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We extend Nuclear Lattice Effective Field Theory (NLEFT) to medium-mass nuclei, and present results for
the ground states of alpha nuclei from 4He to 28Si, calculated up to next-to-next-to-leading order (NNLO)
in the EFT expansion. This computational advance is made possible by extrapolations of lattice data using
multiple initial and final states. For our soft two-nucleon interaction, we find that the overall contribution
from multi-nucleon forces must change sign from attractive to repulsive with increasing nucleon number.
This effect is not produced by three-nucleon forces at NNLO, but it can be approximated by an effective
four-nucleon interaction. We discuss the convergence of the EFT expansion and the broad significance of
our findings for future ab initio calculations.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

Several ab initio methods are being used to study nuclear struc-
ture. These include coupled-cluster expansions [1], the no-core
shell model [2,3], the in-medium similarity renormalization group
approach [4], self-consistent Green’s functions [5], and Green’s
function Monte Carlo [6]. The use of soft chiral nuclear EFT in-
teractions has stimulated much of the recent progress in ab initio
nuclear structure calculations. By “soft” interactions, we refer to
the absence of strong repulsive forces at short distances. In this
letter, we address a central question in nuclear structure theory:
How large a nucleus can be calculated from first principles using
the framework of chiral nuclear EFT, and what are the remaining
challenges?

We address this question by using Nuclear Lattice Effective Field
Theory (NLEFT) to calculate the ground states of alpha nuclei from
4He to 28Si. NLEFT is an ab initio method where chiral nuclear EFT
is combined with Auxiliary-Field Quantum Monte Carlo (AFQMC)
lattice calculations. NLEFT differs from other ab initio methods in
that it is an unconstrained Monte Carlo calculation, which does not
require truncated basis expansions, many-body perturbation the-
ory, or any constraint on the nuclear wave function. Our NLEFT re-
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sults are thus truly unbiased Monte Carlo calculations. The results
presented here form an important benchmark for ab initio calcu-
lations of larger nuclei using chiral nuclear EFT. Any deficiencies
are indicative of shortcomings in the specific nuclear interactions,
rather than of errors generated by the computational method. Such
a definitive analysis would be difficult to achieve using other meth-
ods.

The lattice formulation of chiral nuclear EFT is described in
Ref. [7], a review of lattice EFT methods can be found in Ref. [9],
and Refs. [10,11] provide a comprehensive overview of chiral nu-
clear EFT. We have recently applied NLEFT to describe the structure
of the Hoyle state [12,13] and the dependence of the triple-alpha
process on the fundamental parameters of nature [14]. These stud-
ies show that NLEFT is successful up to A � 12 nucleons. In this
letter, we report the first NLEFT results for medium-mass nuclei.
We compute the ground state energies for all nuclei in the alpha
ladder up to 28Si using the lattice action established in Refs. [13,
12,15].

2. Chiral nuclear EFT for medium-mass nuclei

According to chiral nuclear EFT, our calculations are organized
in powers of a generic soft scale Q associated with factors of mo-
menta and the pion mass. We label the O(Q 0) contributions to
the nuclear Hamiltonian as leading order (LO), O(Q 2) as next-to-
leading order (NLO), and O(Q 3) as next-to-next-to-leading order
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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(NNLO). The present calculations are performed up to NNLO. Our
LO lattice Hamiltonian includes a significant part of the NLO and
higher-order corrections by making use of smeared contact inter-
actions [7,8,15]. See Ref. [15] for a discussion of the interactions
used in this work. As discussed in Ref. [15], we are using a low-
momentum power counting scheme where there are no additional
two-nucleon corrections at NNLO beyond the terms already ap-
pearing at NLO.

The NLEFT calculations reported here are performed with a
lattice spacing of a = 1.97 fm in a periodic cube of length L =
11.82 fm. Our trial wave function is denoted |Ψ init

A 〉, which is a
Slater-determinant state composed of delocalized standing waves
in the periodic cube, with A nucleons and the desired spin and
isospin quantum numbers. For simplicity, we describe our calcula-
tions using the language of continuous time evolution. The actual
AFQMC calculations use transfer matrices with a temporal lattice
spacing of at = 1.32 fm [9].

Before we enter into the main part of the calculation, we make
use of a low-energy filter based upon Wigner’s SU(4) symmetry,
where the spin–isospin degrees of freedom of the nucleon are all
equivalent as four components of an SU(4) multiplet. Let us define

HSU(4) ≡ Hfree + 1

2
CSU(4)

∑
�n,�n′

:ρ(�n) f
(�n − �n′)ρ

(�n′):, (1)

where f (�n − �n′) is a Gaussian smearing function with width set by
the average effective range of the two S-wave interaction channels,
and ρ is the total nucleon density. We then apply the exponential
of HSU(4) to obtain∣∣ΨA

(
t′)〉 ≡ exp

(−HSU(4)t
′)∣∣Ψ init

A

〉
, (2)

which we refer to as a “trial state”. This part of the calculation is
computationally inexpensive since it only requires a single auxil-
iary field and does not generate any sign oscillations in the Monte
Carlo calculation.

Next, we use the LO Hamiltonian HLO to construct the Euclide-
an-time projection amplitude

Z A(t) ≡ 〈
ΨA

(
t′)∣∣exp(−HLOt)

∣∣ΨA
(
t′)〉, (3)

from which we compute the “transient energy”

E A(t) = −∂
[
ln Z A(t)

]
/∂t. (4)

If the lowest eigenstate of HLO that possesses a non-vanishing
overlap with the trial state |ΨA(t′)〉 is denoted |ΨA,0〉, the energy
E A,0 of |ΨA,0〉 is obtained as the t → ∞ limit of E A(t).

The higher-order corrections to E A,0 are evaluated using pertur-
bation theory. We compute expectation values using

ZO
A (t) ≡ 〈

ΨA
(
t′)∣∣ exp(−HLOt/2)

×O exp(−HLOt/2)
∣∣ΨA

(
t′)〉, (5)

for any operator O. Given the ratio

XO
A (t) = ZO

A (t)/Z A(t), (6)

the expectation value of O for the desired state |ΨA,0〉 is again
obtained in the t → ∞ limit according to

XO
A,0 ≡ 〈ΨA,0|O|ΨA,0〉 = lim

t→∞ XO
A (t), (7)

which gives the corrections to E A,0 induced by the NLO and NNLO
contributions.

The closer |ΨA(t′)〉 is to |ΨA,0〉, the less the required projec-
tion time t . The trial state can be optimized by adjusting both the
SU(4) projection time t′ and the strength of the coupling CSU(4)

of HSU(4) . Here, we show that the accuracy of the extrapolation
t → ∞ can be further improved by simultaneously incorporating
data from multiple trial states that differ in the choice of CSU(4) .
This approach enables a “triangulation” of the asymptotic behavior
as the common limit of several different functions of t .

3. Extrapolation in Euclidean time

The behavior of Z A(t) and ZO
A (t) at large t is controlled by

the low-energy spectrum of HLO. Let |E〉 label the eigenstates of
HLO with energy E , and let ρA(E) denote the density of states
for a system of A nucleons. For simplicity, we omit additional la-
bels needed to distinguish degenerate states. We can then express
Z A(t) and ZO

A (t) in terms of their spectral representations,

Z A(t) =
∫

dE ρA(E)
∣∣〈E∣∣ΨA

(
t′)〉∣∣2

exp(−Et), (8)

ZO
A (t) =

∫
dE dE ′ ρA(E)ρA

(
E ′)exp

(−(
E + E ′)t/2

)
,

× 〈
ΨA

(
t′)∣∣E

〉〈E|O|E ′〉〈E ′∣∣ΨA
(
t′)〉, (9)

from which the spectral representations of E A(t) and XO
A (t) are

obtained using Eq. (4) and Eq. (6), respectively. We can approx-
imate these to arbitrary accuracy over any finite range of t by
taking ρA(E) to be a sum of energy delta functions,

ρA(E) ≈
imax∑
i=0

ciδ(E − E A,i), (10)

where we use imax = 4 for the calculation of the 4He ground state,
and imax = 3 for A � 8. These choices give a good description over
the full range of t for all trial states, without introducing too many
free parameters. Using AFQMC data for different values of CSU(4) ,
we perform a correlated fit of E A(t) and XO

A (t) for all operators
O that contribute to the NLO and NNLO corrections. We find that
using 2–6 distinct trial states for each A allows for a much more
precise determination of E A,0 and XO

A,0 than hitherto possible. In

particular, we may “triangulate” XO
A,0 using trial states that cor-

respond to functions XO
A (t) which converge both from above and

below.
As the extent of our MC data in Euclidean time is relatively

short, we discuss next the level of confidence that we can attribute
to our results. In our “triangulation” method, the accuracy and
reliability of the extrapolation t → ∞ is increased by means of cor-
related fits to multiple trial states. We first note that the number
of Euclidean time steps Nt available for the extrapolation does not
decrease drastically with the number of nucleons A. This inspires
confidence that our method, which has by now been successfully
applied to the structure, spectrum and electromagnetic properties
of 16O in Ref. [16] should also be applicable to heavier systems.
Nevertheless, “spurious early convergence” in Euclidean time ex-
trapolations should be carefully guarded against. If only one trial
state is used, this issue arises much more readily. In our “triangu-
lation” method, the extrapolation is very strongly constrained by
the requirement that all observables for all trial states should be
described by the same exponential dependence on Euclidean time.
Rapid convergence in t then translates into a small sensitivity to
CSU(4) at large values of t . It is also encouraging to note that our
new extrapolations are consistent with our earlier results for 12C in
Refs. [13,14], which were computed using delocalized plane-wave
as well as alpha-cluster trial wave functions.

4. Lattice Monte Carlo results

In Fig. 1, we show the LO transient energy E A(t) as a func-
tion of the number of temporal lattice steps Nt = t/at , for 16O
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Fig. 1. NLEFT results for the LO transient energy E A(t) for A = 16 to A = 28, with CSU(4) given (in MeV−2) for each trial state. The curves show a fit using a spectral density
ρA(E) given by a sum of three energy delta functions. The fits for E A(t) are correlated with those of Figs. 2 and 3.

Fig. 2. NLEFT results for the matrix elements XO
A (t) for A = 16 and A = 20, with CSU(4) given (in MeV−2) for each trial state. The left panels show the total isospin-symmetric

NLO correction, the central panels the electromagnetic and isospin-breaking (EMIB) corrections, and the right panels the total three-nucleon force (3NF) correction. The curves
show a fit with ρA(E) given by the sum of three energy delta functions, correlated with those of Fig. 1.
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Fig. 3. NLEFT results for the matrix elements XO
A (t) for A = 24 and A = 28. The notation is as for Fig. 2.
through 28Si. The curves show a simultaneous fit to all trial states
employed, with ρA(E) given by a sum of three energy delta func-
tions. In Figs. 2 and 3, we similarly show the expectation values
XO

A (t) for 16O through 24Mg. These include the sum of isospin-
symmetric NLO corrections (NLO), the sum of the electromag-
netic and strong isospin-breaking corrections (EMIB), and the to-
tal three-nucleon force contribution (3NF) which first appears at
NNLO. It should be noted that the fits shown in Fig. 1 are corre-
lated with those of Figs. 2 and 3, and use the same spectral density
ρA(E). Moreover, each of the � 30 contributions XO

A (t) to the NLO,
EMIB and 3NF corrections is individually accounted for in the anal-
ysis. We also emphasize that the fits for each A are independent.

Our NLEFT results for the alpha nuclei from 4He to 28Si are
summarized in Table 1, with statistical and extrapolation uncer-
tainties shown in parentheses. For comparison, we also show the
empirical ground-state energies. The LO energies are given in the
second column of Table 1, while the third column shows the re-
sults using the two-nucleon force up to NNLO. Our “LO” calcula-
tions are actually improved LO calculations with smeared short-
range interactions that capture a significant portion of the correc-
tions usually treated at NLO [7]. The fourth column includes the
3NF at NNLO. As discussed in Ref. [8], the local 3N contact inter-
action induces significant lattice artifacts when acting on configu-
rations of four nucleons at the same lattice site. Following Ref. [8],
we have removed this systematic effect by subtraction of a local
4N contact interaction. In the column labeled “+3N” in Table 1, the
strength of this subtraction has been set to reproduce the empirical
binding energy of 8Be. We have not yet included systematic errors
due to the finite-volume effects in a box of size L = 11.8 fm, but
preliminary results at larger volumes are suggestive of a ∼1% re-
duction in the binding of each nucleus in the infinite-volume limit.
In particular, we expect that ∼50% of the observed � 0.7 MeV
overbinding of 4He should vanish.

Our NNLO results with the 3NF included appear to be within a
few percent of the empirical energies for A � 12, while for 16O we
find an overbinding of � 9%. Such an accuracy is, by itself, reason-
ably good for a calculation which is truncated at NNLO at a lattice
spacing of a = 1.97 fm. However, for 20Ne the observed overbind-
ing increases to � 15%, for 24Mg to � 17%, and for 28Si it reaches
� 30%. It is thus clearly a systematical effect. In this context, we
note that other ab initio methods using soft potentials encounter
similar problems in the description of both light and medium-mass
nuclei using the same set of interactions [1–3].

Before we discuss the challenge of resolving this overbinding
problem in future ab initio calculations, it is useful to explore the
nature of the missing physics in the present work. As we ascend
the alpha ladder from 4He to 28Si, the lighter nuclei can be de-
scribed as collections of alpha clusters [13,12]. As the number of
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Table 1
NLEFT results for the ground-state energies (in MeV). The combined statistical and
extrapolation errors are given in parentheses. The columns labeled “LO (2N)” and
“NNLO (2N)” show the energies at each order using the two-nucleon force only.
The column labeled “+3N” also includes the 3NF, which first appears at NNLO. Fi-
nally, the column “+4Neff” includes the effective 4N contribution from Eq. (11). The
column “Exp” gives the empirical energies.

A LO (2N) NNLO (2N) +3N +4Neff Exp

4 −28.87(6) −25.60(6) −28.93(7) −28.93(7) −28.30
8 −57.9(1) −48.6(1) −56.4(2) −56.3(2) −56.35

12 −96.9(2) −78.7(2) −91.7(2) −90.3(2) −92.16
16 −147.3(5) −121.4(5) −138.8(5) −131.3(5) −127.62
20 −199.7(9) −163.6(9) −184.3(9) −165.9(9) −160.64
24 −253(2) −208(2) −232(2) −198(2) −198.26
28 −330(3) −275(3) −308(3) −233(3) −236.54

clusters increases, they become increasingly densely packed, such
that a more uniform liquid of nucleons is approached. This increase
in the density of alpha clusters appears correlated with the grad-
ual overbinding we observe at NNLO for A � 16. As this effect
becomes noticeable for 16O, we can view it as a problem which
first arises in a system of four alpha clusters. The alpha-cluster
structure of 16O will be discussed in more detail in a forthcoming
publication [16]. Following Ref. [8], which removed discretization
errors associated with four nucleons occupying the same lattice
site, we can attempt to remove similar errors associated with four
alpha clusters in close proximity on neighboring lattice sites. The
simplest interaction which permits a removal of the overbinding
associated with such configurations is

V (4Neff) = D(4Neff)
∑

1�(�ni−�n j)
2�2

ρ(�n1)ρ(�n2)ρ(�n3)ρ(�n4), (11)

with ρ(�n) the total nucleon density. The summation includes near-
est or next-to-nearest neighbor (spatial) lattice sites.

In Table 1, the column labeled “+4Neff” shows the results at
NNLO while including both the 3NF and V (4Neff) . Due to the low
momentum cutoff, the two-pion exchange contributions have been
absorbed into the contact interactions at NLO. We have tuned
D(4Neff) to give approximately the correct energy for the ground
state of 24Mg. With V (4Neff) included, a good description of the
ground-state energies is obtained over the full range from light to
medium-mass nuclei, with a maximum error no larger than ∼3%.
This lends support to the qualitative picture that the overbinding
of the NNLO results in Table 1 is associated with the increased
packing of alpha clusters and the eventual crossover to a uniform
nucleon liquid. The missing physics would then be comprised of
short-range repulsive forces that counteract the dense packing of
alpha clusters.

In spite of the good agreement with experiment in Table 1 upon
introduction of V (4Neff) , we also need to consider whether this
could be merely an accidental effect. It is then helpful to check
whether a consistent picture is obtained with respect to excited
states, transitions and electromagnetic properties of the nuclei in
the medium-mass range where V (4Neff) gives a sizable contribu-
tion. In Ref. [16], we find very convincing evidence supporting our
results and analysis from the properties of 16O, including its first
excited 0+ state. In particular, the excitation energies and level or-
dering in 16O was found to be very sensitive to the strength and
form of V (4Neff) . Such a sensitivity arises due to the differences in
the alpha-cluster structure of the states in question.

The coefficient of V (4Neff) can be expressed as D(4Neff) =
0.9/( f 7

πΛχ), where we use fπ = 92.4 MeV and Λχ = 700 MeV
as in Ref. [17]. While the magnitude of D(4Neff) appears to be
somewhat large compared to what is expected based on naive
dimensional analysis, the effective 4N contribution to e.g. the al-
pha particle binding energy is negligibly small, in agreement with
the chiral power counting. Thus, the increasing effective 4N con-
tributions that we find for A � 16 are the result of large operator
expectation values for the nuclear wave function. We expect that
this effect is due to the coarse lattice spacing, and can be ame-
liorated by using a smaller lattice spacing and an interaction with
more short-range repulsion.

5. Conclusions

Let us now return to the question we posed at the beginning:
How large a nucleus can be calculated from first principles using
chiral nuclear EFT, and what are the remaining challenges? Us-
ing a soft nucleon–nucleon interaction with a momentum cutoff
scale of π/a � 314 MeV, we found that the two-nucleon potential
is accurate for lighter nuclei but overbinds those beyond 16O. As a
result, the overall contribution of multi-nucleon forces must com-
pensate by changing sign from attractive to repulsive with increas-
ing A. While such an effect cannot be accommodated by the 3NF
at NNLO alone, the overall contribution from higher-order inter-
actions should be similar to our effective four-nucleon interaction,
which counteracts the packing of alpha clusters. Still, this implies a
large correction from higher-order terms. Analogous problems will
arise in computational methods that use renormalization group
flows to soften the two-nucleon interaction. In that case, the large
repulsive corrections appear in the form of strong induced multi-
nucleon forces.

From our analysis, the path forward for ab initio calculations of
heavier nuclei using chiral nuclear EFT appears clear. The soften-
ing of the two-nucleon interaction should not be pushed so far
that heavier nuclei become significantly overbound by the two-
nucleon force alone. This is not merely an issue for NLEFT, but
would appear to be a universal criterion for all ab initio methods.
A concerted effort should be made to improve the current compu-
tational algorithms to handle interactions with more short-range
repulsion. The NLEFT collaboration is now exploring this approach
for studies of larger nuclei. We are now in the process of improving
the lattice algorithms for calculations at smaller lattice spacings,
and extending NLEFT to N3LO in the chiral expansion.
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