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Abstract

Given a category with a stable system of monics, one can form the corresponding cate-
gory of partial maps. To each map in this category there is, on the domain of the map, an
associated idempotent, which measures the degree of partiality. This structure is captured ab-
stractly by the notion of a restriction category, in which every arrow is required to have such
an associated idempotent. Categories with a stable system of monics, functors preserving this
structure, and natural transformations which are cartesian with respect to the chosen monics,
form a 2-category which we call MCat. The construction of categories of partial maps pro-
vides a 2-functor Par :MCat → Cat. We show that Par can be made into an equivalence of
2-categories between MCat and a 2-category of restriction categories. The underlying ordinary
functor Par0 :MCat0 → Cat0 of the above 2-functor Par turns out to be monadic, and, from
this, we deduce the completeness and cocompleteness of the 2-categories of M-categories and of
restriction categories. We also consider the problem of how to turn a formal system of subobjects
into an actual system of subobjects. A formal system of subobjects is given by a functor into the
category sLat of semilattices. This structure gives rise to a restriction category which, via the
above equivalence of 2-categories, gives an M-category. This M-category contains the universal
realization of the given formal subobjects as actual subobjects. c© 2002 Elsevier Science B.V.
All rights reserved.

1. Introduction

Categories of partial maps lie at the heart of many of the semantic and theoretical
issues both in computer science and, indeed, in the more traditional areas of mathe-
matics such as geometry and analysis. While partial recursive functions appear very
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brutally and fundamentally at the foundations of theoretical computer science, we
tend to regard the fact that “continuous functions” such as 1=(x − a) are not really
functions, but rather partial functions, as a minor inconvenience to be surmounted
with as much mathematical grace as possible. Yet it is often the delicate handling of
these issues of partiality which gives depth to results in computability and algebraic
geometry.
Because partial maps are central to so many issues in computer science there has been

a considerable eEort to develop their theory. Di Paola and Heller [10] introduced the
notion of “dominical categories” as an algebraic setting in which one could study partial
maps (and computability theory). They approached partiality through “zero morphisms”
(maps which are nowhere deJned) and the presence of “near products”, which are
tensor products which behave like products with respect to total maps.
Robinson and Rosolini [22] quickly pointed out that the zero structure was not really

necessary to obtain a theory of partiality. They observed that it could be obtained
through the “near-product” structure alone. Accordingly they introduced P-categories
– categories with a “near-product” structure – as the basis for a theory of partiality
(these ideas were also presented in Rosolini’s thesis [24]). In more modern terms
these are symmetric monoidal categories in which each object has a monoidal natural
cocommutative coassociative comultiplication (and possibly an unnatural counit). These
categories were considered by Jacobs [14] as the semantics of weakening. A quite
diEerent approach was taken by Carboni [4], where the bicategory structure was taken
as primitive.
These P-categories are also, essentially, what the Jrst author called “copy categories”

in a manuscript [7] which started circulating in about 1995 but was never published.
The manuscript never reached publication for two main reasons. First, much of the
material on partiality was already available in the above references (and we should
here include Mulry’s work [18–20]). Secondly, one of the main motivating results, the
description of the extensive completion of a distributive category, had also been proved
independently by the second author [17] at roughly the same time. Thus, it had been
resolved that we should try to pool resources and publish the results jointly : : : and
that event had to wait for a time when we could get together physically!
When eventually we did get together in Sydney in the Australian winter of 1998,

it was inevitable that we should completely rework our approach. This new approach
may be regarded as a return to the key ideas expressed in the opening sentence of Di
Paola and Heller’s paper on dominical categories:

Dominical categories are categories in which the notion of partial morphism and
their domains become explicit, with the latter being endomorphisms rather than
subobjects of their sources.

In fact, the endomorphisms which express the domains are idempotents. Although
the crucial role of the idempotents which express the amount of partiality had long been
recognized by those working in this Jeld, there seems to have been some hesitation
in directly legislating their presence. Thus, despite the above opening, Di Paolo and
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Heller’s dominical categories have an axiomatization which does not directly mention
this structure: these idempotents arise as a consequence of other structure. Similarly,
Rosolini and Robinson’s P-categories have an axiomatization in which these idempo-
tents play no role, although they certainly arise as a consequence.
We therefore resolved to take these idempotents, which we call restriction idempo-

tents, as primitive in our description of partiality, and so came up with the notion of
restriction category. This departs from previous treatments in that it assumes no more
structure on the category of total maps than is needed in order to deJne a category
of partial maps. In the earlier treatments [10, 22, 4], it was always assumed that the
category of total maps had (at least) Jnite products.
While developing the theory of restriction categories we became aware of the rela-

tionship of this work to certain aspects of semigroup theory. In particular, we realized
that an inverse monoid is a special case of a one object restriction category. We
therefore have taken the opportunity to describe a (restriction) categorical approach to
some of the basic results on inverse monoids. The discussion of inverse categories in
Section 2.3.2 is a direct categorical translation of the notion of an inverse monoid. One
can compare our development of the relationship between restriction categories and cat-
egories with a chosen stable system of monics to the related (but dual) development
in [12, Section VII.8] using division categories. Our discussion of the Vagner–Preston
representation theorem in Section 3.4 uses an observation of Phil Mulry to provide a
(categorically) natural strengthening of this theorem both to cover the more general
case of restriction categories and to be a full and faithful representation (into a presheaf
category).
In Section 2 we introduce the 2-category rCat of restriction categories, provide a

variety of examples of restriction categories, and prove in Theorem 2.3 that the un-
derlying category rCat0 of rCat is monadic over Cat0, as well as giving an explicit
description of the monad.
In Section 3 we use the notion of a category with a stable system of monics 3 to

construct the corresponding category of partial maps and we show that this is a re-
striction category. This is the key ingredient in the equivalence of 2-categories given
in Theorem 3.4 between the 2-category MCat of categories with a chosen stable sys-
tem of monics, and the full sub-2-category rCats of rCat comprising those restriction
categories in which the restriction idempotents split. Of particular interest in this pre-
sentation is the class of natural transformations taken for the 2-cells in MCat: they must
be M-cartesian in order to obtain the correspondence. We deduce in Corollary 3.6 the
monadicity of MCat0 over Cat0; here the forgetful functor takes an object of MCat0
to the corresponding category of partial maps.
In Section 4 we consider Jbred semilattices, which we think of as equipping a

category with a formal stable system of monics. The key results here are Theorem 4.2,

3 A stable system of monics is (essentially) what Roslini called a dominion in [24] (this name was also
used by Fiore [11]), Robinson and Rosolini called an admissible class of subobjects in [22], and Mulry
called a domain structure in [18].
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which establishes an adjunction between rCat and the 2-category sLatFib of Jbred
semilattices; and Theorem 4.3, which describes a universal way of realizing formal
subobjects as actual subobjects.
Some of the main theorems of the paper involve the existence or construction of

certain adjunctions. These are summarized in the diagram appearing in Section 5.
In a sequel [8] to this paper we shall consider the relationship of partial map classi-

Jers to restriction categories. This is closely related to more recent work on partiality
in which the monad arising from the partial map classiJer is taken as primitive; see
[3]. In a further sequel [9], we shall consider restriction categories arising as cate-
gories of partial maps in a category with extra structure such as products, coproducts,
distributivity, extensivity, and so on; and it is in this context that we shall see the
precise connection with approaches such as [10, 22]. Also in [9] we shall describe the
extensive completion of a distributive category.
We also intend in the future to investigate the role of partiality in algebraic geometry

as in Example 14 of Section 2.1.3 below, suggested to us by Terry Bisson.

2. Restriction categories

2.1. Restrictions

Given a function f :A→B and a subset S of A, one may consider the restriction f|S
of f to S, deJned by f|S(s)=f(s). Our use of the word restriction is derived from
this usage. A restriction structure on a category associates to each map in the category
an idempotent on its domain. This idempotent must satisfy some simple axioms (see
Section 2.1.1) and is used to measure the degree of partiality of the arrow.
A signiJcant motivation behind the study of partial maps is the study of (one object)

categories of partial recursive functions. For these categories the restriction operation
is deJned by modifying the computation of the given partial recursive function so that
it returns its input unchanged when the original computation terminates. Notice that,
because these categories simply do not have enough subobjects, we cannot directly
equate a partial recursive function to a total function on a subobject. This makes it
useful to have a more abstract approach to the theory of partial functions.
A more basic example of a restriction category is the category of sets and partial

functions. The restriction structure in this case associates to a partial map f :X →Y
the idempotent partial map Of :X →X where Of(x) is x whenever f is deJned and is
undeJned otherwise. This example and others are described in Section 2.1.3.

2.1.1. The de7nition
A restriction structure on a category X is an assignment of an arrow Of :A→A to

each f :A→B, such that the following four conditions are satisJed:
(R.1) f Of=f for all f;
(R.2) Of Og= Og Of whenever domf=dom g;
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(R.3) g Of= Og Of whenever domf=dom g,
(R.4) Ogf=fgf whenever codf=dom g.
A category with a restriction structure is called a restriction category.
It is important to realize that a restriction structure is not a property of a category

but rather extra structure: a given category can have more than one restriction structure.
In fact, every category has at least one restriction structure, for the assignment Of=1
can always be made, giving rise to the trivial restriction structure on the category. If
these were the only restriction structures the theory would not be very interesting!
A rather important fact is that Of is idempotent. We record this together with some

other basic consequences of the deJnition:

Lemma 2.1. If X is a restriction category then:
(i) Of is idempotent;
(ii) Ofgf= gf;
(iii) Ogf= gf;
(iv) OOf= Of;
(v) Og Of= Og Of;
(vi) If f is monic then Of=1 (and so in particular O1= 1);
(vii) f Og=f implies Of= Of Og.

Proof. (i) By (R.3) and (R.1) we have Of Of=f Of= Of.
(ii) By (R.2), (R.3), and (R.1) we have Ofgf= gfOf= gf Of= gf.
(iii) We use (R.4), (R.3), and (ii) to conclude Ogf=fgf= Ofgf= gf.
(iv) By (iii) we have Of= f1= Of1= OOf.
(v) By (R.3) we have Og Of= OOg Of= Og Of.
(vi) Since f Of=f1, when f is monic we conclude that Of=1.
(vii) By (R.3) we have Of=f Og= Of Og.

A map f such that f= Of is called a restriction idempotent. Clearly, these are
precisely the maps of the form Of for some f, since by the above lemma Of= OOf.

2.1.2. Total maps
A map f in a restriction category is said to be total if Of=1. The total maps form

an important subcategory:

Lemma 2.2. In any restriction category:
(i) every monomorphism (and so in particular every identity) is total;
(ii) if f and g are total then gf is total;
(iii) if gf is total then f is total;
(iv) the total maps form a subcategory.

Proof. (i) Lemma 2.1(vi).
(ii) If f and g are total then gf= Ogf= Of=1.
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(iii) If gf is total then Of= Ofgf= gf=1.
(iv) This is now immediate.

Note that the third point accords with the intuition that once something becomes
undeJned it remains undeJned!
We shall denote the subcategory of total maps of a restriction category X by

Total(X). The restriction on X is trivial (that is, Of=1 for all arrows f) precisely
when the inclusion of Total(X) is an isomorphism.

2.1.3. Basic examples
The following are some basic examples of categories with a restriction:

1. The category of sets and partial functions. For a partial map f :A→B the partial
map Of :A→A is deJned by

Of(a) =
{

a whenever ↓ f(a);
↑ otherwise:

Here ↓f(a) is shorthand for “f is deJned at a”, while Ofa= ↑ is shorthand for “ Of
is not deJned at a”.
The total maps are exactly the total functions in the usual sense.

2. Partial recursive functions on the natural numbers. The deJnition of Of is the same
as in the previous example: the reader will easily see that this partial function is still
recursive. This provides an example of a restriction monoid, that is a restriction
category with one object.
The total maps are the total recursive functions.

3. The category of domains (which we take to mean partial orders with bottom ele-
ment) with strict (that is, bottom-preserving) maps is a restriction category: the
restriction Of :X →X of a morphism f :X →Y is deJned by

Of(x) =
{

x when f(x) �= ⊥;
⊥ otherwise:

The total maps are the bottom-rePecting maps.
4. The category of Jnite non-empty linear orders with bottom-preserving maps; this

is a full subcategory of the category in the previous example, and the restriction
structure is taken to be the same.

5. The full subcategory of the category of domains consisting of the ordinal !; that
is, the category of all order-preserving endofunctions of the natural numbers.

6. A copy category [7, 9] is a symmetric monoidal category (A;⊗; I) with a monoidal
“copy” transformation � :A→A⊗A which is cocommutative and coassociative. It
turns each object into a cosemigroup. We say the copy category is total if every
object has a counit ! :A→ I , which need not be natural; total copy categories are
the same as P-categories. Given any f :A→B we deJne Of :A→A to be

A �→A⊗ A
f⊗1→ B⊗ A !⊗1→ I ⊗ A

uL
⊗→A:

This is a restriction.
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7. An important example of a copy category is provided by the Kleisli category for
the exception monad ( + 1) on a distributive category. In the induced restriction
structure, if f :A→B+ 1 then Of is given by

A �→A× A
1×f→ A× (B+ 1)→ (A× B) + (A× 1)

p0+p1→ A+ 1:

The total maps are those which factorize through the unit B→B+ 1.
8. Inverse monoids [13] provide a source of restriction monoids. An inverse monoid

has for each m a unique (partial) inverse n such that mnm=m and nmn= n. Letting
m◦ denote the unique partial inverse of m then Om=m◦m.
The total maps are the monic or left cancellable elements. Since every monic is a
section these are also the sections. See Section 2.3.2 for the details.

9. The monoid N of natural numbers under the operation sup has two restriction
structures with the same total maps: in the Jrst On= n, while in the second On is n
if n is odd or zero, and n− 1 otherwise.

10. Sometimes something looks very much like a restriction but is not! If X is a regular
category then Span(X) has a “restriction” structure. The restriction idempotents
are spans of identical monics. The “restriction” of an arbitrary span is obtained by
factorizing the left leg into a regular epi followed by a mono, and then using this
mono to form the restriction idempotent. Conditions (R.1)–(R.3) are all true, but
(R.4) fails.
The “total” maps are those spans whose left leg is already regular epimorphic. We
may think of these spans as non-deterministic maps.

11. For completeness, we include examples to establish the independence of the other
axioms. In any pointed category, we can deJne Of=0, and this will satisfy (R.2)
–(R.4) but not (R.1).
On a distributive category, there is a monad ( +C) for each object C, constructed
similarly to the exception monad described in Example 7 above. Given an arrow
f :A→B+ C in the Kleisli category, we deJne Of :A→A+ C by

A �→A× A
1×f→ A× (B+ C)→ (A× B) + (A× C)

p0+p1→ A+ C

and this satisJes (R.1), (R.3), and (R.4), but not (R.2) unless C is a subobject of
the terminal object.
Consider the commutative monoid N of the natural numbers under addition. Adjoin
an element � satisfying � + 0=0 + �=�, � + �=0, and � + n= n + �= n, for all
n¿0. Now deJne O0= O�=0, and On= � for all n¿0. This satisJes (R.1), (R.2), and
(R.4), but not (R.3).

12. There is also the dual notion of corestriction category. Consider the category
stabLat, whose objects are (meet) semi-lattices (that is posets with a top and
binary meets) and whose maps are stable homomorphisms (maps which preserve
the binary meets, but not necessarily the top). Given f :L1→L2 the corest-
riction Of :L2→L2 is deJned by

Of(y) = y ∧ f(�):
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The maps f with Of=1 are the top-preserving maps; they form a subcategory of
stabLat called sLat.

13. In general, for any restriction category X, the slice category X=A is a restriction
category for any object A of X, with restrictions being formed as in X.

14. The category Proj of projective spaces over the reals, and “homogeneous poly-
nomial” morphisms is another example of a restriction category. 4 This is a non-
full subcategory of the category Par of sets and partial functions, with the usual
restriction structure.
Recall that RPn is the quotient of Rn+1 by the relation (x0; : : : ; xn)∼ (�x0; : : : ; �xn).
The objects of Proj are the sets of the form RPn for some n∈N, and a partial
function from RPn to RPm lies in Proj if and only it is induced by some (nec-
essarily homogeneous) polynomial function Rn+1→Rm+1. We leave to the reader
the veriJcation that if a partial function from RPn to RPm lies in Proj then so too
does its restriction; as an example, the map RP1→RP1 induced by the polynomial
function R2→R2 : (x; y) �→ (p(x; y); q(x; y)) has restriction induced by the polyno-
mial function R2→R2 : (x; y)→ (r(x; y)x; r(x; y)y) where r(x; y)=p(x; y)2+q(x; y)2.
If we think of projective space as comprising lines through the origin in Euclidean
space, then these maps send lines to lines, and are regarded as being equal if they
send the same lines to the same lines. The partiality arises as a given map can take
a line constantly to the origin; we then regard the map as being partial on that line.

2.1.4. The 2-category associated to a restriction category
If X is a category with a restriction structure, then there is a natural notion of 2-cell

which makes X into a (locally ordered) 2-category: given arrows f and g from C to
D, we deJne f6g if f= g Of. All the axioms for a 2-category are easily seen to hold.

In fact, this point of view seems to be less useful than one might expect, but the
2-cell structure will arise from time to time. Especially important is the case of two
restriction idempotents e, e′ on the same object; then e6e′ if and only if e= e′e.

2.2. The 2-category of restriction categories

Having introduced the restriction categories in the previous sections, we now come to
the morphisms of restriction categories. Here it is natural to take those functors which
preserve the restriction. We shall also, in Section 2.2.2 consider a certain class of
natural transformations between these functors, giving a 2-category rCat of restriction
categories. First, however, we treat only its underlying category rCat0 and show that
it is monadic over the category Cat0 of categories. We shall see in Remark 2.14 that
this does not extend to a 2-monadicity result for rCat.

We establish the monadicity of rCat0 over Cat0 by noticing that restriction categories
can be Jnitely algebraically presented over categories. However, we also provide an
explicit description of the adjoint. In particular, this means that the monadicity can be

4 We thank Terry Bisson for drawing our attention to this example.
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established directly by checking the Beck condition (i.e. that the underlying functor
creates coequalizers of split coequalizers): and this may be a useful exercise for the
reader. Having an explicit description of the adjoint also, of course, allows us to
construct the free restriction category associated to a category and so to obtain some
further examples of restriction categories.

2.2.1. The category rCat0
First we deJne the (ordinary) category of restriction categories. A functor F :X→X′

between restriction categories is said to be a restriction functor if F( Og)=F(g) for all
arrows g in X. Restriction categories and restriction functors form a category which
we call rCat0; it has an evident forgetful functor U : rCat0→Cat0. We shall prove that
this functor U is monadic, and then give an explicit description of the monad.
In proving the monadicity of rCat0, we observe that Cat0 is a locally Jnitely pre-

sentable category, and then give a presentation, in the sense of [16], for a Jnitary
monad on Cat0, whose category of algebras is rCat0. These presentations involve op-
erations and equations, each having an arity which is a Jnitely presentable category.
We shall also give an explicit description of the adjunction.

Theorem 2.3. U : rCat0→Cat0 is monadic via a 7nitary monad.

Proof. Write 2| for the “arrow category” (0→ 1), and 3| for the category (0→ 1→ 2).
Write @0 and @1 for the functors from the terminal category 1 to 2|, and write ! : 2|→ 3|
for the functor taking 0 to 0 and 1 to 2.
To provide a category X with the structure of a restriction category, one Jrst gives

a function R :Cat0(2|;X)→Cat0(2|;X), assigning an arrow Of to each arrow f in X; this
is the only operation. We now impose two equations of arity 1

which together express the condition that Of be an endomorphism of the domain
of f.
The functions R :Cat0(2|;X)→Cat0(2|;X) and 1 :Cat0(2|;X)→Cat0(2|;X) induce a

function (R1 ) :Cat0(2|;X)→Cat0(3|;X), and we now impose the equation

which says that the assignment f �→ Of satisJes axiom (R.1).
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In a similar fashion one can express axioms (R.2)–(R.4) using equations of arity
• ← • → •, • ← • → •, and • → • → •, respectively.

Corollary 2.4. rCat0 is locally 7nitely presentable; and so complete and cocomplete.

Proof. rCat0 is the category of algebras for a Jnitary monad on the locally Jnitely
presentable category Cat0. It follows, for example by the Jnal remark of Chap. 2 in [1],
that rCat0 is locally Jnitely presentable, and so in particular complete and cocomplete.

Remark 2.5. Since U is monadic, limits in rCat0 are constructed as in Cat0. For
general colimits in rCat0, however, we have no explicit description, although it is easy
to see that coproducts are formed in rCat0 as in Cat0, whence we conclude that rCat0
is extensive, in the sense of [5, 6].

The rest of this section is devoted to giving an explicit description of the left adjoint
F to U : rCat0→Cat0. To motivate the construction, we Jrst recall from Lemma 2.1
that if f= ug then Og Of= Of; we shall use this repeatedly in what follows.

For each object X ∈X we write #(X ) for the set of all sets of arrows with domain
X satisfying
• If M ∈#(X ) then 1X ∈M ;
• If M ∈#(X ) and ug∈M then g∈M – that is, M is right-factor closed;
• for each M ∈#(X ) there are f1; : : : ; fn ∈M such that for every g∈M there is an

i∈{1; : : : ; n} and an arrow u in X with ug=fi – that is, M is 7nitely generated.
If K = {fi :X →Zi | i∈ I} is a set of arrows with domain X , and g :Y →X is any

arrow, then we write Kg for the set {fig | i∈ I}, and ⇓K for the set {f :X →Z | uf=fi

for some i∈ I and some u :Z→Zi}. Clearly ⇓K is right-factor closed, and so if K is
Jnite then ⇓K will be in #(X ).

Lemma 2.6. (i) ⇓{1X } is the smallest set in #(X );
(ii) if K1; K2 are sets of arrows with domain X then ⇓(K1 ∪K2)=⇓K1 ∪⇓K2;
(iii) if M1; M2 ∈#(X ) then M1 ∪M2 ∈#(X );
(iv) if f :X →Y and M ∈#(Y ) then Mf∈#(X );
(v) if M1; M2 ∈#(Y ); and f :X →Y then (M2 ∪M2)f=(M1f)∪ (M2f);
(vi) if f :X →Y and g :Y →Z and M ∈#(Z) then (Mg)f=M (gf).

Proof. We prove only three of the claims.
(i) Recall that 1X must be in each set of #(X ).

(iii) The union of two right-factor closed subsets is right-factor closed. The preser-
vation of Jnite generation follows from (ii).

(iv) If M =⇓{g1; : : : ; gn} then Mf=⇓{g1f; : : : ; gnf}.

This amounts to the observation that these data give a Jbred join-semilattice. Later
we shall see that Jbred meet-semilattices arise naturally in the context of restrictions
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so it is natural to consider the complements of these right-factor closed sets. These
are sieves with the property that the arrows not contained in the sieve are Jnitely
generated: hence we may call them co7nite sieves. Thus, it would be possible to
present the construction below using these sieves. 5

Remark 2.7. The preceding lemma includes the crucial fact that these coJnite sieves
are closed under binary intersection and universal quantiJcation along an arrow, allow-
ing us to deJne a functor (X :Xop→ stabLat taking an object X to the meet-semilattice
of coJnite sieves on X . We shall return to this in Section 4.

We now form a new category FX with the same objects as X, and with an
arrow from X to Y being a pair (f;M), where M ∈#(X ), and f∈M , with the
codomain of f being Y . The identity on X is (1X ;⇓1X ), and composition is given by
(g;M ′)(f;M)= (gf;M ∪M ′f). It is straightforward to show that this is a category:
notice that

(1;⇓ {1})(f;M) = (f;M∪ ⇓ {1}f) = (f;M∪ ⇓ {f}) = (f;M);

where the last step uses the fact that f∈M .
Furthermore, FX becomes a restriction category when we deJne (f;M)= (1; M):

Proposition 2.8. FX is a restriction category.

Proof. We must check the restriction identities:
(R.1) (f;M)(f;M)= (f;M)(1; M)= (f;M ∪M)= (f;M).
(R.2) (g; N )(f;M)= (1; N )(1; M)= (1; M ∪N )= (1; M)(1; N )= (f;M)(g; N ).
(R.3) (g; N )(f;M)= (g; N )(1; M)= (g;M ∪N ) = (1; M ∪N ) = (1; N )(1; M) = (g; N )

(f;M).
(R.4) (g; N )(f;M) = (1; N )(f;M) = (f;M ∪Nf) = (f;M)(1; M ∪Nf) = (f;M)

(g; N )(f;M).

There is a functor N :X→UFX which is the identity on objects, and takes an
arrow f :X →X ′ in X to (f;⇓{f}). Preservation of identities is trivial, and

N (g)N (f) = (g;⇓ {g})(f;⇓ {f}) = (gf;⇓ {f} ∪ (⇓ {g})f)
= (gf;⇓ {gf}) = N (gf):

This functor will turn out to be the unit of an adjunction between F and U.

Remark 2.9. In fact N is interesting from another point of view: the only monics it
preserves are the sections. This is because the set ⇓{f} for a non-section f is strictly
bigger than ⇓{1} and thus N (f) is a non-trivial idempotent, hence cannot be monic.

5 The second author did, in fact, present the construction in this manner to the Australian Category Seminar
in July 1998).
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In this way the embedding X→UFX demonstrates the fact that the only absolute
monics are the sections.

Example 2.10. Here are some examples of FX for particular X:
(i) If X is a groupoid then the M in each map (f;M) in FX must be the set of all

maps with the same domain as f; thus M =⇓1X and so FX=X. More generally,
if X is an object for which every arrow with domain X is a section, then the
only map in FX of the form (f;M) is (f;⇓1X ). Conversely, if FX=X and
f :X →Y is an arrow in X which is not a section, then (1X ;⇓f) is not of the
form (1X ;⇓1X ), and so FX �=X. Thus FX=X if and only if every arrow is a
section; that is, if and only if X is a groupoid. In this case the restriction structure
on FX is the trivial one.

(ii) If X is a preorder and X6Y a non-invertible map, then the arrow (1x;⇓{X6Y}) :
X →X in FX is not an identity, and so FX is not a preorder. In fact, a map
in FX from X to Y can exist only if X6Y , in which case it consists of a set
M of objects of X satisfying four conditions: Y ∈M , if Z ∈M then X6Z , if
X6W6Z and Z ∈M then W ∈M , and there exists a Jnite set {Yi}i∈I of objects
of X with the property that an object Z of X satisfying X6Z lies in M if and
only if Z6Yi for some i∈ I . An alternative description of the maps from X to
Y (with X6Y ) is as the subsets of X which can be written as a Jnite union of
intervals

⋃
i∈I [X; Yi] where at least one Yi has Y6Yi.

(iii) In the special case that the preorder X is a totally ordered set, then we may
choose the maximum Y ′ of the Yi; in this case a map in FX from X to Y is an
object Y ′ for which X6Y6Y ′.

(iv) We now describe FSet. First we consider arrows X →Y with X non-empty.
Such an arrow has the form (f;⇓{f1; : : : ; fn}); but now we can factorize each fi

as

X
ei�Zi

mi�Yi

and now each Zi is non-empty since X is so, and thus each mi splits. It follows
that ⇓{f1; : : : ; fn}=⇓{e1; : : : ; en}. Thus a map from X to Y is a pair (f;M),
where f :X →Y , and M is a set of quotients of X which is right-factor closed,
Jnitely generated, and contains the image of f. Alternatively, we can replace
quotients of X by the corresponding equivalence relations on X .
Now consider the maps from X to Y where X = ∅. Such a map consists of an
arrow f :X →Y in X, and a set M of maps with domain X satisfying certain
conditions. There is exactly one arrow in X from X to Y , and to give the set of
maps with domain X is just to give the set of objects which are their codomains.
Thus, a map in FX from ∅ to Y consists simply of a set M of objects of X
satisfying certain conditions. These conditions reduce to: M contains both ∅ and
Y , and if M contains any non-empty set then it contains all non-empty sets.
Thus there is exactly one arrow from ∅ to any non-empty set, and there are
exactly two endomorphisms of ∅.
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Remark 2.11. The restriction idempotents in FSet may be viewed as measuring
“squashability”. The equivalence relations of the restriction idempotents are then seen
as limiting the degree to which a map with that restriction idempotent can quotient
its domain. Thus, we should regard the maps in FSet as being equipped with gen-
eralized apartness relations. It is interesting to note that in [21] a very similar idea
(there called the “category of worlds”) was used to provide a semantics for modeling
non-interference in a programming language.

Suppose now that we have a functor H :X→UY where Y is a restriction category.
We deJne ĤX =HX for an object X of X, and

Ĥ (f;⇓{g1; : : : ; gn}) = HfHg1 : : : Hgn

for an arrow (f;⇓{g1; : : : ; gn}) of X. This is well-deJned, by:

Lemma 2.12. If ⇓{g1; : : : ; gn}=⇓{g′1; : : : ; g′m} then Hg1 : : : Hgn =Hg′1 : : : Hg′m.

Proof. We show that

Hg1 : : : Hgn = Hg1 : : : HgnHg′1 : : : Hg′m

from which the result follows by symmetry. For each j there exists an i such that
gi =yg′j for some y, and so gi = gig′j, whence the desired equality.

In proving functoriality of Ĥ it is useful to observe Jrst that Ĥ preserves the restric-
tion. Let (f;⇓{g1; : : : ; gn}) be an arrow in FX from A to B. By deJnition of FX,
we can write gj =yf for some j, and so Of gj = Of yf=yf= gj. Now

Ĥ (f;⇓ {g1; : : : ; gn}) =HfHg1 : : : Hgn

=HfHg1 : : : Hgn

=Hg1 : : : Hgn

= Ĥ (1;⇓ {g1; : : : ; gn})
= Ĥ ((f;⇓ {g1; : : : ; gn}))

and so Ĥ does indeed preserve the restriction. Also

Ĥ (f′;⇓ {g′1; : : : ; g′n})Ĥ (f;⇓ {g1; : : : ; gm})
= Hf′Hg′1 : : : Hg′nHfHg1 : : : Hgm

= Hf′: Hf:Hg′1: Hf : : : Hg′n: Hf Hg1 : : : Hgm

= H (f′f)H (g′1f) : : : H (g′nf) Hg1 : : : Hgm

= Ĥ (f′f; (⇓ {g′1; : : : ; g′n})f ∪ (⇓ {g1; : : : ; gm}))
which completes the proof that Ĥ is a restriction functor. By construction, ĤN =H ,
and moreover Ĥ is clearly the unique restriction functor with this property, whence we
conclude that F is left adjoint to U.
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Although we now set about adding 2-cells to rCat0, the monad described in this
section cannot be enriched to become a 2-monad. It does admit enrichment over in-
vertible 2-cells (for the importance of such monads see [2]) but we shall not make
any use of this fact.

2.2.2. The 2-category rCat
A natural transformation between restriction functors is called a restriction transfor-

mation if all of its components are total. The restriction categories, restriction functors,
and restriction transformations form a 2-category called rCat, whose underlying ordi-
nary category is of course rCat0. Notice the choice of 2-cells; the reason for this choice
will become apparent in Section 3.

Proposition 2.13. The 2-category rCat is complete.

Proof. We know already that the underlying category rCat0 of rCat is complete. We
can deduce the existence of all conical limits in rCat if we know that rCat admits
tensors with the arrow category 2. In fact it is easy to see that the tensor with 2 of a
restriction category X is given by the product in rCat of 2 (equipped with the trivial
restriction) and X.
To show that rCat is complete, it remains to show that it admits cotensors with 2.

That is, for each restriction category X, we must construct a restriction category X2,
restriction functors @0; @1 :X2→X, and a restriction transformation � : @0→ @1; and
these data must be universal. This universality says that for any restriction category
Y with restriction functors f0; f1 :Y→X and a restriction transformation - :f0→f1;
there is a unique restriction functor # :Y→X2 for which @0#=f0, @1#=f1, and
�#=-; furthermore, given also g0; g1 :Y→X and  : g0→ g1 inducing / :Y→X2,
and 00 :f0→ g0 and 01 :f1→ g1 satisfying  00 = 01- there is a unique A :#→/ sat-
isfying @0A= 00 and @1A= 01.
An object of X2 is a total map in X, and an arrow in X2 from t :X →Y to t′ :X ′→Y ′

is a commutative square

X
f−→ X ′

t

�
� t′

Y −→
g

Y ′

in X. The restriction structure is given by (f; g)= ( Of ; Og); note that Ogt= tgt= tt′f= t Of ,
since t′ is total, and so ( Of ; Og) is indeed an endomorphism of t in X2. The veriJcation
that X2 satisJes the universal property of cotensor products is straightforward.

Remark 2.14. From the construction of cotensors in rCat, we see that the forgetful
2-functor rCat→Cat does not preserve cotensors, thus cannot have a left 2-adjoint, let
alone be 2-monadic.

Proposition 2.15. The 2-category rCat admits coproducts; and tensor products with
arbitrary small categories.
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Proof. We have already seen that rCat0 admits coproducts; by the previous result rCat
has cotensor products with 2, and so we conclude that rCat has coproducts. As for the
tensor product of a restriction category X with a category C, it is given by the product
in rCat of X with the category C equipped with the trivial restriction.

Corollary 2.16. The 2-category rCat is cocomplete.

Proof. By Proposition 2:4, we know that the underlying category rCat0 has all conical
colimits, and since rCat has cotensor products, it follows that rCat has all conical
colimits. Since by the previous proposition rCat has tensor products, we conclude that
it is cocomplete.

The completeness and cocompleteness of rCat allow us to perform a large number
of constructions that will be useful in future papers [8, 9]. Completeness allows us to
form the Eilenberg–Moore object and the Kleisli object of a monad; and also comma
objects and inserters: the latter two in particular are of interest in connection with
datatypes. Cocompleteness allows us to construct free objects with various structures
or properties.
We should also note that there is an inclusion of the 2-category of all categories

into rCat as the trivial restriction categories. A functor from a trivial restriction cat-
egory always factorizes (uniquely) through the total category of the codomain. This
immediately gives a 2-adjunction:

making categories with a trivial restriction a full corePective sub-2-category.
A category with a restriction has a natural poset enrichment using the deJnition

f6g⇔f= g Of which allows one to regard it as a 2-category=bicategory of partial
maps (see [4, 15]). We do not pursue this here beyond the observation that it allows
us to construct a left 2-adjoint to the inclusion Triv :Cat→ rCat. For as each X in rCat
can be regarded as a 2-category, we can use the 2-cell structure to provide a congruence
on X. Factoring out by this congruence gives the universal trivial restriction category
associated with X. Thus, it provides the left 2-adjoint to the inclusion of Cat into rCat,
and we have:

Proposition 2.17. The inclusion Triv :Cat→ rCat is a fully faithful 2-functor with both
adjoints.

2.3. Properties of maps

In the presence of a restriction structure it is possible to introduce a weakening of the
usual notion of isomorphism. A restricted isomorphism is a map f with a restricted
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inverse g in the sense that Of = gf and Og=fg. It turns out that in a restriction category,
every arrow is a restricted isomorphism if and only if for every arrow f there is a
unique arrow g such that fgf=f and gfg= g. One-object categories with this last
property are called inverse monoids [13] by semigroup theorists, and we shall adopt
this terminology for the more general situation of categories.
The section ends by discussing idempotents. The idea of freely splitting certain

idempotents is absolutely fundamental to the whole development in which we shall
repeatedly desire to split the restriction idempotents.

2.3.1. Restricted monics; sections; and isomorphisms
A map f in a restriction category is said to be restricted monic if fh=fk im-

plies that Ofh= Ofk, a restricted section if there is an h with hf= Of and a restricted
isomorphism if there is an h with hf= Of and fh= Oh.

Lemma 2.18. In a restriction category:
(i) If f and g are restricted monic then gf is restricted monic.
(ii) If gf is restricted monic and g is total then f is restricted monic.
(iii) If f is a restricted section then f is restricted monic.
(iv) If f and g are restricted sections then gf is a restricted section.
(v) If gf is a restricted section and g is total then f is a restricted section.
(vi) If f and g are restricted isomorphisms then gf is a restricted isomorphism.
(vii) If f is a restricted isomorphism then its restricted inverse is unique.

Proof. (i) Suppose gfx= gfx′ then as g is restricted monic we have Ogfx= Ogfx′ so
that fgfx=fgfx′; now as f is restricted monic we have Of gfx= Of gfx′ which gives
the desired equality since Of gf= gf.
(ii) If fx=fx′ then certainly gfx= gfx′, so that gfx= gfx′: But using the fact

that g is total, gf= Ogf= Of which gives the result.
(iii) If fx=fx′ then Ofx= hfx= hfx′ = Ofx′.
(iv) If hf= Of and kg= Og then

hkgf = h Ogf = hfgf = Ofgf = gf

showing that gf is a restricted section.
(v) This uses the fact that when g is total, gf= Of , so that if hgf= gf then hg

provides a partial retraction for f.
(vi) This follows directly from the fact that restricted sections compose.
(vii) Suppose gf= Of , fg= Og, g′f= Of , and fg′ = Og′. Then we must show that

g= g′. This is obtained by:

g = g Og = gfg = g′fg = g′fg′fg = g′fgfg′ = g′fg′ = g′:

It is important to realize that functors which preserve restrictions also preserve all
the various classes of maps considered in this section, with the exception of restricted
monics; the easy proof of the following lemma is omitted.
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Lemma 2.19. If F :X→Y is a restriction functor then F preserves:
(i) total maps;
(ii) restriction idempotents;
(iii) restricted sections;
(iv) restricted isomorphisms.

2.3.2. Inverse categories
A special, but important, class of categories with restriction are those for which every

map is a restricted isomorphism. We call these inverse categories. The main result of
this section establishes two rather diEerent presentations of the structure of inverse
category, which show that one-object inverse categories are precisely inverse monoids.
Notice that the total maps in an inverse category have Of =1 thus f ◦ f=1 (where

f◦ denotes the restricted inverse) and so the total maps in an inverse category f are
precisely the sections.

Theorem 2.20. For a category X; the following are equivalent:
(i) X is an inverse category; that is; it has a restriction structure for which every

map is a restricted isomorphism;
(ii) every morphism f :A→B has a unique g :B→A with fgf=f and gfg= g;
(iii) there is a functor ( )◦ :X→Xop which is the identity on objects and satis7es

(f◦)◦ = f;

ff◦f = f;

ff◦gg◦ = gg◦ff◦:

Moreover; the structures in (i) and (iii) are unique.

Proof. (i)⇒ (ii): Suppose in an inverse category we have fgf=f and gfg= g then
we must establish that g is the restricted inverse f◦ of f.
First note that Ogf=fgf=fgfgf=fgf=f, and so gf= Ogf= Of.
For any idempotent e we have e= e Oe= eee= Oee= e◦ee= e◦e= Oe and so all idempo-

tents are restriction idempotents. Thus gf= gf= Of and, similarly, fg= Og. Now using
the fact that restriction idempotents commute, we have g= gfg= gff◦fg= gfgff◦

= gff◦ff◦ =f◦fgff◦ =f◦ff◦ =f◦.
(ii)⇒ (iii): DeJne f◦ to be the unique arrow satisfying ff◦f=f and f◦ff◦ =f◦.

The only non-trivial conditions to check are ff◦gg◦ = gg◦ff◦ and functoriality.
We shall prove that all idempotents commute, from which it follows that ff◦

gg◦ = gg◦ff◦. Let e and e′ be idempotents, and let x=(e′e)◦; then e′exe′e= e′e
and xe′ex= x. Now

(exe′)2 = exe′exe′ = exe′

and so exe′ is idempotent, giving (exe′)◦ = exe′. Also

(e′e)(exe′)(e′e) = e′exe′e = e′e;

(exe′)(e′e)(exe′) = exe′exe′ = exe′
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and so e′e=(exe′)◦ = exe′, and so (e′e)◦ = e′e. Finally

(e′e)(ee′)(e′e) = e′ee′e = e′e

and similarly

(ee′)(e′e)(ee′) = ee′

so that e′e=(e′e)◦ = ee′.
Functoriality is now easy: gff◦g◦gf= gg◦gff◦f= gf and f◦g◦gff◦ g◦ =f◦ff◦

g◦gg◦ =f◦g◦, whence (gf)◦ =f◦g◦, and similarly 1◦ =1.
(iii)⇒ (i): We set Ox= x◦x, then (R:1) and (R:2) are immediate. Furthermore under

this deJnition each arrow is a restricted isomorphism. For (R:3) we have

g Of = (gf◦f)◦gf◦f = f◦fg◦gf◦f = g◦gf◦f = Og Of:

Finally for (R:4) we have

Ogf = g◦gf = g◦gff◦f = ff◦g◦gf = f(gf)◦gf = fgf:

The theorem gives immediately:

Corollary 2.21. A one-object inverse category is precisely an inverse monoid.

As idempotents are their own restricted inverses we record the following interesting
fact about inverse categories:

Corollary 2.22. In an inverse category all idempotents are restriction idempotents.

There is a full sub-2-category InvCat of rCat consisting of the inverse categories.
Observe that any functor between inverse categories is a restriction functor, since the
structure of a restricted inverse is algebraic. Observe also that the total maps in an
inverse category are precisely the split monomorphisms.

Remark 2.23. A standard example of an inverse category is the category of partial
injective functions between sets (these are partial functions which are injective over
their domain). More generally, let C be a category with pullbacks in which every arrow
is a monomorphism. Then the category of partial maps in C is an inverse category.
In fact if a category of partial maps X is an inverse category, then it must be of this
form. Categories of partial maps will be discussed in Section 3.

Proposition 2.24. InvCat is a full core=ective sub-2-category of rCat which is complete
and extensive.

Proof. The right adjoint sends a restriction category to the subcategory of restricted
isomorphisms.
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An inverse category with a trivial restriction is a groupoid. Thus, InvCat is to the
2-category Gpd of groupoids as rCat is to Cat. In particular, if one factors out by the
2-cell structure induced on an inverse category the result is a groupoid.

2.3.3. Split restrictions
We say that a restriction structure on a category is split if all the restriction idempo-

tents split. These idempotents – the arrows f with Of=f – have the unusual property
of being determined once one knows either the section or the retraction:

Lemma 2.25. In any restriction category:
(i) If rm=1 and sm=1 with mr= Or and ms= Os then r= s.
(ii) If rm=1 and rn=1 with mr= Or or nr= Or then n=m.

Proof. (i) We use the fact that the idempotents mr and ms commute in

r = rmsmr = rmrms = s:

(ii) If we have, say, mr= Or, then:

mr = mrnr = Ornr = nrrnr = nr Or = nr:

Now as r is epimorphic we have n=m.

The monic part of the splitting of a restriction idempotent we call a restriction
monic. The Jrst part of the lemma informs us that each restriction monic splits a
unique restriction idempotent. Since restriction monics are monic, they are certainly
restricted monic; on the other hand, every restriction idempotent is a restricted monic,
but cannot be a restriction monic unless it is an identity.
We shall often wish to formally split certain idempotents (typically the restriction

idempotents themselves) in a restriction category. For any category X we may pick
any set of idempotents in the category and formally split them: if E is the set of
idempotents we denote this category KE(X). An object of KE(X) is an element of E,
while an arrow from e1 to e2 is an arrow f of X satisfying e2fe1 =f.

In the case when X has a restriction we deJne the restriction of each f= e2fe1 to
be Ofe1.

Proposition 2.26. If X is a category with a restriciton and E is any set of idempotents
of X then KE(X) inherits a restriction as above. Furthermore; if X is an inverse
category then KE(X) is an inverse category.
If E contains all the identities then there is a restriction-preserving inclusion X→

KE(X).

Proof. We must verify that KE(X) is a restriction category and for this we Jrst need
to check that Ofe1 : e1→ e1. This is the case as Ofe1 = e1fe1 = e1 Of. Next, we need to
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check the four restriction axioms:
(R.1) f Ofe1 =fe1 =f;
(R.2) Ofe1 Oge1 = e1 Of Oge1 = e1 Og Ofe1 = Oge1 Ofe1;
(R.3) g Ofe1e1 = ge1fe1e1 = g Ofe1 = Og Ofe1 = Oge1 Ofe1;
(R.4) Oge2f= e2fge2f=fe1gf=fgfe1.
Thus if E contains the identities, KE(X) is a restriction category containing X as a full
sub-restriction-category.
If X is an inverse category then f : e1→ e2 in KE(X) has e1f◦e2 as a partial inverse

because

e1f◦e2f = e1f◦f = e1 Of = Ofe1

and

fe1f◦e2 = ff◦e2 = f◦e2:

If X is a restriction category and E is the set of restriction idempotents, then we
write Kr(X) for KE(X).
The 2-category rCat has an important full sub-2-category, comprising those objects

with a split restriction, which we call rCats. In fact, the inclusion has a left biadjoint
which takes a restriction category X to Kr(X). Since Kr(X) is an inverse category if
X is one, this also provides a left biadjoint to the inclusion of the full sub-2-category
InvCats of InvCat given by the split inverse categories.
It is useful, however to know that these inclusion 2-functors actually have 2-adjoints

rather than biadjoints. Although we do not give explicit constructions for these
2-adjoints, we can prove their existence by general means. Of course 2-adjoints are
biadjoints, and biadjoints are determined up to equivalence, and so the 2-adjoints will
be naturally equivalent to the biadjoints described above. The proof is fairly technical
and rather terse, and the reader whose tastes do not incline towards such questions
should feel free to skip over it.

Proposition 2.27. rCats is contained in rCat as a full re=exive sub-2-category; simi-
larly InvCats is a full re=exive sub-2-category of InvCat. In each case the left adjoint
is equivalent to the 2-functor taking X to Kr(X) (where X is either a restriction
category or an inverse category).

Proof. We saw in Corollary 2.4 that rCat0 is locally Jnitely presentable, being the
category of algebras for a Jnitary monad on the locally Jnitely presentable category
Cat0. It will now follow by Adamek and Rosicky [1, Corollary 2:49] that (rCats)0 is
locally Jnitely presentable, and rePective in rCat0, if we can prove that (rCats)0 is
closed in rCat0 under limits and Jltered colimits. But this is easy to see since limits
and Jltered colimits are formed in rCat0 as they are in Cat0. It will now follow from
[2, Proposition 3.1] that the inclusion rCats→ rCat has a left (2-)adjoint if we can
show that rCats is closed in rCat under cotensor products with 2|. This is obvious from
the description of such cotensor products in the proof of Proposition 2.13.
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This completes the proof that the inclusion J : rCats→ rCat has a left adjoint; we call
it L. Since Kr is left biadjoint to J , we conclude that Kr is naturally equivalent to L.
Now if X is an inverse category then Kr(X) is an inverse category and L(X)�Kr(X),
and so L(X) is also an inverse category. Thus L restricts to a left adjoint Linv to the
inclusion Jinv : InvCats→ InvCat.

It follows that both InvCats and rCats are closed in rCat under arbitrary limits, and
it is easy to see that they are also closed under arbitrary coproducts.
If we write V : (rCats)0→Cat0 for the evident forgetful functor, combining

Theorem 2.3 and Proposition 2.27 we see that V has a left adjoint, and so it is
reasonable to consider whether V is monadic.

Theorem 2.28. V : (rCats)0→Cat0 is monadic.

Proof. Certainly V is conservative and has a left adjoint, and so it will suSce to
check the Beck condition. Given the monadicity of U, this amounts to showing that if

X
F→
→
G

Y
Q→Z

is a coequalizer in rCat0 which is U-split, then Z lies in (rCats)0 if X and Y do so.
But any restriction idempotent e in Z can be written Qd for some d in Y, and now
e= Oe=Qd=Q Od, and so e is the image of the restriction idempotent Od in Y. Since Od
splits in Y, applying Q gives a splitting of e in Z.

2.4. Restriction semifunctors and rCatsf

In a future paper [9] in which we study (one-object) categories of partial recur-
sive functions it will be useful to consider morphisms of categories, which are not
required to preserve the identity. We shall call them semifunctors, and they will facili-
tate the discussion of the “functorial” structure of these categories in the absence of an
explicit-type system. It turns out that these semifunctors provide us with an alternative
description of the 2-category rCats.

If X and Y are categories, deJne a semifunctor from X to Y to be a function F from
the objects of X to the objects of Y, along with functions F :X(X; X ′)→Y(FX; FX ′)
satisfying F(gf)=Fg:Ff, but not being required to preserve identities. Given semi-
functors F;G :X→Y, a natural transformation from F to G comprises an arrow
0X :FX →GX in Y for each object of X , such that for each arrow f :X →X ′ in
X, we have Gf:0X = 0X ′ :Ff. If X and Y are restriction categories, then a semifunctor
F :X→Y is said to be a restriction semifunctor if it satisJes F Of=Ff for every ar-
row f. Given restriction semifunctors F;G :X→Y, a natural transformation 0 :F→G
is said to be a restriction transformation if 0X =F(1X ) for all X . Clearly this deJnition
is consistent with our earlier deJnition of restriction transformations between restriction
functors. There is an evident 2-category rCatsf of restriction categories, restriction semi-
functors, and restriction transformations, and an inclusion 2-functor H : rCats→ rCatsf ;
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we remark that the identity 2-cell idF in rCatsf on a restriction semifunctor F :X→Y
has component F(1X ) at X .

Proposition 2.29. The 2-functor H : rCats→ rCatsf is a biequivalence of 2-categories.

Proof. Clearly H is locally fully faithful; that is, if X and Y are split restriction
categories, then H : rCats(X;Y)→ rCatsf (HX;HY) is fully faithful. Suppose now that
K :X→Y is a restriction semifunctor. For each object X of X, we know that K(1X )=
K(1X )=K(1X ), and so K(1X ) is a restriction idempotent. Let mX :K ′X →KX and
rX :KX →K ′X be a splitting of K(1X ). Given an arrow f :X →X ′ in X, there is a
unique arrow K ′f in Y rendering commutative

Now given f :X →X ′ and g :X ′→X ′′, we have mX ′′ :K ′g:K ′f:rX =Kg:mX ′ :K ′f:rX =
Kg:Kf:mX :rX =K(gf):mX :rX =mX ′′ :K ′(gf): rX , and so K ′g:K ′f=K ′(gf) since mX ′′

is mono and rX is epi. Similarly, we have mX :K ′(1X ): rX =K(1X ):mX :rX =mX :rX :mX :rX
=mX :rX , and so K ′(1X )= 1. Thus K ′ is a functor; furthermore we have mX :K ′( Of): rX =
K( Of):mX :rX =Kf:mX :rX =mX :Kf:mX :rX =mX :mX ′ :K ′f:rX =mX :K ′f:rX , and so
K ′( Of)=K ′f. Thus K ′ is a restriction functor. We have natural transformations m :K ′→
K and r :K→K ′, and for each X we have mX =1=K ′(1X ), and rX =mX :rX =K(1X ),
and so m and r are 2-cells in rCatsf . Clearly r:m=1, but also (m:r)X =mX :rX =K(1X )
= (idK)X , and so r is inverse to m in rCatsf .
We have now proved that H : rCats→ rCatsf is locally an equivalence. It remains

only to show that H is biessentially surjective on objects; that is, for every restric-
tion category X, we must Jnd a split restriction category which is equivalent in
the 2-category rCatsf to X. We take the split restriction category Kr(X). There is
a fully faithful restriction functor j :X→Kr(X). There is also a restriction semifunc-
tor r :Kr(X)→X which takes an object (X; e) to X , and an arrow f : (X; e)→ (X ′; e′)
to f :X →X ′. Clearly rj=1; we shall show that jr∼=1 in rCatsf . Given an object
(X; e) of Kr(X), we have jr(X; e)= (X; 1), and we write 0(X; e) for e, seen as an arrow
from (X; 1) to (X; e). Now if f : (X; e)→ (X ′; e′) is an arrow in Kr(X), then we have
e′f=fe, and so the 0(X; e) form the components of a natural transformation jr→ 1;
also 0X = Oe= e= jr(e)= jr(1(X; e)), and so 0 : jr→ 1 is a 2-cell in rCatsf . Similarly,
we write :(X; e) for e, seen as an arrow from (X; e) to (X; 1). Once again these are
natural, and :X = Oe= e=1(X; e), and so we have a 2-cell : : 1→ jr in rCatsf . Finally
(:0)(X; e) = :(X; e)0(X; e) = e:e= e=(idjr)(X; e), and so :0=1; and (0:)(X; e) = 0(X; e):(X; e) =
e:e= e=1(X; e), and so 0:=1, which completes the proof.
Concretely, a biequivalence inverse to H is given by Kr : rCatsf → rCats; where

Kr(X) for a restriction category X is deJned as above, Kr(F) for a restriction semi-
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functor F :X→Y is deJned by Kr(F)(X; e)= (FX; Fe) and Kr(F)(f)=Ff, and Kr(0)
for a restriction transformation 0 :F→G is deJned by Kr(0)(X; e) = 0X :Fe.

3. Categories of partial maps

It is really in this section that one discovers what having a restriction is all about!
For, at last, we make quite explicit the sense in which it expresses the partiality of a
map. To do this we have to start by introducing the categorical setting in which one
can discuss partial maps sensibly: namely categories with a speciJed stable system of
monics. These form the objects of a 2-category MCat. A stable system of monics is
essentially what was called a dominion in [24], an admissible system of subobjects in
[22], a notion of partial in [23], and a domain structure in [18].

The main goal of this section is to construct an equivalence of 2-categories between
rCats and MCat, underlying our claim that restriction categories model categories of
partial maps.

3.1. Stable systems of monics

In any category a collection of monics, M, which includes all isomorphisms and is
closed under composition is called a system of monics. Such a system of monics M

is said to be stable if for any m∈M and any f :A→B the pullback

A′ f′
−→ B′

m′
�

� m

A −→
f

B

exists and has m′ ∈M. We call such a pullback an M-pullback.
A stable system of monics actually has a further property: if m′a=m with m∈M

and m′ an arbitrary monomorphism, then a∈M. To see this note that

A a−→ A′

1

�
� m′

A −→
m

B

is a pullback.
We give some examples of stable systems of monics:
• In any category, the isomorphisms form a stable system of monics, giving the trivial
M-category structure on the category.
• In a category with pullbacks, the monics form a stable system of monics.
• In an extensive category [5, 6], the coproduct injections form a stable system of
monics.
• In the category of posets with a bottom element, and bottom-preserving homomor-
phisms, there is a stable system of monics given by the “downward-closed” subsets
(the ideals).
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• In the category of the previous example there is another stable system of monics
given by the full inclusions; in fact the isomorphisms and the monics give two further
examples on this category, and so it has at least four stable systems of monics.
• If M and M′ are stable systems of monics then their intersection M∩M′ is a

stable system.
• We may also form the “join” of two stable systems of monics by considering

M ∨M′ = {m′
kmk : : : m′

1m1 |mi ∈M; m′
i ∈M′}

and this too is a stable system of monics.
An M-category is a pair (C;M), where C is a category, and M is a stable system

of monics in C. Given such an M-category we may form its category of partial maps
Par(C;M):
Objects: A∈C
Arrows (from A to B): Pairs (m;f) where m :A′→A is in M and f :A′→B is

arbitrary:

factored out by the equivalence relation (m;f) ∼ (m′; f′) whenever there is an iso-
morphism 0 with m′0=m and f′0=f.
Identity: (1A; 1A) :A→A.
Composition: By pullback

That this is a category is well known: the fact that pulling back is only determined
up to isomorphism is compensated for by the equivalence relation on the maps. Only
a little less obvious is the fact that this category has a canonical split restriction. The
original maps of C embed into Par(C;M) by f �→ (1; f) and are called the total partial
maps.

Proposition 3.1. Par(C;M) has a split restriction given by (m;f)= (m;m). Further-
more; a map is total in Par(C;M) with respect to this restriction if and only if it is
total as a partial map.

Proof. We must check the restriction category axioms:
(R.1) For this we must check (m;f)(m;m)= (m;f), which is immediate as the pull-

back of m over itself is the identity.
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(R.2) We must check (m′; m′)(m;m)= (m;m)(m′; m′) but this is clear as both compos-
ites give the restriction idempotent (m∩m′; m∩m′).

(R.3) This follows most easily by observing

(m′; f′)(m;f) = (m′; f′)(m;m)= (m∩m′; m∩m′)

= (m′; m′)(m;m)= (m′; f′)(m;f):

(R.4) We must check that the following two composites

are the same. This follows from the form of the composites given above and the
fact that m′f′ =fm′′.

Notice that (m; 1)(1; m)= (1; 1) and (1; m)(m; 1)= (m;m), so that we have a splitting
of each restriction idempotent.
If (m;f)= (1; 1) then (m;m) is equivalent to (1; 1), and so m must be an isomor-

phism. Thus, (m;f) is equivalent to (1; fm−1), and the total maps in the restriction
category are indeed the total partial maps.

3.2. The 2-category MCat

We should now like to deJne a 2-category MCat in such a way that Par becomes a
2-functor from MCat to rCat. We deJne an M-functor between M-categories (C;M)
and (D;N) to be a functor F :C→D taking elements of M to elements of N

and preserving M-pullbacks. A natural transformation 0 :F→G between M-functors
F;G : (C;M)→ (D;N) is said to be M-cartesian if for every m :A→B in M, the
naturality square

FA Fm−→ FB

0A

�
� 0B

FB −→
Gm

GB
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is a pullback. The M-categories, M-functors, and M-cartesian natural transformations
form a 2-category MCat.

Proposition 3.2. There is a 2-functor Par :MCat→ rCat taking (C;M) to Par(C;M).

Proof. Given an arrow F : (C;M)→ (D;N), we deJne Par(F)(A)=FA for each
object A of C, and Par(F)(m;f)= (Fm; Ff) for each arrow. This is well-deJned since
Fm∈N, and functorial since F preserves pullbacks along M-maps. Clearly it pre-
serves the restriction structure, making Par(F) into a restriction functor Par(C;M)→
Par(D;N).
Given F;G : (C;M)→ (D;N) and an M-cartesian natural transformation 0 :F→G,

we deJne Par(0)A : Par(F)(A)→ Par(G)(A) to be the total partial map (1A; 0A) from
FA to GA. The naturality condition we must check is

FA
(Fm;Ff)−→ FB

(1;0A)

�
� (1;0A)

GA −→
(Gm;Gf)

GB

and this amounts to checking that the following composites of partial maps are the
same:

where in the second diagram we have used M-cartesianness of 0. The equality of these
two partial maps follows by the naturality condition 0B:Ff =Gf:0A.
We have now given all the data for a 2-functor Par :MCat→ rCat; verifying the

various functoriality conditions is straightforward.

3.3. MCat is 2-equivalent to rCats

We have observed that the image of Par lies within the 2-category rCats of split
restriction categories. We now show that this is a 2-equivalence. To do this we shall
provide a 2-functor in the other direction which constructs an M-category from a split
restriction category. We shall call this 2-functor MTotal.
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Suppose then that X is a split restriction category and deJne MTotal(X)= (Total(X);
MX); where MX comprises the restriction monics in X.

Proposition 3.3. MTotal(X) is an M-category.

Proof. We must show that MX is a stable system of monics. Every arrow in MX is a
section and so certainly is monic. Every isomorphism splits an identity, and identities
are restriction idempotents, thus MX contains the isomorphisms. The class MX is
also closed under composition, since, if rm=1; r′m′ =1; mr=mr, and m′r′ =m′r′;
then m′mrr′ =m′mrr′ =m′r′mrr′ =m′r′mrr′ and so m′mrr′ is a restriction idempotent,
whence m′mrr′ =m′mrr′, and also r′rmm′ = r′m′ =1.
It remains to show that MX is stable. If f :A→B is a total map, and e :B→B is a

restriction idempotent split by me :Be→B and re :Be→B, then let the splitting of ef
be given by m :A′→A and r :A→A′. The square

A′ refm−→ B′

m

�
� me

A −→
f

B

commutes since merefm= efm=fefm=fm. The maps f;m; and me are all total and
so fm is total, and so mrefm is total, and so Jnally refm is total. Thus the above
square is a commutative diagram in Total(X). We claim that it is a pullback.
Suppose, then, that we have another commutative square of total maps:

Since me and m are monic, it will suSce to Jnd a factorization of h through m. But
this amounts to showing that efh= h, which follows by

efh = hefh = hemek = hmek = h:

In fact, it is easy to see that MTotal can be deJned on arrows and 2-cells, as follows.
If F :X→Y is a restriction functor between categories with split restrictions, then F
restricts to a functor Total(F) : Total(X)→ Total(Y) which takes restriction monics to
restriction monics, since F is a restriction functor. Moreover, Total(F) preserves pull-
backs along restriction monics since these are constructed using only composition and
splittings of restriction idempotents. Thus, Total(F) is an M-functor from MTotal(X)
to MTotal(Y) which we call MTotal(F). If F;G :X→Y are restriction functors, and
0 :F→G is a natural transformation whose components are total, then the components
of 0 form a natural transformation Total(0) : Total(F)→ Total(G). A typical naturality
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square for Total(0) is given by

FA Fm−→ FB

0A

�
� 0B

GA −→
Gm

GB

where rm=1 and mr=mr. Now

Fm : Fr = F(mr) = Fmr = F(mr) = 0B: F(mr) = G(mr):0B

and so Fm splits the restriction idempotent G(mr):0B. Also 0A=G(rm):0A=Gr:0B:Fm,
and so by the construction of pullbacks in Total(X), the above naturality square is a
pullback, and Total(0) is MX-cartesian, hence is a 2-cell MTotal(0) :MTotal(F)→
MTotal(G). These data now form a 2-functor MTotal : rCat→MCat.

Theorem 3.4. The 2-functors MTotal and Par are part of an equivalence of
2-categories between MCat and rCats.

Proof. DeJne # :X→ Par(Total(X);M) to be the identity on objects and to take an
arrow f :A→B in X to

where m is the restriction monic of the restriction idempotent Of. Observe that fm= Ofm
= Om=1, so that fm is total. Clearly # preserves identities. Given f :A→B and
g :B→C, where m and r split Of, and n and s split Og, we have

where n′ splits gfm, and f′ = sfmn′. Since n′ splits gfm, and m splits Of, the composite
mn′ splits mgfmr= gfmr= gf Of= gf. Also gnf ′ = gnsfmn′ = g Ogfmn′ = gfmn′; and so
it follows that #(g)#(f) is equal to

and so # is a functor.
Since # is the identity on objects, it will be invertible if we can show that it is fully

faithful. Suppose then that (m;f) is an arrow in Par(Total(X);M) from A to B. By
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Lemma 2.25 there is a unique r with rm=1 and mr=mr. Then #(fr)= (m; frm)=
(m;f) and so # is full. On the other hand, if #(g)= (m;f) then gm=f and mr= Og,
and so g= g Og= gmr= fr, giving faithfulness of #.

It is clear that this construction of # is natural in X, giving an isomorphism between
Par ◦MTotal and the identity 2-functor on rCat.

On the other hand, given an M-category (C;M), we have already seen that the
category of total maps in Par(C;M) is just C, while the restriction monics are just
the monics in M, and so we deduce an isomorphism between MTotal ◦ Par and the
identity 2-functor on MCat.

This equivalence restricts to inverse categories as follows: on the one side one has
the 2-category InvCats of inverse categories whose idempotents split, on the other side
one has the 2-category of those M-categories all of whose morphisms are M-maps.
In the one-object case this amounts to the equivalence between inverse monoids and
division categories described in [12, Section VII.8].

Corollary 3.5. The 2-functor Par :MCat→ rCat is fully faithful with image given by
the split restriction categories; moreover Par has a left adjoint given by formally
splitting the restriction idempotents and then applying MTotal.

Proof. Combine Theorem 3.4 and Proposition 2.27.

As a further corollary we have:

Corollary 3.6. The category MCat0 of M-categories and functors preserving this
structure is monadic over Cat0; with the forgetful functor taking an M-category
(C;M) to Par(C;M).

Proof. Combine Theorems 2.28 and 3.4.

3.4. Representation theorems

The Vagner–Preston Representation theorem [13, Theorem 5:1:7] for inverse monoids
says:

Theorem 3.7 (Vagner–Preston). If S is an inverse monoid then there exists a set X
and a monoid monomorphism from S to the monoid IX of partial injective maps from
X to X .

We wish to give a categorical explanation of this theorem. If we have a restriction
category X, in particular if we have an inverse category, then we can split the restriction
idempotents and extract the total maps to obtain Total(Kr(X)). This is a category, and
if X is an inverse category, it will be a category with pullbacks, all of whose arrows
are monic. We may now represent Total(Kr(X)) via the Yoneda embedding:

Y : Total(Kr(X))→ [Total(Kr(X))op;Set]

which is fully faithful and preserves any limits which exist.
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The total category is really an M-category and we can use the M-maps to induce
(following [18]) a system of monics on the presheaf category. We shall say that an
arrow m :F→G in [Total(Kr(X)op;Set] is an M̂-map if the pullback of m; along any
arrow YC→G with domain a representable functor, is in M. It is now straightforward
to check that M̂ is a stable system of monics. Observe, furthermore, that the poset of
M̂-subobjects of a representable functor is isomorphic to the poset of M-subobjects
of the representing object.
This means that Kr(X) can be fully and faithfully represented as the M̂-partial maps

in the presheaf category. The original category X as a full subcategory of Kr(X) will
therefore also admit a fully faithful representation as M̂-partial maps. This is already
a much stronger representation result than the Vagner–Preston theorem!

Theorem 3.8. If X is a restriction category then there is a fully faithful restriction-
preserving representation of X as the M̂-partial maps of the presheaf category
[Total(Kr(X))op;Set].

If X is an inverse category, we now have a fully faithful representation of X as
M̂-partial maps between representable objects in the presheaf category; notice that these
partial maps will necessarily be restricted isomorphisms. If X is an inverse monoid,
then the representation will be an isomorphism to the M̂-partial endomorphisms of
Y (?) in the presheaf category.
To get a representation back in Set itself we may use the functor∑

: [Total(Kr(X));Set]→ Set

which takes a functor F to the coproduct
∑

X∈X FX . This functor is faithful and pre-
serves pullbacks, so it gives the desired representation in Set for a one-object restriction
category:

Theorem 3.9. If S is any restriction monoid then there is a set X and a restriction-
preserving monoid monomorphism r : S→ Par(X ) where Par(X ) is the set of partial
endofunctions of X .

Notice that, in the Vagner–Preston theorem at the start of the section, we do not have
to mention that the restriction is preserved: having a restriction inverse is a property
of inverse monoids and is preserved by any homomorphism. However, this is not the
case for a restriction monoid so it is a crucial ingredient of the representation theorem
that the representation preserve this structure.

4. Fibrations and subobjects

Often when one wishes to verify a program written in a programming language
which supports some simple types it is useful to introduce a Jner-type system which
allows one to express properties such as the preconditions that an input should satisfy
or the postconditions an output should satisfy.
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One may model this situation by a category X with, sitting above each object, a
formal set of subobjects. One must then be able to formally pullback these subobjects
along the maps of the base category. This structure amounts to a functor from Xop

to the category Poset of posets and order-preserving maps, or in other words a Jbred
poset. The question we now address concerns the problem of realizing such formal
subobjects as actual subobjects. We shall present the construction by using a series of
adjunctions: Jrst the 2-equivalence rCat �MCats developed in Theorem 3.4, secondly
the adjunction of Proposition 2.27 between rCat and rCats; and thirdly the adjunction
we shall establish in Theorem 4.2 below between sLatFib and rCat. This gives a
conceptual development of the universal way in which a formally given system of
subobjects can be added to a category.

4.1. The restriction 7bration

If X is a restriction category we deJne a functor

Xop RIdX→ Poset

as follows. For an object X of X; we deJne RIdX(X ) to be the poset of restriction
idempotents on X; ordered as usual by e6e′ if and only if e= e′e. Given an arrow
f :X →Y in X, we deJne RIdX(f) : RIdX(Y )→RIdX(X ) to take a restriction idempo-
tent e on Y to the restriction idempotent ef on X . If e6e′ then e= e′e = ee′; and so
e′f ef= e′f ee′f= ee′f = ef; and so ef6e′f; whence RIdX(f) is indeed a poset
homomorphism. Also RIdX(f)RIdX(g)(e)=RIdX(f)eg= egf=fegf= Of egf= egf=
RIdX(gf)(e) and RIdX(1)(e)= e1= e; and so RIdX is a functor.
Applying the Grothendieck construction to RIdX :Xop→ Poset; we obtain a Jbration

@ :R(X)→X. Explicitly, an object of R(X) is an object X of X; equipped with a
restriction idempotent e on X . An arrow in R(X) from (X; e) to (X ′; e′) is an arrow
f :X →X ′ in X satisfying e6e′f; that is, e= e′fe. Composition and identities are
formed as in X, and the Jbration @ :R(X)→X merely forgets the restriction idempotent
on an object. Given an object (X; e) of R(X); and an arrow j :W →X of X, the
cartesian lifting of j is the arrow j : (W; ej)→ (X; e).
In fact, R(X) is also a restriction category and @ :R(X)→X is a restriction functor;

the restriction of an arrow f : (X; e)→ (X ′; e′) is given by Of : (X; e)→ (X; e); where Of
is the restriction of f seen as an arrow of X. We must check that Of is indeed an arrow
from (X; e) to (X; e), but this follows since e= e′fe=fe′fe= Ofe; and so e6 Of. The
four restriction axioms on R(X) follow immediately from the corresponding axioms
on X, since @ :R(X)→X is faithful. We call @ :R(X)→X the restriction 7bration
associated to the restriction category X. It turns out that @ :R(X)→X is actually a
7bration in the bicategory rCat in the sense of [25], but we shall not pursue this point
of view here.
The posets RIdX(X ) are actually meet-semilattices, with binary meets given by

e1 ∧ e2 = e1e2; and the identity 1X as top element. Also we have RIdX(f)(e1 ∧ e2)=
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e1e2f= e1fe2f= e1f e2f=RIdX(f)(e1)∧RIdX(f)(e2); and so RIdX(f) preserves
binary meets; on the other hand RIdX(f)(1)= Of; and so RIdX(f) preserves the top
element if and only if f is total. We have now shown that RIdX :Xop→ Poset lifts to
a functor (of the same name) RIdX :Xop→ stabLat; moreover, the restriction of this
functor to Total(X)op lands in sLat. If we apply the Grothendieck construction to this
new functor RIdt

X : Total(X)op→ sLat we obtain a Jbration @t :Rt(X)→ Total(X); and
we have the following pullback in Cat:

Rt(X) −→ R(X)

@t
�

� @

Total(X) −→ X:

4.2. The 2-category sLatFib

To give a functor Cop→ sLat is equivalent to giving a Jbration over C whose
Jbres are meet-semilattices, and whose inverse image functors are meet-semilattice
homomorphisms; either such structure we call a Jbred meet-semilattice. We shall now
deJne a 2-category sLatFib of Jbred meet-semilattices, providing a domain for the
study of the functor RIdt

X : Total(X)op→ sLat of the previous section.
An object of sLatFib is a pair (C; R); where C is a category and R :Cop→ sLat a

functor, while an arrow from (C; R) to (D; S) comprises a functor F :C→D and a
natural transformation

Finally a 2-cell from (F; -) to (G;  ) is a natural transformation 0 :F→G such that

The purpose of this section is to provide a “forgetful” 2-functor Rt : rCat→ sLatFib;
which takes a restriction category X to the Jbred meet-semilattice RIdt

X : Total(X)op→
sLat; deJned in the previous section, which equips Total(X) with the system of sub-
objects comprising the restriction monics.



J.R.B. Cockett, S. Lack / Theoretical Computer Science 270 (2002) 223–259 255

If F :X→Y is a restriction functor, we deJne Rt(F) :Rt(X)→Rt(Y) to be the pair
(Total(F); -F); where -F is the natural transformation

whose component at an object X of X is the map -F
X : RIdX(X )→RIdY(FX ) deJned

by -F
X (e)=Fe. If e6e′ then e= e′e; and so Fe=F(e′e)=Fe′:Fe; giving Fe6Fe′; and

F is order-preserving; also F(e1 ∧ e2)=F(e1e2)=Fe1: Fe2 =Fe1 ∧Fe2 and so F is a
semilattice homomorphism. As for naturality, if f :X →Y is an arrow in Total(X)op;
and e is a restriction idempotent on Y; then -F

X (RIdX(f)(e))=-F
X (ef)=F(ef)=

F(ef)=Fe:Ff=-F
Y (e): Ff=RIdY(Ff)(-F

Y (e)) and so -F is natural, and (Total
(F); -F) does indeed form an arrow Rt(F) :Rt(X)→Rt(Y) in sLatFib.

If F;G :X→Y are restriction functors, and 0 :F→G is a restriction transformation,
then we have a natural transformation Total(0) : Total(F)→ Total(G) having the same
components as 0. We claim that Total(0) is a 2-cell in sLatFib from Rt(F)= (Total(F);
-) to Rt(G)= (Total(G);  ). We need only check that the diagram

commutes, and for a restriction idempotent e on X; we have RIdY(0X )( X (e))=
RIdY(0X )(Ge)=Ge:0X = 0X :Fe=Fe=Fe=-X (e). Thus we can deJne Rt(0)=
Total(0). We have now given all the data for a 2-functor Rt : rCat→ sLatFib; and
the veriJcation of the functoriality conditions is straightforward, giving:

Proposition 4.1. Rt : rCat→ sLatFib is a 2-functor.

4.3. The 2-re=ection sLatFib to rCat

Our aim now is to provide a 2-adjoint for Rt . Thus given a Jbred meet-semilattice
R :Cop→ sLat we wish to show how to build an associated restriction category S(C; R).
The objects of S(C; R) are just the objects of C; while an arrow in S(C; R) from B
to C is a pair (f; e) where f :B→C is an arrow of C; and e∈RB. The composite of
arrows (f; e) :B→C and (g; e′) :C→D is the pair (gf; e∧ (Rf)e′) and the identity
on B is (1B;�). This is easily shown to be a category. The restriction structure is given
by (f; e)= (1; e); and the restriction axioms are satisJed because
(R.1) (f; e)(f; e)= (f; e)(1; e)= (f; e∧ e)= (f; e);
(R.2) (g; e′) (f; e)= (1; e′)(1; e)= (1; e∧ e′)= (1; e′ ∧ e)= (1; e)(1; e′)= (f; e) (g; e′);
(R.3) (g; e′)(f; e)= (g; e′)(1; e)= (1; e∧ e′)= (1; e′)(1; e)= (g; e′) (f; e);
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(R.4) (g; e′)(f; e) = (1; e′)(f; e) = (f; e ∧ (Rf)e′) = (f; e)(1; e ∧ (Rf)e′) = (f; e)
(g; e′)(f; e):

Observe that the total maps are precisely those (f; e) with e=�; while the restriction
idempotents are those (f; e) with f=1. There is an evident isomorphism of categories
N :C→ Total(S(C; R)) which is the identity on objects and takes an arrow f :C→D
in C to (f;�). For each object C of C; there is an isomorphism of semilattices
<C :RC→RIdS(C; R)(NC) taking e∈RC to (1C; e). If f :C→D is in C; and e∈RD; we
have RIdS(C; R)(Nf)(<D(e))=RIdS(C; R)(f;�)(1D; e)= (1D; e)(f;�)= (f; (Rf)e)=
(1C; (Rf)e)= <C((Rf)e), and so we have a natural isomorphism

It follows that (N; <) : (C; R)→RtS(C; R) is an isomorphism in sLatFib.
We now prove that (N; <) : (C; R)→RtS(C; R) has the universal property of the

unit of an adjunction S�Rt .
Suppose then that X is a restriction category, and (F; -) : (C; R)→Rt(X) is an

arrow in sLatFib. We shall deJne a functor F- :S(C; R)→X. On objects we deJne
F-C =FC, and given an arrow (f; e) :B→C in S(C; R) we deJne F-(f; e) to be the
composite

FB
-B(e)→ FB

Ff→FC:

Now F-((g; e′)(f; e))=F-(gf; e∧(Rf)e′)=f(gf)-B(e∧(Rf)e′)=Fg: Ff:-B((Rf)e′):
-B(e)=Fg:-B(e′):Ff:-B(e)=F-(g; e′)F-(f; e), and F-(1;�)=F1:-B(�)= 1, and so
F- is a functor. Also F-(f; e)=F-(1; e)=F1:-B(e)=-B(e)=-B(e)=Ff:-B(e)=
F-(f; e), where in the penultimate step we have used the fact that Ff is total; we
conclude that F- is a restriction functor.
Now if C is an object of C then Total(F-)(N (C))= Total(F-)(C)=FC, while if

f :B→C is an arrow of C, we have Total(F-)(N (f))= Total(F-)(f;�)=F-(f;�)=
Ff, and so Total(F-)N =F . Further, if e∈RC, then -F-

C (<C(e))=-F-
C (1C; e)=F-(1C; e)

=-C(e) and so the composite

is equal to -, whence Rt(F-):(N; <)= (F; -).
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Moreover, suppose that H :S(C; R)→X is a restriction functor satisfying Rt(H):(N;
<)= (F; -). The equality Total(H):N op =F proves that H agrees with F- on objects
and on total morphisms, while the equality of the comparison natural transformations
ensures that H and F- agree on restriction idempotents. Since every arrow of S(C; R)
can be written as the composite of a total arrow and a restriction idempotent, it follows
that H =F-. Thus we have proved the one-dimensional aspect of the universal property.
As for the two-dimensional part, suppose that (F; -) and (G;  ) are arrows from

(C; R) to Rt(X), and that 0 : (F; -)→ (G;  ) is a 2-cell. We must produce a unique
2-cell : :F-→G such that Rt(:):(N; <)= 0. Let the component :C at C of : be
just 0C . Observe that 0 is a natural transformation between functors with codomain
Total(X), and so certainly each :C will be natural. The only thing to check is that : as
deJned is a natural transformation from F-→G . Note that the condition that the natu-
ral transformation 0 :F→G be a 2-cell from (F; -) to (G;  ) amounts to saying that for
each object C of C, and each e∈RC, we have  C(e)=RId(0C):-C(e)=-C(e):0C . If
(f; e) :B→C is an arrow of S(C; R), then :C: F-(f; e)= 0C: Ff:-B(e)=Gf:0B:-B(e)
=Gf:0B: B(e)0B =Gf: B(e):0B =Gf: B(e):0B =G (f; e)::B and so : is natural.
Thus we have proved:

Theorem 4.2. There is an adjunction:

with invertible unit.

We can now combine several of the adjunctions already constructed to obtain an
adjunction between sLatFib and MCat, and so provide as promised a way of universally
realizing formal subobjects.
Given an M-category (X;M) we can form the Jbred semilattice (X; SubM), where

SubM :Xop→ sLat takes an object X to the meet-semilattice of M-subobjects of X .
This is the object part of a fully faithful 2-functor

I :MCat→ sLatFib

which is the composite of Par :MCat→ rCat and Rt : rCat→ sLatFib. We now have:

Theorem 4.3. The fully faithful 2-functor I :MCat→ sLatFib has a left adjoint L.

Proof. Combine Theorem 3.4, Proposition 2.27, and Theorem 4.2.

Remark 4.4. The left adjoint F :Cat0→ rCat0 to the forgetful functor U :Cat0→ rCat0
has certain similarities to S : sLatFib→ rCat. We saw in Remark 2.7 how to associate
a functor ( :Cop→ stabLat to a category C; the functor took an object C to the
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semilattice of coJnite sieves on C. The passage from (C; () to the free restriction
category FC is now formally identical to the passage from (C; R) to S(C; R). The
analogy can be made precise: both constructions can be described in terms of a certain
weighted limit, but we shall not do so here.

5. Conclusion

The main relationships established in this paper can be summarized by the following
diagram of 2-categories and 2-functors:

where U ◦ Par∼=V , Rt ◦ Par∼=I, and Total ◦S∼=L; and where moreover the under-
lying functors U of U and V of V are monadic. The image of Par :MCat→ rCat is
equivalent to rCats, which in turn is biequivalent to rCatsf .
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