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� Grid effects of intermittent sources show increasing need for decentralized storage.
� Novel patent classification is applied to monitor competing technologies.
� Up-to-date geographical, organizational, and qualitative insight is given.
� Redox flow patenting shows strong growth, lithium also strong absolute numbers.
� Revealed patents allow the expectation of improved modules in the future.
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Due to the suitability to balance the intermittency in decentralized systems with renewable sources, elec-
trochemical energy storage possibilities have been analyzed in several studies, all highlighting the need
for improvements in relevant techno-economic parameters. Particularly a reduction in the costs per cycle
is much needed, which could either come from innovation in more cost-efficient manufacturing methods,
a higher endurance of charge/discharge sequences or higher capacities. Looking at patent applications as
a metric allows us to determine whether the necessary technological progress is indeed occurring, as the
mandatory publication of the underlying inventions provides access to otherwise hidden R&D activities.
Our paper contributes to the literature with a compilation of technological classes related to important
battery types in the novel Cooperative Patent Classification (CPC), which can be used to identify relevant
patent applications of the competing technologies. Using the worldwide patent statistical database (PAT-
STAT), we find that promising technologies have been showing increasing patent counts in recent years.
For example, the number of patent applications related to regenerative fuel cells (e.g. redox flow batter-
ies) doubled from 2009 to 2011. Nevertheless, the volume of patent filings in technologies related to lith-
ium remains unchallenged. Patent applications in this area are still growing, which indicates that the
introduction of improved modules will continue. Using citation analysis, we have identified important
patents and organizations for relevant candidate technologies. Our study underlines that electrochemical
storage, and in particular lithium-based technologies, will play an increasingly important role in future
energy systems.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

1.1. The importance of innovation research in energy storage
technologies

The diffusion of intermittent renewable energy sources reveals
the lack of appropriate decentralized energy storage solutions for
grid support and residential applications. The effects of intermit-
tent energy sources start to become visible on a national scale
for countries with high penetration of renewable energies. While
increasingly frequent periods of negative electricity prices [1],
caused by temporary oversupply, may only seem bizarre, it under-
lines the importance of energy storage to prevent inverse events of
electricity shortage, which could jeopardize grid stability. Due to
the suitability for the desired decentralized structure, electro-
chemical energy storage possibilities have been analyzed in several
studies, all highlighting the need for improvements in relevant
techno-economic parameters [2–6].
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To support the much-needed progress, understanding innova-
tion in electrochemical energy storage revealed in patents is an
important research, as well as public policy, issue for several rea-
sons: firstly, as the economic potential for further improvements
is tremendous, it is likely that novel ideas are first patented before
scientifically published, if at all. Consequently, it is likely that
important know-how concerning batteries is revealed in patents.
Secondly, policy-makers considering financial support for energy
storage need to have information on the innovative performance
in their respective jurisdictions, as this is essential for a well-
informed decision about optional technology push or market pull
subsidies. The same is true for venture capitalists and capital mar-
kets, which are important to bring products from initial R&D to
product development. Thirdly, grid designers and (renewable)
energy scenario researchers need to know, whether and which,
electrochemical energy storage systems could dominate markets
in the future. Moreover, the scholarly literature on innovation in
energy storage has, up to this point, only encompassed technolo-
gies relevant for electric mobility registered at the United States
Patent and Trademark Office (USPTO) [7]. Further research drawing
a global, organizational and qualitative perspective including tech-
nologies relevant for stationary energy storage is therefore a press-
ing need as ‘‘energy storage is very much the key to unlocking the
door of renewable energy’’ [5].

1.2. Electrochemical energy storage technologies

Over the past few decades, differences in supply and demand in
electricity grids have already had to be matched. To store the
excess capacity at night and ensure availability during high con-
sumption hours, energy has been stored in the gravitational poten-
tial using hydropower plants for many decades. Storing significant
amounts of energy, however, requires large facilities which have a
strong impact on the local environment. Furthermore, not all coun-
tries have the geographical profile to build pumped hydro storage
plants [6].

Following the transition in the energy generation technology, a
structural change from a centralized to a more decentralized sys-
tem architecture has also been initiated by the introduction of
feed-in tariffs. Production of energy at the location of consumption
reduces the necessity of electricity transmission through grids. As
transmission costs can comprise up to a third of present-day con-
sumer electricity fees, a decentralized system architecture has eco-
nomically significant advantages. The financial support by feed-in
tariffs worldwide has led to a rapid increase in installed renewable
energy capacities. This has caused new record values for renewable
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Fig. 1. (a) Installed renewable energy generation capacity per nominal power of individ
small systems contribute substantially to the overall generation capacity, showing the h
spot market prices on a Sunday with low demand and record renewable energy values (
energy generation, such as for example more than 73% of the
national supply on May 11, 2014 in Germany [8,9]. Fig. 1(b) shows
the total German energy production and consumption series for a
week including a record day in 2013. On June 16, 2013, where
renewable energy accounted for 60% of the power, wind energy
contributed with approximately 9 GW and photovoltaics with
20 GW. With spot prices assuming negative values, it becomes
apparent that already at the present renewable ratios, matching
supply and demand becomes increasingly difficult. Next to just
meeting demand and supply, it has also been pointed out that
power quality becomes a problematic topic with increasing shares
of renewables [10].

When analyzing the size distribution of registered renewable
energy plants in Germany as shown in Fig. 1(a), it can be seen that
all categories – from small kW sized to large MW sized plants –
contribute substantially to the overall capacity. Thus, also
small- to mid-scale storage systems are needed. Due to their high
modularity, electrochemical energy storage in batteries is an
important alternative to mechanical and other technologies, such
as superconducting magnetic storage, for example.

In the 90s, alkaline, NiCd and NiMH batteries were very com-
mon among secondary cells [2]. With the advent of mobile elec-
tronics, they entered many households in flashlights, wireless
phones and other devices. By combining several thousand cells, a
MW ranging energy storage project had already been realized in
2003 (e.g. [11]). Due to the maturity of the technology, NiCd and
NiMH secondary cells are therefore candidates which remain to
be monitored.

In starter batteries of internal combustion engine vehicles, lead-
acid batteries are widespread and have gained broad market
diffusion. In China for example, lead-acid batteries have had the
greatest share in usage for PV/wind systems. This can be explained
by their maturity and cost competitiveness [17].

Increasing requirements in energy density by consumer elec-
tronics due to the advent of laptops and smartphones have caused
the widespread use of lithium batteries. Next to their high density
[20], also the high efficiency of more than 90% [4] renders lithium
batteries a promising technology.

Redox flow batteries represent an interesting novel approach to
storing larger quantities of energy electrochemically. Due to the in
principle high number of cycles, cost competitiveness could be
achieved. Also, the storage tanks have very good scalability, ren-
dering flow batteries ideal for larger quantities [4].

Yet another possibility, which is relevant particularly for grid-
scale application, is sodium-sulfur batteries, operating at high tem-
peratures. The suitability for large powers, the high efficiency on
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ual plant in Germany as of December 31, 2012 (data from [12]). It is apparent that
igh degree of decentralization. (b) Overall German power profile showing negative
depiction following [13], data sources: load [14], production [15], spot prices [16]).



Table 1
Important techno-economic parameters of investigated technologies (data for 1st,
3rd, 4th, and 5th row taken from [18]; 2nd row values stem from average values for
NiCd from [19]).

Technology Capacity costs (€/kW h) Cycles Efficiency (%)

Lithium 844 10,250 90
Alkaline, NiMH, NiCd 600 1500 73
Lead-acid 171 1250 82
Sodium-sulfur 256 3333 81
Redox-flow batteries 398 13,000 75
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short timescales, as well as a high number of total cycles before
failure, renders them attractive for utility scale load leveling appli-
cations. A serious fire event [4,21] has, however, resulted in a
sudden decrease in interest.

Of crucial importance for the profitability in applications are the
battery costs per cycle [22]. Table 1 shows typical values which
have been obtained from previous literature [18,19]. One of the
first applications where battery operation is expected to become
financially attractive are so-called island or micro grids. In such
environments, average levelized costs of electricity (LCOE) have
been calculated as high as 38 €ct/kW h [23], in certain scenarios
even exceeding 1 $/kW h [24] due to the dependence on diesel
generators. In established grids of developed nations, LCOEs are
however much lower. Here, the costs per cycle have to be consid-
erably cheaper to enable a broad diffusion. Determining the most
cost effective technology for an application highly depends on
the expected required amount of cycles. In low frequency applica-
tions, technologies supporting less cycles can be favorable, if they
are considerably cheaper (e.g. lead-acid). By contrast, in applica-
tions with higher frequencies, technologies comparably expensive
per kW h (e.g. lithium ion) but supporting the required amount of
cycles can be effectively cheaper [18]. For community scale energy
management Battke et al. [18] cite 100 €/MW h as the electricity
price and calculates LCOE of 0.25 €/kW h for lead-acid, 0.27 €/
Table 2
Investigated technologies and their corresponding CPC classes. % denotes the wildcard for

Technology CPC subclass

Lithium H01M
Y02E
Y02T

Alkaline, NiMH, NiCd H01M
Y02E

High-temperature batteries (e.g. sodium-sulfur) H01M
Lead-acid H01M

Y02E
Y02T

Regenerative fuel cells (e.g. redox flow batteries) H01M
Y02E
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Fig. 2. (a) Total number of identified patent families of investigated technologies across
2011 is truncated due to the confidentiality period of applications (18 months, grey sha
Total number of identified patent families per continent of applicant country. Russia an
kW h for lithium-ion, 0.17 €/kW h for sodium-sulfur, and 0.18 €/
kW h for vanadium redox flow. For other applications (e.g. increase
of self-consumption by end users), much higher costs are given.
Thus, LCOEs still have to drop considerably so that an application
in established grids becomes financially attractive. Next to econo-
mies of scale, inventions for more cost-effective manufacturing
methods, a higher number of supported cycles, and/or higher
capacities (with otherwise undegraded parameters) are particu-
larly needed to achieve competitiveness with conventional grid-
based systems. Only strongly researched and manufactured tech-
nologies can hence be expected to approach relevant performance
regimes. For trustworthy scenario forecasts, it is thus essential to
know where progress is currently happening.
2. Selection of relevant patents with the novel Cooperative
Patent Classification (CPC)

2.1. Previous innovation research in energy

For novel technologies, not yet sold in substantial units, little to
no data is available, as firms usually seek to hide their research and
market entry activities from competitors. Forecasting which of sev-
eral candidate technologies might reach attractiveness due to
economies of scale is therefore difficult. Next to R&D investment
data on a country level (as published by the International Energy
Agency and used in [25], for example), the only metric – particu-
larly for the private sector – is patent data [26].

To identify favorable technologies, innovation research in
energy technologies has attracted increased interest [27,28] during
the last years, resulting in valuable insight into concentrated solar
power [29], organic photovoltaics [30], CO2 capture [31], and fossil
fuel technologies [32]. However, there is limited knowledge on
innovation in energy storage. Recently, Lin et al. [7] presented an
investigation for electric mobility. Compared to electric mobility,
literal and logical subgroups (e.g. 10/052% includes 10/0525).
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d Turkey are listed separately, as they are reaching over two continents.



Table 3
Most frequently cited patent families by technology groups as shown in Table 2. Citations were calculated patent-family to patent-family. A patent family is included if at least
one family member is marked with at least one CPC subgroup listed in Table 2 for a technology. A family member of a major patent office (US, EP, CA, GB, DE, JP) and preferably
published in English (thus not necessarily the priority) was chosen for a comprehensive overview in the table.

Forward citations Applicant Publication
number

Publication date Title of patent (application)

(1) Lithium batteries
1337 Cabot US7087341B2 08.08.2006 Metal-air battery components and

methods for making same
662 NanoGram US5952125A 14.09.1999 Batteries with electroactive nanoparticles
542 Angeion US5235979B1 01.11.1994 Dual battery system for implantable

defibrillator
489 William Marsh Rice

University
CA2283502C 14.06.2005 Carbon fibers formed from singlewall

carbon nanotubes
459 Bell Communications

Research
US5296318A 22.03.1994 Rechargeable lithium intercalation battery

with hybrid polymeric electrolyte
352 Medtronic US5439760A 08.08.1995 High reliability electrochemical cell and

electrode assembly therefore
311 Patterning Technologies GB2330331B 10.04.2002 Method of forming a circuit element on a

surface
242 PolyPlus Battery US5523179A 04.06.1996 Rechargeable positive electrode
223 Black & Decker EP1676427A4 02.04.2008 Methods of discharge control for a battery

pack of a cordless power tool system, a
cordless power tool system and battery
pack adapted to provide over-discharge
protection and discharge control

223 Toshiba US6565763B1 20.05.2003 Method for manufacturing porous
structure and method for forming pattern

(2) Alkaline batteries
695 Nanomaterials Research US5851507A 22.12.1998 Integrated thermal process for the

continuous synthesis of nanoscale
powders

662 NanoGram US5952125A 14.09.1999 Batteries with electroactive nanoparticles
302 Alfred Mann Foundation EP1424098B1 03.12.2008 Implantable device with improved battery

recharging and powering configuration
165 Kyanon JP2771406B2 02.07.1998 Secondary battery
127 Ovonic Battery US5344728A 06.09.1994 Compositionally and structurally

disordered multiphase nickel hydroxide
positive electrode for alkaline
rechargeable electrochemical cells

121 Energy Conversion Devices US5096667A 17.03.1992 Catalytic hydrogen storage electrode
materials for use in electrochemical cells
and electrochemical cells incorporating
the materials

106 Energy Conversion Devices US6447942B1 10.09.2002 Alkaline fuel cell
106 Rayovac US5567538A 22.10.1996 Metal-air cell having thin-walled anode

and cathode cans
104 Ovonic Battery US6255015B1 03.07.2001 Monoblock battery assembly
104 Chartec Laboratories EP783200B1 09.07.2003 A method for charging a rechargeable

battery

(3) Regenerative fuel cells – redox flow batteries
116 Reveo US6472093B2 29.10.2002 Metal-air fuel cell battery systems having

a metal-fuel card storage cartridge,
insertable within a fuel cartridge insertion
port, containing a supply of substantially
planar discrete metal-fuel cards, and fuel
card transport mechanisms therein

106 Energy Conversion Devices US6447942B1 10.09.2002 Alkaline fuel cell
89 Texas Instruments US4021323A 03.05.1977 Solar energy conversion
88 Monsanto US3691016A 12.09.1972 Process for the preparation of insoluble

enzymes
85 Luz Electric Fuel Israel WO9202964A1 20.02.1992 Rechargeable electrical power storage unit

for use in electrical transport system
81 Aquanautics EP176446B1 21.07.1993 System for the extraction and utilization

of oxygen and other ligands from fluids
81 National Patent

Development
US5804329A 08.09.1998 Electroconversion cell

77 T and G EP370149B1 26.06.1996 Ionic semiconductor materials and
applications thereof

70 The Penn State Research
Foundation

US7491453B2 17.02.2009 Bio-electrochemically assisted microbial
reactor that generates hydrogen gas and
methods of generating hydrogen gas

66 Bloom Energy EP1620906B1 08.01.2014 Co-production of hydrogen and electricity
in a high temperature electrochemical
system
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Table 3 (continued)

Forward citations Applicant Publication
number

Publication date Title of patent (application)

(4) High-temperature batteries (e.g. sodium-sulfur)
242 PolyPlus Battery US5523179A 04.06.1996 Rechargeable positive electrode
116 Brown Boveri & Cie DE3022449A1 07.01.1982 Elektrochemische Speicherzelle
91 Monsanto US4175153A 20.11.1979 Inorganic anisotropic hollow fibers
65 Brown Boveri & Cie GB1484437A 01.09.1977 Electrochemical storage cell or battery
55 Chloride Silent Power US4383013A 10.05.1983 High temperature multicell

electrochemical storage batteries
52 The Regents of the

University of California
CA2053887C 11.12.2001 Cell for making secondary batteries

51 Powerplex Technologies US4719401A 12.01.1988 Zener diode looping element for
protecting a battery cell

50 Ford Motor US3404035A 01.10.1968 Secondary battery employing molten
alkali metal reactant

50 Robert Bosch US4296148A 20.10.1981 Method to apply multiple layers, including
an electrode layer, on a sintered or pre-
sintered ion conductive solid electrolyte
body

49 Chloride Silent Power US4215466A 05.08.1980 Method of sealing ceramic electrolyte
material in electrochemical cells

(5) Lead-acid batteries
334 Telxon US5773954A 30.06.1998 Battery charging station for shopping cart

mounted portable data collection devices
317 ENSCI US4713306A 15.12.1987 Battery element and battery incorporating

doped tin oxide coated substrate
132 Massachusetts Institute of

Technology
US7553584B2 30.06.2009 Reticulated and controlled porosity

battery structures
129 Lucas Industries GB2080550B 11.12.1985 Battery monitoring system
116 Seiko Instruments EP582173B1 03.06.1998 Non-aqueous electrolyte secondary

battery and its production method
106 Ztek US5858568A 12.01.1999 Fuel cell power supply system
100 Globe-Union US4876513A 24.10.1989 Dynamic state-of-charge indicator for a

battery and method thereof
98 TRW US3566717A 02.03.1971 Power train using multiple power sources
98 Commonwealth Edison US4697134A 29.09.1987 Apparatus and method for measuring

battery condition
98 Hyperion Catalysis

International
AU765403B2 18.09.2003 Graphitic nanofibers in electrochemical

capacitors
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the relaxed energy density requirement in grid and residential
applications also renders technologies such as redox flow cells
and sodium-sulfur batteries interesting. As ‘‘a competition still
exists between the [. . .] analyzed battery technologies and so far
a leading technology has yet to emerge’’ [18], investigating the pro-
gress in these rivalling candidates is thus an important research
gap, which this paper seeks to fill.

Previous research has identified patents of certain technologies
either by searching for relevant keywords [7,30,31], by relying on
technological classifications [32], or by employing an iterative
combination of these two approaches [29]. A major risk of search-
ing for keywords is the inclusion of irrelevant documents (e.g.
describing novel technologies using the modules instead of
describing improved modules) or omitting patents with a too nar-
row set of keywords.

2.2. The novel Cooperative Patent Classification

Selecting patents by technological classes – which all patent
authorities assign to filed inventions – can circumvent this limita-
tion, as the classification is assigned by skilled patent examiners,
experts on patent literature in their technological field. The recent
introduction of the Cooperative Patent Classification (CPC),
between the USPTO and the European Patent Organization (EPO),
allows the technologies (now approximately 250,000 distinct
entries) to be resolved in a more refined manner than in the earlier
International Patent Classification (IPC) [33]. Therefore, employing
the CPC allows analysis of the parallel development with unprece-
dented discernment which so far has been rarely used. Also, major
Asian patent offices – such as the State Intellectual Property Office
(SIPO) of China and the Korean Intellectual Property Office (KPO) –
have announced the introduction of the classification. It can thus
be assumed that the CPC will soon become the internationally
accepted standard for technological classification.

2.3. Energy storage classifications in the new CPC

As batteries are not a new technology as such, there have
already been entries in the IPC, mainly in section H01M i.e. ‘‘pro-
cesses or means, e.g. batteries, for the direct conversion of chemical
into electrical energy’’. More detailed categories in the CPC now
allow the allocation of patents to certain technologies, hereby
enabling this trend study. In addition to the more detailed entries,
the introduction of the class Y for ‘‘general tagging of new techno-
logical developments; general tagging of cross-sectional technolo-
gies spanning over several sections of the IPC’’ and, in particular,
Y02E encompassing technologies for the ‘‘reduction of greenhouse
gases [GHG] emission, related to energy generation, transmission
or distribution’’ enable close monitoring and support of innovation
in these areas. Furthermore, subclass Y02T, i.e. ‘‘climate change
mitigation technologies related to transportation’’, has relevant
entries.

We first searched for applicable CPC sections using keywords.
This led us to the conclusion that relevant groups can be found
in sections H and Y. Here, we manually screened all entries and
assigned them (if at all) to the investigated technologies. Groups



Table 4
Top 10 patent-applicants within technology fields as divided in Table 2. A patent family is included in the underlying calculation if at least one family member is marked with at
least one CPC subgroup listed in Table 2 for a technology. Applicants are ranked by h-index (i.e. where h is the number of patent families with more than h citations for an
applicant). Source of descriptive data (if not otherwise stated) is the ThomsonONE database.

Company h-Index Country Description of company

(1) Lithium batteries
Fuji 39 JP Manufacturer of industrial equipment with a division for power generation and social infrastructure
Matsushita 36 JP Former manufacturing company, now Panasonic
Sony 33 JP Operation of imaging products, games, mobile products and communication, amongst others
Mitsubishi 30 JP Engaged in several business segments, amongst others electronics applications and chemicals
Sanyo 29 JP Energy segment provides solar cells, cells for hybrid automobiles, lithium-ion batteries, amongst others
Toshiba 28 JP Manufacturer digital product, electronic device, social infrastructure and home appliance segments
Samsung SDI 27 KR Engaged in the manufacture and distribution of secondary cells and plasma display panels
Valence Technology 27 US Develops, manufactures and sells energy storage systems utilizing its phosphate-based lithium-ion technology
Canon 27 JP Manufacturing company with office, imaging and industrial equipment segments
NEC 26 JP Diversified company, segments for IT solutions, carrier network, social infrastructure, personal solutions

(2) Alkaline batteries
Matsushita 26 JP Former manufacturing company, now Panasonic
Sanyo 20 JP Energy segment provides solar cells, cells for hybrid automobiles, lithium-ion batteries, among others
Toshiba 19 JP Manufacturer with segments digital product, electronic device, social infrastructure and home appliances
Canon 16 JP Manufacturing company with the segments office, imaging and industrial equipment
Ovonic Battery 16 US Manufacturer of rechargeable batteries, now subsidiary of BASF [38]
Toyota 15 JP Mainly engaged in the automobile business and financial business
Yardney 15 US Supplier of high energy density batteries for air, land, sea and space, subsidiary of ENER-TEK [39]
Energy Conversion

Devices
15 US Engaged in building-integrated and rooftop photovoltaics (PV)

Kawasaki 15 JP Kawasaki Kasei chemical engaged in producing and selling organic acid products, amongst others
Panasonic 13 JP Electronics manufacturer with segments for, amongst others, eco-solutions and automotive systems

(3) Regenerative fuel cells – redox flow batteries
Kansai Electric Power 13 JP Electric power supplier
Sumitomo 13 JP Trading company with metal, transportation, construction, resources and chemical segments, amongst others
Kashima Kita Electric

Power
9 JP Developer of vanadium redox flow battery energy storage system; affiliate of mitsubishi group [40]

Unisearch 9 AU Commercialization organization through which early inventors at the University of New South Wales filed for
patents [41]

United States 8 US NASA patents
Tokuda Nobuyuki 8 JP Inventor
Deeya Energy 8 US Redox flow battery developer, changed its name to Imergy Power Systems in December 2013 [42]
Hughes Aircraft 8 US Former major American aerospace and defense contractor; some parts now owned by Raytheon [43]
Acal Energy 7 GB Developer of low cost Proton Exchange Membrane (PEM) systems used to power fuel cells [44]
General Electric 7 US Diversified technology and financial services company, amongst others power generation

(4) High-temperature batteries (e.g. sodium-sulfur)
Ford Motor 16 US Producer of automobiles
BBC Brown Boveri & Cie 14 CH Group of electrical engineering companies; merged with ASEA to ABB in 1988 [45]
Chloride Group 12 UK Supplier of power solutions, including the manufacture and sale of power supply systems, power conditioners
General Electric 11 US Diversified technology and financial services company, amongst others power generation
Dow Chemical 9 US Connects chemistry and innovation with the principles of sustainability
Asea Brown Boveri 9 CH Engaged in the electrical engineering industry
Electric Power Res Inst 9 US Research on issues related to the electric power industry in USA [46]
British Railways Board 8 GB Responsible for most railway services in Great Britain; transferred to private sector in 1997 [47]
Comp Général Electricité 8 FR Former electric and telecommunication company, now part of Alcatel-Lucent [48]
NGK Insulators 7 JP Engaged in the provision of ceramic products, manufacturer of insulators and sodium-sulfur batteries

(5) Lead-acid batteries
Globe Union 18 US Former producer of automotive batteries, acquired by Johnson Controls in 1978 [49]
Matsushita 14 JP Former manufacturing company, now Panasonic
General Motors 13 US Designs, builds and sells cars, trucks and automobiles parts globally
Gates Energy Products 12 US Developed e.g. sealed lead-acid cells in the 70s [50]
GNB 12 US Now division of Exide Technologies [51]
Gould 11 US Ancestor of GNB [51]
GS Yuasa 11 JP Engaged in the manufacture and sale of batteries and power supply devices
Japan Storage Battery 10 JP Battery manufacturer, merged with GS Yuasa to form Yuasa in 2004 [52]
VARTA 10 DE Manufactures storage batteries for high-tech applications
Chloride Group 10 UK Supplier of power solutions, including the manufacture and sale of power supply systems, power conditioners

542 S.C. Mueller et al. / Applied Energy 137 (2015) 537–544
describing battery technologies without reference to certain
technologies were left out, as they were not useful to our investi-
gation of the relative performance of the energy storage technolo-
gies. Table 2 shows the entries used in the investigation.

3. Development of patent intensity in the investigated
technologies

One patent family is the set of all patent documents, linked by
priority documents, and therefore most closely resembles individ-
ual inventions [32]. We consequently utilized this measure to com-
pare the growth in the investigated technologies based on the
latest available edition (April 2014) of PATSTAT. PATSTAT is a
worldwide statistical database, which is issued bi-annually by
the EPO (in the earlier issues jointly with the Organization for Eco-
nomic Co-operation and Development (OECD)), to gather impor-
tant data from major patent authorities around the globe.
Fig. 2(a) shows the number of identified INPADOC families over
the years of filing for the technologies as grouped in Table 2. Start-
ing from a rather similar level in 1991, patent families relating to
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lithium have grown rapidly until now. The main growth can be
attributed to mobile electronics and electric mobility. In the last
few years, a slight increase can also be seen in lead and sodium-
sulfur, although not to the same extent as lithium. Between 2009
and 2011, patent families in regenerative fuel cell and redox flow
battery technologies doubled. Declining counts can be seen solely
in alkaline batteries.

In the past, patent forward citations have been used to identify
important patents, as it has been shown that valuable inventions
are likely to exhibit an increased number of forward citations
[34]. We thus calculated forward citations (i.e. how many times
family members have been cited by newer patent families) for all
identified patent families. Patents belonging to the 10 highest cited
families are shown in Table 3.

To further gain insight into which organizations or individuals
are driving innovation, we chose to reveal the most important pat-
ent filers within the technologies separately. Solely counting pat-
ents is however susceptible to distortions, if certain actors file
large numbers of low-quality patents [35]. To circumvent limita-
tions of this approach, it is necessary to add a qualitative perspec-
tive. We chose to combine quantitative and qualitative measures
by using the h-index known from bibliometrics for patents [36].
The results of the identified leading applicants in every respective
technological field are shown in Table 4.

3.1. Lithium batteries

Analyzing the applicants with top h-indices in lithium batteries,
it is obvious that Asian firms have a dominating position. The pre-
dominant companies are big Japanese electronic conglomerates
such as Toshiba, Panasonic or Sony, as well as the Korean firm,
Samsung. With respect to highly cited patents, a good ratio related
to lithium consists of inventions disclosing novel methods for var-
ious battery parts, i.e. improved electrolytes, improved electrodes
and novel (mostly nanotechnological) fabrication procedures.

3.2. Alkaline batteries

In the area of alkaline batteries, Japanese companies, together
with some US firms, dominate the list. The company with the high-
est h-index of the US firms, Ovonic Battery, was acquired by the
German firm BASF when its parent company Energy Conversion
Devices, went bankrupt in 2012.

The highly cited patent family ‘‘batteries with electroactive
nanoparticles’’ appearing in the table for lithium batteries has been
marked also as relevant for alkaline secondary cells. Even slightly
more forward citations received the patent family including the
family member ‘‘Integrated thermal process for the continuous
synthesis of nanoscale powders‘‘. Rather related to the application
of rechargeable batteries is the patent family encompassing
‘‘implantable device with improved battery recharging and power-
ing configuration’’, showing that innovation in energy storage is
also driven by medical technologies. The other cell patents are
mostly related to inventions for improved electrodes.

3.3. Regenerative fuel cells – redox flow batteries

Regarding regenerative fuel cells, an almost even mixture
between Japanese and American companies appears in the list.
Sumitomo, a manufacturer of large redox flow batteries, holds a
leading position. In general, much lower h-indices can be seen.
Unlike the lithium technologies, where big industrial conglomer-
ates dominate the list, also start-ups and even individual inventors
are in the top ranks.

A member of the most cited patent family describes a metal-air
fuel cell battery. The other frequently cited patent families describe
different parts of regenerative batteries, from special cell types to
cathodes and anodes to membranes.

3.4. Sodium-sulfur cells

Analyzing the leading institutions in high-temperature cells, the
strong position of Ford becomes apparent. This could be explained
by the fact that they pioneered the development in the 1960s [37].
Also the other leading companies in the list filed their applications
a long time ago. BBC, ranked second, was acquired in 1998 and the
third-ranked Chloride Group was most active two decades ago:
that these companies still lead in h-index analysis suggests that
the technological progress achieved back then has not yet been sig-
nificantly overhauled by current inventions. The highest cited pat-
ent is a lithium-sulfur patent, highly cited due to the dynamics in
lithium. The majority of other patents are comparably old and
relate to inventions about the electrolyte and other material
improvements (e.g. the use of expanded graphite as well as the
production of b-alumina).

3.5. Lead-acid batteries

As mentioned before, the most common application of lead-acid
batteries is as a starter battery in vehicles. This also explains the
large number of automotive supplier companies in the list of top
innovators in lead-acid batteries. Again, the lion’s share of the pat-
ents can be assigned to Japanese and American companies. From
analyzing the top cited patents relating to lead-acid batteries, it
is apparent that some of the patents describe the improved appli-
cation of batteries and not the batteries themselves. This can how-
ever also be seen as a sign of the technology’s maturity.
Nevertheless, there are also a number of patents documenting
improved modules.

4. Conclusion & discussion

The analysis of leading applicants and their countries of origin
has important implications for public policy. A clear dominance
of certain world regions can be seen by the tables in Sections
3.1-3.5. This needs to be considered by local policy makers who
are trying to incentivize further development of storage technolo-
gies. Market-pull subsidies might benefit the now well-positioned
firms, whereas technology-push initiatives could also enable oth-
ers. These results have to be considered in addition to ongoing con-
siderations with respect to demand-pull vs. technology-push
subsidies [53]. The absence of European firms in the ranks for high
h-indices in lithium technologies in any case calls for in-depth
investigations regarding research policy.

In analyzing the most frequently cited patents, it becomes
apparent that these are comparably new in lithium, supporting
the reasoning that there is ongoing innovation dynamics in lithium
technologies. This is in contrast to, for example, sodium-sulfur
where most of the highly cited patents stem from the 80s or even
earlier. Also in absolute patent numbers, (compare Fig. 2) patenting
in lithium technologies shows a surprisingly strong rate compared
to other types of batteries. It appears that the scepticism with
respect to safety – apparent in the application dip in 2007 after
the product recall campaigns of 2006 [54] – has been overcome.
In the future, continued growth could lead to a self-multiplying
effect: the techno-economic parameters of lithium related technol-
ogies could be more attractive compared to others, leading to even
more R&D in this field, thus further improving the performance of
these batteries. We believe that our findings of growing patent
applications in batteries – in particular lithium-based technologies
– are encouraging, as they are indicative of continued module
improvements. In addition, the surge of patents indicates increased
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capabilities in supplying ameliorated cells because of which the
much-needed price reductions can be expected in the future.

We see our letter as a potential starting point for more rigorous
investigations into the innovation of sub-branches in auspicious
technologies, such as lithium-sulfur [55], for example. Further
research could, for example, investigate which technology clusters
are still mainly patented by university applicants and which by
firms, hereby allowing further conclusions on which technologies
might reach market readiness in the near future.

Moreover, it would be worthwhile to investigate the fundamen-
tally different storage technology candidates (such as compressed
air and superconducting magnetic energy storage) for their matu-
rity in comparison to electrochemical cells using the presented
methodology and results.
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