Mapping of a Locus for a Familial Autosomal Recessive Idiopathic Myoclonic Epilepsy of Infancy to Chromosome 16p13

Federico Zara,1 Elena Gennaro,1 Mariano Stabile,2 Ilaria Carbone,1 Michela Malacarne,1 Luigi Majello,3 Roberto Santangelo,3 Fabrizio Antonio de Falco,3 and Franca Dagna Bricarelli1

1Laboratorio di Genetica Umana, E.O. Ospedali Galliera, Genoa; and 2Servizio di Genetica Medica, A.O. Cardarelli, and 3Dipartimento di Scienze Neurologiche, Ospedale Loreto Mare, Naples

Myoclonic epilepsies with onset in infancy and childhood are clinically and etiologically heterogeneous. Although genetic factors are thought to play an important role, to date very little is known about the etiology of these disorders. We ascertained a large Italian pedigree segregating a recessive idiopathic myoclonic epilepsy that starts in early infancy as myoclonic seizures, febrile convulsions, and tonic-clonic seizures. We typed 304 microsatellite markers spanning the 22 autosomes and mapped the locus on chromosome 16p13 by linkage analysis. A maximum LOD score of 4.48 was obtained for marker D16S3027 at recombination fraction 0. Haplotype analysis placed the critical region within a 3.4-cM interval between D16S3024 and D16S423. The present report constitutes the first example of an idiopathic epilepsy that is inherited as an autosomal recessive trait.

Introduction

Myoclonic seizures are common features of many epilepsies at all ages and often represent nonspecific epileptic manifestations (Fejermann 1991). In the specific subgroup of myoclonic epilepsies, however, myoclonic seizures are invariably present and are the most prominent symptom. Among these syndromes, the classification of myoclonic epilepsies with onset in infancy and childhood has been a source of controversy because other types of seizures frequently accompany myoclonic attacks and the cerebral origin and etiology of epileptic discharges are uncertain. The International Classification of Epilepsies and Epileptic Syndromes (ICE) (Commission on Classification and Terminology of the International League against Epilepsy 1989) recognizes different myoclonic epilepsies with onset in the first year of life. They include idiopathic benign myoclonic epilepsy in infancy (BIME), the symptomatic early myoclonic encephalopathy, and severe myoclonic epilepsy of infancy (SIME).

Familial myoclonic epilepsies of infancy have rarely been described (Fujisawa et al. 1990; Dravet et al. 1992a), although an increased incidence of idiopathic epilepsy or febrile convulsions in relatives of probands has been frequently described (Dalla Bernardina et al. 1982; Dravet et al. 1992b; Lin 1998). The sporadic nature of these myoclonic disorders has further complicated their classification into syndromic entities, and, therefore, many cases of infantile myoclonic epilepsy remain unclassified (Jeavons 1977; Aicardi 1986).

To date, very little is known about the etiology of idiopathic myoclonic epilepsies, although genetic factors are thought to play an important role (Minassian et al. 1995). Two loci predisposing to juvenile myoclonic epilepsy (MIM 254770) have been mapped to chromosome 6p and 15q (Liu et al. 1995; Elmslie et al. 1997), and a locus for an adult form of benign familial myoclonic epilepsy (MIM 601068) has been mapped to chromosome 8q24 in Japanese families (Mikami et al. 1999; Plaster et al. 1999).

To date, no data are available on genetic factors involved in myoclonic epilepsy of infancy. We ascertained a large Italian pedigree segregating an autosomal recessive idiopathic myoclonic epilepsy that starts in early infancy, characterized by very frequent and often long-lasting myoclonic seizures, febrile convulsions, and generalized tonic-clonic seizures (GTCS). In this article, we report the genetic mapping of an autosomal recessive locus for idiopathic myoclonic epilepsy of infancy to chromosome 16p13.

Subjects and Methods

Case Report

Two related branches (fig. 1) make up the Italian family. The founders of generation I were not consanguineous, despite origin from the same geographic area (Naples), and were not reported to be affected. The four individuals (two sib pairs) of generation II did not show
Zara et al.: Infantile Myoclonic Epilepsy Maps to 16p

Figure 1 Pedigree and chromosome 16p13 haplotypes of the Italian family segregating idiopathic myoclonic epilepsy of infancy. Filled symbols, affected subjects; unfilled symbols, individuals with no history of seizures. Individuals IV-6 and IV-22 had GTCSs and febrile convulsion, respectively. Individuals III-8, III-13 and III-14 did not consent to the study. Arrows, key recombinations that define the critical region.

Clinical features of myoclonic epilepsy may be summarized as follows: onset at 4–8 mo of age with GTCS in subjects III-2, III-3, III-4, and III-5; appearance of myoclonic seizures at age 5–36 mo and persistence to adulthood in all patients; febrile convulsions at age 5 mo to 3 years in individuals III-2, III-3, III-4, III-5, and III-6; very frequent myoclonic seizures (several times a day) in childhood, lasting for many hours, sometimes preceding a convulsive seizure, spontaneous or induced by fatigue or drowsiness, acoustic stimuli or variations in light intensity, the intense “green” color, repetitive movements of the hands; GTCS in all affected individuals, more frequent in childhood and adolescence, sporadic or absent in adult age; interictal EEGs normal or with mild abnormalities; ictal EEGs showing bisynchronous spike waves; cranial computed topography scan and magnetic resonance imaging (MRI) negative for any detectable brain lesions; and good control of both myoclonic and GTCSs with Valproate.

The fourth generation accounts for 30 individuals. Twenty are the offspring of affected individuals, and none shows any symptom of the disease. Individual IV-4, however, showed an idiopathic generalized epilepsy that started at age 19 years (two GTCSs, with normal MRI), and individual IV-16 had febrile convulsions at age 5 years.

DNA Samples and Genotyping

Ten milliliters of peripheral blood were obtained from consenting individuals and were used for DNA extraction. Microsatellite markers were selected from the Généthon map (Dib et al. 1996). Markers were typed by following two different procedures: (a) PCR amplifications were performed by use of γ-[32P]-dATP end-labeled forward primers and then separated onto 6% denaturing gel that was subsequently vacuumed and exposed to autoradiography; and (b) sets of 10–12 PCR amplifications were electrophoresed on 6% denaturing gels that were subsequently blotted on nylon membranes. Filters were hybridized with multiple sets of two to three radiolabeled primers that specifically recognize nonoverlapping amplifications and that were then exposed to autoradiography (Tournier-Lasserve et al. 1993).

PCR amplifications were carried out as described by Gennaro et al. (1999) with 35 cycles of 94°C for 40 s and 55°C for 30 s. In a few selected cases, a specific annealing temperature was used.

Linkage Analysis

Two-point and multipoint linkage analysis was performed by respective use of the MLINK and LINKMAP.
programs of the LINKAGE package version 5.1 (Lathrop et al. 1985) in the FASTLINK implementation (Cottingham et al. 1993). A variable number of equifrequent alleles were used for LOD score calculations according to the actual heterozygosity of the marker within the white population. Marker order and distances were obtained from the Généthon map (Dib et al. 1996). A fully penetrant autosomal recessive disease allele with a frequency of .001 was assumed for linkage analysis. The phenocopy rate was set at 0.

Results

We first typed a set of 181 microsatellite markers covering the 22 autosomes at an average distance of ~20 cM. Because no suggestive evidence of linkage was found with the initial screen, we typed a second set of 123 markers in order to reduce the intermarker distance to ~10 cM. We observed a maximum LOD score of 1.74 at recombination fraction (θ) .2 with marker D16S521 on chromosome 16p13. Additional markers were typed to obtain a detailed genotypic map of the region in our family. Two-point LOD scores and haplotypes are shown in Table 1 and Figure 1, respectively.

The maximum LOD score of 4.48 was observed for D16S3027 at θ = 0. Furthermore, no obligate recombinants were observed for D16S3082 and D16S3084 (maximum LOD scores of 1.81 and 2.94, respectively, at θ = 0). Four-point LOD scores of the regions peaked at 4.69 (data not shown). Key recombination events were observed in individual III-9 for D16S423, which allowed the localization of the critical region to a 3.4-cM interval of chromosome 16p13 between markers D16S3024 and D16S423 (Figure 2).

Discussion

The idiopathic epilepsies are a very heterogeneous group of neurologic disorders: among them are very common disorders with a complex mode of inheritance and rare syndromes inherited as Mendelian traits. Although very little is known about the genetic factors implicated in genetically complex idiopathic epilepsies, substantial progress has been made in the rare Mendelian forms of epilepsy. Mutations in genes encoding potassium channels (Biervert et al. 1998; Charlier et al. 1998; Singh et al. 1998), the neuronal acetylcholine receptor α4 subunit (Steinlein et al. 1995), and the sodium channel β1 subunit (Wallace et al. 1998) have, respectively, been associated with familial benign neonatal convulsions (BFNC [MIM 121200, 121201]), autosomal dominant nocturnal frontal lobe epilepsy (MIM 600513), and a syndrome characterized by generalized epilepsy and febrile seizures (GEFS +) (MIM 604236).

Furthermore, autosomal loci responsible for benign familial infantile convulsions (MIM 601764), benign adult familial myoclonic epilepsy (MIM 601068), and several Mendelian subsets of genetically complex epilepsies such as childhood absence epilepsy (MIM 600131), juvenile myoclonic epilepsy (MIM 254770), and partial epilepsy (MIM 604364) have been identified on chromosomes 8q24, 6p21.2-p11, 10q22-q24, and 22q11-q12 by means of linkage analysis (Liu et al. 1995; Ottman et al. 1995; Guipponi et al. 1997; Fong et al. 1998; Mikami et al. 1999; Plaster et al. 1999; Xiong et al. 1999).

Although an increasing number of Mendelian idio-
pathic epilepsies have been described and their under-
lying genes localized or cloned, their mode of inheri-
tance is autosomal dominant. We report here the
mapping of a locus predisposing to a familial myoclonic
epilepsy of infancy to chromosome 16p13.

To the best of our knowledge, this is the first example
of an idiopathic epilepsy that is inherited as autosomal
recessive trait. It is possible that recessive alleles causing
idiopathic epilepsy are rare. Alternatively, their fre-
quency may be underestimated because of difficulty in
mapping recessive traits in clinically and genetically het-
erogeneous disorders.

In the family described here, we identified two dif-
ferent haplotypes segregating with the disease, which
suggests that two different mutations might likely be
present and therefore that the affected family members
should be compound heterozygotes. This finding is con-
sistent with available data indicating that founders of
generation I are not consanguineous. In this hypothesis,
at least two mutant alleles should be present within the
Italian population, and hence this gene could play a
significant role. We cannot, however, exclude that a sin-
gle mutation, arisen from a common ancient founder,
is segregating in the family we describe here and that
different haplotypes have been originated by ancestral
crossovers that occurred close to the disease gene.

The myoclonic epilepsy segregating in the reported
kindred is not identifiable with any epileptic syndrome
described in ICE. It does, however, resemble SIME in
several features, such as constant presence of GTCS,
high frequency of febrile convulsions, long-lasting and
frequently provoked myoclonic seizures, and persistence
of clinical manifestations in adult life (Guerrini and
Dravet 1997), and it shares with BIME the normal psy-
chomotor development, the absence of neurologic def-
cit, and the good response to therapy (Vigevano et al.
1997). Intermediate forms between BIME and SIME
have already been described, and the hypothesis that
myoclonic epilepsy of infancy might represent a clinical
continuum with variable expression and severity has
been postulated (Lombroso 1990). By eventually iso-
lating the mutant gene, we could verify whether the
myoclonic epilepsy segregating in the reported kindred
represents a novel clinical entity or a specific expression
of a broader clinical picture.

We have mapped a gene for a familial idiopathic my-
oclonic epilepsy of infancy within a 3.4-cM region of
chromosome 16p13. Within this region, three genes pos-
tentially involved in epileptogenesis have been mapped:
the voltage-dependent chloride channel 7 gene
(CLCN7), the synaptogyrin III gene (SYNGR3), and the
solute carrier family 9 isoform 3 regulatory factor 2
gene (SLC9A3R2).

CLCN7 is broadly expressed in different tissues and,
together with CLCN6, represents a specific branch
within the chloride-channel gene family (Brandt and
Jentsch 1995). Although very little is known about
CLCN7-specific functions, other members of the chlo-
ride-channel gene family have been implicated in re-
polarizing the cell membrane when expressed in Xen-
opus oocytes (Pusch et al. 1995). Because in BFNC
(MIM 121200, 121201) the moderate reduction of K+
repolarizing current has been demonstrated to be epi-
leptogenic (Schroeder et al. 1998), CLCN7 may re-
present an appealing candidate.

SYNGR3 encodes a synaptic vesicle membrane pro-
tein (Kedra et al. 1998). To date, synaptogyrins have
not been implicated in the etiology of epilepsy; however,
knockout mice of synapsin I and II (which are parts of
synaptic vesicle membranes) show spontaneous seizures
in the absence of any detectable structural brain ab-
normalities (Rosalh et al. 1995).

SLC9A3R2 was implicated in the regulation of the
sodium/hydrogen-exchanger isoform 3 (Brant et al.
1995; Yun et al. 1997). Because a mutation in the so-
dium/hydrogen-exchanger isoform 1 (SLC9A1) was
found to cause generalized seizures in the slow-wave
epilepsy mouse (Cox et al. 1997), the abnormal activity
of the related isoform 3 caused by altered regulation
might also be epileptogenic.

Our work discloses important new information re-
garding the potential mode of transmission of my-
oclonic epilepsies with pediatric onset and provides evi-
dence for a new locus implicated in idiopathic epilepsy
on chromosome 16p. Identification of genes involved in
the myoclonic epilepsies of infancy could provide a
more precise diagnosis of the various syndromes and
improve genetic counseling to patients and families. In
the future, new therapies may be developed to treat
myoclonic epilepsies resistant to currently available
drugs.

Acknowledgments

This work is supported by Telethon Italy grant 213bi (to
F.Z.) and by the Italian League against Epilepsy. We thank
the family that kindly consented to the study. Cell lines are stored
at the Galliera Genetica Bank (supported by Telethon Italy,
grant C42).

Electronic-Database Information

Accession numbers and the URL for data in this article are
as follows:

Online Mendelian Inheritance in Man (OMIM), http://
www.ncbi.nlm.nih.gov/Omim (for juvenile myoclonic epi-
lepsy [MIM 254770], benign adult familial myoclonic epi-
lepsy [MIM 601068], BFNC [MIM 121200, 121201],
autosomal dominant nocturnal frontal lobe epilepsy [MIM
600513], GEFS+ [MIM 604236], benign familial infantile
convolusions [MIM 601764], childhood absence epilepsy [MIM 600131], and partial epilepsy [MIM 604364])

References

Brandt S, Jentsch TJ (1995) CIC-6 and CIC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett 377:15–20

