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Abstract

Let us consider the following stochastic di�erential equation:

Xt = x + Bt − 1
2

∫ t

0

b(Xs) ds; (E)

where (Bt)t¿0 is a d-dimensional brownian motion starting at 0 and b a function from Rd to Rd

which is a gradient �eld. We aim at studying the convergence rate of the semi-group associated
to (E) to its invariant probability. c© 1999 Elsevier Science B.V. All rights reserved.

0. Introduction

0.1. Assumptions

Throughout this paper, it will be assumed that
(H1) (i) b is a gradient �eld on Rd, that is: there is a function V :Rd →R such

that b=3V
(ii) Moreover, we suppose that

∫
Rd e−V (x) dx¡+∞.

Without loss of generality, we can set
∫
Rd e−V (x) dx=1.

We denote by � the probability measure on Rd with density e−V (x) and by Lp, the
Lp space associated to the measure �. For any measurable function f; ‖f‖p denotes
the Lp norm of f:

‖f‖p=
[∫

Rd
|f(x)|p�(dx)

]1=p
:

〈 ; 〉 is the inner product associated to the measure �, de�ned by

〈f; g〉 =
∫
Rd

f(x)g(x)�(dx):
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(H2) b is locally lipschitz-continuous, that is

For any compact set K; ∃lK¿0; ∀x; ∀y∈K; |b(x)− b(y)|6lK |x − y|:

(H3) For any x∈Rd; b(x) is an outward vector, i.e, ∀x∈Rd; b(x): x¿0.
Under (H2) and (H3), it is known that (E) admits a unique strong solution (see

Karatzas and Shreve (1991), Theorem 2.5, p. 287).
If (Pt)t¿0 is the semi-group associated to (E) and L its generator, then for any

bounded measurable function f

Ptf(x)=Exf(Xt) (0.1)

and for any function f of class C2 with compact support (f∈C2c (Rd))

Lf = 1
2(�f − b:3f): (0.2)

Moreover, it is well known that
(i) � is the unique invariant probability measure for (Pt)t¿0;
(ii) for any p, 16p6+∞, any t¿0; Pt is bounded in Lp and for any measurable

function f

‖Ptf‖p6‖f‖p; (0.3)

(iii) L is semi-bounded symmetric operator: for any f; g ∈C2c (Rd)

〈Lf ; g〉 = 〈f; Lg〉 = − 1
2

∫
Rd
3f(x):3g(x)�(dx): (0.4)

Therefore, Friedrichs’ extension theorem shows that L admits a self-adjoint extension;
(iv) 0 is an eigenvalue of L and the associated eigenspace is the set of � a.s. constant

functions.
The spectral decomposition of self-adjoint operators leads us to the following result

(see Bakry and Emery, 1995, pp. 177–206; Bakry, 1994):

lim
t→∞ ‖Ptf − �(f)‖2 = 0: (0.5)

0.2. The objectives

The purpose of this paper consists in an estimation of the rate of the convergence of
Pt to �. We consider the uniform convergence on compact sets of Rd, or the uniform
convergence on Rd in the case (C1) below.
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Our results depend on the behaviour of the vector �eld b at in�nity. Three di�erent
cases are considered:

(C1) |b(x)| ∼
|x|→∞

C|x|�; �¿1.

(C2) |b(x)| ∼
|x|→∞

C|x|�; −1¡�61.

(C3) |b(x)| ∼
|x|→∞

C
x
; C¿1; d=1.

The corresponding results are

(R1) ∃�¿0;∃C¿0;∃t0¿0 such that for any t¿t0 and for any f∈L2

sup
x∈Rd

|Ptf(x)− �(f)|6Ce−�t‖f‖2:

(R2) (i) If |�|¡1; ∃�¿0; ∃t0¿0 such that for any compact set K; ∃C(K)¿0 such
that for any f∈L∞ and t¿t0

sup
x∈K

|Ptf(x)− �(f)|6C(K)e−�t�‖f‖∞ with �=(�+ 1)=2:

(ii) If �=1; ∀�¡1; ∃�¿0; ∃t0¿0 such that for any compact set K; ∃C(K)¿0
such that for any f∈L∞ and t¿t0

sup
x∈K

|Ptf(x)− �(f)|6C(K)e−�t�‖f‖∞:

(R3) ∃¿0; ∃t0¿0 such that for any compact set K; ∃C(K)¿0 such that for any
f∈L∞ and t¿t0

sup
x∈K

|Ptf(x)− �(f)|6C(K)
1
t
‖f‖∞:

0.3. Outline

The sequel is organised as follows:
Section 1 deals with the case (R1), �¿1. This is a very favorable situation since the
semi-group (Pt)t¿0 bene�ts of the very strong property of ultracontractivity. Exploiting
results of Kavian et al. (1993), the proof of (R1) is almost straightforward.
In Section 2, we describe a general approach for −16�61. The ultracontractivity

property being not true, this situation is much more delicate and a direct evaluation
of Ptf − �(f) seems out of reach. To avoid this di�culty, the di�usion (Xt)t¿0 is
approximated by the di�usion (X a

t )t¿0 associated to the same di�usion equation (E)
but reected on the ball centered at zero and of radius a. On one hand, it may be proved
that the semi-group (Pa

t )t¿0 (and respectively the corresponding stationary distribution
�a) are close to (Pt)t¿0 (respectively �) for a large enough. On the other hand, (X a

t )t¿0
being restricted to a bounded state, it is easy to evaluate the convergence rate of Pa

t

to �a. Thus, this approach provides a way of estimating Ptf − �(f).
Section 3, can be viewed as an application of the methodology of Section 2 and

corresponding to the speci�c case −1¡�61.
Again, Section 4 relies upon Section 2 and corresponding to the case �= − 1.
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1. The ultracontractive case: �¿1

In this section, assumption H3 is strengthened into H3′ (H1 and H2 remaining
unchanged):

H3′
{ |b(x)| ∼

|x|→∞
C|x|�;

b(x) is a radial function ∃k: R+→R such that b(x)= k(|x|) x
|x| :

Under H3′, the semi-group (Pt)t¿0 is ultracontractive (see Kavian et al., 1993 for
further information). Namely,

De�nition 1.1. The semi-group (Pt)t¿0 de�ned on L1 is said ultracontractive if

∀t¿0; ∃Ct¿0; ∀f∈L1; ‖Ptf‖∞6Ct‖f‖1: (1.6)

The ultracontractivity property leads to the main theorem of this section.

Theorem 1.1. ∃�¿0; ∃C1¿0; ∃t0¿0 such that
∀t¿t0; ∀f∈L2; ‖Ptf − �(f)‖∞6C1e−�t‖f‖1:

Remark 1.1. Obviously, the same relation holds with ‖f‖2 in place of ‖f‖1.

Proof of Theorem 1.1. First, we need two technical lemmas.

Lemma 1.2. Under H3′; Pt is a Hilbert–Schmidt operator.

Proof. For any function f, it can be shown (see Durrett, 1984) that Ptf can be
expressed through:

Ptf(x)=
∫
Rd

pt(x; y)f(y)�(dy); (1.7)

where pt is a continuous function of x and y.
It is enough to check that

∀t¿0; sup
x; y

|pt(x; y)|6Ct: (1.8)

For any x0 ∈R, let us consider a sequence (fn); fn ∈L1 where
(i) ∀x∈Rd; fn(x)¿0,
(ii)

∫
Rd fn(x)�(dx)= 1 (‖fn‖1 = 1),

(iii) ∀g bounded and continuous, lim
n→∞

∫
Rd fn(x)g(x)�(dx)= g(x0).

Applying the ultracontractivity property to fn, it turns out:

‖Ptfn‖∞6Ct‖fn‖1 =Ct (1.9)

(iii) gives

lim
n→∞Ptfn(x)=pt(x; x0): (1.10)

Eqs. (1.9) and (1.10) yield inequality (1.8). The proof is completed.
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Lemma 1.3. There exists an orthonormal basis (hn)n¿0 of L2 such that

(S)

(i) ∀n¿0; Lhn= − �nhn;
(ii) ∀n¿0; Pthn=e−�nthn;
(iii) �0 = 0¡�16�26 · · · ;
(iv) h0 = 1:

�= �1 is called the spectral gap of L.

Proof. Lemma 1.2 shows that Pt is a compact operator in L2. Hence, the resolvant of
L is also compact entailing the above-mentioned properties. (see Davies, 1989).

Proof of Theorem 1.1. In two steps: (i) Let us consider the eigenvalues �n and eigen-
vectors hn of Lemma 1.3.

Pt being a Hilbert–Schmidt operator, it turns out that

∀t¿0;
+∞∑
n=0

‖Pthn‖22¡+∞;

∀t¿0;
+∞∑
n=0

e−�nt =
+∞∑
n=0

‖Pt=2hn‖22¡+∞: (1.11)

It is worth noticing that the ultracontractivity property (1.6) and Lemma 1.3 show that
the hn are in L∞; in fact

∀t¿0; ‖Pthn‖∞= ‖e−�nthn‖∞6Ct (1.12)

that is,

∀t¿0; ‖hn‖∞6e�ntCt : (1.13)

(ii) Let f be a function of L2. Again by Lemma 1.3 we see that

�(f)= 〈f; 1〉 = 〈f; h0〉 = 〈f; h0〉 h0:
The decomposition of Ptf − �(f) on the orthonormal basis (hn)n¿0 yields

Ptf − �(f) =
∑
n¿0

〈f; hn〉 e−�nthn − 〈f; h0〉 h0

=
∑
n¿1

〈f; hn〉 e−�nthn; (1.14)

hence

‖Ptf − �(f)‖∞6
∑
n¿1

| 〈f; hn〉 |e−�nt‖hn‖∞: (1.15)

For t0¿0 and t¿3t0, inequality (1.12) applied to t0 leads to

‖Ptf − �(f)‖∞6C2t0‖f‖1
∑
n¿1

e−�n(t−2t0):
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Since �n¿� for n¿1 (Lemma 1.3) and t¿3t0, it turns out that

‖Ptf − �(f)‖∞6C2t0e
3�t0‖f‖1e−�t

∑
n¿1

e−�nt0 :

Equation (1.11) indicates that the sum
∑

n¿1 e
−�nt0 is �nite. Thus

‖Ptf − �(f)‖∞6C1e−�t‖f‖1
which achieves the proof.

2. The case −16�61: general situation

This case is more delicate than the former since we do not know whether the semi-
group is compact or not. To avoid this di�culty, we introduce another semi-group,
(Pa

t )t¿0 wich is compact and approaches Pt for large values of a. It will be seen later
that for any f in L2

∀t¿0; lim
a→∞ ‖Ptf − Pa

t f‖2 = 0: (2.1)

Then, an estimation of Pa
t f − �(f) will be given for large values of a and t. Let us

begin with the construction and the main properties of (Pa
t )t¿0.

2.1. The semi-group (Pa
t )t¿0

Let us consider the di�usion reected on 
a, the ball centered at zero with radius
a. This di�usion is associated to the equation (Ea) de�ned below:

X a
t = x + Bt − 1

2

∫ t

0
b(X a

s ) ds−
∫ t

0
n(X a

s ) dl
a
s ;

where n(x)=
x
‖x‖ is the outward normal;

∀t¿0; Xt ∈
a;

lat =
∫ t

0
1X a

s ∈@
a dls:

(Ea)

Let (Pa
t )t¿0 be the semi-group associated to X a

t and La its generator, i.e

Pa
t f(x)=Exf(X a

t ): (2.2)

La is de�ned on the domain

D(La)= {f∈C2;
@f
@n
=0 on @
a}; (2.3)

∀f∈D(La); Laf= 1
2(�f − b:3f): (2.4)
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Let �a be the restriction of � to 
a, that is, for any �-measurable set A⊂
a

�a(A)=
�(A)
�(
a)

: (2.5)

Let Lp
a =Lp(�a); 〈 ; 〉a the inner product on L2a, and ‖:‖p; a the norm on Lp

a :

∀f∈Lp
a ; ‖f‖pp; a=

∫
Rd

|f(x)|p�a(dx):

Then, it is known that
(i) La is a semi-bounded symmetric operator on D(La) and

〈f; Lag〉a = 〈Laf; g〉a = − 1
2

∫

a
3f:3g �a(dx): (2.6)

(ii) (Pa
t )t¿0 is a compact semi-group.

(iii) La admits an orthonormal basis of eigenvectors, (ha
n)n¿0 on L2a such that

(i) ∀n¿0; Laha
n= − �a

nh
a
n,

(ii) ∀n¿0; Pa
t ha

n=e
−�a

ntha
n,

(iii) �a
0 = 0¡�a

16�a
26 · · ·,

(iv) ha
0 = 1.

And the spectral gap is given by �a= �a
1. These properties being recalled, we carry on

with a crucial property of �a:

Lemma 2.1. �a de�ned by Eq. (2.5), is the unique invariant probability measure of
(Pa

t )t¿0.

Proof. Let � be an invariant measure for Pa
t . � satis�es

∀f∈D(La); �(Pa
t f)= �(f): (2.7)

Evaluating the t derivative on t=0, we have

�(Laf)= 0:

which can also be written as∫

a
(�f − b:3f)(x)�(dx)= 0: (2.8)

By Eq. (2.7) and the regularising property of the semi-group Pa
t ; � is a measure with

a regular density. So we can use Green–Stockes formula, and Eq. (2.8) becomes∫

a

f(��+ div(b�)) dx +
∫
@
a

[
�
@f
@n

− f
(

@�
@n
+ �(b:n)

)]
d�=0: (2.9)

Since f∈D(La); @f=@n=0 on @
a, Eq. (2.9) turns into:

∀f∈D(La);
∫

a

f(��− div(b�)) dx −
∫
@
a

f
[
@�
@n
+ �(b:n)

]
d�=0: (2.10)
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Hence, � is a solution of

div(3�+ b�)= 0 on 
a;
@�
@n
+ �(b:n)= 0 on @
a:

This system admits a unique solution of mass 1. It is now enough to check that �a is
solution of this system. This last point being left to the reader.

From now on, it is assumed that d=1 and 
a= [−a; a].
As in previous section, the spectral gap �a plays a major role in the determination

of the rate of convergence. Thus, it is of prime interest to derive a lower bound of it.

Proposition 2.2. Setting �(a) :=
∫ a
−a e

−V (x) dx
∫ |x|
−|x| e

V (y) dy, then

�a¿
1

2�(a)
:

Proof. The proof of this proposition is based on the following lemma.

Lemma 2.3. Let f be an eigenfunction of La associated to the eigenvalue −�; � 6= 0.
Setting, g :=f − f(0), then
(i) 〈g; Lag〉a= 〈f; Laf〉a;
(ii) ‖g‖22; a= ‖f‖22; a + f2(0);
(iii) ‖g‖22; a6�(a)‖g′‖22; a:

Proof. (i) Remembering that constant functions are eigenfunctions of La associated to
the eigenvalue 0 (property (iii) of reected di�usion), we can write La [f(0)] = 0 and
an elementary calculation gives (i).
(ii) ‖g‖2; a= 〈f−f(0); f−f(0)〉a= ‖f‖22; a+f(0)2−2〈f;f(0)〉a. By orthogonality

of f and f(0), (ii) is proved.
(iii) Notice that

‖g‖22; a=
1

�(
a)

∫ a

−a
g2(x)e−V (x) dx6

1
�(
a)

∫ a

−a
e−V (x)

(∫ |x|

−|x|
|g′(t)| dt

)2
dx:

Schwarz inequality shows that

(∫ |x|

−|x|
|g′(t)| dt

)2
=

(∫ |x|

−|x|
|g′(t)|eV (t)=2e−V (t)=2 dt

)2

6

(∫ |x|

−|x|
(g′(t))2e−V (t) dt

)(∫ |x|

−|x|
eV (t) dt

)

6
(∫ a

−a
(g′(t))2e−V (t) dt

)(∫ |x|

−|x|
eV (t) dt

)
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hence,

‖g‖22; a6
1

�(
a)

∫ a

−a
(g′(t))2e−V (t) dt

∫ a

−a
e−V (x) dx

∫ |x|

−|x|
eV (t) dt

= ‖g′‖22; a�(a):

We now turn on Proposition 2.2.

Proof of Proposition 2.2. Let f be an eigenfunction of La associated to the nonzero
eigenvalue, −�; (�¿0) and let g=f − f(0). Obviously,

|〈f; Laf〉a|= �‖f‖22; a: (2.11)

A glance at Eq. (2.6) shows that

|〈f; Laf〉a|= 1
2‖f′‖22; a= 1

2‖g′‖22; a:
From properties (iii) and (ii) of Lemma 2.3, we obtain

1
2
‖g′‖22; a¿

1
2�(a)

‖g‖22; a=
1

2�(a)
(‖f‖22; a + f2(0))¿

1
2�(a)

‖f‖22; a: (2.12)

From inequalities (2.11) and (2.12) it is seen that

�‖f‖22; a¿
1

2�(a)
‖f‖22; a;

thus

�¿
1

2�(a)
:

Now, the tools are in hand to present the general method of estimating Pt(f)−�(f).

2.2. Estimation of Ptf − �(f)

Let f be a function in L2. For any x real, it is clear that

|Ptf(x)− �(f)|6|Ptf(x)− Pa
t f(x)|+ |Pa

t f(x)− �a(f)|
+|�a(f)− �(f)| (2.13)

and we have to deal with three terms to evaluate Ptf − �(f).

Theorem 2.4. (i) For any function f in L2 and t¿0

‖Pa
t (f)− �a(f)‖2; a6e−�at‖f‖2; a: (2.14)

(ii) For any compact set K; ∃C1(K)¿0; ∃a0(K)¿0 such that, for any f in L2

and any t¿1

∀a¿a0(K); sup
x∈K

|Pa
t f(x)− �a(f)|6C(K)e−�at=2‖f‖2; a: (2.15)
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(iii) For any f in L∞

|�(f)− �a(f)|62(1− �(
a))‖f‖∞: (2.16)

(iv) ∀x∈R; ∀f∈L∞

|Ptf(x)− Pa
t f(x)|62‖f‖∞Px(Ta6t); (2.17)

where Ta is the �rst passage time on level a of the process (|Xt |)t¿0, namely
Ta= inf{t¿0; |Xt |= a}:

Proof. The proofs of items (iii) and (iv) are quite easy and left to the reader. In order
to prove (i) and (ii), we need the following lemma.

Lemma 2.5. Let h be a di�erentiable function de�ned on R. ∀K compact; ∃C(K)¿0;
∃a0(K)¿0 such that ∀a¿a0(K)

sup
x∈K

|h(x)|26C(K)(‖h‖22; a + ‖h′‖22; a): (2.18)

Proof. Let us de�ne �0(K)= sup{|x|; x∈K}; �1 such that � ([−�1; �1]) = 1
2 ;

�= �(K)=max(�1; �0(K)), and C1(K)=
∫ �
−� e

V (t) dt.
For any x and y in [−�; �]; h(x)= h(y) +

∫ y
x h′(t) dt.

Using (a+ b)262a2 + 2b2, it turns out that

(h(x))262(h(y))2 + 2
(∫ y

x
h′(t) dt

)2
:

An appeal to Schwarz inequality gives

(∫ y

x
h′(t) dt

)2
=
(∫ y

x
h′(t)e−V (t)=2eV (t)=2 dt

)2

6
∣∣∣∣
∫ y

x
(h′(t))2e−V (t) dt

∣∣∣∣
∣∣∣∣
∫ y

x
eV (t) dt

∣∣∣∣
6 �([−�; �])‖h′‖22; �

∣∣∣∣
∫ y

x
eV (t) dt

∣∣∣∣
6C1(K)�([−�; �])‖h′‖22; �

hence,

(h(x))262(h(y))2 + 2C1(K)�([−�; �])‖h′‖22; �:
Integrating this last inequality with the measure ��(dy), it comes:

sup
x∈K
(h(x))262‖h‖22; � + 2C1(K)�([−�; �])‖h′‖22; �:
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Noticing that for any a¿�

�([−�; �])‖h‖22; �=
∫ �

−�
h2(t)e−V (t) dt6

∫ a

−a
h2(t)e−V (t) dt6‖h‖22; a;

sup
x∈K
(h(x))26

2
�([−�; �])

‖h‖22; a + 2C1(K)‖h′‖22; a:

Setting, C(K)= max(4; 2C1(K)), the proof is achieved.

Let us come back to the proof of Theorem 2.4.
(i) Let f∈L2. Setting

h=Pa
t f − �a(f)=

∑
n¿1

〈f; ha
n〉ae−�a

ntha
n: (2.19)

Using the spectral gap property, inequality (i) of Theorem 2.4 is straightforward:

‖Pa
t f − �a(f)‖22; a= ‖h‖22; a6e−2�

at‖f‖22; a: (2.20)

(ii) Eq. (2.6) shows that

∀n; m; 〈(ha
n)

′; (ha
m)

′〉a=− 2〈ha
n; L

aha
m〉a=2�n;m�a

n;

where �n;m denotes the Kronecker symbol.
Since x6ex; ∀x¿0, for n¿1 the spectral gap property yields

2�a
ne

−2�a
nt62

e−�a
nt

t
62

e−�at

t
:

From Eq. (2.19) it �nally obtains

‖h′‖22; a=
∑
n¿1

2�a
n|〈f; ha

n〉a|2e−2�
a
nt62

e−�at

t
‖f‖22; a: (2.21)

Bearing in mind Lemma 2.5, an appeal to inequalities (2.20), (2.21) gives for t¿0,
x∈K and a¿a0(K):

|Pa
t f(x)− �a(f)|26C(K)e−�at

(
e−�at +

2
t

)
‖f‖22; a:

Therefore, for any t¿1, it turns out that for a¿a0(K)

sup
x∈K

|Pa
t f(x)− �a(f)|6 [3C(K)]1=2 e−�at=2‖f‖2; a

which completes the proof of (ii).

3. The case −1¡�61

Again in this section, we con�ne ourselves to d=1.
For the sake of simplicity we assume that b is odd. The general case is more intricate

but can be handled in the same manner.
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The assumptions on the behaviour of b are

(C′
2)

{
b is an odd function: ∀x∈R; b(−x)=− b(x);
b(x)=Cx�(1 + �(x)) where limx→∞ �(x)= 0 for x¿0:

The main theorem of this section is the following.

Theorem 3.1. (i) If |�|¡1; ∃�¿0; ∃t0¿0 such that for any compact set K , one can
�nd a constant C2(K)¿0 for which for any f∈L∞; t¿t0:

sup
x∈K

|Ptf(x)− �(f)|6C2(K)e−�t�‖f‖∞; (3.1)

where �=(�+ 1)=2.
(ii) If �=1; ∀�¡1; ∃�¿0; ∃t0¿0 such that for any compact set K , one can �nd

a constant C2(K)¿0 for which for any f∈L∞, t¿t0:

sup
x∈K

|Ptf(x)− �(f)|6C2(K)e−�t�‖f‖∞: (3.2)

Proof. The proof of this theorem relies heavily upon the results of Theorem 2.4. Our
�rst need is to improve each of the inequalities (2.14)–(2.17) in the speci�c case
−1¡�61. We proceed in three steps:
• First, we give a precise estimation of the spectral gap �a via �(a) (see Section 2,
property (iii) of La).

• Then, we deal with the term Px(Ta6t).
• Finally we prove Theorem 3.1.
In view of Proposition 2.2, �(a)¿1=2�a, where �(a)=

∫ a
−a e

−V (x) dx
∫ |x|
−|x| e

V (y)dy.
Hence, an upper bound of �(a) gives a lower bound for �a.

Lemma 3.2. (i) if −1¡�¡1; ∃C3¿0; ∃C4¿0 such that
�(a)6C3 + C4a1−�; (3.3)

(ii) if �=1; ∃C′
3¿0; ∃C′

4¿0 such that

�(a)6C′
3 + C′

4 ln(a): (3.4)

Proof. Let us consider h(x)= x−�eV (x), then

h′(x)=
(
V ′(x)
x�

− �
x�+1

)
eV (x):

Due to (C′
2), it comes that for �¿− 1

lim
x→+∞

V ′(x)
x�

− �
x�+1

=C:

Therefore, there exists x0 such that

∀x¿x0; eV (x)6
2
C
h′(x);
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by integrating it appears that∫ x

x0
eV (y)dy6

2
Cx�

eV (x):

Now, observe that for a¿x0

1
4
�(a) =

∫ x0

0
e−V (x) dx

∫ x

0
eV (y)dy +

∫ a

x0
e−V (x) dx

∫ x0

0
eV (y)dy

+
∫ a

x0
e−V (x) dx

∫ x

x0
eV (y)dy

hence, �(a)6C3 + (8=C)
∫ a
x0
dx=x�, and then if ‖�|¡1

�(a)6C3 + C4a1−�:

If �=1, it turns out that: �(a)6C3 + C′
4 ln(a).

Now, let us turn on to Px(Ta6t).
In this purpose, we shall classically use the behaviour of eigenfunctions of L. Let �

be a real, �¿0 and f� a function such that

Lf�= �f�; where Lf= 1
2(f

′′ − bf′):

Notice that f� is not in L2. Indeed, as was seen in the introduction (property (iii)),
the eigenvalues associated to L2 functions were non-positive.
It is known that Mt =f(Xt) exp(−

∫ t
0 (Lf(Xs)=f(Xs)) ds) is a local martingale on 
a.

If f is bounded and strictly positive on compacts sets, the stopping theorem can be
applied (see Revuz and Yor, 1994), using the Markov inequality it turns out that

Px(Ta6t)6e�tExe−�Ta6e�t
f�(x)

inf (f�(a); f�(−a))
: (3.5)

The inequality (3.5) with a judicious choice of f�, yields an adequate upper bound for
Px(Ta6t). f� will be chosen as follows:

Proposition 3.3. Let g be the unique solution of the di�erential equation (D′
1):

(D′
1)

Lg− g=0;
g(0)= 1;
g′(0)= 0:

For any �∈ ]0; 1], for any constant 0¡k¡C=(�+1) (where C is given in (C′
2)), one

can �nd an even function f� and a positive real k1, independant of �, such that
(i) ∀x ∈ R; f�(x)¿1=�;
(ii) ∀x ∈ R; f�(x)6g(x)=�;
(iii) ∃xk ∈R independant of � such that

∀x¿xk ; f�(x)¿k1ek x
�+1

: (3.6)
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In order to prove this proposition, we use the following classical lemma which is an
easy consequence of the maximum principle.

Lemma 3.4. Let h be a C2 function, �¿0 and x0 real. Assume that

∀x¿x0; Lh(x)− �h(x)¿0;

h(x0)¿0;

h′(x0)¿0:

Then,

∀x¿x0; h(x)¿0:

Proof of Proposition 3.3. Let f� be the unique solution of Eq. (D�):

(D�)

Lf�(x)− �f�(x)= 0;

f�(0)=
1
�
;

f′
�(0)= 0:

As b being odd, f� is an even function.

(i) Setting

f̂�=f� − 1
�
;

it is obvious that f̂� is solution of (D
′
�):

(D′
�)

Lf̂�(x)− �f̂�(x)= 1;

f̂�(0)= 0;

f̂′
�(0)= 0:

Consequently, according to Lemma 3.4 ∀x ∈ R; f̂�(x)¿0 which proves (i).
(ii) Let g be the function de�ned by (D′

1), Proposition 3.3 and set,

g�=
g
�
− f�:

We easily check that g� satis�es

Lg�(x)− �g�(x)= (1− �)g(x)¿0;

g�(0)= 0;

g′�(0)= 0:

Consequently, according to Lemma 3.4

∀x∈R; g�(x)¿0

which proves (ii).
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(iii) First notice that there is a positive real x0, independent of � such that

∀x¿x0; f′
�(x)¿

1
2 : (3.7)

Indeed, since Lf=
1
2
eV (e−Vf′)′

f′
�(x)= 2�e

V (x)
∫ x

0
f�(t)e−V (t) dt:

From (i) we obtain

∀x¿0; f′
�(x)¿2e

V (x)
∫ x

0
e−V (t) dt:

(C′
2) shows that V (x)¿0 for x large enough, moreover

∫ +∞
0 e−V (x) dx= 1

2 , thus

∃x0; ∀x¿x0; f′
�(x)¿

1
2 :

Consider, hk(x)=Mek x
�+1
, where M¿0. A trite calculation gives

Lhk(x)− �hk(x)= 1
2k(�+ 1)x

�−1hk(x)[�+ x�+1(k(�+ 1)− C(1 + �(x)))]:

From the conditions k¡C=(�+1) and �+1¿0, it is obvious that there exists xk*¿0
such that

∀x¿xk*; Lhk60;

hence Lhk−�hk60;∀x¿xk*, setting xk = max(xk*; x0), we can choose M = k1 in order
to have

hk(xk)61;

h′k(xk)6
1
2
:

Then, it is readily seen that f=f� − hk obeys

Lf(x)− �f(x)¿0; ∀x¿xk ;

f(xk)¿
1
�
− hk(xk)¿0;

f′(xk)¿
1
2
− h′k(xk)¿0;

hence f�(x)¿hk(x);∀x¿xk by Lemma 3.4.

Proposition 3.3, entails the following result:

Corollary 3.5. For any K compact of R and any 0¡k¡C=(� + 1), one can �nd a
constant M1(K) and a positive real xk , such that

∀t¿0; ∀x∈K; ∀a¿xk ; Px(Ta6t)6
M1(K)
�eka�+1

e�t :
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Proof. Immediate from Proposition 3.3 and inequality (3.5).

We are now ready for the proof of Theorem 3.1

Proof of Theorem 3.1. The proof relies upon Theorem 2.4. We begin with the case
−1¡�¡1. From inequality (3.3) and Proposition 2.2, it is known that

�(a)6C3 + C4a1−� and �a¿
1

2�(a)
:

An appeal to Eq. (2.15) gives

sup
x∈K

|Pa
t f(x)− �a(f)|6C(K)e−t=4(C3+C4a1−�)‖f‖2; a: (3.8)

Assumption (C′
2) and Eq. (2.16) entail

|�(f)− �a(f)|6C5e−C6a�+1‖f‖∞: (3.9)

A look at Corollary 3.5 and Eq. (2.17) shows that for any �∈ ]0:1[

∀x∈K; ∀a¿xk ; |Pa
t f(x)− Ptf(x)|62M1(K)

e�t

�eka�+1
‖f‖∞: (3.10)

Choosing a= t� with �¡1=(1− �) and �=1=t, Eqs. (3.8)–(3.10) lead to

sup
x∈K

|Ptf(x)− �(f)|6C′(K)e−C7t1−�(1−�)‖f‖∞ + C5e−C6t�(�+1)‖f‖∞

+M ′
1(K)te

−kt�(�+1)‖f‖∞:

The optimal rate is reached for �= 1
2 . It turns out that for any �¡(� + 1)=2, one

can �nd �¿0 such that for t large enough

sup
x∈K

|Exf(Xt)− �(f)|6C2(K)‖f‖∞e−�t� ;

which completes (i) when −1¡�¡1.
If �=1, Eqs. (2.15) and (3.4) induce a change in Eq. (3.8) and we have

sup
x∈K

|Pa
t f(x)− �a(f)|6C(K)e−t=4(C′

3+C′
4 ln(a))‖f‖2; a: (3.11)

It is easily checked that the preceding conclusion remains true, that is, for any �¡1,
there is a �¿0 such that for t large enough

sup
x∈K

|Exf(Xt)− �(f)|6Ck‖f‖∞e−�t� :

The proof of (i) is now completed.

Remark 3.1. The case �=0 is interesting. We can prove that e−kt1=2 is the otimal rate.
Namely, if we consider the SDE: Xt = x+Bt −

∫ t
0 sgn(Xs) ds, the stationary probability

being �(dx)= e−2|x| dx, we can prove the following result: ∃M¿0, such that for any
compact set K (K 6= ∅),

sup
f∈L1

sup
x∈K

|Ptf(x)− �(f)|
‖f‖1 ¿Me−t1=2 :

The proof will be achieved in the appendix.
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4. The case � = − 1

Again we con�ne ourselves to d=1.
It is assumed that b satis�es (C′′

2 ):

(C′′
2 )

{
b is odd: ∀x∈R; b(−x)= − b(x);
∀x¿0; b(x)= (1 + �(x))C=x with C¿1; and lim

|x|→∞
�(x)= 0:

The main result of this section is Theorem 4.1.

Theorem 4.1. Let �¡(C − 1)=2; there exists t0¿0 such that for any compact set K
we can �nd C3(K)¿0 such that for any t¿t0 and for any f∈L∞

sup
x∈K

|Ptf(x)− �(f)| ≤ C3(K)
t�

‖f‖∞: (4.1)

The method is exactly the same as the previous case −1¡�61:
• We �rst provide a lower bound for the spectral gap,
• Then we give an upper bound for Px(Ta6t),
• Finally, Theorem 4.1 is readily proved.

Lemma 4.2. There exist two constants D1 and D2 such that

�(a)6D1 + D2a2: (4.2)

Proof. The proof is left to the reader. The method is exactly the same as the proof of
Lemma 3.2

In order to give an estimation of Px(Ta6t), we use the same method as in previous
section.
For any �¿0, we are interested in the function f� such that

Lf�= �f�:

As was seen before in Eq. (3.5)

Px(Ta6t)6e�t
f�(x)

inf (f�(a); f�(−a))
:

A judicious choice of the function f� provides an estimation of Px(Ta6t). f� is
choosen according to:

Proposition 4.3. Let g be the unique solution of the di�erential equation

(D′
1)

Lg− g=0;
g(0)= 1;
g′(0)= 0:

For any � ∈]0; 1]; for any constant 0¡k¡C+1 (where C is given in (C′′
2 )), one can

�nd a function f� and a positive real k1; independant of � such that
(i) ∀x ∈ R; f�(x)¿1=�
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(ii) ∀x ∈ R; f�(x)6g(x)=�
(iii) ∃xk ∈R independant of � such that

∀x¿xk ; f�(x)¿k1xke�x: (4.3)

Proof. Let us choose f� exactly as in Proposition 3.3. Assertions (i) and (ii) are then
obvious.
Recall moreover that with this choice of f�, there is a constant x0 independant of �

such that ∀x¿x0; f′
� (x)¿

1
2 .

(iii) Setting h�(x)=Mxke�x; M¿0; k¡C + 1, a trite calculation gives

Lh�(x)− �h�(x)=
1
2
h�(x)

[
− k

x2
(xb(x)− (k − 1))− �

(
2− � +

xb(x)− 2k
x

)]
:

Using (C′′
2 ) and k¡C + 1 we get, ∃xk¿x0; ∀x¿xk ; Lh�(x) − �h�(x)60. Let us

choose M such that

h�(xk)61;

h′�(xk)6
1
2
:

Setting f=f� − h�, it is obvious that

Lf(x)− �f(x)¿0; ∀x¿xk ;

f(xk)¿0;

f′(xk)¿0:

Lemma 3.4 gives: ∀x¿xk ; f�(x)¿Mxke�x.

Proof of Theorem 4.1. Thanks to the previous results, it is now easy to conclude.

Using estimation of the spectral gap (inequality (4.2)) and Proposition 2.2, inequal-
ities (2.15) and (2.16) become

sup
x∈K

|Pa
t f(x)− �a(f)|6C(K)e−t=4(D1+D2a2)‖f‖2; a; (4.4)

∀�¡C − 1; ∃k�¿0; |�a(f)− �(f)|6k�a−�‖f‖∞: (4.5)

Inequalities (2.17) and (4.3) give the existence of xK¿0 and M ′
K¿0 such that for

any � ∈]0; 1]

∀x∈K; ∀a¿xK ; |Ptf(x)− Pa
t f(x)|6

M ′
Ke

�t

�ake�a
‖f‖∞: (4.6)

Now we set �=1=t and a= [t=ln t]1=2, then for any �¡(C − 1)=2 we can choose
�¡C−1 such that Eqs. (4.4)–(4.6) yield

∀x∈K; |Ptf(x)− �(f)|6M ′′
K

t�
‖f‖∞:
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(Note that the constant D2 in Eqs. (4.4) or (4.2) can be chosen close to 1=2(C + 1))
and the proof of (i) is completed.

Appendix A.

Proof of Remark 3.1. For the the S.D.E Xt = x + Bt −
∫ t
0 sgn(Xs) ds with stationary

distribution �(dx)= exp(−2|x|) dx, the following inequality holds: ∃M¿0 such that
for any compact K (K 6= ∅)

sup
f∈L1

sup
x∈K

|Ptf(x)− �(f)|
‖f‖1 ¿Me−t1=2 :

Proof. For any f∈L1(�), we show that

Ptf(0)=
∫ +∞

−∞

f(x)√
2�

(
 
( |x| − t√

t

)
+
1√
t
exp

(
− (|x| − t)2

2t

))
�(dx); (A.1)

where  (z) :=
∫ +∞
z exp(−u2=2) du:

The Girsanov formula (Karatzas and Shreve (1991), p.191, (5.6)) yields:

Ptf(0)=E0

(
f(Bt) exp

(
−
∫ t

0
sgn(Bs) dBs − t

2

))
:

Bearing in mind the Tanaka formula (Karatzas and Shreve (1991), p. 205)

|Bt |=
∫ t

0
sgn(Bs) dBs + Lt;

where Lt is the local time of (Bt) at 0. It turns out that,

Ptf(0)=E0
[
f(Bt) exp

(
Lt − |Bt | − t

2

)]
: (A.2)

For x¿0, y¿0, the density of (|Bt |; Lt) is given by (Revuz and Yor, 1994, p. 227,
Example (2.18))

�(t; x; y)=

√
2
�t3 (x + y) exp

(
− (x + y)2

2t

)
:

Following (Benachour et al., 1996, p. 47), after some easy calculations, we get
Eq. (A.1).
From Eq. (A.1), it is easily seen with Lebesgue’s theorem that

lim
t→∞ Ptf(0)=

∫ +∞

−∞
f(x)�(dx)= �(f):

By di�erence, it obtains

Ptf(0)− �(f)=
∫ +∞

−∞

f(x)√
2�

(
1√
t
e−(t−|x|)2=2t −  

(
t − |x|√

t

))
d�: (A.3)



262 H. Ganidis et al. / Stochastic Processes and their Applications 79 (1999) 243–263

For f symmetric Eq. (A.3) turns into

Ptf(0)− �(f)=

√
2
�

∫ +∞

0
f(x)(h′(x)− h(x))e−2x dx;

where h(x)=  ((t − x)=
√
t). Integrating by parts we get

Ptf(0)− �(f)=

√
2
�

(
−f(0) (

√
t) +

∫ +∞

0
e−2x(f(x)− f′(x)) 

(
t − x√

t

)
dx
)

(A.4)

if lim
x→∞ f(x)e−2x =0.

For f(x)=f�(x)= e�|x| with �¡2 Eq. (A.4) gives

Ptf(0)− �(f)=

√
2
�

(
− (

√
t) + (1− �)

√
t
∫ √

t

−∞
 (x)e−(2−�)(t−x

√
t) dx

)
:

Choosing �=2− 1=√t and setting ft(x)= e�x, it turns out that ‖ft‖1 = 2
√
t and

Ptft(0)− �(ft)
‖ft‖1 =

1√
2�

(
− (

√
t)√
t
+
(
1√
t
− 1
)
e−

√
t
∫ √

t

−∞
 (x)ex dx

)

and so, there exists a constant M¿0 such that

|Ptft(0)− �(ft)|
‖ft‖1 ¿Me−

√
t

entailing

sup
f∈L1

sup
x∈K

|Ptf(x)− �(f)|
‖f‖1 ¿Me−t1=2 ;

which completes the proof.

• Let us remark that the optimal lower band in the preceding calculus is obtained for
f�(x)= e�|x|, (�↗2). This is not surprising insofar f� is the eigenvector of L=

1
2
f′′−

sgnf′ therefore

Lf� =
�2

2
e�x − �e�x (x¿0)

= �
(
�
2
− 1
)
e�x;

and the eigenvalue �(�)= �((�=2)− 1) goes to 0 as �→ 2.
• Let us remark that we did not prove

sup
f∈L2

sup
x∈K

|Ptf(x)− �(f)|
‖f‖2 ¿Ce−t1=2

but this inequality only with sup
f∈L1

.
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