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The Degree of Approximation to Periodic Functions by 

Linear Positive Operators 
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1. P. P. Korovkin [I] has recently proved some remarkable results con- 
cerning the convergence of sequences (L,,f)~z,, where the L, are linear positive 
operators. For example, if LJconverges uniformly tofin the particular cases 
f(t) E l,f(t) 3 t,f(r) = t2, then it does so for every continuous, realf. Or, if 
L,(f) converges uniformly to f for f(t) = 1, cost, sint, it does so for every 
continuous, 2n-periodic, real f. 

2. In a very recent paper [2], the authors have recast Korovkin’s results 
in a quantitative form. One of their results (Theorem 3 of [2]) was given there 
as, essentially, a special case of a more general theorem. In the present note, we 
shall restate this Theorem 3 and, for the reader’s convenience, give its full proof. 
We then apply it to an important special case. 

3. A linear positive operator is a function L having the following 
properties. 

a. The domain D of L is a nonempty set of real functions, all having the 
same real domain T. 

b. For everyf E D, L(f) is again a real function with domain T. 
c. Iffand g belong to D, and if a and b are reals, then aft bg E D, and 

L(uf+ bg) = aL(f) + bL(g). 

d. Iff E D, and f(x) B 0 for every x E T, then (Lf )(x) a 0 for every x E T. 
Consequently, if L is a linear positive operator and f, g E D, then f< g 

throughout T implies Lf G Lg there, and If] d g throughout T implies /Lfl G 
Lg there. 

4. THEOREM [2]. Let L1, Lz, . . . be linearpositive operators, whose common 
domain D consists of real functions with domain (-a, co). Suppose 1, cosx, 
sinx, f belong to D, where f is an everywhere continuous, 2~-periodic function, 
with modulus of continuity CO. Let --a) -C a c b -C 00, and suppose that for n = 1, 
2 , . . ., L,(l) is bounded in [a, b]. Then for n = 1, 2, . . ., 

its - Lfll G VII. IIW) - 1 II + L(1) + 1 IbJ(P”)~ (1) 
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where (see Remark b) 

and /j )I stands for the sup norm over [a, b]. In particular, ifL,,( 1) = 1, as is often 
the case, (1) reduces to 

llf- Lfli s 244. (3) 

Remarks. a. In forming L,sin2 [(t - x)/2] in (2) and below, t is the variable. 
b. Observe that (2) implies, for n = 1,2,. . ., 

pn2 s (772/2>w -L”(l)ll+ II COSx~[‘[jCOSX-(L,cost)(x)[l 

-I jlsin x/J * jlsinx - (L, sin t)(x)ljJ 

Hence, if L,,(F) converges uniformly to Fin [a, b] for F(t) E F,(t) E 1, F(t) 3 
Fl(t) zcos t, F(t) z F2( t) = sin t, then pn + 0 and we have a simple estimate 
of ,u,, in terms of j/Fk - L, FJ, k = 0, 1,2. 

Proof of the Theorem. Let x E [a, b], let S be a positive number and let t be real. 
IfS< It-x/ G V, then It -xl d nsin [It -x1/2] and therefore 

If(t>-f(x)/ so(lt-XI)=W(lt-xIS-‘6) 
s (1 + It - x16-‘)w(S) 

s [l + (t - x)2 s-21 w(S) 

The resulting inequality 

If(t) -f(x)/ s [ 1 f (77/S)2 sin212-l],(s) (4) 

holds, obviously, if Jt - xl G 6. If It - xl > V, let k be an integer such that 
I(t+2krr)-xl <rr; then 

If(t) --f(x)1 = If(t + 2kr) -f(x)] G [ 1 + (n/S)2sin2 t ’ “7 - x]w(~) 

= 1 + (7r/S)2sin2 ‘y 
[ 1 w(S). 

Thus, (4) always holds. Let II be a positive integer. Then 

I[L,f-f(x)L,(l)](x)( G 
[( 

L.(1)+SW27r2L,sin2~)(x)]w(S) 

4 L(l) (4 + ws)21 49 
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If p,, > 0, take 6 = I*“. Then 

wnf-f(X)~“(1)1(x)I G IILU) + u4f4, 
I -m +foL”(l)wI =G Ilfll~llL(1) - 111. (5) 

Adding, we obtain (1). If p,, = 0, we have for every positive 6, ][LJ- 
f(x)Ln(l)](x)I G o(G)L,(l)(x). Letting 6 -+ 0 + 0, we obtain (L&(x) = 
f(x>L(l>(x). Thus, by (9, IV- Lf)(4l G llfll. IL(l) - 111, which implies (1). 

5. Let D be the set of all real functions with domain (-00, a), 27r- 
periodic and everywhere continuous. For n = 1,2, . . ., let py’, p:“‘, . . ., pp’ be 
given reals, and consider the operator L, with domain D, defined by 

(L, 4) (x) = $ -t k$l ~$?[a, cos (kx) -t- bk sin (kx)], (6) 

where 

$(X) - ? -b 5 ak cm (kx) + bk Sin (kX). 
k=l 

Assume that for n = 1,2, . . . and every real x, 

1 n 
2 + 2 pp’ cos (kx) > 0. 

k=l 
(7) 

Sinceforn=1,2,...andevery$ED, 

(L,,,-~~” d~(fi[f+~~~ pr’cos{k(t-x)}]dr, (8) 
-77 

each L, is a linear positive operator with L,(l) = 1. Also, for n = 1,2, . . ., we 
have 

(L,sin2~)(x)=~(l -pll’). 

;;t({)E D have modulus of continuity w. Setting a,(x)=(L,J)(x), we have 
> 

max If(x) - a,(~)[ Q 2w(n[2-‘(1 - ~y))Ji/~), n= 1,2, . ..) (9) --m<x<:m 

and in particular, o,,(x) converges uniformly tof(x) in (-co, m) if p:“) + 1. 
The uniform convergence of u”(x) to f(x) in (-00, W) under the condition 

pi”) -+ 1 was proved by P. P. Korovkin ([I], [3]). He has also shown [I] that for 
n=l,Z,... and for every positive 6, 

max If(x) - a,(x)] < w(S){ 1 + &V1[2-r( 1 - p’;‘)]“2). (10) 
-m<x<m 
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Forn=l,2,...,let 

M, = ;nr; w@){l + 778-1[2-‘( 1 - p1”‘)]1’2>, (11) > 

so that the best estimate derivable from (IO) is 

max If(x) - on(x)1 s M,. 
-m<x<m (12) 

We show now that (12) is essentially the same estimate as (9). We start by 
observing that 

w([l - /I$“‘]~‘~) GM,, < 2w(7~[2-‘(1 - /J(“))]~‘~), I n= 1,2, . . . . (13) 

Indeed, let n be a positive integer. To prove the last two inequalities, we may 
assume 1 - p:“) > 0. The right inequality in (13) is obtained from (11) by taking 
s = 4271 - pi )] (“) l12. To prove the left inequality of (13), we shall show that 
for every 6 > 0, 

w([l - ,1”‘]“2) < w(S){1 + n6-‘[2-‘(1 - p:“‘)]“2>. 

We may clearly assume 6 < (1 - py’)“2. Then, w( [ 1 - py’ll’*) = w([ 1 - py’]*‘2 
s-‘6) < [I + (1 - pI”‘)1’28-‘1 w(6) < 2671 - pl”‘)“%J(S). so, w(6){1 +n8-’ 
[2-‘(1 - p’1”‘)]“2} > w(6) + 2-3’2 7rw([l - pl”‘]“2) > w([l - p(ln)]‘Q). 

From (13) it follows that for every positive K and for n = 1,2, . . ., 

K1-l w(K[l - ,11”‘]“~) Q w([l - ,@ ]1’2) < M, < 2u &[I - /J:“‘]“~ 

w(K[l - p1”‘]“2). 

Thus, for every positive K, the sequences M,, and w(K[l - p’;‘]1/2) are of the 
same order of magnitude. In particular, (9) and (12) are essentially the same 
estimate. Also, if the left-hand side of (10) is positive for n = 1, 2, . . ., then 
the choice 6 = K(1 - ~j”‘)“~ in the right-hand side of (lo), n = 1, 2, . . ., where 
Ii is any positive constant, can be considered an optimal choice. Taking 
K= z-/d2, the resulting inequalities (10) reduce to (9). 

6. Example. Let D be as in the first sentence of Section 5. For n = 1,2, . . . , 
consider the operator L, with domain D, defined by 

where 

4(x) - 2 + 2 ak cos (kx) + bk sin (kx). 
k=l 
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Forn=1,2,..., the (L,$) (x) are trigonometric polynomials introduced by de 
la Vallte-Poussin [4]. They have the following representation : 

(L,c$)(x) z @I!)2 [27T(2n)!]-’ lV 4(t) (2cosq2’dt. (14) 
--n 

Thus,forn= 1,2 ,..., L,,+ is of the form (6) and as is seen by comparing, for the 
present case, (8) with (14), (7) holds for every real X. Letf E D have modulus of 
continuity w, and set q,(x) = &f)(x). Since now py) = n/(n + l), IZ = 1,2, . . ., 
we have by (9) 

max ) f(x) - U”(X) ) G 2~ 
-m<x<m (&$)~ 

Thus, we have obtained the (known) result ([5], [6]), that for some universal 
constant C, 

max (f(x) - a,(x) 1 < G&Z-‘/~) (n= 1,2, . ..). 
--m<x<m 
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