and B are positive semidefinite. Further details, and 

some extensions, are developed in Theorems 3.11 and 3.12 at the end of 

this section. 

Using Lemma 3.1 we may obtain bounds for &(A * B) in terms of 

ch(A @ B) with A and B positive semidefinite. If A,_, denotes an Y x Y 

principal submatrix of the symmetric matrix A, then &,+,(A) < ch,(A,) < 

ch,JA); s = 1,. . .,$J - t, t = 1,. .,p - 1. 

THEOREM 3.5 (Marcus and Khan [ZO]). When A and B are positive 

semidefinite, 

ch,(A) ch,(B) ,( chjt+JA @ B) < chJ;i * B) < chj(A @ B) 

,< ch, (A) ch, (B), i = 1,. .,p. (3.12) 

If xi,. . ., q, and /3,, . . ., j, are the characteristic roots of A and B 

respectively, then the characteristic roots of A @ B are the p2 quantities 
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cc,&; s,t = 1 . . , $J (Marcus [19, p. 51). The jth largest characteristic 

root of A * B ihus lies between the jth and (i + p2 - $)th largest of the 

pairs CZ,~,; s, t = 1,. . ., $. Davis [5], apparently unaware of many of the 

above results, used ch,(A) ch,(B) < chj(A @ B) < chi(A) chi(B) and 

Lemma 3.1 to prove Theorem 3.1 and Corollary 3.2. 

Extending Theorem 3.5 we obtain 

COROLLARY 3.4. When A and B aye positive semidefinite, 

P-1 

fG ch+&4 @ B) < IA * BI < $6 ch,(A @ B). (3.13) 

We note that the determinant IA x BJ lies between the products of 

the # largest and p smallest characteristic roots of A @ B. Different lower 

bounds are obtained below. 

Now let A,_, denote the lower Y x Y principal submatrix of A, with 

b, = d. Then 

LEMMA 3.2 (Mirsky [24, p. 4161). When A is positive semidefinite, 

A0 = B - aeie,‘, (3.14) 

is positive semidefinite, where cc = (A(/(Ail when \A( # 0 and .zeYo otherwise, 

and zwhere e, = (1, 0,. . , 0)‘. 

Proof. When A is singular, Eq. (3.14) is A and so positive semidefinite 

by definition. When A is nonsingular, M = l/e,‘A-ie, and 

A”A-lAo = (A - xe,e,‘)(I - aA-leiei’) = A - Meiei’ = A”, (3.15) 

and so A-l is a generalized inverse of A0 (cf., e.g., Searle /31*, p. 11). Since 

A0 is symmetric it is positive semidefinite. (Q.E.D.) 

From this lemma we obtain immediately, with A-l = {aij}, 

allal1 >, 1, (3.16) 

and so ai@ >, 1, i = 1,. . , p (cf. Fiedler [lo]). Also Eq. (3.16) may be 

written IAl < ai,lA,I. Similarly /Ai1 < a2,1A2j and so IAl < a1,a2,1A21. 

Proceeding inductively we obtain the classic result 
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LEMMA 3.3 (Hadamard [ll*]). When A is positive semidefinite, 

IAl < ~GZ * * * aDp. (3.17) 

Marcus [19, p. 141 calls Lemma 3.3 the Hadamard determinant theorem. 

An alternative proof of Eq. (3.17) is due to Hardy, Littlewood, and Polya 

[15*, pp. 34, 351 writing A in terms of a correlation matrix. 

COROLLARY 3.5. When R is a correlation matrix, the diagonal elements 

of R-l, 

rii 3 1, i = 1,...,p, (3.18) 

and the determinant 

IRI < 1. (3.19) 

Proof. Eq. (3.18) follows directly from Eq. (3.16). To show Eq. (3.19) 

we use the arithmetic mean/geometric mean inequality 

IRI =$ich,(R) < [“=~hs(R)~” = [tr(R)/p]n = 1, (3.20) 

and Eq. (3.19) is proved. (Q.E.D.) 

If A has a diagonal element equal to 0, Eq. (3.17) is identically 0. 

Otherwise there exists a nonsingular diagonal matrix D = (A * I)lj2 such 

that A = DRD, where R is a correlation matrix; in such cases Eq. (3.19) 

is equivalent to Eq. (3.17). 

We now establish a lower bound for IA * BI, first proved in 1930 by 

the British mathematician (later Sir) Alexander Oppenheim (1903- ). 

THEOREM 3.6 (Oppenheim [27]). When A and B aye positive semi- 

definite 

IA * BI 3 IAlb,, . . . b,,. (3.21) 

Proof. When A is singular or B has a zero diagonal element, Eq. (3.21) 

is trivially satisfied. When A is nonsingular and B has no zero diagonal 

elements we may write B = DRD, where D = (B * I)r12, and Eq. (3.21) is 

equivalent to 

IA * RI 3 IAl. (3.22) 
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Using Theorem 3.1 and Lemma 3.2, we have 

0 < IA0 * R/ = )(A - elel’/dl) * RI 

= IA * R - elel’/dll 

= IA * RI - IA, * R,~/d? (3.23) 

Thus IA * RI > (A, * Rile IAI/jA,(. Similarly IA, 4 Ril 3 [AZ * R,[ * 
IA,J/IA,j, so that IA * RI > jAg x R,/ * IA(/IAel. Proceeding inductively 
we obtain Eq. (3.22) since IA,_i * R,_iI/IA+iI = upp/aDp = 1. (Q.E.D.) 

Applying Lemma 3.3 to Theorem 3.6 yields the following additional 
lower bound for /A * BJ : 

COROLLARY 3.6 (Oppenheim [27]). Wheti A and B aye positive semi- 

definite, 

IA * BI 3 IAl. jBJ. (3.24) 

We use Theorem 3.6 to obtain a tighter lower bound than that in 
Eq. (3.21). The only proof we have found in the literature (cf. Sec. 5) is in 
the same 1930 paper of Oppenheim [27], who credits it to Schur [30, p. 141, 
who, however, presents only Theorems 3.1 and 3.4. Mirsky [24, p. 4211 
mentions the sharpening of Eq. (3.21) but gives no proof. Mirsky credits 
Schur, but clearly is following Oppenheim [27]. Marcus [19, p. 141 calls 
Eq. (3.25) the Schw inepdity. Lynn [16] establishes Eq. (3.25) for M- 
matrices. 

THEOREM 3.7 (Oppenheim [27]). When A and B are positive semi- 

definite, 

(3.25) 

Proof. If either A or B is singular, Eq. (3.25) reduces to Eq. (3.21). 
Thus let A and B be positive definite. Then we may write A and B in 
terms of correlation matrices Q and R, so that using Eq. (2.9), we may 
write Eq. (3.25) as 

IQ *RI + I&l. IRI 3 l&l + PI. (3.26) 
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From Lemma 3.2, R” = R - eleI’/~ll, where G1 = e,‘R-lo,, is positive 

semidefinite. Hence by Theorem 3.1,Q * R” is positive definite. Thus by 

Eq. (3.21), 

I&I * IhI 

i lQ*Rlr’l ’ 

(3.27) 

I&[(1 - I/+) < [Q * R”[ = [Q * R - elel’/~lll = /Q * RI (1 

That is, 

Let 

/Q * RI - (&I * Roll+ 3 /Ql - l&l/+. (3.28) 

lit1 = l&i * &I + /QiJ - /Ril - IQiJ - IF&j, i = O,l,...) p - 1. 

Then I1 > 0 is equivalent to Eq. (3.26). We may write Eq. (3.28), after 

some rearrangement, as 

4 - 12/+ b Pl+ - 1Rj)(1&~1 - I&I). (3.29) 

The first factor is (1 - IR,/)/rll, which is nonnegative by Eq. (3.19). The 

second factor is nonnegative from Eq. (3.16), and hence so is each side 

of Eq. (3.29). Thus I, 2 Z21RI/IRl/. Similarly 1, > Z,(R,j/(R,\, so that 

4 > kIRI/IR,I. P roceeding inductively we obtain I1 > 0 [i.e., Eq. (3.26)], 

since 

1 o_r = 1 - qV + (1 - 42)(1 - Y2) - (1 - 42) - (1 - r2) = 0, (3.30) 

where 4 = qD,P_l and Y = Y,,,_~, (Q.E.D.) 

The above leads to the following conclusion as to when A * B and AB 

are equal: 

COROLLARY 3.7. When A and B aye positive definite, A * B = AB if 

and only if A and B aye both diagonal matrices. 

Proof. Sufficiency is immediate. To show necessity we have from 

Eqs. (3.17) and(3.21) thata,, . ..app?JB] >]Al. JBI = JA*B/ >all 0. *a,,jBI. 
Hence IA/ = all - * - aS9. Similarly ISI = bll *. * b,, and so the result. 

(Q.E.D.) 
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We also use Theorem 3.6 to answer the question posed by Djokovid 

(IS] cf. paragraph before Theorem 3.2). 

THEOREM 3.8 (Ballantine [l]). A p osz ave semidefinite matrix C may ‘t’ 

be expressed as A * B for some positive definite A and some positive semi- 

definite B if and only if the rank of C equals the number of positive diagonal 

elements of C. 

The proof follows directly from 

LEMMA 3.4 (Ballantine [l]). If A is positive definite and B is positive 

semidefinite with Y positive diagonal elements then rank(A * B) = Y. 

Proof. As A * B is positive semidefinite (by Theorem 3.1) and has 

Y positive diagonal elements, rank(A * B) < Y. Theorem 3.6 implies that 

A * B has a nonsingular principal submatrix of order Y and so rank(A * B) > 
Y, which completes the proof. (Q.E.D.) 

When all diagonal elements of B are positive, A * B is positive definite 

(and nonsingular), thus strengthening Theorem 3.1, as noted by Polya 

and Szego [28, p. 1071. Lemma 3.4 strengthens the result of DjokoviC [6] 

who proved rank(A * B) 3 rank(B) when A is positive definite and B 
positive semidefinite. 

Now suppose A and B are both positive semidefinite and singular. 

When they both have rank one, A * B has rank at most one as we saw 

from Eq. (2.1). In such a case A4 * B is singular unless the matrices have 

order one and are scalars. Thus the Hadamard product of two singular 

positive semidefinite matrices of order two cannot be positive definite. 

But when the order is at least three A * B may or may not be singular. 

If A or B is 0 then A * B = 0 and so IA * BI = 0. But if 

2 1 1 

A= I 1 1 1; 

1 1 1 1 
which both have rank two, then 

g,B= 

(3.31) 

-4 1 1 

1 1 0 

-1 0 1. 

(3.32) 



230 GEORGE P. H. STYAN 

and IA * BI = 2, so A * B is positive definite. For @ = 4, cf. Eq. (3.6). 

Rao [29] seeks conditions on a symmetric idempotent matrix M so 

that M * M is nonsingular. 

Fiedler [9, lo] studied the characteristic roots of A * A-l, where A 

is positive definite. From Eq. (2.7) it follows that all the row sums are 

unity, and so A * A-l has a characteristic root of unity with e a cor- 

responding characteristic vector. This result is strengthened when tied 

in with the reducibility of A. We will say that A has reducibility index s, 

when by row and column permutations we can write A as 

A,, ... 0 

[I :I> A,, . . . A,, 
(3.33) 

where Aii, i = 1,. . ., s, are square and cannot be reduced further. We 

may call the Aii irreducible, or with reducibility index 1. Hence 

THEOREM 3.9 (Fiedler [9]). When A is positive definite with reducibility 

index s, then A * A-l has minimum characteristic root unity, with multi$dicity 

s, characteristic vector e, and redkbility index s. 

A square, not necessarily symmetric, matrix with nonnegative elements 

has a dominant real characteristic root which is not less than any other 

root in absolute value. If A and B are such matrices then so is A * B and 

ch,(A * B) < h(A) ch,(B), (3.34) 

as proved by Marcus and Khan [20], and by Lynn [16], who also showed 

that the inequality is strict if either A or B has all its diagonal elements 

positive. 

In 1963, Marcus and Thompson [22] considered the Hadamard product 

of normal matrices and proved 

THEOREM 3.10 (Marcus and Thompson [22]). Let A and B be normal 

matrices with characteristic roots x1,. . . , u, and pi,. . , /I,, respectively. 

Then the characteristic roots of A * B lie in a subset of the convex polygon 

in the plane supported by ui/Ii [&(uJj + cQi) when A and B commute]. 

We now derive a new inequality for the characteristic roots of A * B, 

when only symmetry is assumed for A and B. There exists a unique 
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positive semidefinite matrix A satisfying A2 = A2; A and A have the 

same characteristic vectors but the characteristic roots of A are the 

singular values of A (and hence also of A). A matrix F, not necessarily 
square, of rank f has f nonzero singular values 

s&F) = [chj(F’F)]1’2 = [chj(FF’)]1’2; i = l,...,f. (3.35) 

For symmetric A, therefore, ch,(A) = sg,(A) = lch,(A)), j, k = 1,. . ., p, 

with ( * 1 denoting absolute value. Motivated by Davis [4] we obtain 

THEOREM 3.11. Let A and B be symmetric matrices and let A and g 

denote the positive semidefivzite matrices satisfying A2 = A2 and B2 = B2. Thert 

ch,(A * B) < ch,(A * B), i = 1,. . .,p. (3.36) 

Proof. There exist orthogonal matrices P = {pih} and Q = {r~& such 
that P’AP = A = {;ih> and Q’BQ = A = (6,) are diagonal. Thus for 

any x = {xi}, p x 1, 

Let the p x (i - 1) matrix G have as its columns the characteristic 
- _ 

vectors of A * B corresponding to the largest j - 1 roots. If x’x = 1, 

then 

ch,(A * B) < max{x’(A * B)x: G’x = 0} 

< max{x’(A * B)x: G’x = 0} = chj(A * B), (3.38) 

using the Courant-Fischer min-max theorem (cf. Bellman [Z, p. 113 (1960) 
or p. 115 (1970)]). (Q.E.D.) 
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We enquire if (3.36) can be strengthened to sg,(A * B) < sg,(A * B). 

Essentially this was proved by Davis [4] for i = 1; when i > 2, however, 

the inequality is not, in general, valid. 

THEOREM 3.12. When A and B aye symmetric 

ch,(A * B) < sg,(A * B) d %,(A * 6 < m(A). h,xxc, (3.39) 

-where 6_, is the largest diagonal element of i. The inequality sg,(A * B) < 

sgj(A * B) does not /bold, in general, joy i 3 2. 

Proof. l~rom(3,37)wehaveIx’(A*B)x~~x’(A*B)xandsosg,(duB) = 

max[ch,(A * B), - ch,(A 8 B)] = max[max{x’(A *B)x}, - min{x’(A * B)x)] 

= maxlx’(A * B)x/ < max[x’(k * B)x] = ch,(A * B) = sg,(d * B), andthis 

is no greater than ch,(A) * 6,,x by Theorem 3.4. Thus (3.39) follows. To 

see that sg,(A * B) < sg,(A * B) does not hold, in general, suppose i = 

$J = 2. Consider 

has characteristic roots $(3 & 1/73) 21 5.77, - 2.77. Moreover 

A,= I 2 1 6 

1 

-I 
VP 

fg=- 18 I 
5 6 17 

1 ’ (3.41) 

has roots 5 + 0.6v13 2: 7.16, 2.84. Thus sg,(A, + B) < sgs(A * B). This 

inequality is reversed, however, when 

1 4 
A,= 4 1; I 1 

has roots +(3 & v265) 2: 9.64, - 6.64. But 

& = 
2 16 3 

&* B =- 
[ 1 5 3 34 

(3.42) 

(3.43) 

has roots 10 & 1.21/G z 13.79, 6.21, and so sgs(As * B) > sgs(As * B). 
(Q.E.D.) 
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4. APPLICATIONS OF HADAMARD PRODUCTS TO MULTIVARIATE ANALYSIS 

Let xi, x2,. , x, be a random sample from a $-variate normal distribu- 

tion N(0, C). We suppose L denotes the joint likelihood of the n observa- 

tions and write 

1 = - (2/?2) log L - p log 27c. (4.1) 

If s = (l/n) c;=i xaxa’ denotes the sample covariance matrix, then 

1 = tr(Z-9) + log/Zi. (4.2) 

With Z and S positive definite, we may write 

Z = ARA; S = DHD, (4.3) 

where R and It are population and sample correlation matrices, while 

A and D are diagonal matrices of population and sample standard devia- 

tions. We assume R known. 

If 

Ac = Q = {q} ; A-Q = &1) = {l/hi}; A% = g(2) = {cri2}, (4.4) 

Eqs. (2.8) and (2.10) give tr(C-lS) = e’(C-l * S)e = e’[(A-lR-lA-‘) * SIC = 

cd-l)‘(R * S)t+l). Hence 

al/a~(-~) = Z[(R-l * S)o’-l’ - 01, (4.5) 

and so the maximum likelihood equations are 

(R-1 * S)&‘-1’ = 6, (4.6) 

as observed by Olkin and Siotani [26] and Styan [33, 341. 

Theorem 3.1 implies that 

a21 
- = Z/R-l * S + A21 

aa ao(-l)’ (4.7) 

is positive definite and therefore Eq. (4.6) admits a unique solution in the 

positive orthant. 

Iterative solution of Eq. (4.6) by the Newton-Kaphson process based 
on the initial guess Go = De, the column vector of sample standard 

deviations, yields the first iterate 
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&(-l) = 2D-l(R-1 *R + I)% (4.8) 

Styan [33, 341 proved that vti(&1(2) - @) and vn(&) - ~(~1) have the 

same limiting normal distribution with covariance matrix 

4LP(R-1 * R + I)-lA2, (4.9) 

while 

mat r i!- 

n(Dse - ~(2)) has a limiting normal distribution with covariance 

2A2(R * R)A2. (4.10) 

This suggests 

THEOREM 4.1. For any 

matrix 

ReR 

is $ositive semidefinite. 

positive definite correlation matrix R, the 

- 2(R-l* R + 1)-l (4.11) 

Proof. We evaluate the joint covariance matrix of s = (S * 1)e = D2e 

and a log L/adz). We prove first that 

nY(s) = 22 * Z = 2A2(R * R)A2 (4.12) 

[cf. Eqs. (4.10) and (2.10)], where Y(. ) denotes covariance matrix. The 

(i’, j)th element is 

n COV(S~, sj) = (l/n) cov 2 xai2, i xBj2 = 
[ 1 

cov(X,2, Xj2) 
a=1 p=1 

= B[Y(Xi2 + Xj2) - Y(Xi2) - Y(X,2)] = tr(V2) - o.ii2 - Gjj2, 

where Xi, Xj are bivariate normal with zero means and covariance matrix 

v= 
uii uij 

[ I1 uij ujj 

cf., e.g., Searle [31*, p. 571. As tr(V2) = oii2 + ojj2 + 2uij2, n cov(si, sj) = 

2aij2 and Eq. (4.12) follows. 
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From Eq. (4.5), 

6(az/ao(-r’) = 2[(R-1 * X)&l) - 01 = 2[a(R-l * R)e - a] 

= 2[Ac - cr] = 0, (4.13) 

using Eqs. (2.7) and (4.4), where 8( * ) d enotes mathematical expectation. 

Thus Eq. (4.1) gives 8(a log L/c%-~)) = 0 and so 

cov(s, a log L/a&) = a[s(a log L/aa(a’)‘] = ab(s)/aa(s” = I, (4.14) 

as &(s) = gt2). Moreover V(a log L/ad2’) = $n2V[(a&1)/ad2)‘) ( al/ao(-l’)], 

and since 

a&ll/aa(21' = _ &A-3; qaqa+-l)) = c+w I aa(_l~~rr(-ll, 1 J (4.15) 

we find, using Eq. (4.7), that 

v(a log qa&)) = &zA-~(R-~ * R + I)Ae2, (4.16) 

as a(S) = C. Therefore 

V [al,,S,a,+~l= [(2’X)A2(P*R)A2 @&-2(R_lfR +I)Ap2]’ 

(4.17) 

from whose positive semidefiniteness the theorem follows. (Q.E.D.) 

A matrix-theoretic proof of Theorem 4.1 would be of interest. 
Conditions for singularity of Eq. (4.11) are examined in 

COROLLARY~.~. A sufficient but not necessary condition that Eq. (4.11) 

be singular is that R - I has at least one null YOW. 

Proof. If the ith row of R - I is null then R e. R, R-l e R and 
2(R-l* R + I)-] all have the same ith row, and so the ith row of Eq. (4.11) 
is null. 

To show that the converse is false, i.e., that singularity of Eq. (4.11) 
does not imply that R - I has a null row, consider the following example 
withp = 3: 
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(4.18) 

We obtain 

6 3 3 

$,(R * R)(R-l* R $-I) - 1 = (l/24) 3% 3 2 

32 2 3 

which is singular, and so, therefore, is (4.11). (Q.E.D.) 

I1 (4.19) 

CQROLLARY 4.2. For any $ositive definite correlation matrix R, 

ch?(~(R * R)(R-l * R + I)] > 2; j = I,...,P, (4.20) 

R-l Q R + I - 2(R * R)-l is $ositive semidefinite, (4.21) 

[chj(R * R)]/l + ch,(R-l * R)] > 2, j+k<p+l, (4.22) 

r&eye chj( * ) denotes the jth largest characteristic root. 

Proof. Postmultiplying Eq. (4.11) by R-l *R + I establishes Eq. 

(4.20), since the product of two matrices, each at least positive semidefinite, 

has nonnegative characteristic roots. Premultiplying this product by 

(R * R)-l proves Eq. (4.21). Applying the result chj(A) ch,(B) 3 ch,(AB), 

j + k < i + 1 (cf. Marcus and Mint [21]) to Eq. (4.20) yields Eq. (4.22). 

(Q.E.D.) 

A proof of Eq. (4.22) without using Theorem 4.1 would be of interest; 

we note ch,(R-l * R) = 1, and ch,(R * R) f 1, as tr(R * R) = $. 

COROLLARV~.~. FOY alay positive definite matrix A, the matrices 

A * A - 2(A * I)(A-l * A + I)-l(A * I), (4.23) 

and 

A-1 * A + I - 2(A * I)(A * A)-l(A * I), 

aye positive semidefinite. 

(4.24) 
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Proof. For any diagonal matrix D, (DAD) * (DBD) = D2(A * A)D2 

and (DAD) * (DAD)-l = A 8 A-l [cf. Eqs. (2.9) and (2.10)]. Substituting 

the correlation matrix (A * I)-i12A(A * 1)-112 for R in Eq. (4.11) yields 

Eq. (4.23) after pre- and postmultiplication by A * I. Similar operations 

on Eq. (4.21) give Eq. (4.24). (Q.E.D.) 

C~ROLLARV $ositive definite correlation matrix R, 

tr(R-l * R) > 2 tr(R * R)-’ - $, (4.25) 

tr[(R * R)(R-l * R)] > 9. (4.26) 

Proof. Taking the trace of Eq. (4.21) yields Eq. (4.25) directly, while 

Eq. (4.26) follows by summing Eq. (4.20), since tr(R * R) =p. (Q.E.D.) 

As the diagonal elements of R-l are at least equal to 1 (Corollary 3.5), 

tr(R Y R)-’ > p; tr(R-l * R) 3 9. (4.27) 

Corollary 4.4 does not appear to follow from Eq. (4.27), and we have been 

unable to prove Eqs. (4.25) or (4.26) without using Theorem 4.1. 

COROLLARY 4.5. For any $ositive definite matrix A with diagonal 

elements aii, i = 1,. , p, 

IA * 81. [A-l * A + 11 3 2~ fI ai?. 
i=l 

(4.28) 

Proof. We substitute the correlation matrix (A * I)-l12A(A * I)-li2 for 

R in Eq. (4.20). (Q.E.D.) 

In contrast to Eq. (4.28), the Hadamard determinant theorem (Lemma 

3.3) gives 

(4.29) 

while IA-l * A + 11 3 2n follows from ch(A-l * A) > 1. 

Corollary3.5impliesthat~R*R~~1and~R-1*R+I~~~~~,(l+pii), 

where p ii is the ith diagonal element of R-l. Hence 
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(IR * RI. @-l 9 R + 1)1)-l > 2” fi (1 + pii). (4.30) 
s-1 

It follows from the proof of Theorem 4.1 that the left side of Eq. (4.30) 

is the relative efficiency of the sample variances when the correlations 

are known in a multivariate normal population (cf. Styan 133, 341). 
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