OURNAL OF URE AND IPPLIED ALGEBRA

Journal of Pure and Applied Algebra 216 (2012) 1245-1252

Contents lists available at SciVerse ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

A family of Koszul self-injective algebras with finite Hochschild cohomology

Alison Parker^a, Nicole Snashall^{b,*}

^a Department of Pure Mathematics, University of Leeds, Leeds, LS2 9JT, England, United Kingdom ^b Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, England, United Kingdom

ARTICLE INFO

Article history: Received 12 May 2011 Received in revised form 5 November 2011 Available online 22 December 2011 Communicated by S. Iyengar

Dedicated to E.L. Green on the occasion of his 65th birthday.

MSC: 16D50; 16E40; 16S37

0. Introduction

ABSTRACT

This paper presents an infinite family of Koszul self-injective algebras whose Hochschild cohomology ring is finite-dimensional. Moreover, for each $N \ge 5$ we give an example where the Hochschild cohomology ring has dimension *N*. This family of algebras includes and generalizes the 4-dimensional Koszul self-injective local algebras of [R.-O. Buchweitz, E.L. Green, D. Madsen, Ø. Solberg, Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005) 805–816] which were used to give a negative answer to Happel's question, in that they have infinite global dimension but finite-dimensional Hochschild cohomology.

© 2011 Elsevier B.V. All rights reserved.

Let *K* be a field. Throughout this paper we suppose $m \ge 1$, and let \mathcal{Q} be the quiver with *m* vertices, labelled 0, 1, ..., *m*-1, and 2m arrows as follows:

Let a_i denote the arrow that goes from vertex i to vertex i + 1, and let \bar{a}_i denote the arrow that goes from vertex i + 1 to vertex i, for each i = 0, ..., m - 1 (with the obvious conventions modulo m). We denote the trivial path at the vertex i by e_i . Paths are written from left to right.

We define Λ to be the algebra KQ/I where I is the ideal of KQ generated by a_ia_{i+1} , $\bar{a}_{i-1}\bar{a}_{i-2}$ and $a_i\bar{a}_i - \bar{a}_{i-1}a_{i-1}$, for i = 0, ..., m-1, where the subscripts are taken modulo m. These algebras are Koszul self-injective special biserial algebras

* Corresponding author. E-mail addresses: a.e.parker@leeds.ac.uk (A. Parker), njs5@mcs.le.ac.uk (N. Snashall).

^{0022-4049/\$ –} see front matter 0 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2011.12.011

and as such play an important role in various aspects of the representation theory of algebras. In particular, for *m* even, this algebra occurred in the presentation by quiver and relations of the Drinfeld double of the generalized Taft algebras studied in [4], and in the study of the representation theory of $U_q(\mathfrak{sl}_2)$, for which, see [3,10,14,15].

For $m \ge 1$ and for each $\mathbf{q} = (q_0, q_1, \dots, q_{m-1}) \in (K^*)^m$, we define $\Lambda_{\mathbf{q}} = K\mathcal{Q}/I_{\mathbf{q}}$, where $I_{\mathbf{q}}$ is the ideal of $K\mathcal{Q}$ generated by

$$a_i a_{i+1}, \ \bar{a}_{i-1} \bar{a}_{i-2}, \ q_i a_i \bar{a}_i - \bar{a}_{i-1} a_{i-1}$$
 for $i = 0, \dots, m-1$.

These algebras are socle deformations of the algebra Λ , with $\Lambda_{\mathbf{q}} = \Lambda$ when $\mathbf{q} = (1, 1, ..., 1)$, and were studied in [13]. We are assuming each q_i is non-zero since we wish to study self-injective algebras. Indeed, the algebra $\Lambda_{\mathbf{q}}$ is a Koszul self-injective socle deformation of Λ , and the *K*-dimension of $\Lambda_{\mathbf{q}}$ is 4*m*.

In the case m = 1, the algebras $\Lambda_{\mathbf{q}}$ were studied in [2], where they were used to answer negatively a question of Happel, in that their Hochschild cohomology ring is finite-dimensional but they are of infinite global dimension when $q \in K^*$ is not a root of unity. In this paper we show, for all $m \ge 1$, that the algebras $\Lambda_{\mathbf{q}}$, where $\mathbf{q} = (q_0, q_1, \dots, q_{m-1}) \in (K^*)^m$, all have a finite-dimensional Hochschild cohomology ring when $q_0q_1 \cdots q_{m-1}$ is not a root of unity. Thus, for each non-zero element of K which is not a root of unity, we have generalized the 4-dimensional algebra of [2] to an infinite family of algebras which all give a negative answer to Happel's question. This also complements the paper of Bergh and Erdmann [1] in which they extended the example of [2] by producing a family of local algebras of infinite global dimension for which the Hochschild cohomology ring. In this paper we give, for each $N \ge 5$, a finite-dimensional algebra with m = N - 4 simple modules and of infinite global dimension whose Hochschild cohomology ring is N-dimensional.

For a finite-dimensional *K*-algebra *A* with Jacobson radical \mathfrak{r} , the Hochschild cohomology ring of *A* is given by HH^{*}(*A*) = Ext^{*}_A(*A*, *A*) = $\bigoplus_{n \ge 0}$ Ext^{*}_A(*A*, *A*) with the Yoneda product, where $A^e = A^{op} \otimes_K A$ is the enveloping algebra of *A*. Since all tensors are over the field *K* we write \otimes for \otimes_K throughout. We denote by *N* the ideal of HH^{*}(*A*) which is generated by all homogeneous nilpotent elements. Thus HH^{*}(*A*)/*N* is a commutative *K*-algebra.

The Hochschild cohomology ring modulo nilpotence of $\Lambda_{\mathbf{q}}$, where $\mathbf{q} = (q_0, q_1, \ldots, q_{m-1}) \in (K^*)^m$, was explicitly determined in [13], where it was shown that HH^{*}($\Lambda_{\mathbf{q}}$)/ \mathcal{N} is a commutative finitely generated *K*-algebra of Krull dimension 2 when $q_0 \cdots q_{m-1}$ is a root of unity, and is *K* otherwise. Note that, by setting $\mathbf{z} = (q_0q_1 \cdots q_{m-1}, 1, \ldots, 1)$, we have an isomorphism $\Lambda_{\mathbf{q}} \cong \Lambda_{\mathbf{z}}$ induced by $a_i \mapsto q_0q_1 \cdots q_ia_i, \bar{a}_i \mapsto \bar{a}_i$. However, for ease of notation, we will consider the algebra in the form $\Lambda_{\mathbf{q}} = K\mathcal{Q}/I_{\mathbf{q}}$ with $\mathbf{q} = (q_0, q_1, \ldots, q_{m-1}) \in (K^*)^m$. It was shown by Erdmann and Solberg in [6, Proposition 2.1] that, if $q_0q_1 \cdots q_{m-1}$ is a root of unity, then the finite generation condition (**Fg**) holds, so that HH^{*}($\Lambda_{\mathbf{q}}$) is a finitely generated Noetherian *K*-algebra. (See [5,6,11] for more details on the finite generation condition (**Fg**) and the rich theory of support varieties for modules over algebras which satisfy this condition.)

The aim of this paper is to determine $HH^*(\Lambda_q)$ for each $m \ge 1$ in the case where $q_0q_1 \cdots q_{m-1}$ is not a root of unity, and in particular to show that this ring is finite-dimensional. Thus we set $\zeta = q_0q_1 \cdots q_{m-1} \in K^*$ and assume that ζ is not a root of unity.

1. The projective resolution of Λ_q

A minimal projective bimodule resolution for Λ was given in [12, Theorem 1.2]. Since $\Lambda_{\mathbf{q}}$ is a Koszul algebra, we again use the approach of [7] and [8] and modify the resolution for Λ from [12] to give a minimal projective bimodule resolution (P^* , ∂^*) for $\Lambda_{\mathbf{q}}$.

We recall from [9], that the multiplicity of $\Lambda_{\mathbf{q}} e_i \otimes e_j \Lambda_{\mathbf{q}}$ as a direct summand of P^n is equal to the dimension of $\operatorname{Ext}_{\Lambda_{\mathbf{q}}}^n(S_i, S_j)$, where S_i, S_j are the simple right $\Lambda_{\mathbf{q}}$ -modules corresponding to the vertices i, j respectively. Thus the projective bimodules P^n are the same as those in the minimal projective bimodule resolution for Λ , and we have, for $n \ge 0$, that

$$P^{n} = \bigoplus_{i=0}^{m-1} \left[\bigoplus_{r=0}^{n} \Lambda_{\mathbf{q}} e_{i} \otimes e_{i+n-2r} \Lambda_{\mathbf{q}} \right].$$

Write $\mathfrak{o}(\alpha)$ for the trivial path corresponding to the origin of the arrow α , so that $\mathfrak{o}(a_i) = e_i$ and $\mathfrak{o}(\bar{a}_i) = e_{i+1}$. We write $\mathfrak{t}(\alpha)$ for the trivial path corresponding to the terminus of the arrow α , so that $\mathfrak{t}(a_i) = e_{i+1}$ and $\mathfrak{t}(\bar{a}_i) = e_i$. Recall that a non-zero element $r \in K\mathcal{Q}$ is said to be uniform if there are vertices v, w such that r = vr = rw. We then write $v = \mathfrak{o}(r)$ and $w = \mathfrak{t}(r)$.

In [8], the authors give an explicit inductive construction of a minimal projective resolution of \mathcal{A}/\mathfrak{r} as a right \mathcal{A} -module, for a finite-dimensional *K*-algebra \mathcal{A} . For $\mathcal{A} = K\Gamma/I$ and finite-dimensional, they define g^0 to be the set of vertices of Γ , g^1 to be the set of arrows of Γ , and g^2 to be a minimal set of uniform relations in the generating set of *I*, and then show that there are subsets g^n , $n \ge 3$, of $K\Gamma$, where $x \in g^n$ are uniform elements satisfying $x = \sum_{y \in g^{n-1}} yr_y = \sum_{z \in g^{n-2}} zs_z$ for unique r_y , $s_z \in K\Gamma$, which can be chosen in such a way that there is a minimal projective \mathcal{A} -resolution of the form

$$\dots \to Q^4 \to Q^3 \to Q^2 \to Q^1 \to Q^0 \to \mathcal{A}/\mathfrak{r} \to 0$$

having the following properties:

(1) for each $n \ge 0$, $Q^n = \coprod_{x \in g^n} \mathfrak{t}(x) \mathcal{A}$,

- (2) for each $x \in g^n$, there are unique elements $r_j \in K\Gamma$ with $x = \sum_i g_i^{n-1} r_j$,
- (3) for each $n \ge 1$, using the decomposition of (2), for $x \in g^n$, the map $Q^n \to Q^{n-1}$ is given by

$$\mathfrak{t}(x)a\mapsto \sum_j r_j\mathfrak{t}(x)a \quad \text{for all } a\in \mathcal{A},$$

where the elements of the set g^n are labelled by $g^n = \{g_j^n\}$. Thus the maps in this minimal projective resolution of A/r as a right A-module are described by the elements r_i which are uniquely determined by (2).

For our algebra $\Lambda_{\mathbf{q}}$, we now define sets g^n in the path algebra $K\mathcal{Q}$ which we will use to label the generators of P^n .

Definition 1.1. For the algebra $\Lambda_{\mathbf{q}}$, i = 0, 1, ..., m - 1 and r = 0, 1, ..., n, define $g_{0,i}^0 = e_i$ and, inductively for $n \ge 1$,

$$g_{r,i}^{n} = g_{r,i}^{n-1} a_{i+n-2r-1} + (-1)^{n} q_{i-r+1} q_{i-r+2} \cdots q_{i+n-2r} g_{r-1,i}^{n-1} \bar{a}_{i+n-2r}$$

with the conventions that $g_{-1,i}^{n-1} = 0$ and $g_{n,i}^{n-1} = 0$ for all n, i, and that $q_{i-r+1}q_{i-r+2} \cdots q_{i+n-2r} = 1$ if r = n. Define $g^n = \bigcup_{i=0}^{m-1} \{g_{r,i}^n \mid r = 0, \dots, n\}$.

It is easy to see, for n = 1, that $g_{0,i}^1 = a_i$ and $g_{1,i}^1 = -\bar{a}_{i-1}$, whilst, for n = 2, we have $g_{0,i}^2 = a_i a_{i+1}$, $g_{1,i}^2 = q_i a_i \bar{a}_i - \bar{a}_{i-1} a_{i-1}$ and $g_{2,i}^2 = -\bar{a}_{i-1} \bar{a}_{i-2}$. Thus

$$g^{0} = \{e_{i} \mid i = 0, \dots, m-1\},\$$

$$g^{1} = \{a_{i}, -\bar{a}_{i} \mid i = 0, \dots, m-1\},\$$

$$g^{2} = \{a_{i}a_{i+1}, q_{i}a_{i}\bar{a}_{i} - \bar{a}_{i-1}a_{i-1}, -\bar{a}_{i-1}\bar{a}_{i-2} \text{ for all } i\}$$

so that g^2 is a minimal set of uniform relations in the generating set of I_q .

Moreover, $g_{r,i}^n \in e_i(K\mathcal{Q})e_{i+n-2r}$, for i = 0, ..., m-1 and r = 0, ..., n. Since the elements $g_{r,i}^n$ are uniform elements, we may define $o(g_{r,i}^n) = e_i$ and $\mathfrak{t}(g_{r,i}^n) = e_{i+n-2r}$. Then

$$P^{n} = \bigoplus_{i=0}^{m-1} \left[\bigoplus_{r=0}^{n} \Lambda_{\mathbf{q}} \mathfrak{o}(g_{r,i}^{n}) \otimes \mathfrak{t}(g_{r,i}^{n}) \Lambda_{\mathbf{q}} \right].$$

To describe the map $\partial^n \colon P^n \to P^{n-1}$, we need some notation and the following lemma, the proof of which is an easy induction and is left to the reader.

Lemma 1.2. For the algebra Λ_q , for $n \ge 1$, i = 0, 1, ..., m - 1 and r = 0, 1, ..., n, we have:

$$g_{r,i}^{n} = g_{r,i}^{n-1} a_{i+n-2r-1} + (-1)^{n} \underbrace{q_{i-r+1}q_{i-r+2} \cdots q_{i+n-2r}}_{n-r \ terms} g_{r-1,i}^{n-1} \bar{a}_{i+n-2r}$$

$$= (-1)^{r} \underbrace{q_{i-r+1}q_{i-r+2} \cdots q_{i}}_{r \ terms} a_{i}g_{r,i+1}^{n-1} + (-1)^{r} \bar{a}_{i-1}g_{r-1,i-1}^{n-1}$$

with the conventions that $g_{-1,i}^n = 0$ and $g_{n,i}^{n-1} = 0$ for all n, i, and that $q_{i-r+1}q_{i-r+2}\cdots q_{i+n-2r} = 1$ if r = n and $q_{i-r+1}q_{i-r+2}\cdots q_i = 1$ if r = 0. Thus

$$g_{0,i}^{n} = g_{0,i}^{n-1} a_{i+n-1} = a_{i} g_{0,i+1}^{n-1} \quad and \quad g_{n,i}^{n} = (-1)^{n} g_{n-1,i}^{n-1} \bar{a}_{i-n} = (-1)^{n} \bar{a}_{i-1} g_{n-1,i-1}^{n-1}$$

In order to define ∂^n for $n \ge 1$ in a minimal projective bimodule resolution (P^*, ∂^*) of $\Lambda_{\mathbf{q}}$, we use the following notation. In describing the image of $\mathfrak{o}(g_{r,i}^n) \otimes \mathfrak{t}(g_{r,i}^n)$ under ∂^n in the projective module P^{n-1} , we use subscripts under \otimes to indicate the appropriate summands of the projective module P^{n-1} . Specifically, let \otimes_r denote a term in the summand of P^{n-1} corresponding to $g_{r,-}^{n-1}$, and \otimes_{r-1} denote a term in the summand of P^{n-1} corresponding to $g_{r,-,-}^{n-1}$, where the appropriate index – of the vertex may always be uniquely determined from the context. Indeed, since the relations are uniform along the quiver, we can also take labelling elements defined by a formula independent of *i*, and hence we omit the index *i* when it is clear from the context. Recall that nonetheless all tensors are over *K*.

The algebra $\Lambda_{\mathbf{q}}$ is Koszul, so we now use [7] to give a minimal projective bimodule resolution (P^* , ∂^*) of $\Lambda_{\mathbf{q}}$. We define the map $\partial^0 : P^0 \to \Lambda_{\mathbf{q}}$ to be the multiplication map. For $n \ge 1$, we define the map $\partial^n : P^n \to P^{n-1}$ as follows:

$$\partial^{n} : \mathfrak{o}(g_{r,i}^{n}) \otimes \mathfrak{t}(g_{r,i}^{n}) \mapsto (e_{i} \otimes_{r} a_{i+n-2r-1} + (-1)^{n} \underbrace{q_{i-r+1}q_{i-r+2} \cdots q_{i+n-2r}}_{n-r \text{ terms}} e_{i} \otimes_{r-1} \bar{a}_{i+n-2r})$$

$$+ (-1)^{n} ((-1)^{r} \underbrace{q_{i-r+1}q_{i-r+2} \cdots q_{i}}_{r \text{ terms}} a_{i} \otimes_{r} e_{i+n-2r} + (-1)^{r} \bar{a}_{i-1} \otimes_{r-1} e_{i+n-2r}).$$

Using our conventions, the degenerate cases r = 0 and r = n simplify to

$$\partial^n : \mathfrak{o}(\mathfrak{g}_{0,i}^n) \otimes \mathfrak{t}(\mathfrak{g}_{0,i}^n) \mapsto e_i \otimes_0 a_{i+n-1} + (-1)^n a_i \otimes_0 e_{i+n}$$

where the first term is in the summand corresponding to $g_{0,i}^{n-1}$ and the second term is in the summand corresponding to $g_{0,i+1}^{n-1}$, whilst

$$\partial^n : \mathfrak{o}(g_{n,i}^n) \otimes \mathfrak{t}(g_{n,i}^n) \mapsto (-1)^n e_i \otimes_{n-1} \bar{a}_{i-n} + \bar{a}_{i-1} \otimes_{n-1} e_{i-n},$$

with the first term in the summand corresponding to $g_{n-1,i}^{n-1}$ and the second term in the summand corresponding to $g_{n-1,i-1}^{n-1}$. The following result shows that (P^*, ∂^*) is a complex. The proof is a matter of applying the two different recursive formulae for g_{n}^r , and the details are left to the reader.

Lemma 1.3. We have $\partial^n \circ \partial^{n+1} = 0$.

The next theorem is now immediate from [7, Theorem 2.1].

Theorem 1.4. With the above notation, (P^*, ∂^*) is a minimal projective bimodule resolution of $\Lambda_{\mathbf{q}}$.

2. The Hochschild cohomology ring of Λ_q

We consider the complex Hom_{$\Lambda_{\mathbf{q}}^{e}$}(P^{n} , $\Lambda_{\mathbf{q}}$). All our homomorphisms are $\Lambda_{\mathbf{q}}^{e}$ -homomorphisms and so we write Hom(-, -) for Hom_{$\Lambda_{\mathbf{q}}^{e}$}(-, -). We start by computing the dimension of the space Hom $(P^{n}, \Lambda_{\mathbf{q}})$ for each $n \ge 0$. For $m \ge 3$, we write n = pm + t where $p \ge 0$ and $0 \le t \le m - 1$.

Lemma 2.1. Suppose $m \ge 3$ and n = pm + t where $p \ge 0$ and $0 \le t \le m - 1$. Then

 $\dim_{\mathcal{K}} \operatorname{Hom}(P^{n}, \Lambda_{\mathbf{q}}) = \begin{cases} (4p+2)m & \text{if } t \neq m-1\\ (4p+4)m & \text{if } t = m-1. \end{cases}$

If m = 1 or m = 2 then

 $\dim_{\mathcal{K}} \operatorname{Hom}(P^{n}, \Lambda_{\mathbf{q}}) = 4(n+1).$

The proof is as for the non-deformed case (with $q_0 = q_1 = \cdots = q_{m-1} = 1$) in [12, Lemma 1.7] and where N = 1, and so is omitted.

Applying Hom $(-, \Lambda_{\mathbf{q}})$ to the resolution (P^*, ∂^*) gives the complex $(\text{Hom}(P^n, \Lambda_{\mathbf{q}}), d^n)$ where $d^n : \text{Hom}(P^n, \Lambda_{\mathbf{q}}) \rightarrow \text{Hom}(P^{n+1}, \Lambda_{\mathbf{q}})$ is induced by the map $\partial^{n+1} : P^{n+1} \rightarrow P^n$. The *n*th Hochschild cohomology group HH^{*n*}(\Lambda_{\mathbf{q}}) is then given by HH^{*n*}(\Lambda_{\mathbf{q}}) = \text{Ker } d^n / \text{Im } d^{n-1}. We start by calculating the dimensions of Ker d^n and Im d^{n-1} . We consider the cases $m \ge 3$ and m = 2 separately, and recall that the Hochschild cohomology of $\Lambda_{\mathbf{q}}$ in the case m = 1 was fully determined in [2].

We keep to the notational conventions of [12]. So far, we have simplified notation by denoting the idempotent $o(g_{r,i}^n) \otimes t(g_{r,i}^n) \wedge q$ of P^n uniquely by $e_i \otimes_r e_{i+n-2r}$ where $0 \leq i \leq m-1$. However, even this notation with subscripts under the tensor product symbol becomes cumbersome in computations. Thus we now recall the additional conventions of [12, 1.3] which we keep throughout the rest of the paper. Specifically, since $e_{i+n-2r} \in \{e_0, e_1, \ldots, e_{m-1}\}$, it would be usual to reduce the subscript i + n - 2r modulo m. However, to make it explicitly clear to which summand of the projective module P^n we are referring and thus to avoid confusion, whenever we write $e_i \otimes e_{i+k}$ for an element of P^n , we will always have $i \in \{0, 1, \ldots, m-1\}$ and consider i + k as an element of \mathbb{Z} , in that r = (n - k)/2 and $e_i \otimes e_{i+k} = e_i \otimes \frac{n-k}{2}e_{i+k}$ and thus lies in the $\frac{n-k}{2}$ -th summand of P^n . We do not reduce i + k modulo m in any of our computations. In this way, when considering elements in P^n , our element $e_i \otimes e_{i+k}$ corresponds uniquely to the idempotent $o(g_{r,i}^n) \otimes t(g_{r,i}^n)$ of P^n with r = (n - k)/2, for each $i = 0, 1, \ldots, m - 1$.

With this notation and for future reference, we note that an element $f \in \text{Hom}(P^n, \Lambda_q)$ is determined by its image on each $e_i \otimes e_j$ that generates a summand of P^n . Now $f(e_i \otimes e_j) \in e_i \Lambda_q e_j$ and hence can only be non-zero if i = j or if $i = j \pm 1$. For $m \ge 3$ and $f \in \text{Hom}(P^n, \Lambda_q)$ we may write:

$$\begin{cases} f(e_i \otimes e_{i+\alpha m}) = \sigma_i^{\alpha} e_i + \tau_i^{\alpha} \bar{a}_{i-1} a_{i-1}, \\ f(e_i \otimes e_{i+\beta m-1}) = \lambda_i^{\beta} \bar{a}_{i-1}, \\ f(e_i \otimes e_{i+\gamma m+1}) = \mu_i^{\gamma} a_i, \end{cases}$$

with coefficients σ_i^{α} , τ_i^{α} , λ_i^{β} and μ_i^{γ} in *K*, and appropriate ranges of integers α , β and γ . Specifically, for $\Lambda_{\mathbf{q}} e_i \otimes e_{i+\alpha m} \Lambda_{\mathbf{q}}$ to be a summand of P^n , we require $i + \alpha m = i + n - 2r$ for some $0 \leq r \leq n$. Similarly we require $i + \beta m - 1 = i + n - 2r$ and $i + \gamma m + 1 = i + n - 2r$ for some $0 \leq r \leq n$. The precise ranges of α , β and γ for the case $m \geq 3$ are as follows. (We have four cases based on the parity of *t* and of *m*, where n = pm + t with $0 \leq t \leq m - 1$.)

If both *t* and *m* are even, then we only need α . We have 2p + 1 values of α with $-p \leq \alpha \leq p$.

If *t* is even and *m* is odd, then we have p + 1 values of α with $-p \leq \alpha \leq p$ and $\alpha \equiv p \mod 2$. For $t \leq m - 2$ we also have *p* values of β and γ with $-p + 1 \leq \beta \leq p - 1$, $-p + 1 \leq \gamma \leq p - 1$ and $\beta \equiv \gamma \equiv p + 1 \mod 2$. If t = m - 1 then we get p + 1 values of β and γ with $-p + 1 \leq \beta \leq p + 1$, $-p - 1 \leq \gamma \leq p - 1$ and $\beta \equiv \gamma \equiv p + 1 \mod 2$.

If *t* is odd and *m* is even, then we have no values for α . For $t \leq m-2$ we have 2p + 1 values of β and γ with $-p \leq \beta \leq p$ and $-p \leq \gamma \leq p$. If t = m-1 then we get 2p + 2 values of β and γ with $-p \leq \beta \leq p + 1$ and $-p - 1 \leq \gamma \leq p$.

If *t* is odd and *m* is odd, then we have *p* values of α with $-p + 1 \le \alpha \le p - 1$ and $\alpha \equiv p + 1 \mod 2$. We also have p + 1 values of β and γ with $-p \le \beta \le p, -p \le \gamma \le p$ and $\beta \equiv \gamma \equiv p \mod 2$.

We consider the case m = 2 in Section 3 and now determine Ker d^n when $m \ge 3$.

Let $f \in \text{Hom}(P^n, \Lambda_q)$ and suppose $f \in \text{Ker } d^n$ so that $d^n(f) = f \circ \partial^{n+1} \in \text{Hom}(P^{n+1}, \Lambda_q)$. Assume $m \ge 3$ and write n = pm + t with $0 \le t \le m - 1$. We evaluate $d^n(f)$ at $e_i \otimes e_{i+n+1-2r}$ for r = 0, ..., n + 1. We have three separate cases for r to consider.

We first consider r = 0. Then, for each i = 0, ..., m - 1 we have:

$$d^{n}(f)(e_{i} \otimes e_{i+n+1}) = \begin{cases} (q_{i}\lambda_{i}^{p+1} - (-1)^{n}\lambda_{i+1}^{p+1})a_{i}\bar{a}_{i} & \text{if } t = m-1\\ (\sigma_{i}^{p} - (-1)^{n}\sigma_{i+1}^{p})a_{i} & \text{if } t = 0\\ 0 & \text{otherwise.} \end{cases}$$

Thus if $f \in \text{Ker } d^n$ and t = m - 1 this gives the condition

$$\lambda_{i+1}^{p+1} = (-1)^n q_i \lambda_i^{p+1} = (-1)^{2n} q_i q_{i-1} \lambda_{i-1}^{p+1} = \dots = (-1)^{mn} q_i q_{i-1} q_{i-2} \cdots q_{i-m+1} \lambda_{i+1}^{p+1}$$

and hence $\lambda_{i+1}^{p+1} = (-1)^{mn} \zeta \lambda_{i+1}^{p+1}$. But we assumed that ζ is not a root of unity and thus there are no non-trivial solutions for λ_{i+1}^{p+1} , that is, $\lambda_{i+1}^{p+1} = 0$ for all *i*.

If $f \in \text{Ker } d^n$ and t = 0 this gives, after iteration, the condition $\sigma_{i+1}^p = (-1)^{mn} \sigma_{i+1}^p$ and so to get non-trivial solutions for σ_{i+1}^p we need $(-1)^{mn} = 1$. Now note that each σ_i^p is determined by the others, so we need only determine one of them, say σ_0^p . Then we will have a free choice for σ_0^p if mn is even or char K = 2, but $\sigma_0^p = 0$ (and hence $\sigma_i^p = 0$ for all i) if mn is odd and char $K \neq 2$.

So if r = 0 then, for f to be in Ker d^n , we have the conditions:

$$\begin{cases} \lambda_i^{p+1} = 0 & \text{if } t = m - 1 \\ \sigma_i^p = 0 & \text{if } t = 0 \text{ and } (-1)^{mn} \neq 1 \\ \sigma_i^p = (-1)^{in} \sigma_0^p & \text{if } t = 0 \text{ and } (-1)^{mn} = 1 \end{cases}$$

for all i = 0, ..., m - 1.

We next consider r = n + 1. A similar analysis to the r = 0 case yields the conditions:

$\int \mu_i^{-p-1} = 0$	if $t = m - 1$ if $t = 0$ and $(-1)^{mn} \neq 1$ if $t = 0$ and $(-1)^{mn} = 1$
$\sigma_i^{-p} = 0$	if $t = 0$ and $(-1)^{mn} \neq 1$
$\sigma_i^{-p} = (-1)^{in} \sigma_0^{-p}$	if $t = 0$ and $(-1)^{mn} = 1$

for all i = 0, ..., m - 1.

m (C) (-

We now do the generic case for *r* with $1 \le r \le n$. We have

$$= \begin{cases} \sigma_{i}^{\alpha}a_{i} - (-1)^{n+r}q_{i-r+1}q_{i-r+2} \cdots q_{i}\sigma_{i+1}^{\alpha}a_{i} & \text{if } n-2r = \alpha m \\ (q_{i}\lambda_{i}^{\beta} - (-1)^{n}q_{i-r+1}q_{i-r+2} \cdots q_{i+n-2r+1}\mu_{i}^{\beta})a_{i}\bar{a}_{i} & \\ -(-1)^{n+r}(q_{i-r+1}q_{i-r+2} \cdots q_{i}\lambda_{i+1}^{\beta} + q_{i}\mu_{i-1}^{\beta})a_{i}\bar{a}_{i} & \text{if } n-2r = \beta m-1 \\ -(-1)^{n}q_{i-r+1}q_{i-r+2} \cdots q_{i+n-2r+1}\sigma_{i}^{\alpha}\bar{a}_{i-1} - (-1)^{n+r}\sigma_{i-1}^{\alpha}\bar{a}_{i-1} & \text{if } n-2r = \alpha m-2 \\ 0 & \text{otherwise.} \end{cases}$$

For $n - 2r = \alpha m$ we get a similar situation to the r = 0 and t = m - 1 case. After iteration $\sigma_i^{\alpha} = (-1)^{mn+mr} \zeta^r \sigma_i^{\alpha}$. Hence (by assumption on ζ) $\sigma_i^{\alpha} = 0$ for all i and all α with $n - 2r = \alpha m$.

For $n-2r = \beta m-1$, the condition that f is in Ker d^n yields m equations in the 2m variables λ_i^{β} , μ_i^{β} where i = 0, ..., m-1. These may be rewritten so that all the λ_i^{β} are in terms of λ_0^{β} , μ_0^{β} , ..., μ_{m-1}^{β} . We may then write λ_0^{β} in terms of μ_0^{β} , ..., μ_{m-1}^{β} , provided that the coefficient of λ_0^{β} is non-zero. Specifically, if $r \neq 1$, then the equations give

 $\lambda_0^{\beta} = (-1)^{(n+r)m} (\zeta^{-1})^{r-1} \lambda_0^{\beta} + \text{ terms in } \mu_0^{\beta}, \dots, \mu_{m-1}^{\beta}.$

Since ζ is not a root of unity, it follows that we may write λ_0^{β} in terms of $\mu_0^{\beta}, \ldots, \mu_{m-1}^{\beta}$. On the other hand, suppose r = 1. Here the original equations reduce to

$$\lambda_{i+1}^{\beta} = (-1)^{n+1} \lambda_i^{\beta} + \underbrace{q_{i+1}q_{i+2}\cdots q_{i+n-1}}_{n-1 \text{ terms}} \mu_i^{\beta} - \mu_{i-1}^{\beta}.$$

If *n* is even and char $K \neq 2$ then we can again write λ_0^{β} in terms of $\mu_0^{\beta}, \ldots, \mu_{m-1}^{\beta}$. However, if *n* is odd or char K = 2 then adding these equations together gives

$$\sum_{i=0}^{m-1} ((q_{i+1} \cdots q_{i+n-1}) - 1) \mu_i^\beta = 0$$

so that there is a dependency among the μ_i^β but λ_0^β is a free variable if $n \neq 1$. (If n = 1 then both sides are zero so there is no dependency.)

Finally, we consider the case where $n - 2r = \alpha m - 2$. Here we have the condition:

$$(-1)^{n}q_{i-r+1}q_{i-r+2}\cdots q_{i+n-2r+1}\sigma_{i}^{\alpha}=-(-1)^{n+r}\sigma_{i-1}^{\alpha}$$

This is similar to the $n - 2r = \alpha m$ case and we deduce that all the σ_i^{α} are zero since ζ is not a root of unity. Hence, if $1 \leq r \leq n$ and f is in Ker d^n , we have:

$$\begin{cases} \sigma_i^{\alpha} = 0 & \text{if } n - 2r = \alpha m \text{ or if } n - 2r = \alpha m - 2\\ \dim \text{sp}\{\lambda_0^{\beta}, \dots, \lambda_{m-1}^{\beta}, \mu_0^{\beta}, \dots, \mu_{m-1}^{\beta}\} = m & \text{if } n - 2r = \beta m - 1 \text{ and either } r \neq 1 \text{ or } n \neq 1\\ \dim \text{sp}\{\lambda_0^{\beta}, \dots, \lambda_{m-1}^{\beta}, \mu_0^{\beta}, \dots, \mu_{m-1}^{\beta}\} = m + 1 & \text{if } n - 2r = \beta m - 1, r = 1 \text{ and } n = 1. \end{cases}$$

We now combine this information to determine dim Ker d^n .

Proposition 2.2. For $m \ge 3$,

$$\dim \operatorname{Ker} d^n = \begin{cases} m+1 & \text{if } n = 0 \text{ or } n = 1\\ (2p+1)m & \text{if } n \ge 2. \end{cases}$$

Proof. We first do the cases n = 0, 1. If n = 0 then r = 0, 1 and $\alpha = 0$. Moreover $(-1)^{mn} = 1$, so $\sigma_i^0 = \sigma_0^0$ for all *i*. Thus dim Ker $d^0 = m + 1$. If n = 1 then we have r = 0, 1, 2 and so n - 2r = 1, -1, -3 respectively. The only condition comes from the r = 1 case, where we have free variables $\lambda_0^0, \mu_0^0, \dots, \mu_{m-1}^0$. Thus dim Ker $d^0 = m + 1$.

For $n = pm + t \ge 2$ there are 4 cases depending on the parity of t and of m. We consider the case where both t and m are even, and leave the other cases to the reader. Here we need only consider the possible values of σ_i^{α} and τ_i^{α} with $-p \le \alpha \le p$. We have that all σ_i^{α} are zero. (Note that if t = 0 so n = pm then the r = 1 case where n - 2 = pm - 2 shows that all the σ_i^{p} are zero and the r = n case where n - 2n = -pm shows that all the σ_i^{-p} are zero.) Hence the only contribution to the kernel is from the τ_i^{α} and thus dim Ker $d^n = (2p + 1)m$. \Box

Using the rank-nullity theorem we now get the dimension of $\text{Im } d^{n-1}$.

Proposition 2.3. For $m \ge 3$ and n = pm + t we have

dim Im
$$d^{n-1} = \begin{cases} 0 & \text{if } n = 0 \\ m-1 & \text{if } n = 1 \text{ or } n = 2 \\ (2p+1)m & \text{if } n \ge 3. \end{cases}$$

We come now to our main results where we determine the Hochschild cohomology ring of the algebra Λ_q when ζ is not a root of unity.

Theorem 2.4. For $m \ge 3$,

$$\dim HH^{n}(\Lambda_{\mathbf{q}}) = \begin{cases} m+1 & \text{if } n = 0\\ 2 & \text{if } n = 1\\ 1 & \text{if } n = 2\\ 0 & \text{if } n \ge 3. \end{cases}$$

Thus $HH^*(\Lambda_{\mathbf{q}})$ is a finite-dimensional algebra of dimension m + 4.

Theorem 2.5. For $m \ge 3$, we have

$$\mathrm{HH}^*(\Lambda_{\mathbf{q}}) \cong K[x_0, x_1, \ldots, x_{m-1}]/(x_i x_j) \times_K \bigwedge (u_1, u_2)$$

where \times_K denotes the fibre product over K, $\bigwedge(u_1, u_2)$ is the exterior algebra on the generators u_1 and u_2 , the x_i are in degree 0, and the u_i are in degree 1.

Proof. Since $HH^0(\Lambda_q)$ is the centre $Z(\Lambda_q)$, it is clear that $HH^0(\Lambda_q)$ has *K*-basis $\{1, x_0, \ldots, x_{m-1}\}$ where $x_i = a_i \bar{a}_i$. Thus $HH^0(\Lambda_q) = K[x_0, x_1, \ldots, x_{m-1}]/(x_i x_j)$.

Define bimodule maps $u_1, u_2 : P^1 \to \Lambda_q$ by

$$u_{1}: \begin{cases} \mathfrak{o}(g_{0,i}^{1}) \otimes \mathfrak{t}(g_{0,i}^{1}) & \mapsto & a_{i} \text{ for all } i = 0, 1, \dots, m-1 \\ \text{else} & \mapsto & 0, \end{cases}$$
$$u_{2}: \begin{cases} \mathfrak{o}(g_{0,m-1}^{1}) \otimes \mathfrak{t}(g_{0,m-1}^{1}) & \mapsto & a_{m-1} \\ \mathfrak{o}(g_{1,0}^{1}) \otimes \mathfrak{t}(g_{1,0}^{1}) & \mapsto & \bar{a}_{m-1} \\ \text{else} & \mapsto & 0. \end{cases}$$

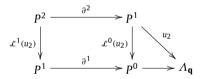
It is straightforward to show that these maps are in Ker d^1 and that they represent linearly independent elements in HH¹(Λ_q) which we also denote by u_1 and u_2 . Hence $\{u_1, u_2\}$ is a *K*-basis for HH¹(Λ_q).

In order to show that u_1u_2 represents a non-zero element of $HH^2(\Lambda_q)$, we define bimodule maps $\mathcal{L}^0(u_2) : P^1 \to P^0$ and $\mathcal{L}^1(u_2) : P^2 \to P^1$ by

$$\mathcal{L}^{0}(u_{2}) : \begin{cases} \mathfrak{o}(g_{1,0}^{1}) \otimes \mathfrak{t}(g_{0,m-1}^{1}) & \mapsto & a_{m-1} \otimes e_{0} \\ \mathfrak{o}(g_{1,0}^{1}) \otimes \mathfrak{t}(g_{1,0}^{1}) & \mapsto & \bar{a}_{m-1} \otimes e_{m-1} \\ else & \mapsto & 0, \end{cases}$$

$$\mathcal{L}^{1}(u_{2}) : \begin{cases} \mathfrak{o}(g_{0,m-1}^{2}) \otimes \mathfrak{t}(g_{0,m-1}^{2}) & \mapsto & a_{m-1}\mathfrak{o}(g_{0,0}^{1}) \otimes \mathfrak{t}(g_{0,0}^{1}) \\ \mathfrak{o}(g_{1,0}^{2}) \otimes \mathfrak{t}(g_{1,0}^{2}) & \mapsto & \bar{a}_{m-1}\mathfrak{o}(g_{0,m-1}^{1}) \otimes \mathfrak{t}(g_{0,m-1}^{1}) \\ \mathfrak{o}(g_{1,m-1}^{2}) \otimes \mathfrak{t}(g_{1,m-1}^{2}) & \mapsto & -q_{m-1}a_{m-1}\mathfrak{o}(g_{1,0}^{1}) \otimes \mathfrak{t}(g_{1,0}^{1}) \\ \mathfrak{o}(g_{2,0}^{2}) \otimes \mathfrak{t}(g_{2,0}^{2}) & \mapsto & -\bar{a}_{m-1}\mathfrak{o}(g_{1,m-1}^{1}) \otimes \mathfrak{t}(g_{1,m-1}^{1}) \\ else & \mapsto & 0. \end{cases}$$

Then the following diagram is commutative



where $P^0 \to \Lambda_q$ is the multiplication map. Thus the element $u_1 u_2 \in HH^2(\Lambda_q)$ is represented by the map $u_1 \circ \mathcal{L}^1(u_2)$: $P^2 \to \Lambda_q$, that is, by the map

 $\begin{cases} \mathfrak{o}(g_{1,0}^2) \otimes \mathfrak{t}(g_{1,0}^2) & \mapsto & \bar{a}_{m-1}a_{m-1} \\ \text{else} & \mapsto & 0. \end{cases}$

Since this map is not in Im d^1 , it follows that u_1u_2 is non-zero in $HH^2(\Lambda_q)$ and hence $HH^2(\Lambda_q) = sp\{u_1u_2\}$.

From the lifting $\mathcal{L}^1(u_2)$ it is easy to see that u_2^2 represents the zero element in HH²(Λ_q), and a similar calculation shows that u_1^2 also represents the zero element in HH²(Λ_q). (Note that although it is immediate from the graded commutativity of HH^{*}(Λ_q) that $u_1^2 = 0 = u_2^2$ in HH²(Λ_q) when char $K \neq 2$, this direct calculation is required when char K = 2.)

Thus we have elements u_1 and u_2 in HH¹(Λ_q) which are annihilated by all the $x_i \in HH^0(\Lambda_q)$ and with $u_1^2 = 0 = u_2^2$ and $u_1u_2 = -u_2u_1$ (with the latter by the graded-commutativity of HH^{*}(Λ_q)). Thus

$$\mathrm{HH}^*(\Lambda_{\mathbf{q}}) \cong K[x_0, x_1, \ldots, x_{m-1}]/(x_i x_j) \times_K \bigwedge (u_1, u_2)$$

where \times_K denotes the fibre product over K, $\bigwedge(u_1, u_2)$ is the exterior algebra on the generators u_1 and u_2 , the x_i are in degree 0, and the u_i are in degree 1. \Box

3. The case m = 2

We assume that m = 2 throughout this section. Recall from Lemma 2.1 that $\dim_K \operatorname{Hom}(P^n, \Lambda_q) = 4(n + 1)$. For $f \in \operatorname{Hom}(P^n, \Lambda_q)$ we may write:

$$\begin{cases} f(e_i \otimes e_{i+2\alpha}) = \sigma_i^{\alpha} e_i + \tau_i^{\alpha} \bar{a}_{i-1} a_{i-1} & \text{if } n \text{ even} \\ f(e_i \otimes e_{i+2\beta+1}) = \lambda_i^{\beta} \bar{a}_{i-1} + \mu_i^{\beta} a_i & \text{if } n \text{ odd,} \end{cases}$$

with coefficients σ_i^{α} , τ_i^{α} , λ_i^{β} and μ_i^{β} in *K*. The choices of α and β are:

$$\begin{cases} -p \le \alpha \le p & \text{if } n \text{ is even} \\ -p - 1 \le \beta \le p & \text{if } n \text{ is odd,} \end{cases}$$

which gives n + 1 values in each case. A similar analysis to before yields the following result.

Proposition 3.1. For m = 2 and n = 2p + t with t = 0, 1, we have

$$\dim \operatorname{Ker} d^n = \begin{cases} 3 & \text{if } n = 0 \text{ or } n = 1\\ 2(2p+1) & \text{if } n \ge 2, \end{cases}$$

and

$$\dim \operatorname{Im} d^{n} = \begin{cases} 1 & \text{if } n = 0\\ 5 & \text{if } n = 1\\ 2(2p+3) & \text{if } n \ge 2 \text{ and } n \text{ odd}\\ 2(2p+1) & \text{if } n \ge 2 \text{ and } n \text{ even.} \end{cases}$$

Noting that dim $HH^0(\Lambda_q) = 3 = m + 1$, we combine these results with Theorem 2.4 to give the following theorem.

Theorem 3.2. For $m \ge 2$,

$$\dim HH^{n}(\Lambda_{\mathbf{q}}) = \begin{cases} m+1 & \text{if } n = 0\\ 2 & \text{if } n = 1\\ 1 & \text{if } n = 2\\ 0 & \text{if } n \ge 3. \end{cases}$$

Thus $HH^*(\Lambda_{\mathbf{q}})$ is a finite-dimensional algebra of dimension m+4.

It can be verified directly that the proof of Theorem 2.5 also holds when m = 2. Hence we have the following result which describes the ring structure of HH^{*}(Λ_q) when m = 2 and ζ is not a root of unity.

Theorem 3.3. For m = 2, we have

 $\operatorname{HH}^*(\Lambda_{\mathbf{q}}) \cong K[x_0, x_1]/(x_i x_j) \times_K \bigwedge (u_1, u_2)$

where \times_K denotes the fibre product over K, $\bigwedge(u_1, u_2)$ is the exterior algebra on the generators u_1 and u_2 , and the elements x_0, x_1 are in degree 0 and u_1, u_2 in degree 1.

We end by remarking that we have exhibited self-injective algebras whose Hochschild cohomology ring is of arbitrarily large, but nevertheless finite, dimension. The case m = 1 was studied in [2] where it was shown that the Hochschild cohomology ring is 5-dimensional when ζ is not a root of unity. Thus, for all $m \ge 1$, we now have self-injective algebras whose Hochschild cohomology ring is (m + 4)-dimensional. Hence, for each $N \ge 5$ we have an algebra with N - 4 simple modules, of dimension 4(N - 4) and with infinite global dimension whose Hochschild cohomology ring is N-dimensional.

References

- [1] P.A. Bergh, K. Erdmann, Homology and cohomology of quantum complete intersections, Algebra Number Theory 2 (2008) 501–522.
- [2] R.-O. Buchweitz, E.L. Green, D. Madsen, Ø. Solberg, Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005) 805–816.
 [3] W. Chin, L. Krop, Representation theory of liftings of quantum planes, arXiv:0712.1078.
- [4] K. Erdmann, E.L. Green, N. Snashall, R. Taillefer, Representation theory of the Drinfeld doubles of a family of Hopf algebras, J. Pure Appl. Algebra 204 (2006) 413–454.
- [5] K. Erdmann, M. Holloway, N. Snashall, Ø. Solberg, R. Taillefer, Support varieties for selfinjective algebras, K-Theory 33 (2004) 67–87.
- [6] K. Erdmann, Ø. Solberg, Radical cube zero weakly symmetric algebras and support varieties, J. Pure Appl. Algebra 215 (2011) 185-200.
- [7] E.L. Green, G. Hartman, E.N. Marcos, Ø. Solberg, Resolutions over Koszul algebras, Arch. Math. 85 (2005) 118–127.
- [8] E.L. Green, Ø. Solberg, D. Zacharia, Minimal projective resolutions, Trans. Amer. Math. Soc. 353 (2001) 2915–2939.
- [9] D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Springer Lecture Notes in Mathematics, vol. 1404, 1989, pp. 108–126.
- [10] M.K. Patra, On the structure of nonsemisimple Hopf algebras, J. Phys. A: Math. Gen. 32 (1999) 159–166.
- [11] N. Snashall, Ø. Solberg, Support varieties and Hochschild cohomology rings, Proc. Lond. Math. Soc. (3) 88 (2004) 705-732.
- [12] N. Snashall, R. Taillefer, The Hochschild cohomology ring of a class of special biserial algebras, J. Algebra Appl. 9 (2010) 73–122.
- [13] N. Snashall, R. Taillefer, Hochschild cohomology of socle deformations of a class of Koszul self-injective algebras, Collog. Math. 119 (2010) 79–93.
- [14] R. Suter, Modules for IIq(sl2), Commun. Math. Phys. 163 (1994) 359–393.
- [15] J. Xiao, Finite-dimensional representations of $U_t(sl(2))$ at roots of unity, Can. J. Math. 49 (1997) 772–787.