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MISCELLANEOUS ERROR BOUNDS FOR MULTIQUADRIC
AND RELATED INTERPOLATORS

W. R. MapycH
Department of Mathematics, The University of Connecticut
Storrs, CT 06269, U.S.A.

Abstract—We establish several types of a priors error bounds for multiquadric and related interpo-
lators. The results are stated and proven in the general multivariate case. These estimates show, for
example, that in many cases such interpolators converge very quickly and can be used in the recovery
of band limited functions from discrete data. We also include numerical experiments which illustrate
the theoretical results.

1. INTRODUCTION

This paper is concerned with error bounds for a certain class of interpolation problems. For the
most part, we will restrict our attention to the case of interpolators of the form

N
sy(z) = co+Ec,- hy(z — =), (1)
j=1

where
hy(z) = =72 + =2, 2

X = {z1,...,zn} i8 a collection of points in R", and 7 is a fixed positive constant. The func-
tion h., which is conditionally positive definite of order one, is often referred to as a multiguadric
and the interpolators (1) are called multiquadrics. For a detailed background with historical
remarks see Hardy’s survey paper [1).

There is a rapidly growing body of literature concerned with multiquadric interpolation; in
addition to [1] and the pertinent references therein, [2-7] are representative of current work. The
present volume is another example.

Most of the cited work is not concerned with the role of the parameter ¥ which is usually
normalized to be one. However, recently several authors [7,8] have noticed that this parameter can
meaningfully affect the interpolator; in certain cases, the deviation can be significantly decreased
by increasing y. In Subsections 2.1-2.3, we record several observations concerning this matter
which may partially explain this phenomenon; in particular, we include a local error bound in
terms of the parameter v in Subsection 2.2 and study the behavior of the interpolator as y tends
to infinity in Subsection 2.3.

These interpolators can be used for discretizing many of the problems involving differential
and integral equations in preparation for numerical implementations. In many such applications
the derivatives of the interpolators play a significant role. In Subsection 2.4, we record an error
bound involving such derivatives.

Section 3 is devoted to various remarks concerning the material in Section 2. For example,
in Subsection 3.2, we indicate that these results are valid in a much more general setting; in
Subsection 3.3, we include comments on other types of error bounds.

The results of certain numerical calculations are summarized in Section 4. These computations
concretely illustrate the behavior of the interpolators considered here. However, perhaps more
importantly, they provide credence to some natural questions raised earlier.
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The error bounds we are talking about arise as follows: Suppose that the constants co,...,cn
defining the interpolator (1) are chosen so that

8y (i) = f(=i), i=1,...,N, 3)

where f is a continuous function some of whose properties are known. The error bounds are
a priori estimates of the deviation |f(z) — 8,(z)] in terms of certain parameters associated with
f, h-y, and X = {21,...,21\]}.

2. A PRIORI ERROR BOUNDS

2.1. Some Heuristics and Background

Suppose § is a cube in R" and

o= up (Jgs ).

If s, satisfies (1)~(3) for z in Q, we wish to estimate the error |f(z) —s,(z)| in terms of § and
parameters which depend on f and h,. In particular, we are interested in the role played by the
parameter v when A, is the function defined by (2). To facilitate the discussion, we adopt the
notation s.(z) = s,(f, z) to explicitly indicate the dependence of s, on f in this case.

Consider the extreme case ¥ = 0. In this instance, ho(z) = |z| and it is not difficult to see
that, no matter how smooth the function f,

If(z) — s0(z)| = O(™*)
is the best estimate one can generally expect in terms of §. This is particularly clear in the case
n = 1 since 8o(z) is simply the piecewise linear interpolator of f. In the general multivariate
case, this is most easily seen by restricting ones attention to the case when {2 = R” and X = 62",

To get an idea of what we should expect for large values of v, recall that Theorem 1 in [5]
roughly says that in this case, if f is sufficiently smooth then the estimate

|F(2) — &y(2)| < C1 Ea(hy,C26)"/?

is possible for every k = 1,2, ..., where C; and C; are constants independent of 6 and

Ex(hy,€) = inf {;‘:& Iho(2) - p(z)l} .

Py is the class of polynomials of degree < k. Since

00
hy(z) =71+ |y~ 1z = v {Eajlv“zl”'} ,

§=0

it is clear that Ej(hy,e) = O(e2™/y*™+1) whenever k = 2m — 2 or 2m — 1. Hence, by taking &
to be a positive even integer, we have

1f(2) — 84(2)| S CL CF y~*~ 16

which, asymptotically as § tends to 0, favors large values of v if the constants C; and Cj3, which
may depend on v and k, can be controlled.

A precise result is given in the next subsection. Before doing so, however, we review some
notation and concepts used in the discussion.
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The Fourier transform f of an integrable function f is defined by

flz)= f(z)e-"(#f) dz.
/

All Fourier transforms are to be interpreted in the distributional sense. In particular, the Fourier
transform h, of h, is a distribution which is equal to a C*™ function outside every neighborhood
of the origin; thus, for ¢ in R"\{0} we identify ix., with this function. An explicit formula for
h,(¢), ¢ € R*\{0}, can be found in [7,9] but it will not be used here. Only the behavior of A (¢)
in neighborhoods of infinity plays a significant role in what follows.

Another important ingredient in deriving our estimates is the following: if the constants c;

in (1) are chosen so that Zf:l ¢; = 0, the interpolator s, which satisfies (3) is a solution to the
variational problem
min {lglle,, : 9(e) = f(z),  i=1,...,N},

where Cy is a certain semi-Hilbert space and || - |lc,, is the corresponding semi-norm. In other
words, || - ||§H is a certain semi-definite quadratic form determined by h,; the interpolator s,

minimizes this form over all interpolators g. For more details see [5)].

We close this subsection by warning the reader of some potentially ambiguous notation: Most
of the time, the symbol z; denotes the j*" point in a collection of points that are a subset of R",
for example, as in equations (1) and (3) in the introduction. On a few occasions, however, we
find it convenient to denote the i*® coordinate of the point z by z;. Since the meaning should be
clear from the context, we hope no confusion arises from this usage.

2.2, Estimaies for Band Limiled and Related Functions

To obtain a precise conclusion consider the following setup:

(i) f is a continuous function on R".
(ii) X = {z1,...,zN} is a finite subset of R".
(iii) €4 is a cube with sides of length a defined by

Q,={z=(21,...,2,) : 0< 2; < a},

where z;, i = 1,...,n, is the i*? coordinate of z.
(iv) 6 =supyeq, (infzex |z —yl).

(v) sy(fiz)=co + 2?;1 cjm where
Y N
o+ cj\/r+lee 2= f(m), k=1,...,N andy ¢;=0.
i=t

ji=1

Observe that

sup |f(2) — ay(f,2)l = sup |f(72) - &y(f,72)l; 4)
TE€fN, T€Se sy

and

N
sv(f,‘ﬂ') =co +Ecj -y\/l + |-”""Y'1-Z'j|2 .
i=1

So, if we let g(z) = f(yz) and s1(g,2) = s,(f,7z), then 8:(¢g,z) is the minimum C;, norm
interpolator of ¢ on y~'X = {ylzy,...,7 'zx}, where h; is the function defined by
hy(z) = /1+ |z]2. Hence, by virtue of Theorem 2 in (5], if § is sufficiently small and if 1 < vy < a,
there is a constant A which is independent of f, a, 7, and § such that

eup lo(z) — 81(g,2)] € X )\gllc., - (5)
e/
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In order that the last inequality lead to a useful error bound, f must be chosen so that the
norm ||g)lc,, is finite. First, recall that in this particular case Cp, can be characterised as the
class of those distributions u such that each component of the Fourier transform of grad u is in

L2(R", (|€]2 h1(€))~! d¢); moreover,

n

I, =3 [ 16O (e m(©) " e. ©)

i=1 R
In view of this characterization, it is not difficult to obtain simple conditions on functions f for
which (5) leads to meaningful error bounds. We give two examples.
Let B,, for a positive parameter o, be the class of band limited functions f in L3(R™) defined
by
B, ={f e L*®): f©) =0 if | > o} )
Clearly, any function f in B, is also in Cx,. Furthermore, if ¢4 and Cj are positive constants
such that
(h1(€))™" < Ch e ¥, (8

then, when g(z) = f(vz), we have

lol,, <€ [lrmforteP ol ag
R"

<C sup ez"‘m}'v_"* / TGRS
{p974
JEl<e
<CE I fliZamnys

whenever ¥ > 1 and f is in B,.
If o is a positive number, let E, be the class of those functions f in L2(R™) defined by

E, = {f € L’(R"): ||flls. < oo}, (9)
where
1A, = [ 17 el .
.u
Again, any function f in E, is also in C,, and when g(z) = f(yz) and v > 1, we have

"g"gb S C sup {ezc"lfl‘/"K'z/V} . / 'f(f)lz eleizladf
' (eRrn J

<C e f|, .
We summarize these observations as follows:

THEOREM 1. Suppose we have the setup described by items (i)—(v) listed above and 1 < v < a.
Then there is a constant A which satisfies 0 < A < 1 and which is independent of f, a, v, and §
such that the following holds:

e If f is in B,, then for sufficiently small §

sup |f(€) ~ 81(f,2) S C e A (IfllLaqmn)- (10)
z a
e If f is in E,, then for sufficiently small §
sup |f(2) — 84(f,2)| < C 377227/ £, . (1)
z€ll,

o In both cases, €5 is the constant in the exponent in inequality (8) and C is a constant
independent of f, a, v, 6, A, and 0.

e In both cases,

1£(z) — s4(f,2)| = OA/%)  as6 0, (12)

whenever z is in Q,.
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Before moving on to the next subsection, we note that if
f(z) = P(z)e~cle=9,

where P(z) is a polynomial, ¢ is a positive constant and y is any point in R”, then f is in E,
whenever ¢ > 2¢. Such f’s were used in the numerical experiments reported on in [8].

We also note that for band limited functions f in B, (10) gives an upper bound on the pointwise
error which is proportional to (e‘*’Al/ 8)7. Hence, for example, if § and/or o are sufficiently small
so that e*?A1/% < 1/100, then this error bound can be decreased by a factor of 100 by simply
increasing the value of v by one.

2.3. Asymptotic Estimates as v — oo

Suppose X is a closed subset of R® and Q is a cube which is invariant under dilation. Such a
cube must necessarily have side @ = co. For example, 2 = R" or 2 = {z = (21,...,25) : 2; >

0, i=1,...,n}. In this case, if
o )

is finite, then X cannot be a finite subset of R” and s, cannot be defined via a finite number of
coefficients which are solutions to a finite number of linear equations. Nevertheless, if f is in C;_,

with h,(z) = —\/7? + ||, then s,(z) can be uniquely defined as the element of minimal Cj
norm which coincides with f on X. If X is discrete, then s, is still of form (1) but where the sum
is taken over the infinite set X. See [5] for more details. Note that the conclusions of Theorem 1
are valid in this context with 1 < v < 0.

Now suppose f is in B, and consider estimate (10) in this context. If

_logA
=-—
then « > 0 and (10) can be re-expressed as
1f () = 8o (£, 2)] < C(e*"7%) ||fll2m), (13)

whenever z is in Q. Hence, it should be clear that if & < &/ej, then the deviation |f(z) — s,(f, z)|
tends to zero as vy tends to infinity.

These considerations allow us to conclude that s,, ¥ — 00, can be used as a summability
method in the recovery of a certain class of band limited functions which are sampled on the
set X. This class of band limited functions contains B, whenever o < £/e, but estimate (13) is
too crude to identify this class any more closely.

We summarize these results in the theorem below. First we remind the reader of the basic
setup.

(i) Q is a cube which is invariant under dilation, e.g., @ = R" or Q = {z = (z1,...,2a) :
z>0,i= 1,...,n}.

(ii) X is a closed subset of R™.

(iii) 6 = sup,eq(infrex |z — yl) is finite.

(iv) ¥ f is in Cn, with hy(2) = —\/92 + [z]?, then s, is the minimum Cj, norm interpolator
of f on X. For example, if X is discrete, namely X = {z;}{2,, then sy is of form (1)
where the sum is taken over z; in X and s,(f,z;) = f(z;) for all z; in X. Any function
f in L?(R"™) which is band limited is also in Cj_,.

THEOREM 2. Suppose we have the setup described by items (i)-(iv) listed above. Then there is
a class of band limited functions f such that

Jim 2,(2) = £()

CABA 24:12-9
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uniformly on Q. If
log A

b’

where ¢, and A are the constants in inequality (10), then this class contains B,; indeed, there
are pogitive constants o and p, 0 < p < 1, which are independent of f such that for all z in

O0<o< -~

|£(2) = 85(2)] £ 2" [Ifllz2(m~),
whenever f is in B, and v > vo.

2.8.1. The Special Case When X is a Lattice

If X is a lattice in R", then by mimicking the development in [10] one can easily arrive at a
convenient formula for s,(f,z). For example, if X = aZ”, where a > 0 and Z" is the integer
lattice, the Fourier transform of s., is given by

AR
8(f,6) = ey a(0) = by (6), (14)

where hy(z) = ~/¥2 — |z, f and fz,, are the Fourier transforms of f and A, respectively, and fa

and izw, are defined by
ro=Y fe-2)

JEL™
and 9
hya(€) = Y hy bl
S (e-%).
If

Jll) _ 5~ piatia),
h-y,a(E) jexn
where the coefficients ¢; decay sufficiently rapidly, then

sy(f,2)= ) V7P +lz—ail.

jexn

We remind the reader that the Fourier transform of —/7% + [z]? is a distribution which is equal
to a positive infinitely differentiable function on R™\{0}, decays exponentially at infinity, and
behaves like O(|¢|~"!) at the origin. Thus, if we take

hy(2rj/a) _{1, ifj=0
hy 4(27j/a) T 10, otherwise,

then s, is well defined via (14) whenever f is a compactly supported function in L?(R"). Indeed
in this case, we may write

sy(F,2) = Y, f(aj) Lya(z - aj), (15)
jexr~
where i ©
—_ NS
‘Y ¢(£) -y,a(f)

That the s,(f,z) given by (15) is the minimum C,_ norm interpolator of f on aZ" follows from
arguments which are analogous to those used in [11].



Miscellaneous error bounds 127

If we re-express the Fourier transform of L, , as

-1
> h(v(€ — 27j/a))
Lyal®) = {1+ : :
" { ,-#zo hy(+€)
then, as in [10], from the behavior of the of the ratios in the above identity we may conclude that

Jim Lya(€) = xa(6) (16)

in LP(R") where 1 < p < 00 and x,(£) is the characteristic function of the cube

Quja={6=(61,- .6 s Il ST fori=1,...,n}

We summarize these observations as follows:
THEOREM 3. Suppose f is in L3(R"), f is supported in Qx/a) and X = aZ", a > 0. Then,
8,(f,z) is given by (15) and

lim 5,(f,2) = f(z) (7)

in L*(R™) and uniformly on R™.

It should be mentioned that relation (17) holds uniformly on compacta for a somewhat more
general class of distributions f whose Fourier transforms are supported in Qyx/q,. Unfortunately,
the decay properties of L, o at infinity do not permit the level of generality which is valid for
similar recovery formulas in terms of polyharmonic splines, see [12]. Details of this and related
material will appear elsewhere.

Theorems 2 and 3 seem to hint that the interpolator s,(f,z) may be useful in prediction and
sampling applications. See [13] for a survey of this material.

2.4. Estimates on Derivatives

In this subsection, we record a result which indicates that the derivatives of multiquadric
interpolators approximate the corresponding derivatives of the interpolatees. We will use the
following setup:

(i) 7 is a fixed positive number and f is any element of Cy,,.
(ii) X is a closed subset of R" such that

6 = su ('fa:—- )
sup Jnf |-yl

is finite. A typical example of such an X is a scaled integer lattice, X = aZ" where
a=6/V2.
(iii) sy is the minimum Cj, norm interpolator of f on X.

In other words, s, is the unique element in C;, which satisfies
sy(z)=f(z) forallzinX,
and
llevlles,, = min {}lglicy, :9= £ on X}.
If X is a lattice, then there is a convenient formula for s, see the previous subsection.

THEOREM 4. Suppose we have the setup described by items (i)-(iii) listed above. Then for any
multi-index o and parameters r > rp and 2 < p < 00,

1D*f = D*s4lizsm=) < C 6" ||fllca,

where C is a constant independent of § and f. The parameter ry depends only on a.
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Before going into details we remind the reader that for a continuous function g on R”

/p
loflzrcesy = { [uer dz} ,
R™

llollceem~y = sup |g(=)].
zER™

if0<p<ooandif p=oco

Also, recall that if @ = (ay,...,an) is a multi-index |a| = a; + -+ + a, and if g is a smooth

function, then
1+ 3% 1

" g% ...0%
D%(z) = my(z)-

We also bring attention to the fact that the lower bound rq on r is needed only in the case § > 1.
If § < 1 then, for obvious reasons, no lower bound is needed on r.

ProoF. The theorem is an easy consequence of the following four elementary facts:
(a) If g is a smooth function and |a| < k, then for any positive ¢ and any p, 1 < p < o0,

ID%gllLrmn) < C { =1l |ig|| Lrqmny + €¥71 Y ||D"9||Lv(l»)},
’ 181=k

where C is a constant independent of ¢ and g.
(b) If 2 < p < o0 and the integer k satisfies k > n(% - %), then

{1D%gllLsmny < C {HD"‘yllu(n») + ) ||Ipo+f yllm(--)} ,
(Bi=k

where C is a constant independent of ¢ and a.
(c) If g is in Cp,, and the multi-index « satisfies 2Ja| > n + 1, then

1D%gllza@m~) < Cliglics.,

where C i8 a constant independent of g.
(d) If k is an integer which satisfies £ > n/p and g is a smooth function such that g(z) = 0
for all x in X, then

llgllizrmny < C8 D ID%gliLsmn),
|al=k

where C is a constant independent of g and 6.

To see how these items imply the desired result, apply items (d), (b), and (c), in that order,
tog = f— s, to get
If = ayllLscrmy < CE™||f = 84les, -

Since s, is the minimum Cj norm interpolator of f,
If = sylles, < I £llew, - (18)
The last two inequalities imply that for any integer m, m > my,

N = s4llzr@~) < C8™ || fllca,» (19)
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where C is a constant independent of f and §. Now, by virtue of item (a), for sufficiently large k,
we may write

|D°f — D8y ||lLrms) < C {f""' If = oyllzrcmey + €710 D IDP(F - 3‘1)”L’(l-)}-
B1=k

Use inequality (18) and items (b) and (c) to get the estimate
HD*(f — s)llr@~y £ Cliflles, -
The last two inequalities together with (19) imply that

1D2f — Ds,| < C{etol g™ 4 et=lel} | |,

Choosing m = k and € = § gives us the desired result.

To complete the proof, we must verify items (a)~(d). Items (a) and (b) are essentially folklore;
variants may be found [14]. Item (c) is an easy consequence of (6) and the fact that |¢[1°l A(¢) is
a bounded function of £ whenever 2ja| > n + 1. Item (d) is essentially the contents of Theorem 1
in [15). 1

3. GENERAL REMARKS

38.1. Derivatives

Error bounds analogous to those given by Theorems 1 and 2 are also valid for derivatives,
D® f(z) — D%s.,(f,z). They can be established by using the full generality of inequality (4.15)
in [9] to obtain a derivative variant of inequality (5) in Subsection 2.2.

Note that the bounds given in Theorem 4 are global but require a stronger hypothesis. Although
the asymptotic estimate is not quite as good as that given in Theorem 1 the proof, however, is
considerably simpler.

Elementary results such as that given by Theorem 4 and its proof were essentially the motiva-
tion for the more involved estimates given in [5,16,17].

8.2. Generalizations

In order to maintain clarity and simplicity, the results in Section 2 were stated and explic-
itly proven for multiquadric interpolators. However, the mindful reader should recognize that
appropriate variants of these results hold for a much wider subclass of interpolators considered
in [5].

For example, suppose we have the following setup:

(i) The function h is continuous and conditionally positive definite of order m, m > 0. In
addition to this, suppose h satisfies
o h coincides with a continuous positive function on R™\{0};
o for all sufficiently large k,

/ IE[* h(€) de < o*R*, (20)
.n

where p is a fixed positive constant;
o for some positive constants ¢, and C,

R

(h©) " < certel (21)
(ii) For 4 > 0 the function A, is defined via

hy(2) = h(y~12).

Observe that A, is also continuous and conditionally positive definite of order m.
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(iii) X is a closed subset of R™ and £, and & are as in (iii) and (iv) of Subsection 2.2.

(iv) If f is in Cs, then s,(f,z) is the minimal Cs_ norm interpolator of f on X.

(v) Note that the classes of functions B, and E,, o > 0, defined via (7) and (9) are contained
in each Cp,, v > 0.

THEOREM 5. The conclusions of Theorem 1 are valid if we have the setup described by
items (i)—(v) listed above. If Q, is taken to be a cube which is invariant under dilation, then the
conclusions of Theorem 2 are also valid with this setup.

Examples of functions k which enjoy the properties listed in item (i) include

_ __T(e/2)
M) = T Rpy

where a is any real number # 0,—~2,—4,... and I’ denotes the classical Gamma function. Note
that for positive a, the constant factor I'(a/2) can essentially be ignored but for negative a
it adjusts the sign of A so that it is conditionally positive definite of order m > —a/2. The
celebrated multiquadric is the case a = —1. Particularly appealing is the case a = n + 1, since
in this instance h is a constant multiple of e~ €I,

It should be clear that different variants of Theorem 5 can be proven by merely changing the
nature of the bounds (20) and (21). For example, the important case

h(z) = e~let?

fails to satisfy (21); indeed, if hy(z) = h(z/v) then E, fails to be contained in C,, whenever
7% > 4/o. Nevertheless, B, is contained in Cy. for all ¥ > 0 and appropriate variants of esti-
mate (10) and Theorem 2 hold in this case also.

The point is this: Erponential error bounds are valid for a wide class of interpolators and
various classes of interpolatees. The precise nature of these bounds is determined by conditions
which are varianis of (20) and (21) and the nature of the function being interpolated. Under
these conditions various analogs of the theorems in Section 2 can be verified by using appropriate
mutations of the corresponding arguments found there. We also stress that although the examples
of h considered here are all radial this restriction is not part of the hypothesis of Theorem 5.

In the case when X is a lattice the class of band limited functions in L?(R") for which analogs
of Theorem 3 hold can be readily identified more precisely. Indeed if A is a radial function, such
that its Fourier transform is a rapidly decreasing function of the radius, then the class consists
of exactly those functions f in L3(R™) whose Fourier transform vanishes outside a cube of side
length x/a centered at the origin. Indeed, arguments similar to those used here and in [10] can
be used to show that the Lagrange function L, q(z) converges to sinc(z/a), see also [12]. Other
types of h’s will reconstruct other classes of band limited functions. We also mention that the
lattice need not be a scaled version of the integer lattice, appropriate analogs hold for any lattice
in R". Details of this and related material will appear elsewhere.

3.3. Error Bounds for Continuous Functions

The hypotheses in the theorems of Section 2 essentially require f to be a real analytic function.
What happens if we simply use the natural assumption that f is merely continuous? Certainly
if X is discrete then, under certain mild assumptions on f, the interpolator s(f,z), in terms
of translates of A and, if necessary, low degree polynomials, of f on X can be computed by
solving the appropriate system of linear equations. In view of classical approximation theory, it
is reasonable to suspect estimates of the form

\f(=) — 8(f,2)| < C8°,

whenever f satisfies a Lipschitz (Hélder) condition of order a, a > 0.

Unfortunately, in the general case such a bound is not easy to establish. Without the assump-
tion that f is in Cy, it is difficult to obtain an estimate of the interpolator, |s(f,z)|, in terms of
the data, f(y), y € X.
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On the other hand, when X is a lattice there is an explicit formula for s(f,z) in terms of the
data, for example see formulas (14) and (15) in Subsection 2.3. In this case it is not difficult
to establish the suspected estimates. We are currently preparing the details of this and related
material for publication.

4. NUMERICAL COMPUTATIONS

4.1. Comparison of h'’s

Interpolators which are essentially linear combinations of translates of one function A are very
natural and computationally attractive. The well known univariate piecewise polynomial splines
are a classical example. As indicated in the introduction, the example h,(z) = —/7? + |23,
known also as the multiquadric, is currently quite popular. On the other hand, the material
presented here does not distinguish the multiquadric from other members of the class of A’s
considered in Subsection 3.2, such as for example h,(z) = (72 + |z|?)~("+1)/2 I am not aware
of any work which does. Indeed, comparing the behavior of these two examples at infinity, the
second seems more appealing.

One objective of the numerical experiments reported on below was to make some sort of
quantitative comparison between several choices of h. These choices were the following:

(i) the multiquadric or MQ
hy(z) = =V7? + =2,

(ii) the reciprocal multiquadric or RMQ

1

M) = Za e

(iii) the Poissonian or P
1
h‘y(z) = (72 T Izlz)(""‘l)/z’

(iv) the Gaussian or G

h_y(x) - e—'zlzl'y:.
A more detailed description of these experiments can be found in Subsection 4.3.

4.2. Dependence on v and 6

Another objective of these numerical experiments was to quantitatively display the behavior
of these interpolators as functions of the parameters v and 8. In particular, Theorems 1 and 5
predict that a small increase in the parameter ¥ should result in a dramatic improvement in the
error for sufficiently small 6. I wanted to see specific numerical examples of this.

This brings us to one unpleasant feature of these interpolators which must be mentioned.
The functions h., essentially tend to a constant as the parameter 7 gets large. As a result, the
matrices which must be inverted in order to evaluate the coefficients c;’s, see (1), become very
poorly conditioned for large values of v. Theoretically the matrices are invertible for all positive
values of ¥ but numerically for large v they are essentially singular. In the case of scattered data
interpolation, I am not aware of any efficient schemes which overcome this unpleasantness. See
the remarks concerning this matter in Section 5.

We do remind the reader that in the cases where X is a lattice, formula (15), together with
the fast Fourier transform, leads to efficient evaluation of the interpolators for any positive value
of 7.
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4.9. Calculations I

The function f defined by .
sinrz

nr

f(z)= (22)
is the canonical example of a member of By in the case n = 1. The tables displayed below
summarize the results of numerical experiments involving this interpolatee. The point of these
experiments was to study the behavior of the interpolators mentioned in Subsection 4.1 versus
each other and as functions of v. For simplicity they were done in the univariate case, n = 1.
The setup was as follows:

Five sets of knots labeled § = 2,1, 0.5,0.25, and 0.125 were generated. The j*® member of the
set labeled § was randomly chosen in the subinterval [(j — 1)6,38], i =1,..., N where N = 8/4,
of the interval [0,8]. More specifically the knots labeled § were given by

= -1s+6X;, j=1L,...,N,

where the X;’s were independent pseudo-random variables uniformly distributed on [0,1]. The
X;’s were generated using the canned MATLAB subroutine rand starting with the seed=0.
Namely, starting with seed=0 the values Xj,..., X4 were generated for the case § = 2 via
the MATLAB command rand (1,4), then using the current seed the values X;,..., X3 were
generated for the case § = 1 via the MATLAB command rand (1,8), etc. These knots were
then used to generate five sets of data via (22). Namely, the data was given by

sin 7z;

P j=1,...,N.

Yj

The corresponding interpolators generated by the h,’s designated as MQ, RMQ, P, and G
in Subsection 4.1 were computed by solving the appropriate system of equations for the coeffi-
cients ¢;. More specifically, in the case of MQ the system of equations

N
co+ Y e[+l —zP=u,  i=1,...,N
i

a+-+en=0

was solved. In the other three cases, the system

N
Y cihy(zi—2z;)=w%, i=1,...,N
s

was solved with the appropriate h,. The four choices ¥ = 1, 2, 3, and 4 were used. The canned
MATLAB linear equation solver was used to solve these systems; this algorithm is essentially a
variant of Gaussian elimination.

The interpolators were evaluated at the 801 points z = 0,0.01,0.02,...,8.00. We will refer to
this set as Q below and use |Q| = 801. In the case of MQ, the interpolator was given by the
formula

N
sy(z) = co + ch 7+ |z - 253,
§=1

in the cases RMQ, P, and G it was given by
N
5y(2) = 3¢ ho(2),
j=1

where h, was the appropriate function described in Subsection 4.1.
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Several types of meaningful errors were computed. Specifically computed were
max {|sy(z) - f(=)I},

and the average error

ﬁ Y 1o (2) - £(2),

z€Q

which we call the L* and L! deviations respectively. For completeness, the root-mean-square

error
\[Tclﬂ 3 Joy(2) - £

z€Q

was also computed; it is called the L? deviation.

The results are summarized in Tables 1, 2, and 3. The numbers labeled with an asterisk (*)
are somewhat unreliable since the matrices corresponding to the linear systems for ¢;’s had a
condition number greater than 10!?. The numbers labeled with a double asterisk (**) were
obviously grossly distorted because of this phenomenon. Figures 1 through 5 contain selected
plots of these interpolators with the interpolatee in the “background” and the set of knots clearly
displayed.

Table 1. L™ deviations.

§=2 §=1 §=0.5 §=0.25 6§ =0.125
4y=1 05613 04238 0.0494 0.0064 0.174.10~%
MQ =2 05489 0.2814 0.0194 0.728-.10~4 0.472.10" 5«
4=3 05374 1.1931 0.0108 0.479-10"%*x  0.402:1075x
=4 05276 23103 0.0106 0.87:10" %« 0.785.75 % «
4=1 05766 0.7718 0.0287 0.0054 0.315.10-3
RMQ | y=2 0.5846 0.2747 0.0276 0.596:10~3 0.103-10"5x
4=3 05695 04715 00115 0.816:10~%»  0.159:105x
=4 05547 1.3991 0.0078 0.545-10~%x  0.125-10"% » «
=1 0.5962 0.8553 0.0184 0.0025 0.273.10—2
P =2 05961 0.4107 0.0283 0.906.10—3 0.139.~5«
=3 0.5828 0.2316 00110 0.759-10~4 0.116:10" 5«
vy=4 05670 1.0757 0.0058 0.170-10*x  0.101-10" 5%
4=1 05551 0.7717 00102 0.659.104 0.165-10" %«
G =2 06126 0.8793 0.0039 0.115:10~5%  0.947:10" 7«
4=3 05778 4.0237 0.0186« 0.148103» 0.820:10"* «
4=4 05469 7.0282 0.2989%  0.0452++ 0.0251%x

We bring the reader’s attention to the following:

¢ With the particular normalizations described and used here the matrices corresponding
to G were the “first” to become seriously ill-conditioned. Those corresponding to P were
“last.”

e Although the values labeled by the asterisks are unreliable, if anything, they are larger
than the error would be if the interpolators were calculated accurately. Looking at Table 2
with this in mind, it is interesting to compare the numbers in the rectangles (§, MQ) with
the corresponding numbers in the rectangles (§, G) particularly in the range 6 = 0.5, 0.25,
and 0.125.

We leave it to the reader to draw his own impressions and possible conclusions from these nu-
merics.



134 W.R. MabYcH

Table 2. L! deviations.

§=12 §=1 §=0.5 §=0.25 §=0.125
v=1 0.1252 0.0540 0.0035 0.0002 0.001-10—%

MQ +y=2 01326 0.0368 0.0017 0.263-10~% 0.037-10" %«
¥y=3 01325 0.0857 0.0004 0.231.10~%+  0.058:10~ %«
¥y=4 0129 01509 0.0007 0.494:10~5%  0.754:1075 = »
=1 01215 0.0752 0.0022 0.0002 0.015-10—*

RMQ | =2 0.1327 00473 0.0021 0.220-10—* 0.007-10%»
4v=3 0.1407 0.0505 0.0006 0.246-10~%«  0.035.10 %«
y=4 0.1401 0.1030 0.0005 0.240-10~ %«  0.124-10 5« »
4=1 01183 0.0803 0.0019 0.0001 0.015-10—*

P 4y=2 0.1302 0.0540 0.0021 0.319-10—4 0.010-—%x
¥y=3 0.1423 0.0412 0.0009 0.213.10~% 0.015:10~%x
4=4 01440 0.0866 0.0004 0.067.10~%x  0.047-10~%«
¥+=1 0118 0.0705 0.0008 0.221.10™% 0.015:10"7»

G ¥y=2 01509 0.0920 0.0001 0.056:10~%%  0.158.10" 7«
¥y=3 01548 0.2668 0.0003+ 0.385:10~%x  0.748.10~5% %
y=4 01421 04150 0.0052%«  0.0085x« 0.004 7w

Table 3. L? deviations.
=2 §= §=0.5 §=0.25 § =0.125
¥y=1 01915 0.1067 0.0100 0.0010 0.087.10—4

MQ ¥y=2 01926 0.0511 0.0041 0.108.10~4 0.243.10~ %%
¥y=3 0.1904 0.1876 0.0013 0.109-10~*x  0.233.10~ %«
y=4 0.1869 03645 0.0021 0.136:10~%x  0.102:107% x »
¥4=1 0.1951 0.1719 0.0060 0.0008 0.0153-.104

RMQ | y=2 0.2011 0.0763 0.0056 0.887.10—* 0.059-10—%x%
=3 0.2021 0.0813 0.0015 0.114.10~%»  0.088.10"%x
¥y=4 0.1991 0.2258 0.0015 0.841.10~%»  0.166.107% x
y=1 0.1890 0.1891  0.0039 0.0004 0.035.10—4

P 4=2 0.2034 0.1013 0.0058 0.134.10—2 0.077-" %
¥=3 0.2059 0.0553  0.0021 0.106.10™4 0.073:10%x
Yy=4 02041 0.1766 0.0012 0.259-10~%=  0.078-10~%x
4=1 0.1910 0.1656 0.0021 0.944.10~% 0.090:10~ 7=

G y=2 02178 01649 0.0004 0.165-10~%x  0.204.10 7«
4=3 02151 0.6444 0.0017« 0.484.10~%x  0.102.10% x »
y=4 01999 10826 0.0267* 0.0111%= 0.0061%x

4.4. Calculations I

To illustrate the ease with which these interpolants can be computed in the case when the set
of knots X is a lattice, we calculated the Lagrange function L, ; for the Poissonian P when X is
the integer lattice. Recall that in the n variate case the Poissonian is h,(z) = (v? + [2[3)~("+1)/2
whose Fourier transform is a constant multiple of exp(—7/£]). Thus, we evaluated L, ;(z) by
computing the inverse Fourier transform of

-1

Ly1(€) = exp(=7KD S Y exp(=7k — 2n4])

Jjexn

via the fast Fourier transform algorithm. Figure 6 contains the graphs of y = L., ;(z) in the case
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Figure 2. Poissonian interpolators with knots labeled § = 1 and parameters v = 1,
2, 3 and 4. Note the auto-scaling on the y axis.
and Y= 2.

n=1and ¥ = 1, 4, 16, and 64. Figure 7 contains the surface z = L, ;(z) in the case n = 2

5. CONCLUDING REMARKS

One goal of this paper was to present and prove a priors error bounds for a class of interpolation

problems associated with conditionally positive definite functions. Another objective, perhaps
more important than the first, was to stimulate further study of these methods.
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Figure 3. Gaussian interpolators with knots labeled § = 0.5 and param'eters =1,
2, 3 and 4. Note the auto-scaling on the y axis.
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RMQ, gamma=2, delta=0.25

Figure 4. Reciprocal multiquadric interpolator with knots labeled § = 0.25 and
parameter vy = 2.

0.5 i " . - . ) 2
00 1 2 3 4 S 6 7 8

P, gamme=1, delta=0.125
Figure 5. Poissonian interpolator with knots labeled § = 0.125 and v = 1.

For example, the error bounds show that these methods have excellent approximation theoretic
properties. On the other hand, the ill-conditionedness of the interpolation matrix, (a;;) = (h(z; -
z;)), poses a significant obstacle to certain potential scattered data applications. Motivated by
the case when the set of knots, X, is a lattice it seems reasonable to suspect that a solution to
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Figure 6. Graphs of y = L.,1(x,y) for the Poissonian in the cases n = 1 and
4 =1,4,16,64.

Figure 7. Plot of surface z = L., 1(z,y) for the Poissonian in the case n = 2 and
4=16. Here ~4 <z <4and -4<y< 4.

this difficulty may lay in considering bases for the space of interpolators which are of the form

N
Bi(z)=) bijh(z—2;), k=1,...,N,

=1
or, if necessary,

N
Bk(z)=pk(z)+2bl,,-h(a:—z,-), k=1,...,N,
i=1

where the p:’s are appropriately chosen polynomials and {z;,...,zn} is the set of knots. The
basis functions B; should be easy to evaluate and the interpolation matrix, (a;;) = (B;(z;))
should be numerically easy to invert, the ideal case being of course the identity matrix. We
point out that direct application of difference schemes may not be appropriate in cases where h
is relatively ‘flat.” Also, simply requiring the B;’s to decay at infinity may not be sufficient as
can be seen from the numerical examples involving the Gaussian and Poissonian. Of course, it
may be that some completely new ideas are needed to deal with this.
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