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Compactifications of Picard schemes have been studied by many authors using
different methods. In [CJ], we announced a treatment modeled on Grothen-
dieck’s construction of the relative Picard scheme. Below we provide the details
and also obtain some new finiteness theorems.

Igusa [I], inspired to some extent by Néron [Ne], was the first to study expli-
citly a compactification of a Picard scheme. He began with a Lefschetz pencil of
hyperplane sections on a smooth surface (a general member is a smooth curve
and finitely many members have a node as their only singularity). He defined
the compactification for a singular member as the limit of the Jacobians of the
smooth members using Chow coordinates (and Chow’s construction [Ch] of
the Jacobian). He proved that his compactification was intrinsic in the sense
that, whenever the singular curve was expressed as a limit of nonsingular curves,
its compactified Jacobian was the limit of the Jacobians.

Mayer and Mumford [MM] announced an intrinsic characterization of Igusa’s
compactified Jacobian as a component of the moduli space of rank-1, torsion-
free sheaves. They said that such a compactification could be constructed for
any integral curve using geometric invariant theory. D’Souza [D] obtained
the relative compactified Jacobian for a family of integral curves over a Henselian
(Noetherian) local ring with separably closed residue field by this method, and
moreover he proved that it is flat and that its geometric fibers are integral
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local complete intersections when all the singularities of the curves are simple
nodes or simple cusps.

In [AIK, (9)] it was shown that the relative compactified Jacobian of a family
is flat and that its geometric fibers are integral local complete intersections
whenever the family can be embedded in a family of smooth surfaces, recovering
D’Souza’s result in particular. By contrast, an example is given [AIK, (13)] to
show that the compactified Jacobian may be reducible even for a curve thatis a
complete intersection in projective 3-space.

Namikawa [Na] obtained, using complex-analytic methods, a relative compac-
tified Jacobian for a family of stable curves over C. Seshadri and Oda [SO]
obtained, using geometric invariant theory, various compactified Jacobians
for a reduced but reducible curve over a field.

Below we work with a proper, finitely presented family X/.S over an arbitrary
base scheme S. The key to our approach is a theory of linear equivalence of
quotients of a fixed flat sheaf F. Two quotients of F are considered to be linearly
equivalent if they have the same “pseudo-Ideal’’ locally over S. We represent
the corresponding functor Lin Syst, 5 by a twisted family of projective spaces
P(H(I,F)) associated to a manageable sheaf H(I, F) in the case that I is a simple
sheaf, where “simple’’ means that I is flat and on the fibers its global endo-
morphisms are the constants. Our usage of the term “‘simple’’ was inspired by
Narasimhan and Seshadri’s [NS, Definition 2.1, p. 541].

Assuming the family X/S is flat and projective with integral and Cohen—
Maclaulay geometric fibers, and forming a quotient modulo linear equivalence,
we construct a natural guasi-projective scheme Picy st ; it represents the
étale sheaf Pic(y s, of flat sheaves whose fibers are torsion-free, rank-1, and
Cohen-Macaulay with Hilbert polynomial 8. (As is conventional, we denote the
scheme or algebraic space representing a functor P by P.) In dimension 1, this
scheme is projective, but in dimension greater than 1 it is not, because Cohen—
Macaulayness is not a closed condition. On the other hand, we do represent
by a proper algebraic space, the larger functor Pic(y,g) ) of all flat sheaves whose
fibers are rank-1, torsion-free with Hilbert polynomial §, assuming only that
the geometric fibers of X/S are integral (and not that X|S is flat). We plan in
[CII] to represent Pic(y sty Dy a scheme under these same hypotheses. The
construction will be based on the method Mumford used in [CS, Lectures
19-21] to form a quotient to construct the Picard scheme of a smooth surface.

Some important results on base-change theory are presented in Section 1.
Essential to our theory of compactification is the sheaf H(I, F). We recall its
definition and basic properties, and we give a criterion for it to be locally free.
(Its existence is proved for locally projective maps in [EGATIL,, 7.7.8]. Its
existence for proper maps is stated there without proof. We use the latter result
in our discussion of linear systems and conjugate systems but not in proving
the main representation theorems.) We also prove some basic results for local
Ext’s. Most of the work eomes in defining the base-change map (1.8) and proving
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the property of exchange (1.9). We obtain the latter using a lovely, general
result [OB, 2.2]. It was in fact in this way that we got started. However, the
property of exchange for local Ext’s could also be obtained by extending the
ideas of [EGA IV, , Sect. 12.3; HC, Appendix], and this line of reasoning would
yield a stronger result, namely, base-change in a neighborhood assuming a
surjection along a fiber.

The second section introduces a new finiteness notion, strong quasi-projec-
tivity. An S-scheme X is strongly quasi-projective if it is a finitely presented
subscheme of a [P(E), where E is a locally free Og-Module with a constant
finite rank. Strong quasi-projectivity is useful because projectivity is not a local
property on the base.

We show (2.6) that Quotf; 45, is strongly quasi-projective if X/S is strongly
quasi-projective, under a mild condition on F (automatically satisfied for
F = Oy). The existence of Quot‘(”nx/s) as a locally projective scheme is well
known, although no detailed proof has yet appeared in print. Grothendieck
gave an outline [FGA 221-11] and Mumford worked it out in detail [CS,
Lecture 15] in a special case, the Hilbert scheme for a smooth surface over a
field. However, a careful look at Grothendieck’s construction yields the strong
finiteness.

We carry out and strengthen one of Grothendieck’s constructions of the
quotient for a flat and proper equivalence relation. This construction uses the
Hilbert scheme and we are able to obtain strong finiteness. The basic idea goes
back at least to Chow [Ch] and Matsusaka [M], who used Chow coordinates
in place of the Hilbert scheme; the idea may go back to Castelnuovo (see [M,
p-51] and also [Z, p. 104]). Grothendieck’s construction has never before appeared
in print even in outline, although it was mentioned by Grothendieck [FGA
232-13]. It was briefly outlined privately by Mumford in 1967. Paying careful
attention gives a strong finiteness theorem for the quotient (2.8), apparently
not possible using quasi-sections and not expected even in this case.

Section 3 contains some rudimentary facts we use later about rank-1, torsion-
free sheaves on an integral, algebraic scheme. Lemma (3.4) is the key to our
finiteness results for the compactification.

Section 4 includes a generalization Lin Syst r)y of the functor Lin Syst,
presented in [ASDS], which in turn generalizes a corresponding functor for 1
invertible introduced by Grothendieck [FGA, 232-10] and presented in detail
by Mumford [CS, Chap. 13]. The representability of Lin Syst, y for I simple
and F flat is established in (4.2); the basic ideas are found in [ASDS, 15] but
are clarified and generalized here.

In Section 5 the basic functors are introduced and studied. The functor
Spl(y,s) of simple sheaves is proved separated for the étale topology, and we
work with the associated sheaf. The étale subsheaves of relatively torsion-free,
rank-1 sheaves, of pseudoinvertible sheaves, and of invertible sheaves are
proved open, retrocompact subfunctors of Spl(y/s)cet) - These functors are the
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targets of the “Abel map’’ and its restrictions. The sources are appropriate open,
retrocompact subschemes of Quot(y,y/s) , where almost any F will do. The Abel
map sends a quotient of F to the class of its pseudo-Ideal. The fibers of the Abel
map are linear systems of quotients of F. Using the representation theorem for
Lin Syst(, x) and the freeness criterion for H(I, F), we prove that the Abel map is
proper and finitely presented, compute its relative dimension and give criteria
for its smoothness and projectivity.

The two main representation theorems are proved in Section 6. The key
result is Proposition (6.2), which contains almost all the work. The representing
boils down to forming a quotient of an appropriate open, retrocompact sub-
scheme of a suitable Quot(sy/5) by linear equivalence. From our study of the
Abel map, we conclude that the equivalence relation is representable, smooth,
and proper. Then the quotient theorem (2.8) gives the desired representability
by a strongly quasi-projective S-scheme.

The two main representation theorems are derived from (6.2). The first (6.3)
asserts that the summand of the relative Picard functor Picfy s is represent-
able by a strongly quasi-projective S-scheme when X/S is flat and projective
with geometrically integral fibers. This strengthens Grothendieck’s theorem
[FGA, 232); see also [Al, p. 22 bottom]), which asserts only that the scheme
Pic{y;s)en exists and is locally quasi-projective. Our second ‘theorem (6.6)
asserts that Pic (¥ s, is representable by a strongly quasi-projective S-scheme
when X/S is flat and projective with geometrically integral, Cohen-Macaulay
fibers. In this case, the sheaf F of (6.2) is taken to be the dualizing sheaf w.

In Section 7 we work “on the other side’’ with conjugate systems instead of
linear systems. (The term “conjugate’ was chosen because a common way in
which one quotient G of F is turned nontrivially into another one is via an auto-
morphism of F.) In this way we obtain a smooth equivalence relation on a
retrocompact, open subscheme S-div(zy/s) of Quot(y/5), and the quotient
is the étale sheaf Spl(y/s)et) of simple sheaves. The equivalence relation is not
proper, but Artin’s theorem [A2, Corollary 6.3] implies that the quotient is
representable by an algebraic space Spl/set - No checking of axioms is
necessary here; that work is already done in Artin’s proof. As a corollary we get
that Picyy )5ty 1S, at least, representable by a finitely presented, proper algebraic
space. Mumford’s example [FGA, 236-01] shows it is not always a scheme.

The final section contains our main results; they deal with the case that X/Sisa
family of integral curves. In this case, the functors Pic(y;s) 1 and Picly/s)et
coincide; they are representable by a disjoint union of projective schemes P,, , and
P, parametrizes the torsion-free, rank-1 sheaves with Euler characteristic #n. We
give a rather precise description of the Abel map &/, from Quot(,y/s) to
Picy/syety in (8.4), where w is the dualizing sheaf. It turns out somewhat
surprisingly that Quoty,, ) is the most natural source for the Abel map; the
statements are natural generalizations of familiar statements for the map from
the symmetric powers of the curve to the Jacobian in the smooth case.
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We give, on the other hand, a more precise form of the D’Souza-Rego
theorem (8.6), which asserts that the Abel map from Hilb(y5) to Piciy/s) e is
smooth in degree >>2p — 1 if and only if X/S is Gorenstein. Though there is no
statement yet in print, Rego mentioned in a preprint [Re] that D’Souza proved
the Abel map to be smooth at a nonspecial point if X/ is Gorenstein using formal
deformation theory. Rego proved the converse for large degree by studying the
action of Pic(y/) on its boundary in Pic(y,, . Our proofs are quite different,
being more global in nature.

‘We construct a natural embedding of XS into P_,) where p is the arithmetic
genus. The embedding generalizes the usual map in the smooth case, giving the
Albanese property of the Jacobian, and as expected, it is an isomorphism for
p = 1. We end with an example (inspired by [H]) of the compactified Picard
scheme of a locally projective, but nonprojective family of nodal cubis.

1. SomE Basg-CHANGE THEORY

(1.1) (The Og-Module H(I,F)). Let f: X — S be a finitely presented,
proper morphism of schemes, and let I and F be two locally finitely presented
Oy-Modules, with F flat over S. Then there exist a locally finitely presented
Og-Module H(I, F) and an element k(I, F) of Hom(I, F 545 H(I, F)) which
represent the (covariant) functor,

M — Homy(I, F ®¢ M),

defined on the category of quasi-coherent Og-Modules M, and the formation
of the pair commutes with base change; in other words, the Yoneda map defined
by A(, F),

y: Homy(H(I, F)r, M)— Homy (I, F @5 M), (1.1.1)

is an isomorphism for every S-scheme 7 and every quasi-coherent Op-Module M.
Indeed, the representability is a local quastion on the base S; hence we may
assume S is affine. Then, by [EGA IV,, 8.8.2(ii), 8.5.2(ii), 8.10.5(xiii), and
11.2.6(ii)], there exists a finite-type Z-scheme .S, such that X, I, and F come by
base-change from an analogous triple X, I, and Fy over Sy. Since S, is
Noetherian, a pair (H(I,, F;), h(l,,F,)) representing the functor over S,
exists and its formation commutes with atbitrary base-change. (The represent-
ability results from [EGAIII, , 7.7.8, 7.7.9] in case f is locally projective, and its
compatibility with locally Noetherian base-changes is proved in [EGA III,,
7.7.9). See [ASDS, (12)] for a proof that the formation of Q(F) = H(Oy, F)
commutes with arbitrary base-change; the proof for H(I, F) is analogous.)
For any invertible O,-Module L, there is a canonical isomorphism,

HIQL,F ®L) = H(I,F), (1.1.2)
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because tensoring by L gives a map,
Homy(I, F ®s M) — Homy(I ® L, (F @ L) ®s M),

with an inverse given by tensoring by L.

The Os-Module H(I, F) is obviously functorial in I and F; it is covariant in J
and contravariant in F. Moreover it is clearly right exact in each variable. In
particular, the functor

N— H(I ®s N, F)
is covariant and right exact. So we have a canonical isomorphism,
H(I,F) ® N = H(I ®; N, F). (1.1.3)

(1.2) Lemma. Let X be a scheme and let I be an arbitrary Ox-Module. Then
there exists a surjection | — I in which [ is an Oy-Module such that for each affine
morphism g : Y — X and each quasi-coherent Op-Module F, the pullback g* | is
acyclic for the functor Homy(—, F).

Proof. For any element f in any stalk of J, there is an affine neighborhood U
of the stalk and an element g € I'(U, I) whose image in the stalk is equal to f.
So there are a family of affine open sets U and a sutjection J=]] Jy—1,
where [y denotes the extension by zero (jy)(Oy | U), where j,; denotes the
inclusion of U in X. Then g*J is equal to [ [ J,-1y because pullback commutes
with direct sum and with extension by zero. Hence we have

Homy(¢g* ], F) = [[ Homy(J,-, , F)
= [ Hom,_,,(0,-.,, , F | g{(U))
= [ NeU, F).
Therefore we have
Ext}(¢*],F) = [[H'(¢"'U,F | g'U).

Since g—1U is affine and F is quasi~-coherent, the right-hand side is equal to zero
for ¢ > 0.

(1.3) TueoreM. Let f: XS be a finitely presented, proper morphism of
schemes, and let I and F be locally finitely presented, S-flat Oy-modules. Assume
the relation, :

Extia(I(s), F(s)) = 0,
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holds for some point s € S. Then there exists an open, retrocompact neighborhood U
of s such that H(I, F) | U is locally free with a finite rank.

Proof. Retrocompact means the inclusion map is quasi-compact [EGA
O, , 2.4.1]. Obviously the notion is stable under base-change and obviously
every subset of a locally Noetherian space is retrocompact.

The assertion is clearly local on S, so we may assume S is affine. It then follows
from [EGA 1V,, Sect. 8] and the compatibility of H(I, F) with base-change (1.1)
that we may assume .S is Noetherian. Finally it suffices to show H(I, F) is free
at s, because it is locally finitely presented [EGA O, , 5.4.1]. So we may assume
S is the spectrum of a Noetherian local ring 4 and s is the closed point of S.

Consider the functor,

T(M) = Exti(I, F @ M).

from the category of finitely generated A-modules M to itself. (Note that T()
is finitely generated because f is proper and S is Noetherian [GD, IV, 3.2,

p. 74])
We shall now show that T'(k(s)) is equal to zero. Consider an exact sequence,

0—>K— J—>I-0,

in which ] is as specified in (1.2). Since [ is S-flat, the sequence remains exact
when restricted to X(s). So it yields a commutative diagram with exact rows,

Homy( ], j« F(5)) —— Homy(K, jF(s)) —— EXt}(I,j*F(s)) —s0

Homy(j* ], F(s)) — Homyg(j*K, F(s)) —> Exto(j*I, F(s)) —> 0

where j is the inclusion map of the closed fiber X(s) into X. The two verti-
cal maps are the adjunction isomorphisms. Now, j*I is equal to I(s), and
Extl ,(I(s), F(s)) is equal to zero. Hence Ext}(Z, j,F(s)) is equal to zero. How-
ever, the latter Ext is just T(k(s)).

Since T is half-exact and since T'(k(s)) is equal to zero, T'(M) is equal to zero
for every finitely generated A-module M [OB, 2.1} or [EGA III,, 7.5.3]).
Therefore the functor M — Homy(I, F ®sM) is exact. Thus the functor
M — Homg(H(I, F), M) is exact. Hence H(I, F) is free.

(1.4) LemMAa. Let f: X — S be a finitely presented morphism of affine schemes,
and let I be an S-flat, finitely presented Oy-Module. Then there exists an exact

sequence
0->K—J—>I—>0, (1.4.1)

with K and ] finitely presented and with [ free.
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Proof. By [EGAIV,, Sect. 8], there exists a Noetherian affine scheme
such that all the data descend to S, . Since X, is Noetherian, there exists a
sequence like (1.4.1) on Xj. (On X, we can construct such a sequence with
K finitely generated [CA, I, Sect. 2.8, Lemma 9, p. 21]; on X, any finitely
generated Module is finitely presented.) Since I is flat, the pullback of the
sequence on X, is the desired sequence on X.

(1.5) Lemma. Let X, be an ajﬁne scheme, and let S = lim S, be a projective
limit of Sy-schemes S. Let f, : X, — S, be a finitely presented morphism, let I,
and F be locally finitely presented Os -Modules, and let X = lim(X)), I =1im (),
and F = limy(F)) be the natural limits induced. Fix an integer q. Assume that I is
So-flat if ¢ =1 and that X is Sy-flat if q > 2. Then there is a canomical iso-
morphism,

lim Ext},(7, , F,) = Ext%(I, F).
Proof. 'The assertion is local, so we may assume X, and the S, are affine.
The proof now proceeds by induction on ¢ > 0.

For ¢ = 0, the assertion results from [EGA IV,, 8.5.2 (i)].
Consider the case ¢ = 1. By (1.4) there exists on X|, an exact sequence,

0—>Ky,— Jo—1I,—~0, (1.5.1)

with [, and K, finitely presented and with J, free. Since I; is Sy-flat, (1.5.1)
induces analogous exact sequences on the X, and X. They yield diagrams with
exact rows and commutative right squares because the J, are acyclic,
Homx)‘(];‘ ,Fa) —> HomXA(K/\ ,F,\) ————>Ext§(/\(1,\ y F,\) —_— 0
1
i (1.5.2)
\
Homy(J,F) ——— Homy(K,F) ———> Exty(I,F) —— 0.
Induced are the dotted maps. The result for ¢ = 0 now yields the result for
=1
Consider the case ¢ >> 2. The sequence (1.5.1) yields diagrams,
Exty (K, , F)) —~ s Ext? x/\(I 2o F)
i (1.5.3)
xtL YK, F) ———> Ext%(], F).
Induced are the dotted maps.

Since X is Sy-flat, the free Oy -Module J, is also Sy-flat. Hence since I, is
S,-flat, K is also. Therefore, by induction on g, the left-hand vertical maps in
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(1.5.3) induce an isomorphism in the limit. Hence, so do the right-hand vertical
maps.

The dotted arrows in (1.5.2) and (1.5.3) do not depend on the choice of the
exact sequence (1.5.1) because any two such sequences are homotopic since
Jo is free.

(1.6) Lemma. Let A be a ring, let B a finitely presented A-algebra, and let M
and N be finitely presented B-modules. Fix an integer q. Assume that M is A-flat if
¢ = 1 and that B is A-flat if ¢ = 2. Then there is a canonical isomorphism,

Extz(M, N)~ = Extg(M, N).

Proof. 'The case ¢ =0 is proved in [EGA I, 1.3.12, (ii)]. The rest of the
proof is straightforward and similar to that of the preceding lemma.

(1.7) LemMma. Let f: X — S be a finitely presented morphism of schemes, and
let I and F be locally finitely presented O y-Modules. Fix an integer q. Assume that I
is S-flat if ¢ > 1 and that f is flat if g > 2. Then there exists, for each base-change
morphism g : T — S and each quasi-coherent Or-Module M, a canonical “adjunc-
tion”’ isomorphism,

Exty(I, (1 X £)4(F @5 M))—> (1 x g)«Ext(Iy,F ®sM). (1.7.1)

It is compatible with further base-change and with passage to limits like those in
(1.5). (If the formation of (1 X go)s(Fo ®s, Mo) does not commute with the transi-
tion maps S, — S; , then the type of imit is slightly different from that in [EGATIV, ,
Sect. 8] but is a natural generalization of it.)

Proof. For ¢ = 0, the isomorphism (1.7.1) comes from the usual adjunction
isomorphism [EGA 0,, 4.4.3.1]. The compatibilities are straightforward. For
general g, the construction is straightforward, following the line of reasoning
of (1.5). The compatibilities follow, similarly, from those for ¢ = 0.

(1.8) (The base-change map for local Ext’s). Let f: X — S be a finitely
presented morphism of schemes, and let I and F be locally finitely presented
Ox-Modules. Let g: T S be a morphism, and let M be a quasi-coherent
Or-Module.

The canonical map,

F— (1 X gl X g)*F,
induces a map,

Exty(I,F) ®s M —~Exti(, (1 X g)«(1 X 2)*F) ®s M.  (1.8.1)
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On the other hand, writing out the canonical map R(O;) ®s M — R(M) with

R(M) = (1 x g)*Exti(/, (1 X g)«(F ®@sM)),

we get

Exty(I, (1 X £)«(1 X 2)*F) ®@s M — (1 x g)* Ext}(, (1 X £)(F ®s M)).
(1.8.2)
Assume that [ is S-flat if ¢ >> | and that f is flat if ¢ >> 2. Then composing
(1.8.1) and (1.8.2) with the adjoint of (1.7.1) yields a canonical base-change map,

¥(M): Exty(I, F) @s M— Ext% (I ,F ®s M).

It is straightforward to check that 49(M) commutes with restriction to an open
subscheme of S, to a subscheme Spec(Oy), and to other localizations of S.

It is straightforward to check that %) is compatible with further base-
change and with passage to limits like those in (1.5).

If the base-change g : T'— S is flat, then the base-change map 5%Oy) is an
isomorphism. Indeed, this assertion is local on S, X, and T, and it is true in the
affine case by (1.6) and [GD IV, 3.1, p. 73].

(1.9) TrEOREM (property of exchange for local Ext’s). Let f: X— S be a
finitely presented morphism of schemes, and let I and F be locally finitely presented
Oy-Modules. Assume F is S-flat. Fix an integer q. Assume (a) I is S-flat if ¢ = 1
and (b) f is flat if ¢ > 2. Fix a point s € S and a point x € X(s). Assume that the
base-change map to the fiber,

b(k(s)): Exti(I, F) ®s k(s) — Exti(I(5), F(s)),

is surjective at x. Then,
(i) For every map g : T— S and every quasi-coherent Op-Module M, the
base-change map by(M) is an isomorphism at every point of (1 X g)(x).
(ii) The following three statements are equivalent:
(1)  bv-Yk(s)) is surfective at x. ‘
(2) bY(M) is an isomorphism at every point of (1 X g) Y (x) for every g
and every M. ‘
(3) Exty{l, F)is S-flat at .

Proof. (i) Clearly we may assume S and X are affine. Write S as a limit,
S = lim S, , where each S, is the spectrum of a finitely generated Z-algebra. We
may assume by [EGA IV, , Sects. 8, 11] that for each A, there exist a finitely
presented S)-scheme X, and locally finitely presented Oy -Modules I, and F),
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descending X, I, and F, satisfying the properties (a), and (b),, analogous to
(a) and (b), and with F) flat over S, .
Consider the maps,

b(k(1)): Extiy(I) , ) ®s) (1) = Extiop(I(5:), F(s))),

where s, is the image of s in S, . "Their limit is equal to 4%(k(s)) by virtue of (1.5).
Now, Ext s (I(s), F(s)). is finitely generated because X(s) is Noetherian and
I(s) and F(s) are locally finitely generated [GD, IV, 3.2 (i), p. 74]. Since b(k(s)), is
surjective, there exists a u such that the image of b%(k(s,)),, contains elements
whose images in Ext% ¢ \(I(s), F(s)),, generate, where x, denotes the image of x in
X, . However, the map,

Ext,, ) ((s.), F(5.)) Qrcs,) k(s) = Extio(1(5), F(5)),

is an isomorphism because this base-change map is flat. Hence these elements
generate Ext} s (1(s,), F(s.))s - Therefore b%(k(s,)) is surjective at x, . Thus all
the hypotheses descend, and so we may assume S is Noetherian.

Let g : T— S be a morphism, and let M be a quasi-coherent Op-Module.
To check that b%(M) is an isomorphism at every point of (1 X g)'», we may
clearly assume S = Spec(0,), X = Spec(0,), and T = Spec(O,) for ¢ € g~1(s).

Define a functor from the category of O,modules N to the category of O,-
modules,

R(N) = Extg (I, , F, ®o, N).

It is easy to see that R commutes with direct limits. Moreover, if N is finitely
generated, then R(N) is also finitely generated [GD 1V, 3.2 (i), p. 74].
Since b%(k(s)), is surjective, the natural map,

R(O;) ®o, k(s) — R(k(s)),

is surjective. Moreover, the (unique) maximal ideal of O, contracts to the
(unique) maximal ideal of O . Therefore, by [OB, 4.1], the map,

R(O) ®o, N — R(N), (1.9.1)
Writing out (1.9.1) for N = M, , we get
Ext% (I, F,) ®o, M, —> Exty (I, , F, ®o, M)). (1.9.2)

On the other hand, taking the stalk at x of the adjunction isomorphism (1.7.1),
we get

Extb (L, , Fy ®o, M) —> Ext}y g0l ®o, Oy, Fr @0, My).  (1.9.3)

Putting together (1.9.2) and (1.9.3), we see that 5%(3) is an isomorphism.
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(i) The implication (1) = (2) holds by (¢). For the implications (2) = (3)
and (3) = (1), clearly we may assume S = Spec(O,). Let 0 - M'—~ M ->
M’ — 0 be an arbitrary exact sequence of quasi-coherent Og-Modules, and
consider the following diagram, with two commutative squares and exact
lower sequence:

ExtyY(I, F) @ M % Exts(I, F) @ M" — Exti(I,F) @ M’ * Exti(I,F) ® M

M) b-YM”) ~ | DUM") ~ | PUM)
Exty (I, F ® M)— ExtyY(I,F @ M")—Ext{(I,F ® M')— Ext}(I,F ® M)

The maps b%(M’) and b%(M) are isomorphisms at x by ().

Assume (2). Then, in particular, b*-}(M) and b?-(M") are isomorphisms at x.
On the other hand, u is surjective by the right-exactness of tensor product.
Hence v is injective at x. Therefore, since every O,-module NV is the stalk of some
quasi-coherent S-module M (indeed, take M = N'), (3) holds.

Assume (3). Then v is injective at x. Take M = O, and M" = k(s), which is
permissible because s is now a closed point. Then b¢-1(M) is obviously an iso-
morphism. Hence (1) holds.

(1.10) TueorEM. Let f: X — S be a finitely presented, proper morphism of
schemes, and let I and F be locally finitely presented Oy-Modules. Assume F is
S-flat. Fix an integer q. Assume that I is S-flat if ¢ > 1 and that f is flat if ¢ > 2.
Then,

(1) Let V denote the set of s € S where we have
Exto((s), F()) = 0.

Then V is open and retrocompact, and for each base-change g : T — S factoring
through V and for each quasi-coherent Op-Module M, we have

Exty (Ir,F ®s M) = 0.
(i) Fix an integer ¢ and let V denote the set of s € S, where we have
Extyo(I(), F(s)) =0 for p=c+1c—1L
Then V is open and retrocompact, the restriction,
Extx(I,F) | f V),

is locally finitely presented and flat over V, and the map b*(M) is an isomorphism
Jor every base-change g : T'— S and for every quasi-coherent Or-Module M.
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(iif) Consider the following functor on the category of quasi-coherent Og-
Modules N:

N>Exti(I,F ® N).

(a) If this functor is right-exact, then the map b¥(M) is an isomorphism
for every base-change g : T — S and for every quasi-coherent Op-Module M.

(b) If this functor is exact, then b%(M) and b*\(M) are isomorphisms
Jor every g and every M and Ext%(I, F) is S-flat.

Proof. (i) Let U denote the set of x € X, where we have

Extiowy((f(x)), F(f(x)) = .

Then the proof of [EGA IV;, 12.3.4] shows that U is open and retrocompact,
although this is not fully stated. (In fact, modified a little, the proof shows that,
for all quasi-coherent Og-Modules N, we have

Exti(I,F @ N)| U =0.) (1.10.1)

It is easy to prove that, because f is proper and finitely presented, the set ¥ of
points s € S such that f~!(x) lies in U is open and retrocompact. The assertion
now follows from (1.9(i)) or from (1.10.1).

(ii) By (i) the set I is open and retrocompact. By (1.9(ii)) applied twice,
first with ¢ = ¢ + 1 and then with ¢ = ¢, the restricted Ext is flat over ¥ and the
map b%M) is an isomorphism for every g factoring through V and for every M.

Finally, the assertion of local finite presentation is local on S and is compatible
with base-change. So we may assume S is affine and by [EGA IV, , Sects. 8, 11]
Noetherian. Then the assertion holds by [EGA 0,;,, 12.3.3].

(i) (a) Let s be an arbitrary point of S, and consider the canonical
morphism,

g T = Spec(k(s)) — S.

Obviously g is quasi-compact and quasi-separated; hence, g,%(s) is quasi-
coherent [EGA I, 6.7.1]. Consider the exact sequence,

Og 2> g k(s) —> Coker(u) — 0,

in which # is the comorphisms of g. The terms of the sequence are all quasi-
coherent. Hence, by hypothesis, the induced sequence,

Exty(I, F) —Ext¥(I, F ® g.k(s)) — Extk(I, F ® Coker(x)),
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is exact. Localizing at s, we get an exact sequence,
Ext} (I, ,F,)—>Exty(I,,F, ® k(s)) >0,

because, obviously, Coker(x) is zero at s. Hence, in view of the adjunction iso-
morphism (1.7.1),

Exty (I, ,F, ® k(s)) — Extx,(I(s), F(s)),

the base-change map to the fiber b%(k(s)) is surjective. Since b%(k(s)) is surjective
for every s € S, assertion (a) holds by (1.9,(iii)).

(b) The hypothesis that Ext}(I, F ® N)is exact in N for p = ¢ ob-
viously implies that it is right-exact in N for p = ¢, ¢ — 1. (In fact, the two are
equivalent.) Hence by (a) the map b?(M) is an isomorphism for every g and every
M for p = ¢, ¢ — 1. In particular, taking g to be the canonical map, Spec(k(s)) —
S, we get that b?(k(s)) is surjective for every se S for p =¢, ¢ — 1. Hence
Ext}(I, F) is flat by (1.9(ii)).

2. QUOTIENTS

(2.1) DeFinTION. A morphism of schemes f: X — S, or X/S, will be
called strongly quasi-projective (resp. strongly projective) if it is finitely presented
and if there exists a locally free O;-Module E with a constant finite rank such
that X is S-isomorphic to a (retrocompact) subscheme (resp. closed subscheme)

of P(E).

(2.2) Exampres. (i) A finitely presented, quasi~projective (resp. projective)
morphism f: X — § is strongly quasi-projective (resp. strongly projective) if
S is quasi-compact and quasi-separated and admits an ample sheaf, for example,
if S is affine or quasi-affine.

Indeed, S can be embedded in an S-scheme P(F), where F is a quasi-coherent,
locally finitely generated Og-Module [EGA I, 5.3.2]. Now, F is a quotient of a
locally free Og-Module E with a constant rank because S is quasi-compact and
quasi-separated and admits an ample sheaf [EGA IV, 1.7.14]. Thus X can be
embedded in a suitable P(E).

(ii) A flat, finitely presented, projective morphism f: X — S is strongly
projective if there exist a relatively very ample sheaf O(1) and an integer
n > 1 such that A%(X(s), Oy(,y(n)) is bounded and A(X(s), Oy(,(n)) is zero for
allse S.

Indeed, f,Oy(n) is locally free with a bounded rank on S. Hence, adding
appropriate free summands OP" on the various connected components of S

607/35/1-5
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produces a locally free Og-Module E with a constant rank and a surjection E —
J+xOx(n). Hence, since Oyx(n) is relatively very ample [EGA II, 4.4.9(ii)], it
defines an S-embedding [EGAII, 4.4 4],

X & P(f4Ox(m)) — P(E).

Thus X/S is strongly projective.

(i) Let f: X— S be a flat, finitely presented, projective morphism
whose geometric fibers are reduced, connected, and equidimensional. Fix a
relatively very ample sheaf Oy(1). Assume the fibers X{(s) have only a finite
number of distinct Hilbert polynomials. Then f is strongly projective.

Indeed, we shall show below that there exists an integer 7 given by a universal
polynomial in the coefficients of its Hilbert polynomial such that each Oy is
m-regular. Then the assertion will follow from (ii).

To complete the proof, we may assume S is the spectrum of an algebraically
closed field. Since X is reduced and connected we have A%X, O;) = 1. So
(X, Ox(—1)) 1s equal to zero [SGA 6, 6.5, p. 655]. Hence it follows from
[SGA 6, 2.10, p. 630] that Oy is a (0, deg(X))-sheaf if X is one-dimensional.
Assume dim(X)>>2. Then by Bertini’s theorem there exists a reduced, con-
nected, equidimensional hyperplane section ¥ of X and the coeflicients of its
Hilbert polynomial are among those of the Hilbert polynomial of X [SGA 6, 1.7,
p. 620]. So, by induction on dim (X), clearly Y is a (0,... 0, deg(X))-sheaf.
Hence X is a (0,..., 0, deg(X))-sheaf. Therefore a suitable m exists so that Oy is
m-regular [SGA 6, 1.11, p. 621].

(iv) (pointed out privately by Lensted) A proper, flat, finitely presented
family of Gorenstein, geometrically integral curves with the same arithmetic
genus p % 1 is strongly projective. Indeed, w§y% is very ample if p >2 and
wis i8 if p = 0, where wy, is the dualizing sheaf (6.5); hence strong projectivity
holds by (iii).

By contrast for p = 1 the corresponding statement fails: There is a locally
trivial, proper but nonprojective family of nodal cubics over the projective line;
moreover, each finite set of points lies in some affine, open subset ([H]; see also
Example (8.11)).

(2.3) Lemma (flattening). Let f: X — S be a finitely presented, locally
projective morphism of schemes, and let F be a locally finitely presented Oy-Module.
Let ¢(n) € Q[n] be a polynomial. Then there is a retrocompact subscheme Z of S
such that a map T — S factors through Z if and only if Fy. is T-flat with Hilbert
polynomial ¢ on the fibers.

Proof. The assertion is clearly local on the base, so we may assume S is
affine. By [EGA IV, Sect. 8] there is a Cartesian diagram,
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X1, X,

| o |

S—% 58,

with S, Noetherian and X, projective over S, , and there is a coherent Ox,-
Module F,, whose pullback to X is equal to F.

There exists a locally closed subscheme Z, of S, such that a map R — S,
factors through Z if and only if (F), is flat over R with Hilbert polynomial ¢
by [FGA, Lemma 3.4, p. 221-14]. (Mumford [CS, Lecture 8] gives a more
detailed discussion but deals only with Noetherian R.)

Set Z =uYZ,). Then Z is a retrocompact subscheme of S, and a map
T — S factors through Z if and only if Fy is T-flat with Hilbert polynomial
¢ on the fibers.

(2.4) LeMmMA. Let X be a projective scheme over a field, and fix a very ample
sheaf Ox(1). Let 0 —>I—>F— G —0 be an exact sequence of coherent Oy-
Modules. Let

x(F(n)) = z f (” T ’) and  x(G(m)) = igs (" T i)

i=0 =0 1

denote the Hilbert polynomials of F and G. AssumeF is a b-sheaf for b == (b, ,..., b,).
Then 1, F, and G are m-regular for all m > m, , where my ts the value of a universal
polynomial in the b, , f;, g.. (For the definitions of b-sheaf and m-regular, see
[SGA 6, 1.5, p. 619, and 1.1, p. 616].)

Proof. Clearly there is a relation,

Xt =3 (i —e) (*T7).

Moreover, I is also a b-sheaf by [SGA 6, 1.6(ii), p. 619] because it is a subsheaf
of a b-sheaf. So, there exists an integer m, given by a universal polynomial in
the b, , f; , and g, such that I and F are m-regular for all m > my by [SGA 6, 1.11,
p. 621].

For each m and each g, there is an exact sequence,

HYX, F(m — q)) - H(X, G(m — q)) > H*Y(X,I(m + 1 — ¢ — 1)).
Hence G is also m-regular for all m > m, .

(2.5) DerFiniTION. Let f: X — S be a finitely presented morphism of
schemes,-and let F be a locally finitely presented Ox-Module. Define the pseudo-
Ideal I(G) of an S-flat quotient G of F as the kernel of the canonical surjection
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F — G. (Note that the formation of J(G) commutes with base-change because
G is S-flat.)
Define a functor Quotzy,s) as follows. For each S-scheme T, let

Quot(r/x5(T)

be the set of locally finitely presented, 7-flat quotients of - whose support is
proper and finitely presented over T.

Let ¢ be a polynomial (with rational coeflicients). Define a subfunctor
Quot‘{’F/ x/s) Of Quot(r/x/s) as follows. For each S-scheme 7, let

Quotle/x/s(T)

be the set of G € Quots/y,5)(T) with Hilbert polynomial ¢ on each fiber.

(2.6) Tueorem. Let f: X — S be a strongly projective (vesp. strongly quasi-
projective) morphism of schemes, and let F be a locally finitely presented O y-Module.
Assume F is isomorphic to a quotient of an Oy-Module of the form f*B # Oy(v)
Jor some v, where B is a locally free Og-Module with a constant finite rank. Fix a
polynomial $. Then the functor Quotls x/s) is representable by a pair (Q, G),
where Q = Quotly,y.s) is a strongly projective (resp. strongly quasi-projective)
S-scheme and G is the universal member of Quotly x5 (Q)).

Say X is S-isomorphic to a subscheme of P(E), where E is a locally free Og-
Module with a constant finite rank. Then for m > my , where my is the value of a
universal polynomial in the integers rank (B), rank (E), v, and the coefficients of ¢,
the direct image (fg)«G(m) is locally free with rank ¢(m) and there exists an
embedding

& (m)
Q = Quottrxi =P (A (B ® Sym,.n(B))

such that the following formula holds:
Oq(1) = det((fa) «G(m)).

Proof. The proof proceeds by steps. In Steps I-V, we assume X is closed in
P(E). In Step VI we derive the general case from this one.

Step 1. Quotlyy/s) is a closed subfunctor of Quotf.s)0)/p(s)/s) » Where
h : P(E) — S denotes the structure morphism.

Proof. Let T bean S-scheme and let G be an element of Quot$,p) )/ /5)(T)
We must show that there is a closed subscheme 7 of T such that a morphism
R — T factors through 7, if and only if G, defines an element of Quotfy, y/5)(R).
This assertion is clearly local on T and compatible with base-change. So by
[EGA IV,, Sect. 8] we may assume T is affine and Noetherian,
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Let K denote the kernel of the canonical map, (AfB;)(v) —> F;, and let
% : K — G denote the induced map. Clearly G defines a quotient of Fp, if and
only if u, is equal to zero. By (1.1) the map up is equal to zero if and only the
corresponding map,

vr = y Hw)r: H(K, G)r — Og,

is equal to zero. Finally, by [EGA 1, 9.7.9.1] there exists a closed subscheme
Z(v) of T such that R — T factors through Z(z) if and only if v, is equal to zero.

Step II. By Step I we may assume X =P(E)and F = (f *B)(»). In particular,
both X and F are now S-flat. Set

A = Quotls/x/s) -

The sheaf F has the same Hilbert polynomial on every fiber of X/S, namely,
x(F(s)(n)) = c(**t™), where ¢ and (e 4 1) are the ranks of B and E. Moreover, F
is clearly a b-sheaf with b = (0,..., 0, ¢). Hence by (2.4) there exists an integer
myg , given by a universal polynomial in ¢, e, v and the coefficients of ¢, such that,
for each S-scheme T and for every quotient G e A(T), and for each integer
m 2= my, both G and its pseudo-Ideal I are m-regular on the fibers. Fix an
m > m,, and set

G = Grassy(m)(f+F(m)).

Define a map of functors,

P:A-> 9,

as follows. Let T be an S-scheme and take G € A(T). Since G is m-regular on
the fibers, (f7) «G(m) is locally free with rank ¢(m). Since I is m-regular on the
fibers, RY(f;) ,I(m) is equal to zero. So (fr) .G(m) defines a ¢(m)-quotient of
(fr) +«Fr(m), hence a T-point H(G) of ¥ because the formation of f,F(m) com-
mutes with base-change.

Let O denote the universal ¢(m)-quotient of f, F(m) on ¥. Then, on ¥, there
is a natural exact sequence,

0— K —=> (fg)s(Fg(m)) — Q —0,

where K is the pseudo-ideal of Q and u is the natural inclusion followed by the
base-change isomorphism. The adjoint of u gives rise to an exact sequence,

3K 225 Fy(m) —> H(m)— 0,

on X X sg.
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Step III.  Let g: T— % be an S-morphism, and let G be an element of
A(T). Set G' = (1 X g)*H. Then G’ is equivalent to G as a quotient of Fy if
and only if the ¢(m)-quotients g*Q and (f7) G(m) of (f.F(m))r are equivalent.

Proof. Suppose g*¥Q and (fy) «G(m) are equivalent ¢(m)-quotients. Then
there is a diagram with exact rows and commutative right-hand square,

0 K 2 o¥(fg) s Fo(m) £0 0

l \\v\ l: l

0 —— (fr)sx L(m) —— (fr)s Fr(m) —— (fr)x G(m) — 0,

where I is the pseudo-ideal of G and the middle map is the base-change iso-
morphism. The bottom row is exact because, since [ is m-regular on the fibers,
RY(f;) +«I(m) is equal to zero. Hence the dotted isomorphism making the left-
hand square commutative exists.

Taking the adjoint of the lower left-hand triangle yields the commutative
diagram,

()" *K=(1 x g)*f6K

l YA l(,,#)r

(f1)*(fr)x I(m) —— Fr(m).

Since I is m-regular on the fibers, the canonical map,

(Fr)*(fr) +L(m) — I(m),

is surjective by base-change theory and by [SGA 6, XIII, 1.3(iii), p. 616]. So
the image of the lower horizontal map is equal to I(m). Hence the quotient
of Fy(n) it defines is G(m). On the other hand, G’'(m) is clearly equal to
coker((u*);). Thus G’ is equivalent to G.

For the converse, start with the diagram with exact rows and commutative
right square,

(FEK)r 225 Fy(m) —— G/ (m) — 0
N l l
A

0 I(m) Fr(m) G(m) 0.

Induced is the dotted vertical map making the left-hand square commutative.
Taking the adjoint of the lower left-hand triangle yields the diagram with exact
rows and commutative left square,
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0 ——— g*K —=*— g*(fg), F(m) —— g*Q ——> 0

0 ——> (fr)« I(m) —— (fr)s(Fr(m)) —> (fr)x G(m)—>0,

in which the middle map is the base-change isomorphism. Hence the dotted
vertical map exists and is surjective. It is an isomorphism because its source and
target are both locally free with rank ¢(m). Thus g*Q and (fy) .G(m) are equi-
valent ¢(m)-quotients.

Step IV. Let A be the finitely presented subscheme of & such that a map
g+ T — ¥ factors through 4 if and only if Hy is T-flat with Hilbert polynomial
¢; it exists by (2.3). Then we have H, € A(4) and the pair (4, H,) represents A.

Proof. 'The first assertion is clear; so, H,, defines a map of functors,
a: A(T)— A(T).

Take any g e A(T). By Step III with G = (1 X g)*H, the quotients g*Q
and (f7)«G(m) of Fy(m) are equivalent. So the image a{g) = (1 X g) *H deter-
mines the quotient of g*Q, so also g. Thus, a is injective.

Take any G € A(T). Then, by Step II, the map g = &(G) : T — ¥ is defined
such that g*Q is equivalent to (f;) +G(m). By Step III, the element G is equi-
valent to (1 X g)*H. Therefore (1 X g) *H is flat with Hilbert polynomial ¢.
Hence g factors through A, and so a(g) is equal to G. Thus « is surjective, so
bijective.

Step V. We have

f«F(m) = B @ Sym,..(E)

by the projection formula [EGA 0;, 5.4.8] and by Serre’s explicit computation
[EGATII, , 2.1.12]. So the Pliicker morphism is closed embedding,

(m)

9P (\ (B®Sym,.n(E)),

&{(m)

90— A Q-

Hence A4 is strongly quasi-projective, and the final assertion holds. Finally 4 is
strongly projective because the valuative criterion [EGA I, 5.5.8] is satisfied
[EGATIV,,28.1].

Step VI. The quasi-projective case.

Proof. By Step V, the functor Quot{y_ ()/p()s) iS representable by a
L p )/ P!
strongly projective S-scheme, and Quot¥;, y/5) is clearly a subfunctor of
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Quot‘fBP (@PE);s) - S0 it suffices to show that it is a locally closed subfunctor.
This assertion is local on S and compatible with base-change, so we may assume
S is affine and, by [EGA IV, Sect. 8], Noetherian.

Let X denote the scheme-theoretic closure of X in P(E) (it exists by [EGA],
6.10.6]), and letj : X — X be the inclusion. Let F denote the image of the canoni-
cal map Bg(v) — j.(F). Since j is quasi-compact, j.(F) is quasi-coherent and
j«(F)| X is equal to F [EGA 1, 6.9.2]. Then the image F of the canonical map
Bg(v) — j«(F) is locally finitely generated, so locally finitely presented because S
is Noetherian. Clearly F | X is equal to F.

Clearly Quotf; x/s) is a subfunctor of Quotfg, s, . Moreover Quotfy o5,
representable by a closed subscheme Q of Quot‘(”Bp &W/pEys) by Step L.

Set O = Quotfr g5 - Let G denote the universal quotient of F on X x 0,
and let p: X x (0 — O denote the projection. Since p is proper, the subset
Q=0 —p([X — X) x Q] N Supp (G))is open in Q. Clearlyamap g : T—0
factors through Q if and only if the relation,

(1 x &) (Supp(G)) N [(X — X) x T] = g,

holds. Since the support of (1 X g)*G is equal to (1 X g)~* (Supp(G)) by (EGA
0,, 5.2.4.1], the map g factors through Q if and only if the corresponding
element of Quotfy g;s(T) lies in Quotly x/o(T). Thus Q represents

Quotfy/ x/s) - ’

(2.7) CoroLLARY. Let f: X — S be a finitely presented, locally projective
(resp. locally quasi-projective) morphism of schemes, and let F be a locally finitely
presented Oy-Module. Then Quotr,y/s) is representable by a disfoint union of
locally finitely presented, locally projective (resp. locally quasi-projective) S-
schemes.

Proof. This assertion is local on S [EGA 0;, 4.5.5], so we may assume S is
affine and f is projective. The assertion now follows easily from (2.6), from
Example (2.2(i)), and from [EGA 0,, 4.5.4].

(2.8) CoroLLARY. Let f: X — S be a strongly projective (resp. strongly
quasi-projective) morphism of schemes. Then for any polynomial ¢ € Q[T], the
functor Hilb}y s, is representable by a strongly projective (resp. strongly quasi-
projective) S-scheme.

Proof. The assertion follows immediately from (2.6) with F = Oy, with
B = 0O, and withv = 0.

(2.9) TreoreM. Let f: X — S be a strongly quasi-projective morphism of
schemes, and let R be a flat, finitely presented, proper equivalence relation on X.
Assume the fibers of p, : R — X have only a finite number of Hilbert polynomials
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for an embedding of X into P(E), where E is a locally free Og-Module with a
constant rank. Then R is effective, the quotient map q : X — (X|R) is strongly
projective and faithfully flat, and h : (X|R) — S is strongly quasi-profective.
Proof. Step 1. Set H = | | Hilb¢y s, , where ¢ ranges over the finitely many
Hilbert polynomials of p, ; the S-scheme H exists and is strongly projective by
(2.8). Let W denote the universal subscheme of X x ¢H. Since R is a flat,

finitely presented, proper subscheme of X X ¢X, there is a unique map
&: X — H such that the following equation holds:

(1 x gy (W) = R. (29.1)

Step II. Let T be an S-scheme and let x, , x, be two T-points of X. Write
%, ~ x, whenever (%, , x,) € R(T) holds. Then we have

% ~x, ifandonlyif g(x) = g(x,).

Proof. Set R, = (1 X x;)(R)C X x T. Then g(x,) = g{x;) holds if and
only if R, = R, holds, so if and only if R (T") == Ry(T") holds for all T-schemes
T,

Clearly we have the relation,

R(T") = {(x, ) € (X X TYT") | x ~ (1)}

Suppose x; ~ x; holds. Then for (x, t) € Ry(T") we have x ~ x,(t) ~ xy(t).
Since R is transitive, we have (%, t) € Ry(7"). Thus R, C R, holds. So, since R is
symmetric, R, = R, holds. Hence g(x,) = g(x,) holds.

Suppose g(x;) = g(x,) holds. Then Ry(T) = Ry(T) holds. Since R is reflexive,
we have (%, , id) € R)(T). So we have (x, , id) € Ry(T'). Thus %, ~ x, holds.

Step III. For each S-scheme T and for x, , x, € X(T'), we have
x ~xy  if and only if (x;, g(x,)) € W(T).

Furthermore, I, is a finitely presented, closed subscheme of W.

Proof. The first assertion follows immediately from Equation (2.9.1.).
Since H/S is separated, I'; is a closed subscheme of X X ¢H. Then, since R is
reflexive, the first assertion implies the second.

Step IV. 'The projection p: W - H is faithfully flat and quasi-compact, and
I, descends to a finitely presented subscheme Z of H.

Proof. 'The projection p is flat and quasi-compact by definition of Hilbz/s).

Since R is reflexive and so nonempty, p is surjective, so faithfully flat. So, to
descend I'y, it suffices to show that I'; X W and W X xI', coincide in
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W X yW by [SGA 1, VIII, Corollary 1.9, p. 200]. For each S-scheme 7,
there are formulas,

(W X gL N(T) = {(x1, 8(%5), %2, 8(x5)) | %1 ~ X3},
Ty X aWYT) = {(%1, &(x1)s X3, £(x1)) | ®5 ~ %7},

by Step III. Hence, W x ,I'; and I', X W coincide by Step II. Finally, since
finite presentation descends down a faithfully flat, quasi-compact map [EGAIV,,

2.7.1], and since I', is isomorphic to X, the scheme Z is finitely presented.

Step V. 'The map g: X — H factors through Z, and X X ,X is equal to R,
Moreover, the induced map g: X — Z is faithfully flat, finitely presented, and
strongly projective.

Proof. Since Z is the result of descending I',, there is a diagram with
Cartesian squares and exact rows,

Fg XHFy———)HFQ"__’Z

| o

WX oW Wy H

where the vertical maps are embeddings. Hence g factors through Z, and X x ;X
is clearly equal to R.

The map p: W — H is finitely presented and proper by definition of Hilb /s, -
Since W is a subscheme of X x ¢H/H and since X/S is strongly projective, p is
therefore strongly projective. By Step IV, p is faithfully flat. Therefore, g also
has these desirable properties.

Step VI.  The theorem holds, and the induced map g: X — Z is equal to
the quotient map X — (X/R).

Proof. Since g is faithfully flat (Step V) and since it is obviously quasi-
compact, it is universally an effective epimorphism [SGA I, VIII, Corollary 5.3,
p- 213]. Therefore, since X X X is equal to R (Step V), themap g: X — Zisa
quotient map of X by R by Step V. Finally, f: (X/R) — S is strongly quasi-
projective because Z is a finitely presented subscheme of the strongly quasi-
projective S-scheme H.

(2.10) CoroLLARY. Let f: X — S be a locally projective morphism of schemes,
and let R be a flat, finitely presented, proper equivalence relation on X. Then R is
effective, the quotient map is faithfully flat, finitely presented and proper, and the
quottent (X|R) is locally quasi-projective over S.
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Proof. The assertion is obviously local on the base so we may assume S is
affine. Then f is strongly quasi-projective (2.2(i)) and the assertion results from
(2.9).

3. RanNk-1, TORSION-FREE SHEAVES

(3.1) LeMMa. Let X be a geometrically integral, algebraic scheme over a
field k, and let I be a coherent Oy-Module. Then,

(i) 1isrank-1, torsion-free (that is, I satisfies S, and is generically isomorphic
to Oy) if and only if I is reduced (that is, [EGA IV,, 3.2.2], I has no embedded
components, and for each generic point x of Supp(I), we have length (I,) = 1) and
Supp(l) s equal to X.

(it) For any field extension k' of k, the pullback I' of I to X Q) k' 1s rank-1,
torsion-free if and only if I is rank-1, torsion-free.

Proof. Both assertions are obvious from the definitions.
(3.2) Lemma. Let X be a projective scheme over an algebraically closed field.

Fix an embedding of X into a projective space and let Y be a general hyperplane
section of X.

() Let 0—F — G— H—>0 be an exact sequence of coherent Oy-Modules.
Then the restriction,

0>F|Y>G|Y>H|Y—0, (3.2.1)
is exact.
(i1) For coherent Ox-Modules I and F, the canonical map

Homy(I, F)| Y —Homy(I| Y, F|Y)

is an isomorphism.

Proof. (i) Using the snake lemma, it is easy to see that for any Y avoiding
Ass(H), Sequence (3.2.1) is exact.

(it) Construct a presentation E, — E; — I — 0 with each E; a locally free
Ox-Module with finite rank (for example, E; may have the form Oy(—m,)®M:),
The presentation gives rise to a commutative diagram,

0 —> Homy(I,F)| Y — Homy(E, ,F)| Y —— Homx(E, ,F) | Y

0—Homy(|Y,F|Y)— Homy(E, | Y,F| Y)— Homy(E, | Y,F| Y).
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The top row is exact by (i), the bottom row is obviously exact, and the two right-
hand vertical maps are clearly isomorphisms. Hence the left-hand vertical map
is an isomorphism.

(3.3) LemmAa. Let X be an integral, projective scheme over an algebraically
closed field. Fix an embedding of X into a projective space. Let 1 be a nonzero
coherent O y-Module. Then I is rank-1, torsion-free if and only if there exist an
integer m and an embedding of I into Ox(m). Moreover, if I is rank-1, torsion-free,
then I|Y is also rank-1, torsion-free for any general hyperplane section Y of X.

Proof. If I is isomorphic to a subsheaf of O4(m), then clearly I is rank-1,
torsion-free.

Assume [ is rank-1, torsion-free. Then there exists an integer m such that
Hom (I, Oy)(m) is generated by its global sections. Since Hom ([, Oy)is obvi-
ously nonzero at the generic point of X, there exists a nonzero Oy-homo-
morphism u: I — Oy(m). Since X is integral and I is rank-1, torsion-free,
is injective,

The second assertion results from the first and from (3.2(1)).

(3.4) PropPOSITION. Let X be an integral, r-dimensional projective scheme over

an algebraically closed field, with r > 1. Fix a very ample sheaf Ox(1). Let | and F
be rank-1, torsion-free O y-Modules. Set

W) =S a("T) amd oy =Y a("])
(i) There is a formula,
¢, = deg(X).

(i) (a) Assume the relation,

x(F) < x(Jm)  forall n>0.

Then every nonzero map u: | — F is an isomorphism.
(b) Assume the relation,

x(F(m) < x(J(n))  for alln>>0.
Then Homy( ], F) is equal to zero.
(iii) Fix an integer p satisfying

B> py = (6o — @y — a,)]a, .
Set

H =Homy(J,F) and b =/(0,..,0, deg(X)).
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Then H(—p) is a b-sheaf. Moreover, H is m-regular for m > m,, where m, is the
value of a universal polynomial in the integer p and the coefficients of the Hilbert
polynomial of H.

Proof. (i) There is a nonempty open set U of X such that F| U is free
with rank 1 by [EGA 0, 5.4.1]. By Bertini’s theorem, there is a reduced, zero-
dimensional linear space section ¥ of X contained in U. Then since the coeffi-

cients of a Hilbert polynomial slide down under hyperplane slicing [SGA 6,
1.7, p. 620], we have

X(F1Y)m) = ¢, .

Since F | Y is isomorphic to Oy , the coefficient ¢, is therefore equal to 2%(Y, Oy),
so to deg(X).

(ii) (a) Since F is torson-free, # is nonzero at the generic point of X.
Hence, since | is rank-1 and torsion-free, # is injective. Thus u defines an exact
sequence,

0 — J-%» F —» Coker(u) — 0.
The sequence and the hypothesis yield the relations,

s(Coker(u)(n)) = x(F(n)) — x(J(m) <O  forall n>0.
Now, by Serre’s theorem [EGA III, , 2.2.2(iii)], we have the formula,
x(Coker(u)(n)) = %X, Coker(u)(n)): foral =n3>0.

Since A%X, Coker(u)(n)) can never be negative, it must therefore be zero. So,
since Coker(u)(n) is generated by its global sections for 23>0 by Serre’s
theorem, Coker(x) is equal to zero. Thus % is an isomorphism.

Assertion (b) is an immediate consequence of (a).

(i) The proof that H(—p) is a b-sheaf proceeds by induction on 7.
The leading coefficients of y(F(n)) and x(J(x + 1)(n)) are equal by (i). There-
fore the leading coefficient of x(F(n)) — x(J(x + 1)(n)) is equal to ¢,_; —
(@, + a(p + 1)) by an easy computation. (All the coefficients a, ; of x(J(v)(n))
are given by the formula,

a,; = gaﬁi (V —]1 +])

See [SGA 6, 2.10, p. 630] where, unfortunately, a misprint occurs.) The hypo-
thesis on p implies that this leading coefficient is strictly negative. Hence

H(—p — 1) =Homy(J(r + 1), F) has no nonzero global sections by (ii,b).
Thus we have

(X, H(—p)(—1)) = 0. (3.4.1)
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For r = 1, it now follows from (3.4.1) and [SGA 6, 1.8, p. 620] that H(—u) is
a (0, deg(X))-sheaf. For r > 2, take a general (integral) hyperplane section Y of
X. Since the coefficients of a Hilbert polynomial slide down under hyperplane
slicing [SGA 6, 1.7, p. 620], the condition on J|Y and F|Y analogous to
@ > py 18 just the condition p > g ; so it is satisfied. Moreover, J| Y and
F| Y are rank-1, torsion-free by (3.3). So, by induction on 7, the Oy-Module
Homy(J|Y,F|Y)—pu) is a (0,...,0, deg(Y))-sheaf. Now, Hom,(J | Y, F | Y)
is isomorphic to H | Y by (3.2). Therefore H(—p) is a (0,..., 0, deg(X))-sheaf.

The final assertion now follows immediately from the main theorem on

b-sheaves [SGA 6, 1.11, p. 621].

(3.5) ProrosrtioN. Let X be a projective, integral curve over an algebraically
closed field. Let p denote the arithmetic genus, and let o denote the dualizing sheaf.
Fix an integer d. Then,

(i) For each of the following three properties, there exists an invertible
Oy-Module L satisfying it:
(@ B(X,Ly=1and (X, Ly=d+2—pif p—2<d<2p—2.
) X, Ly=p—1 —dand (X,L)=04¢d <p— 2.
() WX, LYy=0and (X, L)y=d+1—pif p—1<d<<2p—2.
(1) There exists a rank-1, torsion-free Ox-Module I of the form I = w ® L,
with L invertible, satisfying the condition

(dy X, D)=p—dand (X, I)=140<d<p.
(iii) For every rank-1, torsion-free O y-Module I, the following statements hold:

() x(I(n)) = n deg(X) + x(I)-
(f) x(I) <p — 1implies K%(X, I) = 0.
(g) x(I) = p — 1 implies either B(X, I) = O or I is isomorphic to w.

Proof. (i) The proof of (a) and (b) proceeds by descending induction on d.
For d =2p — 2, take L = Oy . Then A(X,L) =1 and A{(X,L) =p hold
because X is integral.

Let L be an invertible sheaf satisfying the appropriate conditions for d. Let x
be a smooth, closed point of X, and set

M=LQ®MH,
where #, denotes the Ideal of x. Tensoring the exact sequence,
0— M, — Oy — k(x) >0,
with M and taking cohomology, we obtain the long exact sequence,

0—> HO(X, L)—> HO(X, M)~%> k(x) — H(X,L)-“> H(X, M)—>0. (3.5.1)
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If d < p — 2 holds, the conditions on L obviously imply the conditions on M
appropriate for d — 1. Thus (b) will hold if (a) holds for d =p — 2.

Assume d > p — 2. We shall choose x carefully so that the map % in (3.5.1) is
not injective. Then the conditions on L will obviously imply the conditions on M
appropriate for d — 1. Thus (a) will hold, and so (b) will too.

The map dual to « is, by [GD, IV, 5.5, p. 81], equal to the map

Hom(L, w) <~ Hom(M, w) = .# ,Hom(L, w),

induced by the inclusion of L into M. Since H'(X, L) has dimensiond + 2 -p >
0, there is a nonzero element v in Hom(L, w). Since w has rank 1 at the generic
point % of X, the nonzero map v: L — w is sutjective at 7, so surjective on an
open set U. Take x from U. Then clearly v does not lie in Hom(M, w). Thus u
is not injective.

By (a) or (b) with 4 = p—2, there exists an invertible sheaf M with 2% X, M) =
1 and #}(X, M) = 0. Let v be a nonzero element of HY(X, M) and let x be a
smooth point of X, where v(x) 7= 0 holds (x exists for the same reason as it did
for v: L — w above). Set L = M & # . Then in sequence (3.5.1), the scalar
¢(v) is nonzero (it is 9(x)) and so the map e is surjective; since #%(X, M) = 1
holds, e is an isomorphism. So we have

W(X, L) = WX, L) =0.

The construction of L in (c) proceeds by ascending induction on 4. For
d = p — 1, the construction was just made. Assume we have M with A%(X, M) =
0 and (X, M)=d -+ 1 — p. SetL = M ) M, for any smooth point x of X.
Then (3.5.1) clearly yields 4°(X, L) = 0 and #X, L) =d + 2 — p. Thus (c)
holds.

(i) Let L be an invertible sheaf satisfying 4%(X, L) = 1 and AY(X, L) =
14+ 2—p with ] =2p — 2 — d; such an L exists by (a). Set I = w QL.
Then HY(X, I) is clearly equal to Homy(L, ). So by duality we have

WX, I) = B(X,L) = p — d.

On the other hand, we have canonical isomorphisms,

HYX,L) = Ext)(L, o) (duality [GD IV, 5.6, p. 81])
= HY(X,Homy(L,w)) (L invertible [GD IV, 2.6, p. 72])
= HY(X, I).

Therefore we have the formula,
X, I)=1.
Thus (d) is satisfied.
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(iif) Statement (e) follows immediately from (3.4(i)). Statement (f) now
follows from (3.4(ii, b)) with Oy for | and with I for F because y(O;) =1 — p.
Similarly statement (g) follows from (3.4(ii, a)) with I for | and with w for F
because HY( X, I)” is equal to Homy(J, w) and x(w) is equal to p — 1 by duality.

4. LINEAR SYSTEMS

(4.1) DeriniTION.  Let f: X — S be a morphism of schemes, and let I and F
be two locally finitely presented Oy-Modules. Define a subfunctor Lin Syst, )
of Quot(s/y/s) as follows: For each S-scheme T, let

Lin Systq »(T)

be the set of G € Quotx/5)(7) such that there exists an invertible Op-Module
N and an isomorphism,

KG) = I ®s .

(4.2) Tueorem. Let f: X — S be a proper finitely presented morphism of
schemes, and let I and F be two locally finitely presented O~ Modules. Assume that
Fis S-flat and that, for each S-scheme T for which I is T-flat, the canonical map,

o7 OF — (fr)« Isomy (I, I7),

1s an isomorphism.

Then the functor Lin Syst; r, is representable by an open, retrocompact subscheme
U of the family of projective spaces P(H(I, F)) associated to the locally finitely
presented Og-Module H(1, F). Moreover, the universal member C of Lin Syst r(U)
fits into an exact sequence,

0 Iy ® O, (—1) —>Fy— C — 0.

Furthermore U is equal to P if and only tf, for each geometric point s of S, every
nonzero O y(,-homomorphism I(s) — F(s) is injective.

Proof. For each S-scheme T and each invertible Op,-Module M, there are
natural isomorphisms,

x: Homp(H(I, F); , M) = Homy (I, F ®s M) = Homy (I ®s M-, Fy).

The existence of the first is a basic property (1.1) of H(I, F); the second is the
canononical isomorphism. So, to each T-point of P(H(I, F)), that is [EGA II,
4.2.3], to each isomorphism class of pairs (M, ¢) where M is an invertible O, -
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Module and ¢: H(I, F); — M is a surjection, there corresponds an isomorphism
class of pairs (M, u), where u = «(g) is an Oy _-homomorphism from I ®s M~
to F; satisfying u(t) % O for all t € T. Conversely each such isomorphism class
arises from a unique T-point of P(H(I, F)) because a map v: H(I,F)r— M,
where M is an invertible O,-Module, is surjective if v(t) is nonzero for each
t € T by Nakayama'’s lemma.

On the other hand, a quotient F of F/T in Lin Syst »(T) gives rise to an
isomorphism class of pairs (N1, ¢), where N is an invertible O-Module and

v:1 ®s N -2 I(G)—»Fr

is an Oy -homomorphism. The Or-Module N and the isomorphism w exist by
definition of Lin Syst; r); the isomorphism class of (N-1, v) is independent of
the choices of N and w because by [ASDS, (5)}, the functor N—1I ®g N is
fully faithful under the hypotheses at hand.

For a quotient G of Fy/T in Lin Syst( »(T), each fiber o(¢) for te T of such a
map o is injective because G is T-flat. On the other hand, the injectivity on the
fibers of a map v: I ®s N —F;, where N is an invertible Op-Module, is
equivalent to the flatness of its cokernel [EGA IV, 11.3.7]. Consequently
Lin Syst p(T)is equal to the set of pairs (M, u) such that u(?) is injective for all
teT.

The final assertion now follows from the preceding characterizations of
Lin Syst(; r) and P(H(I,F)) as the sets of isomorphism classes of pairs (M, )
with, respectively, #(f) injective and u(¢) nonzero for all te T.

To prove the first assertion, consider the tautological map,

w: H(I, F)p — Ox(1),
and the Oy -homomorphism,
B = «(@): I ®s Op(—1) > Fp.
The points p of P such that along X{( p) the cokernel of 8 is flat and the kernel of
B is surjective form an open subset U by [EGA IV, , 11.3.7]; moreover, although

it is not stated, the proof shows that U is retrocompact. Then C' = Coker(8) | U
is an element of Lin Syst( ;)(U), and it is easily seen to be universal.

(4.3) LemMA. Let f: X — S be a quasi-compact, quasi-separated morphism of
schemes. Let I and F be two quasi-coherent Oy-Modules, and assume I is locally
finitely presented. Set

N = f,Homy(I, F).

607/35/1-6
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Assume that the natural map,
o: Og — f,Homy(l, I),

is an isomorphism. Then the following conditions are equivalent:

(a) N is invertible and the natural map
wlXN-—-F
s

1s an isomorphism.

(b) There exist an invertible sheaf N on S and an isomorphism,

I®QN~F
5

(¢) I andF are isomorphic locally over S.

(d) There exists a faithfully flat morphism T — S such that the pullbacks
I and F; are isomorphic.

Proof. The only nontrivial implication is (d) = (a). Assume (d). Since 7/S is
flat and since I is locally finitely presented, it is easy to see that the natural map,

or: Op— (fr)x Homy(Ir, Iy),

is also an isomorphism (see [EGA 0, 5.7.6; I, 9.3.3]). Similarly, the base-
change map,
Nr—(fr)« HomxT(Ir Fr),

is an isomorphism. Therefore (d) implies that Ny is trivial. An easy and well-
known lemma now implies that N itself is invertible (since Ny is invertible and
T/S is faithfully flat). Moreover, the natural map u of (a) becomes an isomor-
phism when pulled back to T, so # itself is an isomorphism.

(4.4) Remark. The functor Lin Syst(; 5 is often separated for the faithfully
flat topology. It is separated under the hypotheses of (4.2) by descent theory
because it is representable (4.2). It is also separated if the canonical map,

or: OT - (fT)* HomXT(IT ’ IT)1

is an isomorphism whenever Lin Syst( ;(T’) is nonempty by the implication
(d) = (b) of (4.3). Moreover, the first case is a special case of the second if
Sf+«Homy(1, I) is locally finitely generated in view of (4.5(ii)) below.

On the other hand, the implication (b) = (a) of (4.3) shows there is a canonical
choice for the pair (N1, v) in the proof of (4.2). Similarly there exists a canonical
choice for NV and the isomorphism I{G) =~ I ®¢ N in (4.1) if the canonical map

or is an isomorphism.
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Finally, in the notation of (4.3), if NV is invertible and if (b) holds, then both
ag and u are isomorphisms by (4.5(i)) below.

(4.5) Remark. Let f: X — S be a morphism of ringed spaces, and let I be
an Oy-Module. Consider the canonical maps,

aggst Os —'>f* Homx(I, I),
Gsx: Osx —)f* Isomx(I, I).

(i) oy is an isomorphism if and only if f,Hom(], I) is invertible.
(ii) Assume S is a local-ringed space. Then,
(a) If a¢* is injective, then oy is injective.

(b) If o¢* is surjective and if f,Homy(J, I) is locally finitely generated
then oy is surjective.

Proof. (i) The “only if”’ implication is trivial. Consider the “if.”” The asser-
tion is local on S, so we may assume Homjy(I, I) is freely generated by an Oy-
homomorphism v. Then id; = av holds for some a € I'(S, Oy). Since @ and v
commute, both are isomorphisms. Since Homy(Z, I) is isomorphic to I'(S, Oy),
the element a is therefore a unit. Hence o is an isomorphism.

(ii) (a) Take an element a of the stalk ker(os), for some s€ S. Then1 4 a
is a unit. Since 6%(1 + a) is equal to ¢%(1) and since ¢* is injective, a is equal
to zero.

(b) Take anyse S and any element b of f,Homy(I,I),and let B be the
Oy, ,algebra b generates. The k(s)-algebra B/m,B is a finite dimensional A(s)-
vector space because B is finitely generated; hence, since it is commutative,
B/m,B is a product of Artinian local rings, 4, X *** X 4, . Moreover, oy
induces a map,

ag(s): R(s) — Ay X -+ X 4,.

Since B is a finitely generated O ,-module, every maximal ideal of B contains
m, . It follows that every unit of Bjm,B is the residue class of a unit of B. Hence
as(s)* is surjective because ogX is. Therefore # is equal to 1. Consequently Bis a
local ring.

If b belongs to the maximal ideal of B, then 1 - b is a unit. So 1 + b belongs
to the image of o¢%; so b belongs to the image of og . If b is not in the maximal
ideal of B, then b is a unit; so b belongs to the image of 0%, so to that of o5 .
Thus o is surjective, '
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5. THE ABEL Map

(5.1) DeriNiTION. Let f: X — S be a morphism of schemes, and let 7 be an
Ox-Module. Then I will be called simple over S, or S-simple, if I is locally
finitely presented and flat over .S and if the canonical map,

or: Or— fr. Homxr(lr 1),

is an isomorphism for each S-scheme 7.

(5.2) ProrosiTiON. Let f: X — S be a finitely presented, proper morphism of
schemes, and let I be a locally finitely presented, S-flat Oy-Module. Then there
exists an open, retrocompact subscheme U of S such that a morphism T — S
Jactors through U if and only if Iy is T-simple.

Proof. By (1.1) there are a locally finitely presented Og-Module H = H(I, I)
and an isomorphism,

y:Homy(H, O5) =~ f, Homy(1, I).

Set
u = yYid)): H— Og.

Since the formation of (H, y) commutes with base change (1.1), the fiber u(s) is
nonzero for each point s of S. Hence u(s) is surjective for each s. So by Nakayama’s
lemma # is surjective.

Since u is surjective, clearly Ker(#) is locally finitely generated and the forma-
tion of Ker(x) commutes with base-change. Set

U = S — Supp(Ker(x)).

Then U is an open subset [EGA I, 5.2.2(iv)]. It is easy to see that U is retro-
compact by descending to the Noetherian case 2 la [EGA 1V, , Sect. 8]. Consider
U as an open subscheme. Then clearly a morphism R — S factors through U if
and only if #, is an isomorphism.

Fix a map T — S. Assume it factors through U. Then for all R — T,
the map uy is an isomorphism. Therefore, consideration of y, shows that
(fz) sHomy (I, I) is generated by id; . So ag: Og — (fg) «Homy (Ir, Ir)
is an isomorphism. Thus I is T-simple.

Suppose now that I is T-simple. Fix a point ¢ € 7. Then the map,

o(?): k(2) — Homy(1(2), 1(2)),

is an isomorphism. So Homy,,)(H(2), k(t)) is a one-dimensional vector space. It
follows that Ker(u(2)) is equal to zero. Since Ker(x) is locally finitely generated
and since the formation of Ker(x) commutes with base-change, Nakayama’s
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lemma implies that the stalk Ker(x;), is equal to zero. Hence Ker(u;) is equal
to zero. So g is an isomorphism. Hence the map T'— S factors through U.

(5.3) CororrarY. Let f: X >S8bea finitely presented, proper morphism of
schemes, and let I be a locally finitely presemted, S-flat Oy-Module. Then I is
S-simple if (and only if) the canonical map,

o(s): k(s) — Homy(y(I(s), 1(s)),

15 an isomorphism (i) for each each point s € S, or equivalently, (ii) for each geometric
point s of S.

Proof. Each of (i) and (ii) implies that the open subscheme U of (5.2) is
equal to S.

(5.4) Lemma. Let X be a proper, R, , irreducible scheme over an algebraically
closed field k. Let I be an S, , coherent Oy-Module whose stalk I, at the genersc
point v is isomorphic to Oy ,, . (These conditions are satisfied, for example, when X is
tntegral and I is rank-1, torsion-free.) Then I is simple.

Proof. Set K = Oy, ; it is a field because X satisfies R, . Since I satisfies
Sy, clearly Hom, (I, I) satisfies S, . Hence Homy(], I) is contained in the
generic fiber Homy(Z, I), . Since I, is isomorphic to K, the ring Hom,(Z, I) is
isomorphic to a subring of Homg(K, K) = K. Consequently, Hom,(J, I} is an
integral domain. On the other hand, Homy(J, I) is a finite dimensional vector
space over k because X is proper over k. Hence Homy(Z, I) is equal to k because
k is algebraically closed. Thus I is simple.

(5.5) DeFINITION. Let f: X — .S be a morphism of schemes. Define a
functor Spl(y/s) as follows: For each S-scheme T, let

Splys(T)

denote the set of equivalence classes of T-simple Oy -Modules 7, where I and |
are considered equivalent if there exist an invertible Or-Module N and an
isomorphism,

IQN~].
5
As is conventional for any functor, we let

Splix/s)(zar(resp. Splix/s)et» resp. Splix/sittppn » resp. Spliys)ppn)

denote the associated sheaf of Spl(y/s) in the Zariski (resp. étale, resp. fppf,
resp. fpqc) topology.
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'. (5.6) ProposITION. Let f: X — S be a finitely presented, proper morphism of
schemes. Then

(1) Spliy/s) 15 a separated presheaf for the fpqc topology; in other words,
the canonical map from Spl(y/s) to its associated sheaf for the fpqc topology is a
monomorphism.

(ii) There are canonical monomorphisms,

Splis)y > Spliy/sizan > SPlix/s) et
C— Splx/s)tppty <> SPlix/s)tppt) -

(ii1) Let t be a geometric point of S. Then there is a formula,

Splixs)((2)) = Splxssppn(R(2))-

In other words, every k(t)-point of Spl(x;s)appty can be represented by a simple
sheaf I on X(t) = X ®gs k(2).

Proof. Assertion (i) follows immediately from the implication (d) => (b) of
(4.3). Assertion (ii) follows immediately from (i) because sheaving preserves
monomorphisms [SGA 3, IV, 4.4.1(iii), p. 205].

To prove (iii), let J on Xp = X X R represent a k(t)-point of Spl(y/s)ppn
for some surjective, fppf extension R — k(). Since k(z) is algebraically closed,
R has a k(t)-rational point by Hilbert’s Nullstellensatz. Then clearly the pull-
back of J to X(t) represents the k(¢)-point.

(5.7) DerintrioN. Let f: X — S be a projective morphism of schemes.
Fix a relatively very ample sheaf O4(1) and a polynomial 6. Define a subfunctor
Spl?, ssyety OF Spliysye) as follows: For each S-scheme 7, let

Splix/s en(T)

denote the classes in Spl(y/s)et)(T) having some representative I on an Xg,
where R — T is a suitable surjective étale S-morphism, whose fibers I(#) all
have Hilbert polynomial 6. (It is clearly equivalent to require every possible
representative I to have Hilbert polynomial # on all fibers.)

(5.8) LemMa. Let f: X — S be a finitely presented, projective morphism of
schemes. Fix a relatively very ample sheaf O4(1). Then,

(i) Let 0 be a polynomial. Then Splly /5)ety 15 an open and closed subfunctor
of Splisyen -

(i) The subfunctors Spliy s\, cover Splix;s) () as 0 runs through the set of
polynomials.
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Proof. Let T be an S-scheme, choose a T-point of Spl(y/5):) , and let I be a
representative for it on an X, where g: R — T is a suitable surjective, -étale
morphism. The set U of points r € R, where I(r) has Hilbert polynomial 6, is
open and closed in R [EGAIIL,;, 7.9.11]. Set ¥V = g(U). Clearly g Y(V) =U
holds. So V is open and closed [EGA IV,, 2.3.12). Clearly V represents the
fibered product, T' X Splfy st - Thus (i) holds. Assertion (i) is obvious.

(5.9) DeFiniTION. Let f: X — S be a finitely presented morphism of
schemes, whose geometric fibers are integral. An Oz-Module I will be called
relatively torsion-free, rank-1 (resp. relatively pseudo-invertible) over S if it i§
locally finitely presented and S-flat and if the fiber I(s) is a rank-1, torsion-free
(resp. and Cohen—Macaulay) Oy(,-Module for every geometric point s of S, or
equivalently, for every point s of S.

(5.10) ProposrrioN. Let f: X — S be a finitely presented, proper morphism of
schemes, with integral geometric fibers. Then a relatively torsion-free, rank-1
(resp. relatively pseudo-invertible) Oy-Module is S-simple.

Proof. The assertion follows immediately from (5.3) and (5.4).

(5.11) DermviTiON. Let f: X ~> S be a proper, finitely presented morphism
of schemes with integral geometric fibers. Define two subfunctors Pic{y s, and
Pic(y s, of Sply/s) as follows: For each S-scheme 7, let

Picgys)(T)  (resp. Pichys(T))

denote the classes in Spliy,(T) represented by relatively pseudo-invertible
(resp. relatively torsion-free, rank-1) Oy -Modules.
For each polynomial § and each subsheaf P of Spl(y/s)(y » set

P’ =P N Spliy/sen -

For gxample, we get in this way open and closed subfunctors Pic, /snety and
Piciy 51 -

(5.12) Lemma. Let f: X — .S be a proper, finitely presented morphism of
schemes, and let I be a locally finitely presented, S-flat Oy-Module. Then,

(i) The points s of S for whick I(s) is invertible form an open retrocompact
subset of S.

(ii) = Assume all the geometric fibers of f are integral with the same dimension r.
Then, ‘

(a) The points s of S for which I(s) is rank-1, torsion-free form a retro-
compact, open subset of S.
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(b) The points s of S for which I(s) is pseudo-invertible form a retro-
compact, open subset of S.

Proof. (i) The assertion follows easily from [EGA IV,, 12.3.1; EGA 0;,
5.4.1].

(i) While it is not stated in [EGA IV,, 12.2.1], the reference used below,
the proofs therein show that the various open subsets are retrocompact.

(2) By [EGA 1V,, 12.2.1(viii)], the set of points s€ S, where I{s) is
geometrically reduced, is open in S. Hence, by [EGA IV, , 12.2.1(iv)], the set of
points s € S, where the dimension of each component of Supp(I(s)) is equal to 7,
is open in S. So, by (3.1(3)), the set of points where I(s) is torsion-free, rank-1 on
the fiber X(s) is open in S.

(b) This assertion follows immediately from (a) and the fact that the set
of points s € S, where I(s) is Cohen—Macaulay, is open [EGA 1V, , 12.2.1(vii)].

(5.13) ProposttioN. Let f: X — S be a finitely presented, proper morphism
of schemes. Then,

(i) Assume Oy is S-simple. Then Picgs)et) is an open, retrocompact sub-
sheaf of Splx/s)et) -

(i) Assume all the geometric fibers of f are integral with the same dimension r.
Then,

(a) Picy;set) is a retrocompact, open subsheaf of Picly s t) -

(b) Picly sy 5 a retrocompact, open subsheaf of Sply;s)(ey) -

Proof. Clearly Pic(x/s)(t) is a subfunctor of Spl(x/g)cety if Oy is S-simple.
(Note that, for any invertible sheaf I on X, obviously Homy(Z, I) is canonically
isomorphic to Oy .)

Let T be an S-scheme, choose a T-point of Spl(y,s)et) , and let I be a represen-
tative for it on an X , where g: R — 7' is a suitable surjective étale morphism.
The set U (resp. U’, resp. U”) of points r € R, where I(r) is torsion-free, rank-1,
(resp. pseudo-invertible, resp. invertible) is open and retrocompact in R by
(5.12(ii, a)) (resp. (5.12(ii, b)), resp. (5.12(1))). Since g is flat and locally finitely
presented, the image g(U) (resp. g(U"), resp. g(U")) is open in T [EGA IV,,
2.4.6], and it clearly represents the fibered product, T X Piciy sty (resp.
T X Picys)en » resp- T X Picgsyen)-

By definition of étale topology, we may take R of the form R = []R, such
that the restriction, R, — g(R,), is étale and finitely presented and such that the
g(R,) form an open covering of 7. Now, g~(g(U)) is clearly equal to U. Hence
we have the relation,

&R, N U) = g(Ry) N g(U)-
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Since U N R, is retrocompact in R and since g | R, is quasi-compact, g(R,) N g(U)
is retrocompact in g(R,). Hence g(U) is retrocompact. The proofs that g(U’") and
2(U") are retrocompact are similar.

(5.14) DrrinrrioN.  Let f: X — S be a finitely presented, proper morphism
of schemes, and let F be a locally finitely presented Ox-Module. Define a nested
sequence of subfunctors of Quotz /s

P-div(p x/5) C Q-div(s /) C Smpr/xys) 5

as the subfunctors consisting of those quotients whose pseudo-Ideals are, respec-
tively, relatively pseudo-invertible, relatively torsion-free, rank-1, and relatively
simple.

Assume f is projective. Fix a relatively very ample sheaf O,(1). For each
polynomial ¢ and each subfunctor D of Quot(s/x/s) , set

I)é =Dn Quot?plx/s) .

For example, we get in this way open and closed subfunctors, P-div¥, z/¢)
and Q-div{y/x/s) and smp?F/X/S) .

(5.15) ProposITION. Let f: X — S be a finitely presented, locally projective
morphism of schemes, whose geometric fibers are integral, and let F be a locally
finitely presented Oy-Module. Then Smp(rys) (resp. Q-divigx/s), resp.
P-div(zx/s)) is representable by a retrocompact, open subscheme Smp g, x/s) (resp.
Q-div(r/xss) > resp. P-dive,xs)) of Quotie/xysy -

If f is strongly projective and if F is isomorphic to a quotient of an Ox-Module
of the form f*B X Ox(n) for some n, where B is a locally free Og-Module with a
constant, finite rank, then for any polynomial §, the functor Smply x5, (resp.
Q-div{y x5, » resp. P-div{y,ys)) is representable by a strongly quasi-projective
S-scheme Smply x /) (resp. Q-divty x /s, , resp. P — divte x)s)).

Proof. The first assertion follows immediately from (5.2) and (5.12). The
second assertion follows from the first and the strong projectivity (2.7) of
Quot{,,-/x/s) .

(5.16) (The Abel map). Let f: X — S be a proper, finitely presented morphism
of schemes, and let F be a locally finitely presented O,-Module. The map of
functors,

Ar = Hrizis): SMPer1xis) = Splasyen » (3.16.1)
sending a quotient G of F to the equivalence class of its pseudo-Ideal I(G), will

be called the Abel map associated to F.
For a given simple sheaf I on X X ¢ T/T, the fiber of 2% over I is the *“(I, Fr)-

607/35/1-7



88 ALTMAN AND KLEIMAN

linear system” functor Lin Syst, r ) because Spl(y/s) is separated for the étale
topology; that is, there is a Cartesian diagram of functors,

Lin Syst(, r,) —— Smp/x/s)
0 l“"“

Splr/x/5 -

T

(5.17) Lemma. Let f: X — S be a proper, finitely presented morphism of
schemes, and let F be an S-flat, locally finitely presented Oy-Module. Let T be an
S-scheme, and let I be a T-simple Oy -Module. Then,

(1) There is a commutative diagram with Cartesian right square,
P(H(I,Fr)) <> U ——— Smp/x;s)
H l O lﬂ"ﬁ (5.17.1)

7 T —— Splu/sren »

where U is an open, retrocompact subscheme of R, where t is the map defined by I,
and where g denotes the structure map. Moreover, U represents the functor Lin
Systq,r,) , and there exists an exact sequence on X, ,

0>1®r L1 —>Fy— Gy—0,

in which G is the universal quotient of Fg , with Q = Quot(gxys) -

(i) Assume that the geometric fibers of f are integral and that I and F are
relatively torsion-free, rank-1. Then the open subscheme U in (5.17.1) is equal to R.

Proof.  Assertion(i)follows from the representation theorem for Lin Systq, r )
and from diagram (5.16.2). Under the hypotheses of (ii), clearly for each geometric
point ¢ of T, every nonzero homomorphism from (¢) to Fz(t) is injective. Hence
(ii) follows from (4.2) too.

(5.18) Turorem. Let f: X — S be a proper, finitely presented morphism of
schemes, whose geometric fibers are integral, and let F be a locally finitely presented,
S-flat O x-Module. Let t be a geometric point of Splix s) ety , and let I be a represent-
tng Ox)-Module (5.6(iii)). Then,

(i) The fiber o/ 7\(t) has dimension,
dim(s/7'(2)) = dimy(Homye(Z, F(2)) — 1,

provided that, if there exists a nonzero map from I to F (t) then there exists an
injective map from I to F(t).
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(i) The Abel map sty is smooth along 7" if the following relation holds:
Extx@(Z, F(t)) = 0.

Proof. (i) The ﬁber..z’;l('t) is equal to the open subset U of P(H(I, F(z)))
representing Lin Syst(; ) by (5.17(i)). Suppose there exists no nonzero map
from I to F(t). Then the isomorphism (1.1.1),

y: Homy(H(I, F(2)), k(t)) = Homyx(I, F(2)), (5.18.1)

shows that @7;'(¢) is empty. Suppose there exists a nonzero map, and so an
injective map u: I — F(t). Then coker(u) is a k(t)-point of Lin Syst r();
so U is nonempty. Hence dim(U) is equal to dimy)(H(I, F(2))) — 1 because
P(H(I, F(t))) is irreducible. The isomorphism (5.18.1) now yields the assertion.

(if) Let T be an S-scheme, and take a T-point # of Sply,s)(t) such that ¢
factors through it. There exist an étale neighborhood g: R— T of ¢ and an
R-simple sheaf | on Xj which represents u. Since Extk(J(¢), F(t)) =0
holds, there exists a (Zariski) neighborhood R’ of ¢ in R such that H(J, Fy) is
locally free on R’ with a finite rank by (1.3). Hence P(H(J, Fy)) is smooth over
R’. Finally, since smoothness descends down a faithfully flat morphism [EGA
IV,, 17.7.3(i1)], &% is smooth over the image g(R’), which is a (Zariski) neighbor-
hood of ¢ in T, because [EGA IV, , 2.4.6] g is flat and locally finitely presented.
Thus &7 is smooth along /().

(5.19) Lemma. Let f: X — S be a projective morphism whose geometric
fibers are integral, and fix a relatively very ample sheaf Ox(1). Let F be a relatively
rank-1, torsion-free Oy-Module, and assume the fibers of F have a single Hilbert
polynomial . Then for all m = my , where my is the value of a universal polynomial
in the coefficients of i, the family F of classes of fibers of F is m-regular, the Og-
Module B = f(F(m)) is locally free with rank J(m), and the canomical map,
(f *B)(—m) — F, is surjective.

Proof. The first assertion follows from (3.4(iii)) applied with Oy for J. The
second and third assertions follow from the first by standard base-change theory.
(Note that an m-regular sheaf is generated by its global sections [SGA 6, 1.3(jii),
p. 616].) '

(5.20) Tueorem. Let f: X — S be a finitely presented, proper morphism of
schemes, whose geometric fibérs are integral. Let F be a relatively rank-1, torsion-
frée Ox-Module. Let P represent a subsheaf of Pic(y s)t) - Then,

(i) The restriction of the Abel map sty | P is proper and finitely presented.
(i) Assume that f is projective and that the fibers X(s) (resp. F(s)) all have
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the same Hilbert polynomial ¢ (resp. ). Then for each polynomial 0, the restriction
<y | PO is strongly projective.

(i) Assume there exists a universal Ox -Module I (that is, the pair (P, I)
represents the given subsheaf). Then st | P is equal to the structure map of
P(H(, Fp)).

Proof. Assertion (iii) is an immediate consequence of (5.17(ii)). Since P is
an étale sheaf, there exists a surjective, étale morphism R — P and a relatively
torsion-free, rank-1 sheaf on Xy representing the identity map of P. Since
assertion (i) descends down a surjective, étale map [EGA IV, , 2.7.1(vi), (vii)], it
follows from (5.17(ii)).

The hypotheses in assertion (ii) imply that @ = Quot¥;/x/s), With¢ = ¢y — 6,
is strongly projective over S by (2.6) in view of (5.19) and (2.2(iii)). Hence @ is
embeddable in an appropriate P(E), so also in P(E) X ¢ P® by [EGA I, 5.1.8(ii)].
Since . | P? is proper and finitely presented (i), it is strongly projective.

(5.21) Remark. Under the hypotheses of (5.20), the existence of a universal I
in (iii) is a strong condition. For example, the existence of such an 7 for Piciy s)(et)
ot Picy 5)¢t) OF Pic(x/s)(ety » assuming these schemes exist, is easily seen to be
equivalent to the assertion that the functor Pic(y s or Pic(ys), or Piciys) is
itself an étale sheaf. However, there does exist a universal sheaf for PicTys)t) »
and so for Pic(y 51 and Pic(ys)cery , if the smooth locus of X/S admits a
section. This assertion comes from a straightforward generalization of the theory
of rigidification outlined in [FGA 232-05, 2.5]; it will be done in detail in [CII].

6. REPRESENTATION BY SCHEMES

(6.1) LemmAa. Let f: X — S be a strongly projective morphism of schemes. Let
I, F be two families of classes of coherent sheaves on the fibers of X/S (see [FGA,
221-01, 2] or SGA 6, 1.12, p. 622]). Assume F and F are b-families (resp.
m-regular families) with only a finite number of distinct Hilbert polynomials (an
m-regular family is one whose members are all m-regular for a given integer m).
Then the classes of sheaves Hy = Home(I x s Fx) for Iy and Fy representing
classes of S and F form a family Hom(F, %) which is both a b-family and an
m-regular family with only a finite number of distinct Hilbert polynomials.

Proof. By hypothesis, X is S-isomorphic to a closed subscheme of P(E),
where E is a locally free Og-Module with a constant rank, say (e + 1). Then
the families # and & may be -considered to be families of classes of coherent
sheaves on the fibers of Pz%/Z. Set P = [P,°.

By [SGA 6, 1.13, p. 623], the families .# and & are limited; that is, there
exists a Z-scheme T of finite type and Op -Modules I and F such that all the



COMPACTIFYING THE PICARD SCHEME 91

classes of S and &F are represented by fibers I(t) and F(t) of Py/T. Replacing T
by a flattening stratification for F [CS, Lecture 8], we may assume F is flat over T.

Consider a presentation E; — Eq— I — 0 by locally free Op -Modules E, .
Then for each t € T there is an exact sequence,

0 — Homy(1(2), F(t)) = Homp»(E((t), F(t)) — Homp(Ey(2), F(2)).

Now, the families Homy, (y(E(t), F(t)) are limited by the sheaves Hom(E, , F)
because the formation of Hom(E; , F) obviously commutes with base-change.
Therefore, the family Hom(.#, #) is a family of Kernels of a morphism u
between two coherent Op -Modules. Replacing T by a flattening stratification
for F and Coker(u), we may assume the formation of Ker(x) commutes with
base-change. Hence Hom(.#, %) is limited by Ker(x), by [SGA 6, 1.13, p. 622].
The family Hom(#, %) is both a b-family and an m-regular family with a
finite number of distinct Hilbert polynomials.

(6.2) ProposITION. Let f: X — S be a flat, finitely presented, projective
morphism whose geometric fibers are integral with dimension r. Fix a relatively very
ample sheaf Oy(1). Assume the fibers of Oy have a single Hilbert polynomial (.
Let F be a relatively rank-1, torsion-free Oy-Module, and assume the fibers of F
have a single Hilbert polynomial . Fix a polynomial 0 and define an etale subsheaf o
of Pic(y 5ty as the sheaf associated to the following presheaf:

P(T) = the set of relatively torsion-free, rank-1 sheaves I on Xo|T
satisfying, for allte T,
(@) X{I(2)m) = 6(n),
(b) Extxe(I(2), Fr(t)) = 0.
Then P is representable by a strongly quasi-projective S-scheme.
Proof. The proof proceeds by steps.

Step I. There exists an integer m, > 0 such that the following three families
are m-regular for m > my: (a) the family # of classes of geometric points of P,
(b) the family & of classes of fibers of F, and (c) the family Hom(#, #).

Proof. The assertion follows from (3.4(iii)) applied with Oy for | and from
(6.1).

Step II. It is easy to check that we may replace F by F(m,) without changing
P if we change ¢ appropriately. Clearly now the families % and Hom(.f#, #)
are m-regular for m > 0.

Step III. Set Z = of7}(P) and set ¢ = f — 0. Then Z is representable by a
retrocompact, open subscheme Z of Q@ = Quotf;z/s) -
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Proof. First note that @ exists by (3.6). Now, obviously Z is a subfunctor of
Q. Let G denote the universal quotient of Fg and set I = I(G). Then, since F is
relatively rank-1, torsion-free, clearly I is also. Moreover, the set Z of points
g € Q, where

Extk(I(g), Fa(g)) = 0

holds, is open and retrocompact (1.10(i)). Obviously the open subscheme induced
by Q on Z represents Z.

Step IV.  Let T be an S-scheme and let I be an Oy -Module representing a
T-point ¢ of P. Then there is a Cartesian diagram,

R = P(H(I,Fp))—— Z
0 0 “rlZ (6.2.1)
T ¢ P

where g denotes the structure map, and H(I, Fy) is locally free with finite rank
and nowhere zero. Moreover, there is an exact sequence on Xy,

0> I®pL1—>Fp— Gp—0, withL = Og1),  (62.2)

in which G is the universal quotient of Fg , where @ = Quot{y,x/s) -

Proof. The diagram and the sequence exist by (5.17).

By the hypothesis, Ext},,(1(¢), Fr(t))is equal to zero for each ¢ € T. Therefore,
the “local to global” spectral sequence [GD 1V, 2.4., p. 71] yields an isomor-
phism,

HY(X(t), Homx(I(t), Fr(t))) > Extx(1(2), F(t))-

Since Homyy(I(t), Fr(t)) is l-regular (Step II), this isomorphism yields the
relation,

Extio(I(2), Fr(t) =0  forall zeT.

Consequently, H(I, Fy) is locally free with a finite rank by (1.3).

Since Hom g ,(1(2), Fr(t)) is O-regular (Step II), it is generated by its global
sections. [SGA 6, 1.3(iii), p. 616]. Clearly it is nonzero at the generic point of
X{(t). Therefore, Homy,y(I(t), Fr(t)) is nonzero for each t € T. Hence, H(I, Fy)
is nowhere zero by (1.1.1).

Step V. The map <% | Z: Z — P is an epimorphism of étale sheaves.

Proof. Let T be an S-scheme and let ¢ be a T-point of P. There exists a
commutative diagram,
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R=PH)—=>Z

l lg lmlz (6.2.3)

T T > THLP

in which the composition ¢: 7" — T is a surjective, étale morphism.

Indeed, take 7°— T to be a surjective, étale morphism for which there
exists a relatively torsion-free, rank-1 Oy -Module I representing ¢. Step IV
gives the right-hand square in (6.2.3), with H = H (1, Fp) alocally free, nowhere
zero Og-Module with a finite rank. The structure map g is clearly smooth and
surjective, so it admits an étale quasi-section [EGA IV,, 17.16.3(ii)], that is, a
surjective étale morphism T — T and a map o: T — R such that the left-
hand square commutes.

Diagram (6.2.3) yields the relation,

Ap(2(e)) = P(e)(t)-
Thus 2% | Z is an epimorphism.

Step VI. There exist a locally free Og-Module E with a constant, finite
rank and a quasi-compact embedding,

Q = Quotlyx/) > P(E), with ¢ =4 — 0.

Moreover, let T be an S-scheme, and let I be the pseudo-Ideal of a member of
Z(T). Then there is a canonical induced embedding,

R = P(H(I, Fr)) - P(Ey),
and it has a constant degfee on the fibers.

Proof. First, X is strongly projective by (2.2(iii)). Second, F is isomorphic
to a quotient of an Ox-Module of the form (f*B)(v) for some v, where B is a
locally free Og-Module with a constant finite rank by (5.19). Hence by (2.7)
there exist an integer m > m, , a locally free Og-Module E with a constant finite
rank, and an embedding of Q into P(E) such that (fq),(G(m)) is locally free of
rank ¢(m), where G denotes the universal quotient of Fg, and such that the
following formula holds:

~ Oql1) = det(fo)+(G(m)). | (6.2.4)

The fibers of I and F are all (mm + 1)-regular by Step I. Hence (f7),(I{m)) and
f+(F(m)) are locally free of ranks 8(m) and )(m) and their formations commute
with base-change. Moreover, RY{(f7)+(I(m)) is equal to 0. So, using the projection
formula [EGA III,, 12.2.3.1], we obtain from sequence (6.2.2) an exact
sequence of locally free OR-Modules

0 — ((fr)olT(m)) ®p L — (fi(F (m)))x - (fx)*(Gn('n)) 0.
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Taking determinants yields the formula,

det(fr)+(Gr(m)) = (det(f5F(m)))r ® (det(fr)s I(m))g @ LO*™

Therefore, formula (6.2.4) shows that the degrees of the fibers of R/S are all
equal to O(m).

Step VII. The equivalence relation Z Xp Z =3 Z is representable by an
effective equivalence relation. Moreover, the quotient scheme P is strongly
quasi-projective and the quotient map ¢: Z— P is an epimorphism of étale
sheaves.

Proof. Since Z is an open, retrocompact subscheme of @ = Quot? /) by
Step III and since Q is strongly quasi-projective by Step VI, the scheme Z is
strongly quasi-projective.

Let G denote the universal quotient of Fg and set I = I(G;). By Step IV, the
sheaf I defines a Cartesian diagram.

PH)— Z
| o]
z P

where H = H(I, Fy) is a locally free, nowhere zero O,-Module with a finite
rank. Thus the equivalence relation Z Xp Z =3 Z is represented by P(H) =% Z.
The latter is clearly smooth, surjective, and proper.

By Step II, the sheaves Homy,)((2), F(2)) are O-regular. Moreover, these
sheaves have only a finite number of Hilbert polynomials by (6.1). Therefore,
the rank of H(I, F;) is bounded. By Step VI, the degree of P(H) is constant.
Therefore, the equivalence relation P(H)=3Z has only a finite number of
Hilbert polynomials. Consequently, the equivalence relation is effective and the
quotient P is strongly quasi-projective by (2.9).

Since the equivalence relation is smooth and surjective, the quotient map
g: Z — P is smooth and surjective [EGA IV, , 17.7.4(v); IV,, 2.6.1(1)]. So it
admits an étale quasi-section [EGA IV, , 17.16.3]. Hence ¢ is an epimorphism of
étale sheaves.

Step VIII. The scheme P represents the functor P. Indeed, both P and P
are equal to the quotient of the equivalence relation Z Xp Z =3 Z in the category
of étale sheaves; hence they are equal.

(6.3) TueOREM. Let f: X — S be a flat, finitely presented, projective morphism
of schemes, whose geometric fibers are integral with dimension r. Fix a relatively
very ample sheaf Oy(1). Assume the fibers of Oy have a single Hilbert polynomial if.
Fix a polynomial 6. Then the Picard functor Pic?, /syt 18 representable by a strongly
quast-projective S-scheme.
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Proof. Clearly Picly s ) is 2 subsheaf of the étale sheaf P of (6.2) with
F = 0y . By (5.13(i)), it is an open, retrocompact subfunctor of P. Hence since
P is representable by a strongly quasi-projective S-scheme (6.2), 50 is Pic{y 5(st) -

(6.4) CoroLLARY. Let f: X — S be a flat, finitely presented, projective
morphism of schemes whose geometric fibers are integral. Fix a very ample sheaf
Ox(1). Then Pic(ys)ty s repréesentable by a disjoint union of quasi-projective
S-schemes, which represent the étale sheaves Pic(y sy, -

Proof. We may clearly assume S is connected. Then the fibers of Oy have
a single Hilbert polynomial [EGA I1I, , 7.9.4] and so the assertion results imme-
diately from (6.3) and (5.8).

(6.5) (Dualizing sheaves). Let f: X — S be a flat, finitely presented, proper
morphism of schemes, whose fibers X(s) are Cohen—Macaulay with pure dimen-
sion 7. Then there exists a flat, locally finitely presented Oy-Module w = wy/s
whose restriction w(s) to each fiber X(s) is a dualizing sheaf (see [RD, Exercise
9.7, p. 298]). In fact, there exists a ““trace map,”

7: Rfyw — Og,
which induces the trace map,
7(s): H"(X(s), wl(s)) — &(s),

on the fibers X(s), and the pair (w, %) is uniquely determined up to unique iso-
morphism. While (w, ) has certain global dualizing properties [RD; DR,
p. 161; DB], we shall need only duality on the fibers as developed in [GD].

The set of points s of .S such that X{(s) is Gorenstein is equal to the set of
points s of S such that «(s) is invertible along X{(s). The latter set is open and
retrocompact in S by (5.12(i)). Thus it is an open, retrocompact condition that
the fibers be Gorenstein.

Assume X is a closed subscheme of P = [P(E), where E is a locally free
Os-Module with a constant finite rank, say (¢ + 1). Then w is given by the
formula,

w = Ext;"(Ox , Op(—e — 1)). (6.5.1)

By base-change theory (1.10), this formula defines an S-flat, locally finitely
presented Oy-Module, whose formation commutes with base-change, because
the other local Ext’s vanish on the fibers by [GD IV, 5.1, p. 77; ITI, 5.22, p. 66].
Formula (6.5.1) can be used also to define a trace map 7, and the uniqueness of
the pair (w, ) can be used to construct a global dualizing pair in the locally
projective case [DB].
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Let I be an S-flat, locally finitely presented Oy-Module. The ‘“‘change of
rings” spectral sequence [GD IV, 2.9.2, p. 72] degenerates, and it yields the
formula,

Exty(l, w) = Ext5* (I, Op(—e — 1)). (6.5.2)

Then we have
Ext}(l,w) =0  for ¢ > r — max{depth I(s)} (6.5.3)

by base-change theory (1.10(i)) because the right-hand side of (6.5.2) vanishes
on the fibers by [GD III, 5.21, p. 66; 5.19, p. 65].

Assume S is the spectrum of a field. Then w has finite injective dimension,
in fact, injective dimension at most r, by (6.5.3). Now, take I = k(x) for any
closed point x of X. Then the right hand side of (6.5.2) is equal to zero for
g+ e—r <eby[GDIII, 3.13, p. 52] because Op is Cohen-Macaulay. Hence
the left-hand side of (6.5.2) is equal to zero for ¢ < r, and so  is Cohen-
Macaulay with dimension  [GD III, 3.13; 3.15, p. 52]. Hence it is also torsion-
free. If X is reduced, then w is rank-1, torsion-free [GD I, 2.8, p. 8]. Hence for
S arbitrary, if the fibers X(s) are geometrically integral, then w is relatively
pseudo-invertible.

(6.6) TueoreM. Let f: X — S be a flat, finitely presented, projective morphism
of schemes, whose geometric fibers are integral and Cohen—Macaulay with dimension
r. Fix a relatively very ample sheaf Ox(1). Assume the fibers of Oy have a single
Hilbert polynomial ¢. Fix a polynomial 6. Then the étale sheaf Piciy sy,
representable by a strongly quasi-projective S-scheme.

Proof. Fix a dualizing sheaf w. It is a relatively rank-1, torsion-free Oy-
Module (6.5). Its fibers have a single Hilbert polynomial, namely, #(n) =
(—1)ré(—n), by duality. Moreover, Pic{y st is 2 subfunctor of the functor P
of (6.2) with F = w, because of (6.5.3). In fact, it is an open, retrocompact
subfunctor by (5.13). Hence, since P is representable by a strongly quasi-
projective S-scheme (6.2), so is Pic(f ) ) -

(6.7) CoroLLARY. Let f: X — S be a flat, finitely presented, locally projective
morphism of schemes, whose geometric fibers are integral and Cohen—Macaulay.
Then

(i) PiCiy/syer) i5 representable by a separated S-scheme that. is locally
finitely presented over S.

(il) Assume f is projective and fix a very ample sheaf Ox(1). Then Pic(y s, ety
is representable by a disjoint union of quasi-projective S-schemes, which represent
the étale sheaves Pic(y syt -
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Proof. Assertion (i) is localjon S; hence it is an immediate consequence of (ii).
To prove assertion (ii), we may obviously assume S is connected. Then the
fibers of Oy have a single Hilbert polynomial and the assertion results immediately
from (6.6) and (5.8).

7. REPRESENTATION BY ALGEBRAIC SPACES

(7.1) DeFINITION. Let f: X — S be a morphism of schemes. Let F and G
be locally finitely presented Oy-Modules, and assume G is S-flat. Define a
functor Conjr,g) as follows: For each S-scheme T, let

Conj,6(T)

be the subset of Quot(ry/s)(T) of those quotients G’ such that there exist an
invertible O;-Module M and an isomorphism,

G=GRsM.

(7.2) THEOREM. Let f: X — S be a finitely presented, proper morphism of
schemes, and let F and G be two locally finitely presented Oy-Modules. Assume that
G is S-flat and that the canonical map,

GTX: OTX nd (fr)* IsomxT(GT , GT))

Is an isomorphism for each S-scheme T. Ther Conj(r c) s representable by an open,
retrocompact subschems V of P(H(F, G)).

Proof. (The proof is similar to that of (4.2).) Set H = H(F, G). For each
S-scheme T and each invertible O,-Module M, there is a functorial isomorphism
(1.1.1),

y: Homy(Hy , M) =~ Homy,(Fr, G ®s M).

So to each T-point of P(H), that is, to each isomorphism class of pairs (M, g),
where M is an invertible Op-Module and ¢: Hy — M is a surjection [EGA II,
4.2.4], there corresponds an isomorphism class of pairs (M, u), where u = y(q)
is an Oy -homomorphism from F; to G ®s M satisfying u(t) =0 for all
t € T. Conversely, every such isomorphism class arises from a unique T-point of
P(H) because a map v: Hy — M, where M is an invertible Or-Module, is
surjective if it is nonzero for each ¢ € T, by Nakayama’s lemma.

On the other hand;.a quotient G' of F#/T in Conjr )(T) gives rise to an
isomorphism class of pairs (M, v), where M is an invertible Or-Module and

v G,—’?DG@sM
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is an Oy -homomorphism. The isomorphism class of the pair (M, v) is inde-
pendent of the choices of M and of v because by [ASDS, (5)] the functor
M— G ®g M is fully faithful under the hypotheses at hand.

Consider the tautological map «: Hp — Op(1) on P = P(H) and set 8 = y(«).
Then it is easy to see that

V = {p e P(H)| Coker (B)(p) = 0}

is open and retrocompact and represents Conjr ) -

(7.3) LemMma. Let f: X — S be a finitely presented, projective morphism of
schemes. Fix a relatively very ample sheaf Ox(1), and let F be an S-flat, locally
finitely presented Oy-Module. Set

Sy = {s € S | F(s) is m-regular}.

Then S,, is open and retrocompact in S and contained in S,, ., and S 1s covered
by the S, .

Proof. Since an m-regular sheaf is (m 4 1)-regular [SGA 6, 1.3(i), p. 616],
clearly S, is contained in S, ; . Also, every coherent Ox(,-Module is m-regular
for some m by Serre’s theorem [EGA IIT, , 2.2.2]; so the S,, cover S.

The remaining assertion, that S,, is open and retrocompact in S, is clearly
local and compatible with base-change. So we may assume S is affine and by
[EGA IV,, Sects. 8, 11] Noetherian. Then S,, is automatically retrocompact.

Fix a point s € S,, . Then H?(X(s), F(s)(m — q)) is clearly equal to zero for
P> 1 and g < p. So for each such pair of integers ( p, ¢), there exists an open
neighborhood U, , of s such that the following relation holds [EGA III, , 7.7.10]:

Rif F(m — ¢)| Uy,q = 0.
Set d = max,.s{dim(X(¢))}. Then the following relation holds [EGA III,,
4.2.2]:
Rf Fim —q) =0  forp >d, forallmandall q.

Set

U= () U,,.
d>0>¢>1

Then we have the relation,
Rrf Fim— ¢)l U =0 forallp > g > 1.

So H?(X(t), F(t)(m — g)) =0 holds for all £ € U and p > ¢ > 1 by [CS, Corollary
14, p. 52]. Thus U C S, holds. So S,, is open.
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(7.4) TueorReM. Let f: X — S be a locally projective, finitely presented mor-
phism of schemes. Then Spl(y,s)t) ts representable by a quasi-separated algebraic
space locally finitely presented over S.

Proof. We may assume S is affine and connected and f is projective, for the
assertion is local on S.

Fix a relatively very ample sheaf Oy(1). Let 2,,° denote the subsheaf of
Sply,s) ey consisting of those T-points represented by m-regular simple sheaves
with Hilbert polynomial # on every fiber. It follows easily from (7.3) and (5.8)
that the subfunctors Z,,? form an open covering of Spl(y/s)st) (see the proof of
(5.13)). Hence by [EGA 0;, 4.5.4] it suffices to represent the étale sheaf ' = X, °.

Since an m-regular sheaf is generated by its global sections [SGA 6, 1.3(iii),
p- 616], every sheaf representing a geometric point of X occurs as a quotient of
E = Ox(—m)®*™, Let Z denote the subfunctor of Quot{ x, parametrizing
the relatively simple quotients whose fibers are allm-regular. Then Z is represent-
able by an open, retrocompact subscheme Z of Quot(g x s, by (5.2) and (7.3).

The rest of the proof is analogous to Steps IV, V, VII, and VIII of (6.2).

Let ¢: Z — X denote the map of functors sending a quotient G of Er to its
class in Spl(y/s)(t) - Then by definition of Conj(z,,) and by the separatedness of
(5.6(i)) of Sply/s) , there is a Cartesian diagram,

Coniey.p—— 2
o

T 2Z.

So by (7.2) there is, as in Step IV, a Cartesian diagram,
P(H(Er,G)OV——2
O lc (7.4.1)

Te—— 7

where ¥ is an open, retrocompact subscheme of P(H(Er, G)). Moreover,
H(Er, G)is locally free by (1.3) and it is nonzero, because G is m-regular on the
fibers and because G cannot be zero on any fiber because it is S-simple.

As in Step V, the map c: Z—2 is an epimorphism of étale sheaves. As in
Step VII, the equivalence relation Z Xp Z =% Z is representable by a smooth,
finitely presented equivalence relation. Indeed, these assertions follow formally
from the existence of diagram (7.4.1). Now, by reduction to the Noetherian
case [EGA IVy, Sect. 8] and by Artin’s quotient theorem, [A2, 6.3, p. 184],
such an equivalence relation is effective in the category of quasi-separated
algebraic spaces. Moreover, the quotient map is smooth, so an epimorphism of
étale sheaves. So, as in Step VIII, the functor Z is representable by the quotient,
an algebraic space locally of finite type over S.
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(7.5) Remark. Narasimhan and Seshadri [NS, 12.3, p. 565] give an example
showing that Spl(y/s)et) is not separated in general. Their example involves
simple bundles that are not stable but of rank 2 and degree 1 on a smooth curve
of genus g > 3 over C.

(7.6) CoROLLARY (A case of Artin’s theorem [Al, 7.3; A2, Appendix 2]). Let
f: X ~> S be a locally projective, finitely presented morphism of schemes. Assume
Oy ts S-simple. Then Pic(y,s) ) 15 representable by an algebraic space, which is
locally finitely presented over S.

Proof. 'The sheaf Pic(y/5)(t) is an open, retrocompact subsheaf of Spl(y/s) sty
by (5.13(i)). Hence the assertion follows from (7.4).

(7.7) Remark. Grothendieck in [FGA, 236-01] presents Mumford’s
example, in which Pic(y/s) @ty is not representable by a scheme. In this example,
Pic(y,s)t) is representable by an algebraic space by virtue of (7.6).

(7.8) LemMaA. Let S be the spectrum of a discrete valuation ring with generic
point 7, and let f: X — C be a projective morphism whose geometric fibers are
integral and both have the same dimension.

(1) Let I, be a rank-1, torsion-free Oy,y-Module. Then there exists a rela-
tively rank-1, torsion-free Oy-Module 1 whose generic fiber I(n) is equal to I, .

(i) Let I and ] be two relatively rank-1, torsion-free Oy-Modules whose
generic fibers become isomorphic after a field extension of k(v). Then I and | are
isomorphic.

Proof. (i) There exists an integer m and an embedding u,: I, — Oy,)(m) by
(3.3). Then [EGA 1V, , 2.8.1] there exists (a unique) flat extension C of Coker
(u,) to X. Take I to be the kernel of the canonical map u: Ox(m) — C. The
restriction of I to X(x) is obviously equal to I, .

Since S is regular, f is proper, and both fibers of f are integral with the same
dimension, f is flat [Hi, 1.3]. Hence I is S-flat because C is S-flat. Also because
C is S-flat, the closed fiber I(s) is contained in Oy,y(m). Thus I is relatively
torsion-free, rank-1.

(i) Consider the coherent Og-Module H = H(I, J). For any S-scheme T,
there is a functorial isomorphism (1.1.1),

¥ HomT(HT , OT) fand HomXT(IT s ]T)'

Therefore, the hypothesis implies that Hom(H, , Og,) is nonzero. Now,
because S is the spectrum of a discrete valuation ring, H is equal to a direct sum
H = H, ® H,, where H, is free and H, is torsion. Since H, is nonzero, H, is
nonzero. So there exists a surjective map v: H — Og.

The map yg(v): I — J is nonzero on each fiber because v: H — Og is non-
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zero on each fiber. Since I(n) and J(z) become isomorphic after a field extension,
they have the same Hilbert polynomial. Therefore I and | have the same
Hilbert polynomial on the special fiber [EGA III;, 7.9.2] because they are
S-flat. Consequently v is an isomorphism on each fiber by (3.4(ii, a)); so it is an
isomorphism because [ is S-flat.

(7.9) THEOREM. Let f: X — S be a projective, finitely presented morphism
of schemes, whose geometric fibers are integral and all have the same dimension.
Fix a relatively very ample sheaf Ox(1) and a polynomial 6. Then Picii )t
(resp. Pic(y s e)) is representable by an algebraic space, proper and finitely presented
(resp. separated and finitely presented) over S.

Proof. The assertion is local on S, so we may assume S is affine and by
[EGA IV,, Sect. 8] Noetherian. Then by [CS, (ii), p. 58] the fibers of X/S
have only a finite number of distinct Hilbert polynomials. Let .# denote the
family of classes of rank-1, torsion-free (resp. pseudo-invertible) coherent
sheaves on the fibers of X/.S with Hilbert polynomial 6. Then .# is an m-regular
family by (3.4(iii)) applied with | = Oy . Consequently by [SGA 6, 1.13, p. 623]
it is limited. Since Pic(y /sty (resp. Piciy s)¢t) is an open, retrocompact
subfunctor of Spl(ys)ey by (5.13), it is representable by a quasi-separated
algebraic space, locally finitely presented over S by (7.4). Since .# is limited,
Pic(y/s)t) is therefore finitely presented over S. Finally, it is proper (resp.
separated) over S because the valuative criterion [EGA II, 7.3.8; I, 5.54] is
satisfied (7.8).

8. CuURrvEs

(8.1) TrEOREM. Let f: X — S be a locally projective, finitely presented, flat
morphism of schemes, whose geometric fibers are integral curves. Then Pic(x st, 15
represented by a disjoint union 11P, of S-schemes, P, = Picyy s etyn » and P,
parametrizes the rank-1, torsion-free sheaves with Euler characteristic n on the

fibers of X|S.

Proof. The assertion is local on S, so we may assume f is projective and S is
connected. Fix a relatively very ample sheaf Ox(1). Then Pic(y gt is represent-
able by a disjoint union ][P% where P? parametrizes the relatively rank-1,
torsion-free sheaves with Hilbert polynomial ¢ on the fibers by (6.2).

Let s be a geometric point of S. Since S is connected, d = deg(X(s)) is
independent of s. So, by (3.5(e)) a rank-1, torsion-free: Ox(,)-Module has Hilbert
polynomial @ if and only if it has Euler characteristic §(0). So take P, = P?
with 8(m) = md - n. These P,, are the desired S-schemes.

(8:2) (The dth component of the Abel map). - Let f: X — .S be a flat,
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locally projective, finitely presented morphism of schemes, whose geometric
fibers are integral curves. Let F be a locally finitely presented, S-flat Ox-Module
such that F(s) is rank-1, torsion-free for each s € S.

While in general P-div(sy;s) is an open subscheme of Quot(ry;s) by
(5.15), in the present case we have an equality,

P—diV‘(iF/X/S) == Quot‘(ip/x/s) fOl' d > 0. (8.2-1)

Indeed, every nontrivial subsheaf of a rank-1, torsion-free sheaf on an integral
scheme is obviously rank-1, torsion-free, and every torsion-free sheaf on a
curve is Cohen-Macaulay since it satisfies S; .

Assume (F(s)) is independent of s S. For example, x(F(s)) is independent of
s for F = Oy and for F = w, the dualizing sheaf, if the fibers X(s) all have the
same arithmetic genus. Then the Abel map (5.16.1) clearly splits up into disjoint
components including, in view of (8.2.1), maps

A = A x19: Quotle x;s) = P = Pictx/s)etn »
with n = (F(s)) — d.
Let L be an invertible Oy-Module. It is evident that tensoring by L defines a

commutative diagram,

d ~ d
Quot(r/x/s) —— Quotirg L/x/s)

.w:l l&«:@L (8.2.2)
P, ~ P,

with m = y(F @ L) — d.

The top and bottom maps are isomorphisms because tensoring by L~! defines
inverses.

Suppose all the fibers X(s) are Gorenstein curves with the same arithmetic
genus p. Then the dualizing sheaf w of X/S is invertible, and diagram (8.2.2)
becomes

Hilb{y,s) ——— Quotl, x/s)
”;’Sl ,f (8.2.3)

~
Py g——Pp g

This is the most important case of (8.2.2).

(8-3) (Index of Specialty). Let X be a projective, integral curve over an
algebraically closed field %, and let F be a coherent Oy-Module. Let I be a rank-1,
torsion-free Ox-Module, and define the F-index of specialty of I as the dimension
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of Ext}(I, F). Let G be a nontrivial quotient of F, and define the index of specialty
of G as the dimension of Ext}(I(G)F). If I (resp. G) has F-index (resp. index) of
specialty equal to zero, it will be called F-nonspecial (tesp. nonspecial).

For example, for F = O , we recover the usual notion of index of specialty of
a divisor D because Ext}(Ox(—D), Oy) is clearly equal to H{X, Og(D)) or, by
duality, to HY(X, w(—D)), where  is the dualizing sheaf. On the other hand,
for F = w, the index of specialty of a nontrivial quotient G of w is equal to
KX, I(G)) by duality.

Let L be an invertible Oy-Module. Then G ® L is a nontrivial quotient of
F ® L with pseudo-Ideal I(G) ® L. Tensoring by L leads to a canonical map,

Ext}(I(G), F) — Exty(I(G) ® L, F ® L),

with inverse defined by tensoring with L-1. So the index of specialty of G is
equal to the index of specialty of G ® L.

Now let f: X — S be a flat, finitely presented, locally projective morphism of
schemes, whose geometric fibers are integral curves, and let F be an S-flat,
locally finitely presented Ox-Module. It is easy to extend the definitions of
indices of specialty and of nonspecialty to geometric points and to scheme-
theoretic points of Quot{y,z/s) and of P, = Pic(y s)et)n - It is €asy to check that
these notions are preserved by the Abel map artd by the isomorphism,

d
Quotfr /sy = Quotfrgr/x/s) »

defined by tensoring by an invertible Oy~Module L.
In particular, if each fiber X{s) is Gorenstein, then the dualizing sheaf w of
X/S is invertible and so tensoring by it induces an isomorphism,

Hilb‘(ix/s) =4 QUOt‘(iw/X/S) ’

preserving indices of specialty. Thus the first example in the second paragraph
is essentially a particular case of the second example.

(8.4) TueorREM. Let f: X — S be a flat, finitely presented, locally projective
morphism whose geometric fibers are integral curves with the same arithmetic genus p.
Let w denote the dualizing sheaf (5.22). Fix an integer d and consider the dth piece
of the Abel map,

'R d DA
A" Quot(y/x/s) = Ppy—a = Picix/ 56t (p-1-a) -

(i) o3 is surjective if and only if d =>p holds. In fact, the image of A9
omits a point of Picysyen if d < P.

(i) o3 is smooth with relative dimension d — p over an w-nomspecial
point wof Py_y_4.

607/35/1-8
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(ii1) Let 7 be a point of P,_;_, in the closure of Pic(ys) sty - Assume there is a
neighborhood U of = where all the fibers of s4,% are nonempty and have the same
dimension. Then d > p holds and all the points of U are w-nonspecial.

(iv) Let q be a point of Quotl /) such that o4,%(q) is in the closure of
Picigs)t) - Assume <% is flat at q. Then q is nonspecial.

(v) 4,2 is smooth if and only if d = 2p — 1 holds.

Proof. Let t be a geometric point of P, , ; and let I denote the rank-1,
torsion-free Ox»y-Module representing it. By (5.18(i)) and duality, the dimension
of the fiber over t is equal to

r = dim(Homy (7, w(t)) — 1 = A(X(), T) — 1.

(i) Assume d = p. Then y(I) < 0 holds, and this obviously implies r 2> 0.
Since this holds for every 1, therefore 7% is surjective.

On the other hand, for d < p, there exists an invertible Oy)-Module L with
x(L) = p — 1 — d and with #(X(t),L) = 0 by (3.5(b, c)). Thus the image of
&% does not contain Picy/g) () -

(ii) Take ¢ to be a geometric point over w. By (5.18(ii)) the map &% is
smooth over o because the w-index of specialty Exty (I, w(t)) is equal to zero
by hypothesis. Moreover, we have,

r=—x(I)—1=d—p.
(iii) By hypothesis, U contains an open subset } of
P = Picors)en N Pp1-a-

Clearly we may replace = by a point of V.

To prove d > p, clearly we may assume S == Spec(k), where & is the algebraic
closure of A(r). It is known that P.is then irreducible. (Briefly, Pic{yz«t) 18
equal to Picly et because every invertible sheaf can be represented by a
divisor supported on the smooth locus, and any two smooth points are algebraical-
ly equivalent.) Since .27, ¢ is proper (5.20), its image A is closed. Since 4 contains
V and since P is irreducible, 4 therefore contains P. Hence by (i) we have d > p.

Returning to the case of an arbitrary base S, let W denote the set of w-
nonspecial points of P,_, 4. Then W is open. Indeed, represent the inclusion
map of P,_,_; into Pic(y 5ty by a relative pseudo-invertible sheaf | on Xg/R,
where R is a suitable étale covering of P,_,_,. By upper-semicontinuity (see
[EGA III,, 7.6.9(i)] for the locally Noetherian case, the general case can be
reduced to it using [EGA IV, , Sects. §, 11]), the set,

W' = {we R| B(X(@), J@w) =0},
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is open.in R. Clearly the image of W' in. P,_,.; is equal to W. Since a flat;
locally finitely presented morphism is open [EGA IV,, 2.4.6], W is therefore
open.

It remains to show WD U. Clearly the points of U all have the same w-index
of specialty (namely, p — d + r, where r is the constant dimension of the
fibers of £, over U). Hence it suffices to prove W and U contain a common
point. Now, W is open and by (3.5(c))-it contains a point of the fiber P(). On
the other hand, U contains an open subset of P(r). Smce P(w) is irreducible, W
and U therefore contain a common point of P(x).

(iv) By [EGA IVy, 11.3.1], the Abel map is flat in a connected, open
neighborhood ¥ of g. The image U of ¥ in P,_,_, is open [EGA Iv,, 11.3.1]
and connected. The fibers of 2% | I all have the same dimension since 2% | V
is flat [EGA IV, , 12.1.1(i)]. Since the fibers of .2, are projective spaces (5. 17),
so irreducible, all the fibers of 2% over U are nonempty and have the same
dimension. The assertion now follows from (iii).

(v) For d=2p— 1, we have y(I) << —p. So by (3.5(f)) we have
KX, I) = 0. Thus every ¢ is w-nonspecial and so &£ is smooth by (ii).

For the converse, we may assume S is the spectrum of an algebraically closed
field. For each d < 2p — 2 there exist rank-1, torsion-free sheaves I with
different values for #%(H, I) by (3.5(a—d)). Since P,,_l_d is connected [AIK,
Proposition 11}, &,# cannot be smooth,

(8.5) TueoreM. Let f: X — S be a flat, finitely presented, locally projective
morphism of schemes, whose geometric fibers are integral curves with the same
arithmetic genus p. Fix an integer n and set

P, = Picy/5)¢tn -

(i) P, is finitely presented and locally projective over S.
(i) If f is projective, then P, is finitely presented and projective over S.
(iii) If f is projective and S is connected, then P, is strongly projective over S.

Proof. (i) The assertion is obviously local on 8, so it follows from (ii).

(i) To prove P, is projective and finitely presented, we may clearly
assume S is connected. So, assertion (i) follows from (iii).
(iii) Since S is connected fis strongly projective by (2.2(iii)).
Fxx a relatively very ample sheaf Ox(1). Let I be a relatively torsion-free,
rank-l sheaf on XT/ T. Then we have the formula, ~

(I(t)(m)) = deg(X(t))m + x(I(t)), for te T,
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by (3.5(e)), and deg(X{(?)) is independent of ¢ because S is connected. So we
have the formula,

P, = Picthgey  with  O(m) = deg(X(t))m + n.

Hence P, is strongly quasi-projective by (6.6).
Fix m so that (m) < 0 holds. Note that we have an isomorphism,

P, =% Py by I~ I(m).
Consider the dth component of the Abel map,
A, Quotl,, x;5) = Potm) » for d=p—1—0(m),

where w is the dualizing sheaf. It is surjective by (6.5(i)) because d > p holds.
Since Quot{, 4/s) is projective, so proper, over S and since .,% is surjective,
Py is therefore universally closed over S [EGA I, 3.8.2(iv)]. Hence P, is also.

Since P, is strongly quasi-projective, it can be embedded into a projective
S-scheme P(E), where E is a locally free Og-Module with a constant, finite rank.
Since P, is universally closed over .S, its inclusion map into P(E) is closed
[EGA I, 3.8.2(vi)]. Thus it is strongly projective over S.

(8.6) THEoREM (D’Souza-Rego). Let f: X — S be a flat, finitely presented,
locally projective morphism of schemes, whose geometric fibers are integral curves
with arithmetic genus p. Fix an integer d > 0, and consider the dth component of
the Abel map,

d d . d .
° = o (x5): Hilb{y,5) — Py_p_g = Picz/5) 6t 1-p-a) -

Then the following conditions are equivalent:

(1) d >=2p — 1 holds and each fiber X(s) is Gorenstein.
(i) 7% is smooth with relative dimension d — p.
(iii) Ewvery fiber of oZ% has the same dimension.
(iv) d>=2p — 1 holds and every fiber of /¢ over a point of the closure of
Pic(x/s) sty has the same dimension.

Proof. The implication (i) = (ii) follows immediately from (8.4(v)) and
diagram (8.2.3). The implication (ii) = (iii) is trivial.

To prove (iii) = (iv) and (iv) = (i), clearly we may assume § is the spectrum
of an algebraically closed field .

Assume (iii). By (3.5(a~d)) there exist rank-1, torsion-free sheaves on X
with Euler characteristic 1 — p — d but different values of A9 for each d with
0 < d < 2p— 2. S0 by (5.18(i)) we have d > 2p — 1. Thus (iv) holds.
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Assume (iv). Fix an invertible Ox-Module L with degree (d — 1); for example,
take L = Oy(d — 1). Consider the exact sequence,

0 —PI(A) —_ OXXX* OA'—’O,

of the diagonal subscheme 4 of X x X. Then, for any Ox-Module M, there is an
exact sequence,

Homxxx(O‘, ,L ®k M)-—-> Homxxx(Oxxx ,L ®k M)
— Hompxx(I(d), L ®4 M)— Exthx(O4,L @, M)—0,

(8.6.1)

where L ®, M denotes p¥L ®og.x P¥M. Note that Hom(k(x), L) is equal to
zero for all closed points x because L is invertible and X satisfies S, ; hence, the
first term of (8.6.1) is zero by (1.10(i)).

Applying p,, to (8.6.1) yields the exact sequence,

0 — pax(L @ M)—> pas Homyxx(1(4), L ®x M)
~> Pas Extinx(04, L @1 M)— R'pyi(L @1 M).
Now, if for any closed point x of X we have HY(X, L) = 0, then L is isomorphic
to the dualizing sheaf w by (3.5(g)) since x(L) > p — 1 holds because L has
degree d — 1 and d — 1 > 2p — 2 holds by hypothesis; then X is Gorenstein.

Otherwise, R'%,,(L &, M) is equal to zero for all quasi-coherent M, and the
functor,

M pys(L Qi M),

is exact by the property of exchange [EGA III,, 7.7.5].

The hypothesis that every fiber of 7% had the same dimension, say 7, implies
that H(I(4), p7L)(x) has the same dimension, » + 1, for every point x of X by
virtue of (5.18(i)) and (1.1). Since X is reduced, H(I(d), p¥L) is therefore
locally free. Hence the functor,

M > pp Homy,x(1(4), L @ M),
is exact. Therefore, the functor,

M pos EXt}(xx(O‘A L @i M), (8.6.2)

is also exact. :
Functor (8.6.2) is isomorphic to the functor,

. M Extf\vxx(o.a » L @y M),
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because Exty, x(04,L ®; M) has support on 4. Hence the latter is exact.
Consequently Exty, y(O4, p{L) is flat over X, so a locally free O,-Module, and
its formation commutes with base-change (1.10(iii)). Therefore, for each closed
point x € X, its fiber is isomerphic to Exty(%(x), Oy), which is a sheaf concen-
trated at x. Hence the rank of Ext}(k(x), Oy) is independent of x. This rank is
equal to 1 at all smooth points, hence at all points. Thus X is Gorenstein and (i)
holds.

(8.7) LEmMmA. Let f: X — S be a flat, finitely presented, locally quasi-
projective morphism of schemes. Then the diagonal Ay, defines an isomorphism,

X >~ Hilb]('x/s) .

Proof. The diagonal 4y, C X XX clearly belongs to Hilb{y /5(X). On
the other hand, let ¥ be a 7-point of Hilb!, ;s) - Then each fiber Y(?) is equal to
k(t) since x(Oyy(n)) is equal to 1. Hence Y — T'is a surjective, closed embedding
[EGA 1V,, 8.11.5] because it is proper and finitely presented. Therefore, since
Y — T is flat, it is an isomorphism. (Any flat, finitely presented, surjective,
closed embedding ¥ — 7' is an isomorphism. Indeed, the formation of the
Ideal commutes with base-change. Hence, its restriction to Y is equal to zero.
So it is zero by Nakayama’s lemma.) Hence Y is equal to the graph I, of a
morphism g: T — X. Thus the pair (X, dy/s) represents Hilby g, .

(8.8) TuroreM. Let f: X — S be a flat, finitely presented, locally projective
morphism of schemes, whose geometric fibers are all integral curves with the same
arithmetic genus p > 0. Then the first piece of the Abel map,

o Hilbly,s) — P_y = Pict/s) 6t »
is a closed embedding, and it is canonically isomorphic to a closed embedding,
awX—->P_,.

Moreover, «(P_,) N Pic(xs) )} #s equal to the smooth locus of X|S.

Proof. 'The second assertion follows immediately from the first and from
Lemma (8.7). For the last assertion, clearly we may assume S is the spectrum
of an algebraically closed field. Then obviously « carries a closed point & of X
to the class of its maximal Ideal .4, . Since x is smooth if and only if .Z, is
invertible, the assertion holds.

Return to the case of an arbitrary S and consider the first assertion. Since /1
is proper and finitely presented (5.20(i)), it will be a closed embedding by
[EGA1V,, 8.11.5] if each of its geometric fibers is empty or consists of a single
reduced point. Since each geometric fiber is a projective space (5.17), it suffices
to assume S is the spectrum of an algebraically closed field % and it suffices to
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show that the presence of two distinct closed points in the same fiber of /1
implies p is equal to zero.

Clearly the two closed points of Hilb{y , correspond to two closed points x
and y of X whose maximal Ideals .#, and .#, are isomorphic. Since X is
integral and since .#, and .#, are rank-1 and torsion-free, the isomorphism
from 4, to 4, is given by multiplication by a rational function g on X that is;
we have the relation,

g My=M,.

Since x and y are distinct points, .4, and .#, are therefore invertible.

The functions 1 and g in I'(X, ;") clearly generate 3. So, by [EGA II,
4.2.3], they define a morphism k: X — P,1. Since x is the only pole of g and
since it is a simple pole, g generates the function field of X [F, Proposition 4,
p. 194]. Hence k is birational. Consequently 4 is an isomorphism. Thus p is
equal to zero.

- (8.9) Example. Let f: X — S be a flat, finitely presented, locally projective
morphism whose geometric fibers are all integral curves with the same arithmetic
genus p.

(i) Suppose the fibers X(s) are smooth. Then clearly every torsion-free,
rank-1 sheaf on X(s) is invertible, and so we have

Picx;s)¢t = Picg/s)en

and for p > 0 the embedding X — P_, in (8.8) is just the usual embedding
associated with the Albanese property of the Jacobian. (See [FGA, 236-17,
Theorem 3.3(iii)] for a general “Albanese” theory.)

(ii) Suppose p = 0. Then the fibers X(s) are isomorphic to plane conics;
so, since they are integral, they are smooth. Then we have

Picx/s) ety = Picasyery = Zs

(although there is no universal sheaf unless X has the form P(E) for some
locally free Og-Module E with rank 2). In this case the first piece of the Abel map,

J{I: Hilb](x/s) g ‘PO s

is canonically isomorphic to the structure map, f: X — S.

(iii) Suppose p = 1. Then the fibers of X{(s) are isomorphic to plane cubics;
hence they are Gorenstein. Therefore the first piece of the Abel map is an iso-
morphism,

dli Hilb}x/s) a4 P...]_ 1
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because it is an embedding (8.8) and is smooth (8.6). So in this case, &1 is
canonically isomorphic to a canonical isomorphism,

a X oy P,
which carries the smooth locus of X/S onto P_; N Pic(ys) ) by (8.8).

(8.10) Example (inspired by [H]). Let Y be a nodal plane cubic over an
algebraically closed field %. Set

Py = Picym tetin -
It is well known (see, for example [Oo], Sect. 2]) that
Pictym = Py N Picym

is canonically isomorphic to the multiplicative group G,, . Hence the tensor-
product action of Pic}, /iy on Py, yields a canonical action of G, on P, .

Transporting the action of G,, on P_; via the isomorphism a: Y = P_; of
(8.9(iii)) yields an action of G,, on Y, given explicitly as follows. Let z be a closed
point of Y. Then «(3) is represented by the maximal Ideal .#,. Let g be a
closed point of G,,, and let L be a corresponding invertible sheaf on Y. Then
clearly we have

'/{a(z) =, QL.

The action of G,, on Y induces via pullback a second action of G,, on each P,,.
The “pullback” action is equal to the nth power of the “tensor-product” action,
Indeed, fix a smooth closed point y € ¥. Then the maximal Ideal .#, is invertible,
and so every closed point of P, is represented by a sheaf of the form 4, ®
ME"D where z is a suitable closed point of Y. Let g be a closed point of
G,, and let L be a corresponding invertible sheaf on Y. Then clearly we have

M@ M) = M, ® M
= 19®n ® ./{z ®"Il§(_"_l) .

Let S be an arbitrary k-scheme and fix an element G € HY(S, G,,). Consider
the S-scheme X = G X (S X, Y). It is constructed as follows: Represent G
by a Cech 1-cocycle (G, g) with respect to a suitable open covering (U,) of S;
glue Y x U, to Y X U, over U, N Uy by applying G, 5. Clearly Piciy g ct)n
can be obtained similarly, by gluing P, X U, to P, X Uz over U, N Uy.
Hence we have the formula,

Piciy/syetn = G®" X3 Py . (8.10.1)
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In particular, there is an isomorphism,

Picix/syetn O Picirs) = G®" X3 Gp, (8.10.2)

because P, N Pic(yy i isomorphic to G, (in many ways if n 5= 0).

Suppose G has infinite order. Then X is not projective over S! In fact, any
invertible sheaf N on X must have degree 0 on some fiber over S, for we may
assume S is connected. Then the degree n of N on a fiber is independent of the
fiber. So N defines a section of G®" X G,, via the isomorphism (8.10.2). Hence
G®" x, G,, is trivial. Therefore, n = 0.

For n 5 0, by the same token, Picz s, 18 not projective over S in view of
(8.10.1) because G®* also has infinite order and P,, is isomorphic to P_, ,so to Y.
On the other hand, we have the formula,

Picys)eto = Py X1 S,
in view of (8.10.1).
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