A family of Koszul self-injective algebras with finite Hochschild cohomology

Alison Parker ${ }^{\text {a }}$, Nicole Snashall ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Pure Mathematics, University of Leeds, Leeds, LS2 9JT, England, United Kingdom
${ }^{\mathrm{b}}$ Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, England, United Kingdom

ARTICLE INFO

Article history:

Received 12 May 2011
Received in revised form 5 November 2011
Available online 22 December 2011
Communicated by S. Iyengar

Dedicated to E.L. Green on the occasion of his 65th birthday.

Abstract

This paper presents an infinite family of Koszul self-injective algebras whose Hochschild cohomology ring is finite-dimensional. Moreover, for each $N \geqslant 5$ we give an example where the Hochschild cohomology ring has dimension N. This family of algebras includes and generalizes the 4-dimensional Koszul self-injective local algebras of [R.-O. Buchweitz, E.L. Green, D. Madsen, Ø. Solberg, Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005) 805-816] which were used to give a negative answer to Happel's question, in that they have infinite global dimension but finite-dimensional Hochschild cohomology.

© 2011 Elsevier B.V. All rights reserved.

0. Introduction

Let K be a field. Throughout this paper we suppose $m \geqslant 1$, and let Q be the quiver with m vertices, labelled $0,1, \ldots, m-1$, and $2 m$ arrows as follows:

Let a_{i} denote the arrow that goes from vertex i to vertex $i+1$, and let \bar{a}_{i} denote the arrow that goes from vertex $i+1$ to vertex i, for each $i=0, \ldots, m-1$ (with the obvious conventions modulo m). We denote the trivial path at the vertex i by e_{i}. Paths are written from left to right.

We define Λ to be the algebra $K Q / I$ where I is the ideal of $K Q$ generated by $a_{i} a_{i+1}, \bar{a}_{i-1} \bar{a}_{i-2}$ and $a_{i} \bar{a}_{i}-\bar{a}_{i-1} a_{i-1}$, for $i=0, \ldots, m-1$, where the subscripts are taken modulo m. These algebras are Koszul self-injective special biserial algebras

[^0]and as such play an important role in various aspects of the representation theory of algebras. In particular, for m even, this algebra occurred in the presentation by quiver and relations of the Drinfeld double of the generalized Taft algebras studied in [4], and in the study of the representation theory of $U_{q}\left(\mathfrak{s l}_{2}\right)$, for which, see $[3,10,14,15$].

For $m \geqslant 1$ and for each $\mathbf{q}=\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \in\left(K^{*}\right)^{m}$, we define $\Lambda_{\mathbf{q}}=K Q / I_{\mathbf{q}}$, where $I_{\mathbf{q}}$ is the ideal of $K \mathbb{Q}$ generated by

$$
a_{i} a_{i+1}, \bar{a}_{i-1} \bar{a}_{i-2}, q_{i} a_{i} \bar{a}_{i}-\bar{a}_{i-1} a_{i-1} \quad \text { for } i=0, \ldots, m-1 .
$$

These algebras are socle deformations of the algebra Λ, with $\Lambda_{\mathbf{q}}=\Lambda$ when $\mathbf{q}=(1,1, \ldots, 1)$, and were studied in [13]. We are assuming each q_{i} is non-zero since we wish to study self-injective algebras. Indeed, the algebra $\Lambda_{\mathbf{q}}$ is a Koszul selfinjective socle deformation of Λ, and the K-dimension of $\Lambda_{\mathbf{q}}$ is 4 m .

In the case $m=1$, the algebras $\Lambda_{\mathbf{q}}$ were studied in [2], where they were used to answer negatively a question of Happel, in that their Hochschild cohomology ring is finite-dimensional but they are of infinite global dimension when $q \in K^{*}$ is not a root of unity. In this paper we show, for all $m \geqslant 1$, that the algebras $\Lambda_{\mathbf{q}}$, where $\mathbf{q}=\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \in\left(K^{*}\right)^{m}$, all have a finite-dimensional Hochschild cohomology ring when $q_{0} q_{1} \cdots q_{m-1}$ is not a root of unity. Thus, for each non-zero element of K which is not a root of unity, we have generalized the 4-dimensional algebra of [2] to an infinite family of algebras which all give a negative answer to Happel's question. This also complements the paper of Bergh and Erdmann [1] in which they extended the example of [2] by producing a family of local algebras of infinite global dimension for which the Hochschild cohomology ring is finite-dimensional. We remark that the algebras of [1,2] are local algebras with a 5-dimensional Hochschild cohomology ring. In this paper we give, for each $N \geqslant 5$, a finite-dimensional algebra with $m=N-4$ simple modules and of infinite global dimension whose Hochschild cohomology ring is N-dimensional.

For a finite-dimensional K-algebra \mathcal{A} with Jacobson radical \mathfrak{r}, the Hochschild cohomology ring of \mathcal{A} is given by $\operatorname{HH}^{*}(\mathcal{A})=$ $\operatorname{Ext}_{\mathcal{A}^{e}}^{*}(\mathcal{A}, \mathcal{A})=\oplus_{n \geqslant 0} \operatorname{Ext}_{\mathcal{A}^{e}}^{n}(\mathcal{A}, \mathcal{A})$ with the Yoneda product, where $\mathcal{A}^{e}=\mathcal{A}^{\mathrm{op}} \otimes_{K} \mathcal{A}$ is the enveloping algebra of \mathcal{A}. Since all tensors are over the field K we write \otimes for \otimes_{K} throughout. We denote by \mathcal{N} the ideal of $\mathrm{HH}^{*}(\mathcal{A})$ which is generated by all homogeneous nilpotent elements. Thus $\mathrm{HH}^{*}(\mathcal{A}) / \mathcal{N}$ is a commutative K-algebra.

The Hochschild cohomology ring modulo nilpotence of $\Lambda_{\mathbf{q}}$, where $\mathbf{q}=\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \in\left(K^{*}\right)^{m}$, was explicitly determined in [13], where it was shown that $\operatorname{HH}^{*}\left(\Lambda_{\mathbf{q}}\right) / \mathcal{N}$ is a commutative finitely generated K-algebra of Krull dimension 2 when $q_{0} \cdots q_{m-1}$ is a root of unity, and is K otherwise. Note that, by setting $\mathbf{z}=\left(q_{0} q_{1} \cdots q_{m-1}, 1, \ldots, 1\right)$, we have an isomorphism $\Lambda_{\mathbf{q}} \cong \Lambda_{\mathbf{z}}$ induced by $a_{i} \mapsto q_{0} q_{1} \cdots q_{i} a_{i}, \bar{a}_{i} \mapsto \bar{a}_{i}$. However, for ease of notation, we will consider the algebra in the form $\Lambda_{\mathbf{q}}=K Q / I_{\mathbf{q}}$ with $\mathbf{q}=\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \in\left(K^{*}\right)^{m}$. It was shown by Erdmann and Solberg in [6, Proposition 2.1] that, if $q_{0} q_{1} \cdots q_{m-1}$ is a root of unity, then the finite generation condition ($\mathbf{F g}$) holds, so that $\operatorname{HH}^{*}\left(\Lambda_{\mathbf{q}}\right)$ is a finitely generated Noetherian K-algebra. (See [5,6,11] for more details on the finite generation condition ($\mathbf{F g}$) and the rich theory of support varieties for modules over algebras which satisfy this condition.)

The aim of this paper is to determine $\mathrm{HH}^{*}\left(\Lambda_{\mathbf{q}}\right)$ for each $m \geqslant 1$ in the case where $q_{0} q_{1} \cdots q_{m-1}$ is not a root of unity, and in particular to show that this ring is finite-dimensional. Thus we set $\zeta=q_{0} q_{1} \cdots q_{m-1} \in K^{*}$ and assume that ζ is not a root of unity.

1. The projective resolution of Λ_{q}

A minimal projective bimodule resolution for Λ was given in [12, Theorem 1.2]. Since $\Lambda_{\mathbf{q}}$ is a Koszul algebra, we again use the approach of [7] and [8] and modify the resolution for Λ from [12] to give a minimal projective bimodule resolution (P^{*}, ∂^{*}) for $\Lambda_{\mathbf{q}}$.

We recall from [9], that the multiplicity of $\Lambda_{\mathbf{q}} e_{i} \otimes e_{j} \Lambda_{\mathbf{q}}$ as a direct summand of P^{n} is equal to the dimension of $\operatorname{Ext}_{\Lambda_{\mathbf{q}}}^{n}\left(S_{i}, S_{j}\right)$, where S_{i}, S_{j} are the simple right $\Lambda_{\mathbf{q}}$-modules corresponding to the vertices i, j respectively. Thus the projective bimodules P^{n} are the same as those in the minimal projective bimodule resolution for Λ, and we have, for $n \geqslant 0$, that

$$
P^{n}=\bigoplus_{i=0}^{m-1}\left[\bigoplus_{r=0}^{n} \Lambda_{\mathbf{q}} e_{i} \otimes e_{i+n-2 r} \Lambda_{\mathbf{q}}\right]
$$

Write $\mathfrak{o}(\alpha)$ for the trivial path corresponding to the origin of the arrow α, so that $\mathfrak{o}\left(a_{i}\right)=e_{i}$ and $\mathfrak{o}\left(\bar{a}_{i}\right)=e_{i+1}$. We write $\mathfrak{t}(\alpha)$ for the trivial path corresponding to the terminus of the arrow α, so that $\mathfrak{t}\left(a_{i}\right)=e_{i+1}$ and $\mathfrak{t}\left(\bar{a}_{i}\right)=e_{i}$. Recall that a non-zero element $r \in K Q$ is said to be uniform if there are vertices v, w such that $r=v r=r w$. We then write $v=\mathfrak{o}(r)$ and $w=\mathfrak{t}(r)$.

In [8], the authors give an explicit inductive construction of a minimal projective resolution of $\mathcal{A} / \mathfrak{r}$ as a right \mathcal{A}-module, for a finite-dimensional K-algebra \mathcal{A}. For $\mathcal{A}=K \Gamma / I$ and finite-dimensional, they define g^{0} to be the set of vertices of Γ, g^{1} to be the set of arrows of Γ, and g^{2} to be a minimal set of uniform relations in the generating set of I, and then show that there are subsets $g^{n}, n \geqslant 3$, of $K \Gamma$, where $x \in g^{n}$ are uniform elements satisfying $x=\sum_{y \in g^{n-1}} y r_{y}=\sum_{z \in g^{n-2}} z s_{z}$ for unique $r_{y}, s_{z} \in K \Gamma$, which can be chosen in such a way that there is a minimal projective \mathcal{A}-resolution of the form

$$
\cdots \rightarrow Q^{4} \rightarrow Q^{3} \rightarrow Q^{2} \rightarrow Q^{1} \rightarrow Q^{0} \rightarrow \mathcal{A} / \mathfrak{r} \rightarrow 0
$$

having the following properties:
(1) for each $n \geqslant 0, Q^{n}=\coprod_{x \in g^{n}} \mathfrak{t}(x) \mathcal{A}$,
(2) for each $x \in g^{n}$, there are unique elements $r_{j} \in K \Gamma$ with $x=\sum_{j} g_{j}^{n-1} r_{j}$,
(3) for each $n \geqslant 1$, using the decomposition of (2), for $x \in g^{n}$, the map $Q^{n} \rightarrow Q^{n-1}$ is given by

$$
\mathfrak{t}(x) a \mapsto \sum_{j} r_{j} \mathfrak{t}(x) a \quad \text { for all } a \in \mathcal{A},
$$

where the elements of the set g^{n} are labelled by $g^{n}=\left\{g_{j}^{n}\right\}$. Thus the maps in this minimal projective resolution of $\mathcal{A} / \mathfrak{r}$ as a right \mathscr{A}-module are described by the elements r_{j} which are uniquely determined by (2).

For our algebra $\Lambda_{\mathbf{q}}$, we now define sets g^{n} in the path algebra $K Q$ which we will use to label the generators of P^{n}.
Definition 1.1. For the algebra $\Lambda_{\mathbf{q}}, i=0,1, \ldots, m-1$ and $r=0,1, \ldots, n$, define $g_{0, i}^{0}=e_{i}$ and, inductively for $n \geqslant 1$,

$$
g_{r, i}^{n}=g_{r, i}^{n-1} a_{i+n-2 r-1}+(-1)^{n} q_{i-r+1} q_{i-r+2} \cdots q_{i+n-2 r} g_{r-1, i}^{n-1} \bar{a}_{i+n-2 r}
$$

with the conventions that $g_{-1, i}^{n-1}=0$ and $g_{n, i}^{n-1}=0$ for all n, i, and that $q_{i-r+1} q_{i-r+2} \cdots q_{i+n-2 r}=1$ if $r=n$.
Define $g^{n}=\bigcup_{i=0}^{m-1}\left\{g_{r, i}^{n} \mid r=0, \ldots, n\right\}$.
It is easy to see, for $n=1$, that $g_{0, i}^{1}=a_{i}$ and $g_{1, i}^{1}=-\bar{a}_{i-1}$, whilst, for $n=2$, we have $g_{0, i}^{2}=a_{i} a_{i+1}, g_{1, i}^{2}=q_{i} a_{i} \bar{a}_{i}-\bar{a}_{i-1} a_{i-1}$ and $g_{2, i}^{2}=-\bar{a}_{i-1} \bar{a}_{i-2}$. Thus

$$
\begin{aligned}
& g^{0}=\left\{e_{i} \mid i=0, \ldots, m-1\right\} \\
& g^{1}=\left\{a_{i},-\bar{a}_{i} \mid i=0, \ldots, m-1\right\} \\
& g^{2}=\left\{a_{i} a_{i+1}, q_{i} a_{i} \bar{a}_{i}-\bar{a}_{i-1} a_{i-1},-\bar{a}_{i-1} \bar{a}_{i-2} \text { for all } i\right\}
\end{aligned}
$$

so that g^{2} is a minimal set of uniform relations in the generating set of $I_{\mathbf{q}}$.
Moreover, $g_{r, i}^{n} \in e_{i}(K Q) e_{i+n-2 r}$, for $i=0, \ldots, m-1$ and $r=0, \ldots, n$. Since the elements $g_{r, i}^{n}$ are uniform elements, we may define $\mathfrak{o}\left(g_{r, i}^{n}\right)=e_{i}$ and $\mathfrak{t}\left(g_{r, i}^{n}\right)=e_{i+n-2 r}$. Then

$$
P^{n}=\bigoplus_{i=0}^{m-1}\left[\bigoplus_{r=0}^{n} \Lambda_{\mathbf{q}} \mathfrak{o}\left(g_{r, i}^{n}\right) \otimes \mathfrak{t}\left(g_{r, i}^{n}\right) \Lambda_{\mathbf{q}}\right] .
$$

To describe the map $\partial^{n}: P^{n} \rightarrow P^{n-1}$, we need some notation and the following lemma, the proof of which is an easy induction and is left to the reader.

Lemma 1.2. For the algebra $\Lambda_{\mathbf{q}}$, for $n \geqslant 1, i=0,1, \ldots, m-1$ and $r=0,1, \ldots, n$, we have:

$$
\begin{aligned}
g_{r, i}^{n} & =g_{r, i}^{n-1} a_{i+n-2 r-1}+(-1)^{n} \underbrace{}_{n-r} \underbrace{q_{i-r+1} q_{i-r+2} \cdots q_{i+n-2 r}}_{\text {terms }} g_{r-1, i}^{n-1} \bar{a}_{i+n-2 r} \\
& =(-1)^{r} \underbrace{q_{i-r+1} q_{i-r+2} \cdots q_{i}}_{r \text { terms }} a_{i} g_{r, i+1}^{n-1}+(-1)^{r} \bar{a}_{i-1} g_{r-1, i-1}^{n-1}
\end{aligned}
$$

with the conventions that $g_{-1, i}^{n}=0$ and $g_{n, i}^{n-1}=0$ for all n, i, and that $q_{i-r+1} q_{i-r+2} \cdots q_{i+n-2 r}=1$ if $r=n$ and $q_{i-r+1} q_{i-r+2} \cdots q_{i}=1$ ifr $=0$. Thus

$$
g_{0, i}^{n}=g_{0, i}^{n-1} a_{i+n-1}=a_{i} g_{0, i+1}^{n-1} \quad \text { and } \quad g_{n, i}^{n}=(-1)^{n} g_{n-1, i}^{n-1} \bar{a}_{i-n}=(-1)^{n} \bar{a}_{i-1} g_{n-1, i-1}^{n-1}
$$

In order to define ∂^{n} for $n \geqslant 1$ in a minimal projective bimodule resolution $\left(P^{*}, \partial^{*}\right)$ of $\Lambda_{\mathbf{q}}$, we use the following notation. In describing the image of $\mathfrak{o}\left(g_{r, i}^{n}\right) \otimes \mathfrak{t}\left(g_{r, i}^{n}\right)$ under ∂^{n} in the projective module P^{n-1}, we use subscripts under \otimes to indicate the appropriate summands of the projective module P^{n-1}. Specifically, let \otimes_{r} denote a term in the summand of P^{n-1} corresponding to $g_{r,-}^{n-1}$, and \otimes_{r-1} denote a term in the summand of P^{n-1} corresponding to $g_{r-1,-}^{n-1}$, where the appropriate index - of the vertex may always be uniquely determined from the context. Indeed, since the relations are uniform along the quiver, we can also take labelling elements defined by a formula independent of i, and hence we omit the index i when it is clear from the context. Recall that nonetheless all tensors are over K.

The algebra $\Lambda_{\mathbf{q}}$ is Koszul, so we now use [7] to give a minimal projective bimodule resolution $\left(P^{*}, \partial^{*}\right)$ of $\Lambda_{\mathbf{q}}$. We define the map $\partial^{0}: P^{0} \rightarrow \Lambda_{\mathbf{q}}$ to be the multiplication map. For $n \geqslant 1$, we define the map $\partial^{n}: P^{n} \rightarrow P^{n-1}$ as follows:

$$
\begin{aligned}
\partial^{n}: \mathfrak{o}\left(g_{r, i}^{n}\right) \otimes \mathfrak{t}\left(g_{r, i}^{n}\right) \mapsto & (e_{i} \otimes_{r} a_{i+n-2 r-1}+(-1)^{n} \underbrace{q_{i-r+1} q_{i-r+2} \cdots q_{i+n-2 r}}_{n-r \text { terms }} e_{i} \otimes_{r-1} \bar{a}_{i+n-2 r}) \\
& +(-1)^{n}((-1)^{r} \underbrace{\left.q_{i-r+1} q_{i-r+2} \cdots q_{i} a_{i} \otimes_{r} e_{i+n-2 r}+(-1)^{r} \bar{a}_{i-1} \otimes_{r-1} e_{i+n-2 r}\right) .}_{r \text { terms }}
\end{aligned}
$$

Using our conventions, the degenerate cases $r=0$ and $r=n$ simplify to

$$
\partial^{n}: \mathfrak{o}\left(g_{0, i}^{n}\right) \otimes \mathfrak{t}\left(g_{0, i}^{n}\right) \mapsto e_{i} \otimes_{0} a_{i+n-1}+(-1)^{n} a_{i} \otimes_{0} e_{i+n}
$$

where the first term is in the summand corresponding to $g_{0, i}^{n-1}$ and the second term is in the summand corresponding to $g_{0, i+1}^{n-1}$, whilst

$$
\partial^{n}: \mathfrak{o}\left(g_{n, i}^{n}\right) \otimes \mathfrak{t}\left(g_{n, i}^{n}\right) \mapsto(-1)^{n} e_{i} \otimes_{n-1} \bar{a}_{i-n}+\bar{a}_{i-1} \otimes_{n-1} e_{i-n},
$$

with the first term in the summand corresponding to $g_{n-1, i}^{n-1}$ and the second term in the summand corresponding to $g_{n-1, i-1}^{n-1}$. The following result shows that $\left(P^{*}, \partial^{*}\right)$ is a complex. The proof is a matter of applying the two different recursive formulae for $g_{r, i}^{n}$, and the details are left to the reader.
Lemma 1.3. We have $\partial^{n} \circ \partial^{n+1}=0$.
The next theorem is now immediate from [7, Theorem 2.1].
Theorem 1.4. With the above notation, $\left(P^{*}, \partial^{*}\right)$ is a minimal projective bimodule resolution of $\Lambda_{\mathbf{q}}$.

2. The Hochschild cohomology ring of $\Lambda_{\mathbf{q}}$

We consider the complex $\operatorname{Hom}_{\Lambda_{\mathbf{q}}^{e}}\left(P^{n}, \Lambda_{\mathbf{q}}\right)$. All our homomorphisms are $\Lambda_{\mathbf{q}}^{e}$-homomorphisms and so we write $\operatorname{Hom}(-,-)$ for $\operatorname{Hom}_{\Lambda_{\mathbf{q}}^{e}}(-,-)$. We start by computing the dimension of the space $\operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right)$ for each $n \geqslant 0$. For $m \geqslant 3$, we write $n=p m+t$ where $p \geqslant 0$ and $0 \leqslant t \leqslant m-1$.

Lemma 2.1. Suppose $m \geqslant 3$ and $n=p m+t$ where $p \geqslant 0$ and $0 \leqslant t \leqslant m-1$. Then

$$
\operatorname{dim}_{K} \operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right)= \begin{cases}(4 p+2) m & \text { if } t \neq m-1 \\ (4 p+4) m & \text { if } t=m-1\end{cases}
$$

If $m=1$ or $m=2$ then

$$
\operatorname{dim}_{K} \operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right)=4(n+1)
$$

The proof is as for the non-deformed case (with $q_{0}=q_{1}=\cdots=q_{m-1}=1$) in [12, Lemma 1.7] and where $N=1$, and so is omitted.

Applying $\operatorname{Hom}\left(-, \Lambda_{\mathbf{q}}\right)$ to the resolution $\left(P^{*}, \partial^{*}\right)$ gives the complex $\left(\operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right), d^{n}\right)$ where $d^{n}: \operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right) \rightarrow$ $\operatorname{Hom}\left(P^{n+1}, \Lambda_{\mathbf{q}}\right)$ is induced by the map $\partial^{n+1}: P^{n+1} \rightarrow P^{n}$. The nth Hochschild cohomology group $H^{n}\left(\Lambda_{\mathbf{q}}\right)$ is then given by $\operatorname{HH}^{n}\left(\Lambda_{\mathbf{q}}\right)=\operatorname{Ker} d^{n} / \operatorname{Im} d^{n-1}$. We start by calculating the dimensions of Ker d^{n} and $\operatorname{Im} d^{n-1}$. We consider the cases $m \geqslant 3$ and $m=2$ separately, and recall that the Hochschild cohomology of $\Lambda_{\mathbf{q}}$ in the case $m=1$ was fully determined in [2].

We keep to the notational conventions of [12]. So far, we have simplified notation by denoting the idempotent $\mathfrak{o}\left(g_{r, i}^{n}\right) \otimes$ $\mathfrak{t}\left(g_{r, i}^{n}\right)$ of the summand $\Lambda_{\mathbf{q}} \mathfrak{o}\left(g_{r, i}^{n}\right) \otimes \mathfrak{t}\left(g_{r, i}^{n}\right) \Lambda_{\mathbf{q}}$ of P^{n} uniquely by $e_{i} \otimes_{r} e_{i+n-2 r}$ where $0 \leqslant i \leqslant m-1$. However, even this notation with subscripts under the tensor product symbol becomes cumbersome in computations. Thus we now recall the additional conventions of $[12,1.3]$ which we keep throughout the rest of the paper. Specifically, since $e_{i+n-2 r} \in\left\{e_{0}, e_{1}, \ldots, e_{m-1}\right\}$, it would be usual to reduce the subscript $i+n-2 r$ modulo m. However, to make it explicitly clear to which summand of the projective module P^{n} we are referring and thus to avoid confusion, whenever we write $e_{i} \otimes e_{i+k}$ for an element of P^{n}, we will always have $i \in\{0,1, \ldots, m-1\}$ and consider $i+k$ as an element of \mathbb{Z}, in that $r=(n-k) / 2$ and $e_{i} \otimes e_{i+k}=e_{i} \otimes_{\frac{n-k}{2}} e_{i+k}$ and thus lies in the $\frac{n-k}{2}$-th summand of P^{n}. We do not reduce $i+k$ modulo m in any of our computations. In this way, when considering elements in P^{n}, our element $e_{i} \otimes e_{i+k}$ corresponds uniquely to the idempotent $\mathfrak{o}\left(g_{r, i}^{n}\right) \otimes \mathfrak{t}\left(g_{r, i}^{n}\right)$ of P^{n} with $r=(n-k) / 2$, for each $i=0,1, \ldots, m-1$.

With this notation and for future reference, we note that an element $f \in \operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right)$ is determined by its image on each $e_{i} \otimes e_{j}$ that generates a summand of P^{n}. Now $f\left(e_{i} \otimes e_{j}\right) \in e_{i} \Lambda_{\mathbf{q}} e_{j}$ and hence can only be non-zero if $i=j$ or if $i=j \pm 1$. For $m \geqslant 3$ and $f \in \operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right)$ we may write:

$$
\left\{\begin{array}{l}
f\left(e_{i} \otimes e_{i+\alpha m}\right)=\sigma_{i}^{\alpha} e_{i}+\tau_{i}^{\alpha} \bar{a}_{i-1} a_{i-1}, \\
f\left(e_{i} \otimes e_{i+\beta m-1}\right)=\lambda_{i}^{\beta} \bar{a}_{i-1}, \\
f\left(e_{i} \otimes e_{i+\gamma m+1}\right)=\mu_{i}^{\gamma} a_{i},
\end{array}\right.
$$

with coefficients $\sigma_{i}^{\alpha}, \tau_{i}^{\alpha}, \lambda_{i}^{\beta}$ and μ_{i}^{γ} in K, and appropriate ranges of integers α, β and γ. Specifically, for $\Lambda_{\mathbf{q}} e_{i} \otimes e_{i+\alpha m} \Lambda_{\mathbf{q}}$ to be a summand of P^{n}, we require $i+\alpha m=i+n-2 r$ for some $0 \leqslant r \leqslant n$. Similarly we require $i+\beta m-1=i+n-2 r$ and $i+\gamma m+1=i+n-2 r$ for some $0 \leqslant r \leqslant n$. The precise ranges of α, β and γ for the case $m \geqslant 3$ are as follows. (We have four cases based on the parity of t and of m, where $n=p m+t$ with $0 \leqslant t \leqslant m-1$.)

If both t and m are even, then we only need α. We have $2 p+1$ values of α with $-p \leqslant \alpha \leqslant p$.

If t is even and m is odd, then we have $p+1$ values of α with $-p \leqslant \alpha \leqslant p$ and $\alpha \equiv p \bmod 2$. For $t \leqslant m-2$ we also have p values of β and γ with $-p+1 \leqslant \beta \leqslant p-1,-p+1 \leqslant \gamma \leqslant p-1$ and $\beta \equiv \gamma \equiv p+1 \bmod 2$. If $t=m-1$ then we get $p+1$ values of β and γ with $-p+1 \leqslant \beta \leqslant p+1,-p-1 \leqslant \gamma \leqslant p-1$ and $\beta \equiv \gamma \equiv p+1 \bmod 2$.

If t is odd and m is even, then we have no values for α. For $t \leqslant m-2$ we have $2 p+1$ values of β and γ with $-p \leqslant \beta \leqslant p$ and $-p \leqslant \gamma \leqslant p$. If $t=m-1$ then we get $2 p+2$ values of β and γ with $-p \leqslant \beta \leqslant p+1$ and $-p-1 \leqslant \gamma \leqslant p$.

If t is odd and m is odd, then we have p values of α with $-p+1 \leqslant \alpha \leqslant p-1$ and $\alpha \equiv p+1 \bmod 2$. We also have $p+1$ values of β and γ with $-p \leqslant \beta \leqslant p,-p \leqslant \gamma \leqslant p$ and $\beta \equiv \gamma \equiv p \bmod 2$.

We consider the case $m=2$ in Section 3 and now determine Ker d^{n} when $m \geqslant 3$.
Let $f \in \operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right)$ and suppose $f \in \operatorname{Ker} d^{n}$ so that $d^{n}(f)=f \circ \partial^{n+1} \in \operatorname{Hom}\left(P^{n+1}, \Lambda_{\mathbf{q}}\right)$. Assume $m \geqslant 3$ and write $n=p m+t$ with $0 \leqslant t \leqslant m-1$. We evaluate $d^{n}(f)$ at $e_{i} \otimes e_{i+n+1-2 r}$ for $r=0, \ldots, n+1$. We have three separate cases for r to consider.

We first consider $r=0$. Then, for each $i=0, \ldots, m-1$ we have:

$$
d^{n}(f)\left(e_{i} \otimes e_{i+n+1}\right)= \begin{cases}\left(q_{i} \lambda_{i}^{p+1}-(-1)^{n} \lambda_{i+1}^{p+1}\right) a_{i} \bar{a}_{i} & \text { if } t=m-1 \\ \left(\sigma_{i}^{p}-(-1)^{n} \sigma_{i+1}^{p}\right) a_{i} & \text { if } t=0 \\ 0 & \text { otherwise }\end{cases}
$$

Thus if $f \in \operatorname{Ker} d^{n}$ and $t=m-1$ this gives the condition

$$
\lambda_{i+1}^{p+1}=(-1)^{n} q_{i} \lambda_{i}^{p+1}=(-1)^{2 n} q_{i} q_{i-1} \lambda_{i-1}^{p+1}=\cdots=(-1)^{m n} q_{i} q_{i-1} q_{i-2} \cdots q_{i-m+1} \lambda_{i+1}^{p+1}
$$

and hence $\lambda_{i+1}^{p+1}=(-1)^{m n} \zeta \lambda_{i+1}^{p+1}$. But we assumed that ζ is not a root of unity and thus there are no non-trivial solutions for λ_{i+1}^{p+1}, that is, $\lambda_{i}^{p+1}=0$ for all i.

If $f \in \operatorname{Ker} d^{n}$ and $t=0$ this gives, after iteration, the condition $\sigma_{i+1}^{p}=(-1)^{m n} \sigma_{i+1}^{p}$ and so to get non-trivial solutions for σ_{i+1}^{p} we need $(-1)^{m n}=1$. Now note that each σ_{i}^{p} is determined by the others, so we need only determine one of them, say σ_{0}^{p}. Then we will have a free choice for σ_{0}^{p} if $m n$ is even or char $K=2$, but $\sigma_{0}^{p}=0$ (and hence $\sigma_{i}^{p}=0$ for all i) if $m n$ is odd and char $K \neq 2$.

So if $r=0$ then, for f to be in $\operatorname{Ker} d^{n}$, we have the conditions:

$$
\begin{cases}\lambda_{i}^{p+1}=0 & \text { if } t=m-1 \\ \sigma_{i}^{p}=0 & \text { if } t=0 \text { and }(-1)^{m n} \neq 1 \\ \sigma_{i}^{p}=(-1)^{i n} \sigma_{0}^{p} & \text { if } t=0 \text { and }(-1)^{m n}=1\end{cases}
$$

for all $i=0, \ldots, m-1$.
We next consider $r=n+1$. A similar analysis to the $r=0$ case yields the conditions:

$$
\begin{cases}\mu_{i}^{-p-1}=0 & \text { if } t=m-1 \\ \sigma_{i}^{-p}=0 & \text { if } t=0 \text { and }(-1)^{m n} \neq 1 \\ \sigma_{i}^{-p}=(-1)^{i n} \sigma_{0}^{-p} & \text { if } t=0 \text { and }(-1)^{m n}=1\end{cases}
$$

for all $i=0, \ldots, m-1$.
We now do the generic case for r with $1 \leqslant r \leqslant n$. We have

$$
\begin{aligned}
& d^{n}(f)\left(e_{i} \otimes e_{i+n+1-2 r}\right) \\
& = \begin{cases}\sigma_{i}^{\alpha} a_{i}-(-1)^{n+r} q_{i-r+1} q_{i-r+2} \cdots q_{i} \sigma_{i+1}^{\alpha} a_{i} & \text { if } n-2 r=\alpha m \\
\left(q_{i} \lambda_{i}^{\beta}-(-1)^{n} q_{i-r+1} q_{i-r+2} \cdots q_{i+n-2 r+1} \mu_{i}^{\beta}\right) a_{i} \bar{a}_{i} & \\
\quad-(-1)^{n+r}\left(q_{i-r+1} q_{i-r+2} \cdots q_{i} \lambda_{i+1}^{\beta}+q_{i} \mu_{i-1}^{\beta}\right) a_{i} \bar{a}_{i} & \text { if } n-2 r=\beta m-1 \\
-(-1)^{n} q_{i-r+1} q_{i-r+2} \cdots q_{i+n-2 r+1} \sigma_{i}^{\alpha} \bar{a}_{i-1}-(-1)^{n+r} \sigma_{i-1}^{\alpha} \bar{a}_{i-1} & \text { if } n-2 r=\alpha m-2 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

For $n-2 r=\alpha m$ we get a similar situation to the $r=0$ and $t=m-1$ case. After iteration $\sigma_{i}^{\alpha}=(-1)^{m n+m r} \zeta^{r} \sigma_{i}^{\alpha}$. Hence (by assumption on ζ) $\sigma_{i}^{\alpha}=0$ for all i and all α with $n-2 r=\alpha m$.

For $n-2 r=\beta m-1$, the condition that f is in Ker d^{n} yields m equations in the $2 m$ variables $\lambda_{i}^{\beta}, \mu_{i}^{\beta}$ where $i=0, \ldots, m-1$. These may be rewritten so that all the λ_{i}^{β} are in terms of $\lambda_{0}^{\beta}, \mu_{0}^{\beta}, \ldots, \mu_{m-1}^{\beta}$. We may then write λ_{0}^{β} in terms of $\mu_{0}^{\beta}, \ldots, \mu_{m-1}^{\beta}$, provided that the coefficient of λ_{0}^{β} is non-zero. Specifically, if $r \neq 1$, then the equations give

$$
\lambda_{0}^{\beta}=(-1)^{(n+r) m}\left(\zeta^{-1}\right)^{r-1} \lambda_{0}^{\beta}+\text { terms in } \mu_{0}^{\beta}, \ldots, \mu_{m-1}^{\beta}
$$

Since ζ is not a root of unity, it follows that we may write λ_{0}^{β} in terms of $\mu_{0}^{\beta}, \ldots, \mu_{m-1}^{\beta}$. On the other hand, suppose $r=1$. Here the original equations reduce to

$$
\lambda_{i+1}^{\beta}=(-1)^{n+1} \lambda_{i}^{\beta}+\underbrace{q_{i+1} q_{i+2} \cdots q_{i+n-1}}_{n-1 \text { terms }} \mu_{i}^{\beta}-\mu_{i-1}^{\beta} .
$$

If n is even and char $K \neq 2$ then we can again write λ_{0}^{β} in terms of $\mu_{0}^{\beta}, \ldots, \mu_{m-1}^{\beta}$. However, if n is odd or char $K=2$ then adding these equations together gives

$$
\sum_{i=0}^{m-1}\left(\left(q_{i+1} \cdots q_{i+n-1}\right)-1\right) \mu_{i}^{\beta}=0
$$

so that there is a dependency among the μ_{i}^{β} but λ_{0}^{β} is a free variable if $n \neq 1$. (If $n=1$ then both sides are zero so there is no dependency.)

Finally, we consider the case where $n-2 r=\alpha m-2$. Here we have the condition:

$$
(-1)^{n} q_{i-r+1} q_{i-r+2} \cdots q_{i+n-2 r+1} \sigma_{i}^{\alpha}=-(-1)^{n+r} \sigma_{i-1}^{\alpha}
$$

This is similar to the $n-2 r=\alpha m$ case and we deduce that all the σ_{i}^{α} are zero since ζ is not a root of unity.
Hence, if $1 \leqslant r \leqslant n$ and f is in Ker d^{n}, we have:

$$
\begin{cases}\sigma_{i}^{\alpha}=0 & \text { if } n-2 r=\alpha m \text { or if } n-2 r=\alpha m-2 \\ \operatorname{dimsp}\left\{\lambda_{0}^{\beta}, \ldots, \lambda_{m-1}^{\beta}, \mu_{0}^{\beta}, \ldots, \mu_{m-1}^{\beta}\right\}=m & \text { if } n-2 r=\beta m-1 \text { and either } r \neq 1 \text { or } n \neq 1 \\ \operatorname{dimsp}\left\{\lambda_{0}^{\beta}, \ldots, \lambda_{m-1}^{\beta}, \mu_{0}^{\beta}, \ldots, \mu_{m-1}^{\beta}\right\}=m+1 & \text { if } n-2 r=\beta m-1, r=1 \text { and } n=1\end{cases}
$$

We now combine this information to determine dim Ker d^{n}.
Proposition 2.2. For $m \geqslant 3$,

$$
\operatorname{dim} \operatorname{Ker} d^{n}= \begin{cases}m+1 & \text { if } n=0 \text { or } n=1 \\ (2 p+1) m & \text { if } n \geqslant 2\end{cases}
$$

Proof. We first do the cases $n=0$, 1. If $n=0$ then $r=0,1$ and $\alpha=0$. Moreover $(-1)^{m n}=1$, so $\sigma_{i}^{0}=\sigma_{0}^{0}$ for all i. Thus $\operatorname{dim} \operatorname{Ker} d^{0}=m+1$. If $n=1$ then we have $r=0,1,2$ and so $n-2 r=1,-1,-3$ respectively. The only condition comes from the $r=1$ case, where we have free variables $\lambda_{0}^{0}, \mu_{0}^{0}, \ldots, \mu_{m-1}^{0}$. Thus $\operatorname{dim} \operatorname{Ker} d^{0}=m+1$.

For $n=p m+t \geqslant 2$ there are 4 cases depending on the parity of t and of m. We consider the case where both t and m are even, and leave the other cases to the reader. Here we need only consider the possible values of σ_{i}^{α} and τ_{i}^{α} with $-p \leqslant \alpha \leqslant p$. We have that all σ_{i}^{α} are zero. (Note that if $t=0$ so $n=p m$ then the $r=1$ case where $n-2=p m-2$ shows that all the σ_{i}^{p} are zero and the $r=n$ case where $n-2 n=-p m$ shows that all the σ_{i}^{-p} are zero.) Hence the only contribution to the kernel is from the τ_{i}^{α} and thus $\operatorname{dim} \operatorname{Ker} d^{n}=(2 p+1) m$.

Using the rank-nullity theorem we now get the dimension of $\operatorname{Im} d^{n-1}$.
Proposition 2.3. For $m \geqslant 3$ and $n=p m+t$ we have

$$
\operatorname{dim} \operatorname{Im} d^{n-1}= \begin{cases}0 & \text { if } n=0 \\ m-1 & \text { if } n=1 \text { or } n=2 \\ (2 p+1) m & \text { if } n \geqslant 3\end{cases}
$$

We come now to our main results where we determine the Hochschild cohomology ring of the algebra $\Lambda_{\mathbf{q}}$ when ζ is not a root of unity.

Theorem 2.4. For $m \geqslant 3$,

$$
\operatorname{dim}{H H^{n}}^{n}\left(\Lambda_{\mathbf{q}}\right)= \begin{cases}m+1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ 1 & \text { if } n=2 \\ 0 & \text { if } n \geqslant 3\end{cases}
$$

Thus $\mathrm{HH}^{*}\left(\Lambda_{\mathbf{q}}\right)$ is a finite-dimensional algebra of dimension $m+4$.
Theorem 2.5. For $m \geqslant 3$, we have

$$
\mathrm{HH}^{*}\left(\Lambda_{\mathbf{q}}\right) \cong K\left[x_{0}, x_{1}, \ldots, x_{m-1}\right] /\left(x_{i} x_{j}\right) \times_{K} \bigwedge\left(u_{1}, u_{2}\right)
$$

where \times_{K} denotes the fibre product over $K, \bigwedge\left(u_{1}, u_{2}\right)$ is the exterior algebra on the generators u_{1} and u_{2}, the x_{i} are in degree 0 , and the u_{i} are in degree 1 .

Proof. Since $\operatorname{HH}^{0}\left(\Lambda_{\mathbf{q}}\right)$ is the centre $Z\left(\Lambda_{\mathbf{q}}\right)$, it is clear that $\operatorname{HH}^{0}\left(\Lambda_{\mathbf{q}}\right)$ has K-basis $\left\{1, x_{0}, \ldots, x_{m-1}\right\}$ where $x_{i}=a_{i} \bar{a}_{i}$. Thus $\operatorname{HH}^{0}\left(\Lambda_{\mathbf{q}}\right)=K\left[x_{0}, x_{1}, \ldots, x_{m-1}\right] /\left(x_{i} x_{j}\right)$.

Define bimodule maps $u_{1}, u_{2}: P^{1} \rightarrow \Lambda_{\mathbf{q}}$ by

$$
\begin{aligned}
& u_{1}:\left\{\begin{array}{lll}
\mathfrak{o}\left(g_{0, i}^{1}\right) \otimes \mathfrak{t}\left(g_{0, i}^{1}\right) & \mapsto & a_{i} \\
\text { else } & \mapsto & \text { for all } i=0,1, \ldots, m-1
\end{array}\right. \\
& u_{2}:\left\{\begin{array}{lll}
\mathfrak{o}\left(g_{0, m-1}^{1}\right) \otimes \mathfrak{t}\left(g_{0, m-1}^{1}\right) & \mapsto & a_{m-1} \\
\mathfrak{o}\left(g_{1,0}^{1}\right) \otimes \mathfrak{t}\left(g_{1,0}^{1}\right) & \mapsto & \bar{a}_{m-1} \\
\text { else } & \mapsto & 0 .
\end{array}\right.
\end{aligned}
$$

It is straightforward to show that these maps are in $\operatorname{Ker} d^{1}$ and that they represent linearly independent elements in $\operatorname{HH}^{1}\left(\Lambda_{\mathbf{q}}\right)$ which we also denote by u_{1} and u_{2}. Hence $\left\{u_{1}, u_{2}\right\}$ is a K-basis for $\operatorname{HH}^{1}\left(\Lambda_{\mathbf{q}}\right)$.

In order to show that $u_{1} u_{2}$ represents a non-zero element of $H^{2}\left(\Lambda_{\mathbf{q}}\right)$, we define bimodule maps $\mathscr{L}^{0}\left(u_{2}\right): P^{1} \rightarrow P^{0}$ and $\mathcal{L}^{1}\left(u_{2}\right): P^{2} \rightarrow P^{1}$ by

$$
\begin{aligned}
& \mathcal{L}^{0}\left(u_{2}\right): \begin{cases}\mathfrak{o}\left(g_{0, m-1}^{1}\right) \otimes \mathfrak{t}\left(g_{0, m-1}^{1}\right) & \mapsto a_{m-1} \otimes e_{0} \\
\mathfrak{o}\left(g_{1,0}^{1}\right) \otimes \mathfrak{t}\left(g_{1,0}^{1}\right) & \mapsto \bar{a}_{m-1} \otimes e_{m-1} \\
\text { else } & \mapsto 0,\end{cases} \\
& \mathcal{L}^{1}\left(u_{2}\right): \begin{cases}\mathfrak{o}\left(g_{0, m-1}^{2}\right) \otimes \mathfrak{t}\left(g_{0, m-1}^{2}\right) & \mapsto a_{m-1} \mathfrak{o}\left(g_{0,0}^{1}\right) \otimes \mathfrak{t}\left(g_{0,0}^{1}\right) \\
\mathfrak{o}\left(g_{1,0}^{2}\right) \otimes \mathfrak{t}\left(g_{1,0}^{2}\right) & \mapsto \bar{a}_{m-1} \mathfrak{o}\left(g_{0, m-1}^{1}\right) \otimes \mathfrak{t}\left(g_{0, m-1}^{1}\right) \\
\mathfrak{o}\left(g_{1, m-1}^{2}\right) \otimes \mathfrak{t}\left(g_{1, m-1}^{2}\right) & \mapsto-q_{m-1} a_{m-1} \mathfrak{o}\left(g_{1,0}^{1}\right) \otimes \mathfrak{t}\left(g_{1,0}^{1}\right) \\
\mathfrak{o}\left(g_{2,0}^{2}\right) \otimes \mathfrak{t}\left(g_{2,0}^{2}\right) & \mapsto-\bar{a}_{m-1} \mathfrak{o}\left(g_{1, m-1}^{1}\right) \otimes \mathfrak{t}\left(g_{1, m-1}^{1}\right) \\
\text { else } & \mapsto 0 .\end{cases}
\end{aligned}
$$

Then the following diagram is commutative

where $P^{0} \rightarrow \Lambda_{\mathbf{q}}$ is the multiplication map. Thus the element $u_{1} u_{2} \in \operatorname{HH}^{2}\left(\Lambda_{\mathbf{q}}\right)$ is represented by the map $u_{1} \circ \mathcal{L}^{1}\left(u_{2}\right)$: $P^{2} \rightarrow \Lambda_{\mathbf{q}}$, that is, by the map

$$
\begin{cases}\mathfrak{o}\left(g_{1,0}^{2}\right) \otimes \mathfrak{t}\left(g_{1,0}^{2}\right) & \mapsto \bar{a}_{m-1} a_{m-1} \\ \text { else } & \mapsto 0\end{cases}
$$

Since this map is not in $\operatorname{Im} d^{1}$, it follows that $u_{1} u_{2}$ is non-zero in $\operatorname{HH}^{2}\left(\Lambda_{\mathbf{q}}\right)$ and hence $\operatorname{HH}^{2}\left(\Lambda_{\mathbf{q}}\right)=\operatorname{sp}\left\{u_{1} u_{2}\right\}$.
From the lifting $\mathcal{L}^{1}\left(u_{2}\right)$ it is easy to see that u_{2}^{2} represents the zero element in $\mathrm{HH}^{2}\left(\Lambda_{\mathbf{q}}\right)$, and a similar calculation shows that u_{1}^{2} also represents the zero element in $\operatorname{HH}^{2}\left(\Lambda_{\mathbf{q}}\right)$. (Note that although it is immediate from the graded commutativity of $\operatorname{HH}^{*}\left(\Lambda_{\mathbf{q}}\right)$ that $u_{1}^{2}=0=u_{2}^{2}$ in $\mathrm{HH}^{2}\left(\Lambda_{\mathbf{q}}\right)$ when char $K \neq 2$, this direct calculation is required when char $K=2$.)

Thus we have elements u_{1} and u_{2} in $\operatorname{HH}^{1}\left(\Lambda_{\mathbf{q}}\right)$ which are annihilated by all the $x_{i} \in \operatorname{HH}^{0}\left(\Lambda_{\mathbf{q}}\right)$ and with $u_{1}^{2}=0=u_{2}^{2}$ and $u_{1} u_{2}=-u_{2} u_{1}$ (with the latter by the graded-commutativity of $\operatorname{HH}^{*}\left(\Lambda_{\mathbf{q}}\right)$). Thus

$$
\operatorname{HH}^{*}\left(\Lambda_{\mathbf{q}}\right) \cong K\left[x_{0}, x_{1}, \ldots, x_{m-1}\right] /\left(x_{i} x_{j}\right) \times_{K} \bigwedge\left(u_{1}, u_{2}\right)
$$

where \times_{K} denotes the fibre product over $K, \bigwedge\left(u_{1}, u_{2}\right)$ is the exterior algebra on the generators u_{1} and u_{2}, the x_{i} are in degree 0 , and the u_{i} are in degree 1 .

3. The case $m=2$

We assume that $m=2$ throughout this section. Recall from Lemma 2.1 that $\operatorname{dim}_{K} \operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right)=4(n+1)$. For $f \in \operatorname{Hom}\left(P^{n}, \Lambda_{\mathbf{q}}\right)$ we may write:

$$
\begin{cases}f\left(e_{i} \otimes e_{i+2 \alpha}\right)=\sigma_{i}^{\alpha} e_{i}+\tau_{i}^{\alpha} \bar{a}_{i-1} a_{i-1} & \text { if } n \text { even } \\ f\left(e_{i} \otimes e_{i+2 \beta+1}\right)=\lambda_{i}^{\beta} \bar{a}_{i-1}+\mu_{i}^{\beta} a_{i} & \text { if } n \text { odd }\end{cases}
$$

with coefficients $\sigma_{i}^{\alpha}, \tau_{i}^{\alpha}, \lambda_{i}^{\beta}$ and μ_{i}^{β} in K. The choices of α and β are:

$$
\begin{cases}-p \leq \alpha \leq p & \text { if } n \text { is even } \\ -p-1 \leq \beta \leq p & \text { if } n \text { is odd }\end{cases}
$$

which gives $n+1$ values in each case. A similar analysis to before yields the following result.
Proposition 3.1. For $m=2$ and $n=2 p+t$ with $t=0,1$, we have

$$
\operatorname{dim} \operatorname{Ker} d^{n}= \begin{cases}3 & \text { if } n=0 \text { or } n=1 \\ 2(2 p+1) & \text { if } n \geqslant 2\end{cases}
$$

and

$$
\operatorname{dim} \operatorname{Im} d^{n}= \begin{cases}1 & \text { if } n=0 \\ 5 & \text { if } n=1 \\ 2(2 p+3) & \text { if } n \geqslant 2 \text { and } n \text { odd } \\ 2(2 p+1) & \text { if } n \geqslant 2 \text { and } n \text { even. }\end{cases}
$$

Noting that $\operatorname{dim} \mathrm{HH}^{0}\left(\Lambda_{\mathbf{q}}\right)=3=m+1$, we combine these results with Theorem 2.4 to give the following theorem.
Theorem 3.2. For $m \geqslant 2$,

$$
\operatorname{dim} H^{n}\left(\Lambda_{\mathbf{q}}\right)= \begin{cases}m+1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ 1 & \text { if } n=2 \\ 0 & \text { if } n \geqslant 3\end{cases}
$$

Thus $\mathrm{HH}^{*}\left(\Lambda_{\mathbf{q}}\right)$ is a finite-dimensional algebra of dimension $m+4$.
It can be verified directly that the proof of Theorem 2.5 also holds when $m=2$. Hence we have the following result which describes the ring structure of $\mathrm{HH}^{*}\left(\Lambda_{\mathbf{q}}\right)$ when $m=2$ and ζ is not a root of unity.
Theorem 3.3. For $m=2$, we have

$$
\mathrm{HH}^{*}\left(\Lambda_{\mathbf{q}}\right) \cong K\left[x_{0}, x_{1}\right] /\left(x_{i} x_{j}\right) \times_{K} \bigwedge\left(u_{1}, u_{2}\right)
$$

where \times_{K} denotes the fibre product over $K, \bigwedge\left(u_{1}, u_{2}\right)$ is the exterior algebra on the generators u_{1} and u_{2}, and the elements x_{0}, x_{1} are in degree 0 and u_{1}, u_{2} in degree 1 .

We end by remarking that we have exhibited self-injective algebras whose Hochschild cohomology ring is of arbitrarily large, but nevertheless finite, dimension. The case $m=1$ was studied in [2] where it was shown that the Hochschild cohomology ring is 5-dimensional when ζ is not a root of unity. Thus, for all $m \geqslant 1$, we now have self-injective algebras whose Hochschild cohomology ring is $(m+4)$-dimensional. Hence, for each $N \geqslant 5$ we have an algebra with $N-4$ simple modules, of dimension $4(N-4)$ and with infinite global dimension whose Hochschild cohomology ring is N-dimensional.

References

[1] P.A. Bergh, K. Erdmann, Homology and cohomology of quantum complete intersections, Algebra Number Theory 2 (2008) $501-522$.
[2] R.-O. Buchweitz, E.L. Green, D. Madsen, Ø. Solberg, Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005) 805-816.
[3] W. Chin, L. Krop, Representation theory of liftings of quantum planes, arXiv:0712.1078.
[4] K. Erdmann, E.L. Green, N. Snashall, R. Taillefer, Representation theory of the Drinfeld doubles of a family of Hopf algebras, J. Pure Appl. Algebra 204 (2006) 413-454.
[5] K. Erdmann, M. Holloway, N. Snashall, Ø. Solberg, R. Taillefer, Support varieties for selfinjective algebras, K-Theory 33 (2004) 67-87.
[6] K. Erdmann, Ø. Solberg, Radical cube zero weakly symmetric algebras and support varieties, J. Pure Appl. Algebra 215 (2011) 185-200.
[7] E.L. Green, G. Hartman, E.N. Marcos, Ø. Solberg, Resolutions over Koszul algebras, Arch. Math. 85 (2005) 118-127.
[8] E.L. Green, Ø. Solberg, D. Zacharia, Minimal projective resolutions, Trans. Amer. Math. Soc. 353 (2001) 2915-2939.
[9] D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Springer Lecture Notes in Mathematics, vol. 1404, 1989, pp. $108-126$.
[10] M.K. Patra, On the structure of nonsemisimple Hopf algebras, J. Phys. A: Math. Gen. 32 (1999) 159-166.
[11] N. Snashall, Ø. Solberg, Support varieties and Hochschild cohomology rings, Proc. Lond. Math. Soc. (3) 88 (2004) 705-732.
[12] N. Snashall, R. Taillefer, The Hochschild cohomology ring of a class of special biserial algebras, J. Algebra Appl. 9 (2010) 73-122.
[13] N. Snashall, R. Taillefer, Hochschild cohomology of socle deformations of a class of Koszul self-injective algebras, Colloq. Math. 119 (2010) $79-93$.
[14] R. Suter, Modules for $\mathfrak{U}_{q}\left(\mathfrak{s L}_{2}\right)$, Commun. Math. Phys. 163 (1994) 359-393.
[15] J. Xiao, Finite-dimensional representations of $U_{t}(s l(2))$ at roots of unity, Can. J. Math. 49 (1997) 772-787.

[^0]: * Corresponding author.

 E-mail addresses: a.e.parker@leeds.ac.uk (A. Parker), njs5@mcs.le.ac.uk (N. Snashall).

