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Abstract

‘We use the idea of free fields to obtain highest weight representations for the extended affine Lie algebra

gl(Cy) coordinatized by the quantum torus C,; and go on to construct a contravariant hermitian form.
We further give a necessary and sufficient condition such that the contravariant hermitian form is positive
definite.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Extended affine Lie algebra; Quantum torus; Hermitian form; Highest weight representation

0. Introduction

Extended affine Lie algebras are a higher-dimensional generalization of affine Kac—Moody
Lie algebras introduced in [13]. Even earlier than this Saito in [17] developed the notion of ex-
tended affine root systems in the study of singularity theory. It turns out that the nonisotropic
root systems of extended affine Lie algebras are precisely Saito’s extended affine root systems.
Those Lie algebras and root systems have been further studied in [1-3], and among others. There
are extended affine Lie algebras which allow not only Laurent polynomial algebra as coordinate
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algebra but also quantum torus (even a nonassociative torus) depending on the type of Lie alge-
bra. The representations for extended affine Lie algebras and their cousins—toroidal Lie algebras
have been studied widely in the past two decades.

In the representation theory of Lie algebras with a triangular decomposition, the existence of
a highest weight vector and unitarizability are two fundamental assumptions. Let us first recall
some definitions (see [14]). Suppose that g is a complex Lie algebra. Let U (g) be its universal
enveloping algebra. Let B be a subalgebra of g (called a Borel subalgebra) and w be an anti-linear
anti-involution of g such that

B+ w(B)=g. 0.1

Let 1:B — C be a 1-dimensional representation of B. A representation 7 :g — gl(V) is
called a highest weight representation with highest weight A if there exists a vector v; € V with
the following properties:

7 (U(g)v =V, 0.2)
w(b)v) = A(b)v, foranyb e B. 0.3)

A hermitian form (-,-) on V such that

(v, v) =1, 0.4
(rr(a)u, v) = (u, n(a)(a))v) forallaeg, andu,veV 0.5)

is called contravariant. One can show that, under some natural conditions, for any highest weight
A: B — C there exists a unique highest weight representation with a nondegenerate contravariant
hermitian form. As pointed out in [14], the nontrivial problem is then whether this contravariant
hermitian form is positive definite (the representation 7 is thus unitarizable).

The free fields construction was first given by Wakimoto [20] for the affine Lie algebra ;[2
and in a great generality by Feigin and Frenkel [8] for the affine Lie algebras s[,,. The book [7]
gave a detailed treatment for the free fields construction of the affine Lie algebra sl,.

In this paper we use the idea of free fields to give a new class of highest weight representations

of the extended affine Lie algebra gl,(C,) with respect to some natural Borel subalgebra, where
C, is the quantum torus (or the algebraic version of the irrational rotation algebra in the noncom-
mutative geometry). This class of representations depends on an infinite family X of elements of
SL,(C) and one complex parameter p and is realized on the commutative polynomial algebra
V =Clxgn,ny: (m,n) e 7] in terms of the Weyl algebra W = Clxgn,ny, 8/0x(n,n): (m,n) € 72
twisted by an action of the family X of elements of SL;(C). This is the main result which is
stated in Theorem 2.12. It may be noteworthy to point out that this realization involves operators
which are cubic on standard generators of the twisted Weyl algebra. The construction of these
representations is motivated by Wakimoto’s works in particular the unpublished manuscript [19]
where he considered the Lie algebra sl (C[s*!, til]). Our Theorem 3.6 provides a contravariant
hermitian form for the gl,(C,)-module. To find out a necessary and sufficient condition for the

contravariant hermitian form being positive definite (see Theorem 4.8), we employ the techniques
developed by Jakobsen—Kac [15].
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Throughout this paper, we denote the field of complex numbers, real numbers and the ring of
integers by C, R and Z, respectively.

1. Extended affine Lie algebras

Let g be a nonzero complex number. A quantum 2-torus associated to g (see [16]) is the unital

associative C-algebra C, [s*1, %1 (or, simply C,) with generators sT1, t*1 and relations
S D DR R P _
ss” =5 s=tt" =t t=1 and ts=gqst. (1.1)
Then we have
(Smltnl)(smztnz) =qn1m2Sm1+m2tn1+n2 (12)
and
Cy= P Csmr. (1.3)
m,nez

Define « : C;, — C to be a C-linear function given by

K(Smtn) = 8(m,n),(0,0)- (1.4)
Let dy, d; be the degree operators on C, defined by
d (smt”) =ms"t", d; (s’"t") =ns"t" (1.5)
form,n € Z.
For the associative algebra C,; over C, we have the matrix algebra M>(C,) with entries from
Cy. We will write A(x) € M>(Cy) for A € M>(C) and x € C,, where A(x) = (a;jx) € M2(Cy)

if A= (a;j) € M2(C). Let gl,(C,) be the Lie algebra associated to M>(C,) as usual. The Lie
algebra gl,(C,) has a nondegenerate invariant form given by

(Aa), B(b)) =tr(AB)x(ab), forA,Be M>(C), a,beC,. (1.6)
We form a natural central extension of gl,(C,) as follows:
9L (Cy) =gl (Cy) & Cc; & Ccy (1.7)
with Lie bracket

[A(s’"'t”'), B(s’"zt”z)]
= A(smlt"I)B(smzt"Z) — B(smzt"Z)A(smlt”‘) + tr(AB)K((dSsm‘t"‘)smzt”z)cs
+ tr(AB)k ((dis™ 1" )s™21") ¢, (1.8)

formyi,mo,ny,nr € Z, A, B € M>(C), where ¢, and c; are central elements of g@).
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The derivations ds and d; can be extended to derivations on gl,(C,). Now we can define the

semi-direct product of the Lie algebra gg((C\q) and those derivations:

0L (C,) = g (C,) ® Cd, & Cd,. (1.9)

e~

Next we extend the nondegenerate form on gl,(C,) to a symmetric bilinear form on gl,(C,)
as follows:

(A(a), B(b)) = tr(AB)x(ab),  (cs,ds) = (c;,dy) =1, (1.10)

all others are zero, for A, B € M>(C), a,b e C,.

Then QEE) is an extended affine Lie algebra of type A with nullity 2. (See [1] and [3] for
definitions.)

Let E;; be the matrix whose (i, j)-entry is 1 and O elsewhere. Then, in gﬁc\q), we have
[E3y(s™1e™). Eu (™)
— Sjk(]nlmz Eil(sm]+m2tn|+nz) _ Silqnzml Ekj (sm1+m2tn1+n2)
+ mlqnlngjkaiISml—i-mz,Oanl+n2,0cs + nlqnlmzajkail(sml+m2,08n1+n2,001 (L.11)

forml,mz,nl,nz €.

The extended affine Lie algebra gﬂ@) for n > 2 has been studied in [4-6,9-12,18], and
among others.

e~

2. Representations for gl,(C,)

In this section, we will construct g@é;)-modules by using Wakimoto’s free fields [19,20].
Let

V =C[x(un): (m,n) €Z? (2.1
be the (commutative) polynomial ring of infinitely many variables. The operators x,, ) and

0/0X(m,n) acton V as the usual multiplication and differentiation operators, respectively.
Given a family X = {X,,, ,: (m,n) € 72} of 2 x 2 lower triangular matrices, where

Xpn = <a<'"~”> J 0 ) € SLy(C)
C(m,n) (m,n)

for (m,n) € Z* (so A, mydm,ny = 1), we set

d
Py=aps—, (2.2)
x4
0
Qa=ca— +daxa (2.3)

0x4
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for A = (m,n) € Z*. It is easy to see the following formula holds true.
x4 =aa0a —caPa.
Lemma 2.5. For A, B, C € 72, we have
[Pa, PRl =0, [Qa.0B]1=0, [Pa, OBl=04,B-

For a fixed u € C, define the following operators on V':

—min
enn(mi,n) =—q """ WP—my,—n))
nim’'+nmi+nm’
- Z q ! ! Q(m+m’+m1,n+n’+nl)P(m,n) P(m’,n’)v
(m,n)eZ2
(m' .n')eZ?

ex1(m1,n1) = Qny.ny)s

1
erf(my,ny) =— Z q"m‘ Q(m+m1,n+n1)P(m,n) - EILS(ml,nl),(O,O%
(m,n)eZ?
1
exn(mi,ny) = Z qmnl O ntmy,ntny) Ponn) + EMS(ml,nl),(O»O)’
(m,n)eZ?
Dy = Z mQ(m,n)P(m,n),
(m,n)eZ
D, = Z nQ(m,n) P(m,n)
(m,n)eZ

(2.4)

2.6)

2.7)

2.8)

2.9)

(2.10)

@2.11)

for my,ny € Z. Although eq1(m1,n1), exn(my,n1), ejp(my,ny1), D1 and D, are infinite sums,

they are well defined as operators on V.
Now we can state our first result.

Theorem 2.12. The linear map nx g@é;) — EndV given by
mx u(Eij(s™1")) = eij(my, ny),
”X,M(ds)ZDla ﬂX,u(dt)ZDL nX,/L(Cs)ZﬂX,M(Ct)ZO

formi,n1 €Z, 1 <i, j<2,isa Lie algebra homomorphism.

Proof. Since the parameter ¢ is involved in our construction (2.6) through (2.9), we shall handle

the verifications in a few more details.
The following three identities are straightforward:
[e11(m1,n1), ex2(m2, n2)]

_ n'4ny)mi+m'n
=—- Z CI( 2mi 2Q(m/+m2+m1,n/+nz+nl)P(m/,n’)
(m’,n")eZ?
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+ Z qnml+(m+ml)n2Q(m+m1+m2,n+n1+n2)P(m,n)
(m,n)eZ?

=0,
[er1(m1,n1), e21(m2,n2)] = —¢""™ Qo 4mymi+n2) = —q">™ €21 (m1 +ma, ny +ny),
[e22(m1,n1), e21(m2,n2)] = "™ Qmy4mysmy4n) = ¢ €21(m1 + ma, ny + n2).

[e11(m1.n1), e11(ma. n2)]

_ n'+ny)mi+n'm
= Z q( 2)m1 2Q(m/+m2+m1,n/+nz+n1)P(m/,n’)

(m',n")eZ?
— > TR0 gty ) Py
(m,n)eZ?
_ _qnzml {_ Z qn (mi+m2) Q(m’+m]+m2,n’+n1+n2)P(m’,n’)
(m',n")eZ?
1
= S HEGmyma.ni+n2),(0,0)
+q"Mm2y— Z qn(n11+m2)Q(m+m1+m2,n+n1+n2)P(m,n)
(m,n)eZ?

1

- §M5(m1+m2,nl+n2),(o,0)}

=—q""e11(my +my,n1 +n2) +q""ey 1 (my +ma,ny +na).
Similarly to the above case, one can check that
[e22(m1,n1), ex2(m2, n2)] = g™ e (my +ma,ni +ny) — g™ exn(mi +ma,ny +ny),

[e11(m1,n1), e12(m2, n2)]

=g ™" Y q"" [ Qumtmyntny) Ponnys Pioma,—n)
(m,n)eZ?

Lol

+ 2 : qnm1+n2m”+n’m2+n m

(m,n)e??
(m’,n')eZ?
(m”,n”)EZZ

X [Q(m+m],n+11])P(m,n)a Q(m’+m”+m2,n’+n”+n2)P(m’,n’) P(m”,n”)]

—many+(=ni—n)mi p
(—=my—my,—ny—nz)

=—MKq
+ Z q ' +n"+n)m+nom” +n'my+n'm”

(m' .n')eZ?
(m”,n”)éZz
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X Q m/+m" +maytmy 00" +nany) P’ 0y Pan? )
_ E qnm1+’12m”+(n+nl)m2+(n+n1)m”

(m,n)e??
(m”,n”)EZZ

X Q(m+m”+m1+m2,n+n”+n]+n2) P(m,n) P(m”,n”)
+ +my)+n'my+n'(m+
_ Z qnm1 ny(m+my)+n'my+n'(m ml)Q(m/+m+m1+m2,n/+n+n1+n2)P(m/,n/)P(m,n)

(m',n')eZ?
(m,n)eZ2

— _Mq*m2”2+(*nl —na)mj Pl

my,—nj—nz)

Z g™ +nym” +(n+n)ma+(n+n)m”

(m,n)eZ2
(m//,n//)EZZ

X Q(m+m”+m1+m2,n+n”+n1+n2) P(m,")P(m”,n")

(the second and the fourth terms are negative to each other)
=g"m (_Mq(m1+m2)(n1+n2) P mi—my—ni—n2)

nmy+nom” +nmo+n+ny)m’”

- Z 4q Q (m+m"+my+my,ntn"+ni+n2) Pam.n) P(m”,n”)>

(m,n)eZ?
(m//,n”)EZZ

=q""e12(m +my,ny + na).
In a similar way, one may obtain that
[e22(m1, 1), e12(ma, n2)| = —q"™ ea1(m1 + ma, ny +n2).

[e12(m1,n1), e21(m2, n2)]

= —q_mln]l/v[P(—ml,—nl)’ Q(mz,nz)]

nym’+nmy+nm’

- Z q [Q(m+m/+m1,n+n/+n1)P(m,n) P(m/,n/)v Q(mz,nz)]

(m,n)eZ2
(m’,n)eZ?

= —=8Cmy—n @ "= > @2 Qs oy gt Py
(m,n)eZ?

§ : nym’+nymy+nym’
- q ! 2 Q(m’+m2+m1,n’+n2+n1)P(m’,n’)
(m',n')eZ?

1
=q"" (_ Z q(ml+m2)nQ(m+m2+m1,n+n2+n1)P(m,n) - Eﬂg(ml,nl),(mz,n2)>
(m,n)eZ?

/ 1
— gmm ( Z q(l’ll"rnZ)m O ' +ma+my ' +ng+ny) Pon’ .y + EIU“S(—mly—nl),(mzy"z)>

(m’,n")eZ?
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=q""er1(m1 +ma,ny +n2) —q""exn(my +ma,ny +ny).

Next we shall handle the most complicated situation:

[e12(m1.n1), e12(ma. n2)]

— § : qnlm/+nm1+nm/+n2rh/+ﬁm2+r_zrh/

(m,n)eZ?
(m',n')eZ?
(m,n)eZ?
(', i')eZ?

X [ O ntm'+my ntw'+n1) Pon,n) Pan' w7y s O (i +moa i+t +n0) Pon, iy Pow i) ]

+ q(—m1n|)M Z qnzm’+nm2+nm’

(m,n)eZ2
(m',n)ez?

X [P(fml,fnl)’ Q(m+m/+m2,n+n’+n2)P(m,n)P(m’,n/)]

+ q(—mznz)u Z qnzm’+nm2+nm’
(m,n)eZ2
(m',n")ez?

X [Q(m+m’+m1,n+n/+n|)P(m,n) P(m/,n’)a P(fmz,fnz)]

=h+h—-—L+J5+ J,

where

Jy = Z g™ (A +mo)+nmy+n(m-+m'+ma)+nom’ +nmo+im’
(m,n)EZ2
(m,n)eZ?
(' \i')el?

X Q (mtn+i/ +my+my ntirit+ny+ny) Pon,n) Pon,iny Por i)

Jp = § qnlm’+(ﬁ+ﬁ’+n2)ml+(7z+ﬁ/+n2)m’+n2n_1’+r_tm2+r_m_1’

(m' .n')eZ?
(m,n)eZ?
(m',n'yer?

X Q (-t +m’ +my+my it +n'+ny-+n1) P 'y Pon. iy P ')

J3 = Z qnlm”rnml+nm/+nz(m+m’+m1)+ﬁm2+ﬁ(m+m/+m1)

(m,n)eZ2
(m,n)eZ?
(m',n')eZ?

X Q(lﬁ+m+m’+m2+m1,r_l+n+n’+n2+n1)P(rh,ﬁ) P(m,n) P(m’,n’)v
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Z nym’+nm+nm'+nom’+(n+n'+n ymo+(n+n'+ny)m’

Jy= q

(m'.n')ez?
(m,n)eZ2
(' i ez?

X Q (mtm! i +ma+my ntn' +it'+np+ny) P iy Ponn) Pon' )

JS = qulnlli Z an(iml7m27m+nm2+n(7ml7m27m))P(—m1—mz—m,—nl—nz—n) P(m,n)s

(m,n)eZ?

Jo=—q "2y Z g +(=ny—ny—n"ym+(=ny—ny—n"ym Py —my—m'—ny —ny—n'y Pt 1)

(m’,n")eZ?
Note that J; = Jy, J, = J3 and J5 = —Jg. Thus
[e12(m1, n1), e12(m2, n2)] =0.

It is clear that [ex1(m1, n1), e21(m2, np)] = 0. Next we check the identities involving D;

and D».
It is obvious that the following identities hold:

[D1, D2]1 =0, [D1,e21(m1,n1)] =miear(mi, ny).

[D1.ern(mi,ny)]

= _qimlnlﬂ Z m[Q(m,n)P(m,n)a P(—ml,—nl)]
(m,n)eZ?
- Z mqnlm tmcem [Q(m,n) P(m,n)a Q(m’+m”+m1,n’+n”+n1)P(m’,n’) P(m”,n”)]
(m,n)ez?
(m',n')eZ?
(m”,n”)eZz

—mini

=q /L(_ml)P(—mh—nl)
- Z (m/ +m” + ml)qnlm”+n’m1+n'm” Q(m’+m”+m1,n’+n”+n1)P(m’,n’) P(m”,n”)
! 2
o ez?
+ Z mqnl’n//+nml+nm//Q(m+m”+m1,n+n”+n1)P(m,n) P(m”,n”)

(m,n)eZ2
(m”,n”)EZZ

nym+n'my+n'm
+ Z mq"! : O on'tm-my ' +ntny) Pon' 'y Pom,n)
(m',n')eZ?
(m,n)eZ2
— g =M P —m n1;n+n’m1+n’mQ , P P
= 19 KL (—my,—ny) 1 q (m'+m+my,n'+n+ny) L(m’ .n') L'(m,n)

(m',n')eZ?
(m,n)EZ2

=mjep(my, ny).
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[D1,eri(my,ny)]

= - Z mq" m [Q(m,n)P(m,n), Q(m’+m1,n’+n1)P(m’,n’)]

(m,n)EZ2
(m',n'yeZ?
== Z (m/ + ml)qn " Q(m’+m1,n’+n])P(m/,n’) + Z mqnml Q(m+m1,n+n])P(m,n)
(m’,n")eZ? (m,n)eZ?
1
=mj <— Z mq""™ Q m+my n+ny) Pon.ny — Eﬂa(ml,nl),(0,0))
(m,n)eZ?

=mjeyi(my,ny).
Similarly to the above case, one has
[D1,exa(mi,n1)] =miexn(mi, ny).
Replacing D; by D, in the above proof, one can show that
[D2, e21(m1,n1)] =niea(my, ny), [D2,e11(mi,n)] =nier(mi, ny),
[D2, e2(m1,n1)] =niexn(my, ny), [D2, er2(myi,n1)] =nienn(my, ny).

Therefore by comparing with (1.11) we see that the linear map 7y , is indeed a Lie algebra
homomorphism. O

3. Hermitian forms

Here we shall unify the hermitian forms independently studied by Wakimoto [19] and
Jakobsen—Kac [15].

—_—~

Define w : gl,(C,) — gl,(C,) a R-linear map as the following:

w(x) =ro(x), VreC, xe€gh(C,), (3.1)
o(Eij@) = (-1 E;@), aeCy, (3.2)
w(ds) = ds, w(dy) = dy, w(cs) = cs, w(c) =cr, (3.3)

where R-linear map ~:C; — C, is defined as AN = At 7"s T = Ag"™"s™"t™", and A is the
complex conjugate, for any A € C, and m,n € Z.

In the following sections, we always assume that gg = 1 (or |g| = 1). This assumption will
guarantee that the map ~ is of order two.

—~

Lemma 3.4. w is an anti-linear anti-involution of gl,(C,).

Proof. Since

a)(Ejj (smt”)) = (—l)iﬂqm"Ej,' (sf’"f"), (3.5)
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we have

@ (Eij (s"1") = o((= )" g™ Eji (st "))
— (_1)i+jémn(_1)i+qunEij (Smtn)
= E;j(s""),

s0 w? = id. We only need to check w([a, b]) = [w(b), w(a)], for any a,b € g@(j/q).

[(Eij(s™'1")). o (Ew(s™1"2))]
— (_1)j+kqm1”1+m2n2+mw1 Si1E i (s*(m1+m2)t*(n1+nz))
— (= 1)1+iqm1”1+m2n2+m1”25jkEli (Sf(m1+m2)t*(n1+nz))

Yn1n1+mzn2+mzn1m15

—q jk3i15n1+n2,08m1+m2,00s

m1n1+m2n2+m2n1n18

—q jk8il8n1+n2,08m1+m2,001-

Thus

o([Ej(s™1"), Eu(s"1")])
— émznl(sjkw(E” (sm1+m2tn1+n2)) _ qmlnzfsilw(Ekj (Sm1+m2tn1+n2))

+m1G"" 8 1 8i18m, +my, 00, 412,00 (C5) + 1G> 8 jk8i18my +m2,08n, 412,00 (C1)
=(— 1)l+iqm|n1+m2n2+m1n23jkEli (s—(ml +ma) = +nz))

_ (_1)./+kqmml+mznz+mzn1 Si1E ji (s—(m1+m2)t—(n1+nz))

min|+many+monj S

+miq jk8i18m|+m2,08n]+n2,0cs

minj+moyny+mon
+ g 1<Sjk5i18rmJrrnz,05r11+nz,oct

= —[o(Ey (") o(Eq (5712))]
= [o(Eu (™). o (£ (")),
As for identities involving d; and d;, we have
[0y, o(Eij(s"1")] = [ds, (=1 g™ Eji(s™"17")]
=— (=T mg™Ej;i(s™™t™"),
a)([ds, Ejj (smt")]) = a)(mEij (smt”)) = (—1)j+imqm"Ej,'(s_ t_”).
Hence we get [@(dy), @ (E;j(s™t"))] = w(—[ds, E;j(s™t")]). Similarly,
[@(@d), o(Eij (s™1"))] = o(=[di, Eij(s"1")])-

The other cases are trivial and so the proof is completed. 0O
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Theorem 3.6. Assume that  is a real number. Then there exists a contravariant, with respect to
nx,u and w, hermitian form (-,-) on 'V so that

(mxu(@).f. 8) = (f.mx u(w(@)-g) 3.7)
forevery f,geV, ae gm).

Proof. Since V is a polynomial algebra, it is sufficient to define the form on a pair of monomials
in the variables x(,, »y, (m,n) € Z2. Given a monomial

Am.n
f= 11 = (3.8)

(m,n)eZ?

whose degree in x,, ) is positive, where A, ») € Z4 U {0} and only finitely many A, ») # 0,
denote by f(;\n) the unique monomial such that

[ =X [ (3.9)

Denote by deg f the total degree of f.

Now we define a hermitian form (f, g) on V inductively on the degree of f. Since a hermitian
form requires (f, g) = (g, f), we only need to define (f, g) with degg < deg f.

We set

1,1 =1, (3.10)
(x(m,n)’ 1)=0, 3.11)
(X(m,n)» X1 k)) = HAm,m)Am,n)O(m,n), (k) - (3.12)

Fix a positive integer N and assume that the form is defined for all monomials f, g such that
degg, deg f < N — 1 and satisfies

(mx.u(E21(s™1")-f. 8) = (/s 7xu(@(E2i (s™1"))) ) (3.13)

with degg S N — 2, degf < N — 1. It is easy to see that (3.13) holds true when deg f,
degg < 1. Take f with deg f = N, and choose (m,n) € Z* such that the degree of f in
X(mn) 2 1.

Observe that

f= X(m,n) m = d(m,n) Q(m,n) @ - C(m,n)P(m,n)f(m/’?)

by (2.4). Since Q(n.ny = 7x, ;. (E21(s™1")) this can be written as

f Za(m,n)nX,p.(EZI (Smtn))f@ - C(m,n)P(m,n)f@' (3.14)

Suppose first that deg g < N. Then set
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(fs 8) :=agmn (f@v JTX,M(C!)(Ezl (Smtn))g) - c(m,n)(P(m,n)f(m/:;)’ g)) (3.15)

Note that all terms here are defined by induction and (3.13) holds.
Suppose now that deg g = N. The first term in (3.15) still makes sense as

degx, u(w(E21(s™1"))g) < degg.

On the other hand, (g, P(m,,,)f(/\) is defined by (3.15) as

m,n)
deg P(m,,,)f(m/;) < deg f(m/7) <N.

Then the last term is also defined by applying the same formula to g and P, ) f@ and using
the fact that the form is hermitian.

We have to show (3.15) is well defined, which means that the right-hand side of (3.15) is
independent of the choice of (m, n). Namely, we need to show that if A, ,) > 1, Agr) > 1 and
(m,n) # (I, k), we have

A(m,n) (f(m/;), —q""e12(—m, —n).g) — Con,n) (Pion.m) [0 &)

=aq (fm, —q"*e1a (=1, —k).g) — ca.p(Puk faw &) (3.16)
Since
T = @uiye2tK)- [ = cwo Pui fomam (3.17)

substituting to the left-hand side of (3.16), we obtain

LHS of (3.16)

= am.n (aa.0en 0 - foms a5 — cano Pun fomyam —4"" er2(=m, —n).g)
— cnn) (Ponmy (aq e, K-S i — cab Pa f@@) g)

= agm.maq.r (e, k)-f(m/%@k\)’ —q"™e12(—m, —n).g)
— Atk (Pak Somaamy —4" enn(=m, —n).g)
— Conmaa. k) (Pommex K)-fommy @ 8) + commyct.ky (Pom.ny P k) Son @iy 8

= a(m,n)a(l,k)(f@@k\)» (=Dg"*ern (=1, —k).(=D)g™ e12(—m, —n).g)
— Am.n)C(Lk) (€21 (m, n) Py g S @ 8) — conmaw.i) (Pommea (1, K- fommam g)

+ Con.m €.k Pomny Paio o7 8- (3.18)

Exchanging (m,n) and (I, k) in (3.18) and noting that f(m/7)(/lk\) = f@(ﬁ\,n)’ we get the
right-hand side of (3.16):
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RHS of (3.16) = aq i@ m (fmy gy 4" €12 (=, —n).q" e12(=p, —).g)
— a1 Com,m (€21, k) Pon,my Jommam g)
— . 0@mn (Paxe (m, OB sy g)

+ .o (Paky Ponn) form iy &) (3.19)

Since [e12(—m, —n), e12(—1, —k)] = [P n), Pu,x)]l = 0, subtracting (3.18) from (3.19) we
have

(3.19) — (3.18) = —aq iy conm ([Q.1)» P(m,n)]~fw/;)@, g)

— ¢ @m.m ([Pa Qonw - fom T g)

= 8(.k),(m.n) (@ K)COn,n) — C(l,k)a(m,n))(f@@, g)=0.

Hence (3.16) holds true and (3.15) is well defined. So we obtained a form on V, and the form
satisfies (3.13) for any f,ge V.

Since (3.13) holds and E»;(x) is a linear combination of E;;(x) and [E12(x"), E21(x")], in
order to prove that the form we defined is contravariant it remains to check

(mx.u(ds). f. 8) = (f x.pu(0(dy)).g). (3.20)
(x.u(dr). £, 8) = (fr x u(@(d)).g8), (3.21)
(x.u(Eni(s"™"). £, ) = (fr x u(w(En (s"1"))).8)- (3.22)

We do this by using induction on the degree of f and g.
First we have

(nx,[l.(dY)'la 1) = (13 jTX,,LL(w(dS‘))'l) =0’
(nX,ﬂ(ds)-x(m,n)a 1) =0= (x(m,n)a nX,u(ds)-l)»

(x, 1 (ds) Xmmy X)) = M Xy X1.0) = L Xmonys X1.0) = (Xmmy Tx,u (@ (ds)) X k)

for (m, n), (I, k) € Z>.
Assuming for any degg < deg f < N — 1, we have

(mx,u(dy). £ 8) = (f, 7x (0 (dy)) &)
According to (3.14) or (2.4),

[ =am.me1(m,n).h — conn)y Punnh, (3.23)

where h = f@ and degh = N — 1, together with the assumption, then
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(mx,(dy). [ 8)
= dgun ((Dre21(m, n)).h, g) = coum (D1 Panmyh, 8)
= a(mm (€21(m, n)Dy1.h + [ Dy, e21(m, n)|.h, &) = con.ny(Pon.mh, D1.8)
= agmn)(D1.h, —q"" e12(—m, —n).g) + agn,n) (meai (m, n).h, g)
— Cn,n) (Pan,ny-h, D1.8g)

(mn)

= dmny(h, —q"" Diera(—=m, —n).g) + am.mym(h, —q""e1n(—m, —n).g)

= Cn.n)(Pan.ny-hs D1.8)

= agmm (h, —q"" (e12(—m, —n) D1 + [ D1, e12(—m, —n)]).g)
+ agm,mym/(h, —q ™1y (—m, —1).8) = Con.m)(Pan,my-h, D1.8)

= agmn)(h, —¢"" e12(—m, —n)D1.8) + agm ) (h, +mq™" e12(—m, —n).g)
+ agmmym(h, —q " ern(—=m, —n).g) = conny(Pan.ny-h. D1.8)

= a(m,n)(egl(m, n).h, Dl.g) — Cn.n) (Pan,ny-h, D1.8)

= (f. D1.g) = (f. mx.u(dy).8).

Therefore (3.20) holds true and so does (3.21).
As for (3.22) we first have

1
(”X,M(Ell(sltk)).l, 1) = —E,uS(l’k)’(()’()) = (1, JTX,M(CD(EH (Sll‘k))).l),
(7x,0 (E11 (s'2%))xm o, 1) = 0 = (., wx, (0(E11 (s'25))).1).
Secondly,
(T[XM(E”(sltk))‘x(ml,nl)’x(mzynz))

1
I
=—q"" Ay 1) Aony+1,n,4+5) Xy +,n1 k) > X(ma,ng)) — §M5(1,k),(0,0) (X(nyn1)s X(ma,na))

1
1 e 2. 2
= —q"" A(n n1)Amznz) KO (my+,my 4, (ma,ma) — §|a<mz,nz>| K8(1,k),(0,0080my 1), (ma,n2)

and

(x(ml,nl)’ T[X»/L(w(El 1 (Sltk)))'x(mz,nz))

= _qlk_lnza(mz,nz)d(mz—l,nz—k) (x(ml ) x(mz—l,nz—k))

—1
—qlk 5:“«8(71,710,(0,0) (X(nyn1) X(ma,na))

1
1 N 2.2
= —q"" A(m ,n1)Amznz) KO my+,my 4, (ma,mp) — 3 1ams.m) I 1°80.00.0.0)8m 1 m1). (m3.m2)

yields
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(nX,M(EU (sltk))'x(m,nl)’ x(mz,nz)) = (‘x(ml»”l)’ ”X’M(w(Ell (sltk)))'x(rnz,nz))'

Now assume for any degg < deg f < N — 1, we have

(wxn(Eni(s™1")-f.8) = (. x. e (@(Enn (s1"))) -8).

According to (3.23), we have

(mx.u(En(s'%)).f. g)
= amm (€11, e (m, n).h, g) — commy (€11, k) Pon,myh, g)
= a(mn)(e21(m, n)er (1, k)., g) + agnny ([e11 (U, k), e21(m, n)].h, g)
— c(m,n)(P(m,n).h, qlkeu(—l, —k).g)
= agmnm (e (1, k)., g™ era(—m, —n)g) + agmn (—q" e21(m +1,n +k).h, g)
— Conmy (Ponmy -, g ern (—1, —k).g)
= d(mny(h.q""q"
+ agnny (h, —q" g ey (—m — 1, —n — k).g)

— Comm (Ponmy -, ¢ ern (—1, —k).g)
h qmn+lk

e (=1, —k)eja(—m, —n).g)

ern(—m, —n)eyi (—1, —k).g)
+agnm (b, g™ [e11 (=1, —k), e12(—=m, —n)].g)
+agn (h, =g " g " ey (—m —1, —n —k).g)
— cona) (Pon.wy-h. g enn (—1, —k)g)

= agn,ny (€21 (m, )1, q"Fer1 (=1, —k).g)

+ @y (hy g™ G ey (—m — 1, —n — k).g)

= a(m,n)(

+agum (b, —g"" " ern(=m — 1, —n = §).8) = cinm (Panmh, " et (<1, —k)g)
= d(m,n) (621 (m,n).h, qlkel 1(—1, _k)-g) - C(m,n)(P(m,n)-h’ qlkel 1(—1, _k)g)
= (f.q"%e11(—1, —b)g) = (f. rx.u(w(Er1 (s'1Y))).9).
Hence (3.22) is also true and the form is indeed a contravariant hermitian formon V. 0O
4. Conditions for unitarity
It is important to have the contravariant hermitian form on V to be positive definite so that the

underlying module is unitarizable.
From the definition of our contravariant form in Theorem 3.6, we see that

(x(zm’n), 1) = Q(m,n) (x(m,n)a qmneIZ(_m» _n)l) - C(m,n)(P(m,n)-x(m,n)7 = —A(m,n)C(m,n)-
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Thus the hermitian form on different degrees can be nonzero. It is therefore difficult to determine
when the hermitian form is positive definite. For this we use another base of V as in [15] rather
than the natural monomial base of V. We further work out the necessary and sufficient conditions
for the unitarity. We shall follow the approach in [15].

Definition 4.1. If the hermitian form is positive definite, 7x , is said to be unitarizable (w.r.t. w).
Here we simplify wy ,, (E;;j(r)).v as E;;(r).v,foranyve V,r € C,.

Lemma 4.2. The elements E>1(r1)E21(r2) ... E21(ry).1, where k € Z4 U {0}, r; = s™it"i, i =
1,...,n, mj,n; €Z forms a basis for V. Moreover, if f is a monomial of degree N, then f can
be written as a linear combination of E21(r1)E21(r2) ... Ex1(ry).1 with k < N.

Proof. Prove by induction on the degree of f. It is obvious true for deg f =0,i.e. f =1.
Ifdeg f =1, f = x@u,n) = E21(s™t").1. Now we assume that f is a monomial whose degree
in Xy ) 18 positive, then

f :x(m,n)fm Za(m,n)EZI (Smtn)f@ - C(m,n)P(m,n)f(m/-’;)y

here deg f@ = N — 1. The induction proves our claim.

Hence E3 1 (r1)E21(r2) ... Ex1(ry).1, k e R U{O}, ry =s™it™ i =1,...,n,m;,n; € Z, spans
V over C. Note that the elements E>;(r1)E21(r2) ... E21(rg).1 are independent of the order in
which the operators are applied.

Since the leading term of E»1(r1)E21(r2) ... E21(rk).1is ]_[f-‘=1 X(m;.n;)» We know that

Ex (r)E(r2) ... Eo1(rg).1

form a base for V with k ranges in {0, 1, 2, 3, ...} and r; ranges in {s™¢": m,n € Z}. O

—_—~—

It immediately follows from Lemma 4.2 that V is generated as a gl,(C,)-module by 1, and

ay a _ 1 1
(O a3>.1_ ZMK(01)~1+2MK(613)~1 “4.3)

for any ay, az, az € C,, here « (a) is defined as in (1.4). The subalgebra

B:{(‘g Zi) a],az,age(cq}EB(CCSEB(CCIGBCdsEB(Cdt

is a Borel subalgebra of gg(\(('j;) in the sense of (0.1).
Hence we have

Proposition 4.4. V is a highest weight module of highest weight X : B — C, where X is defined
as follows
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1 1
A (‘3 “2) =~ uxlan) + 5 px(as).

as

A(es) = Aler) =A(ds) =2(dr) =0
and 1 is the highest weight vector.

Leti e N,y = (y1, ..., ys) be the s-partition of i. Denote by Par,(i) the set of all partitions
y =(1,...,Ys) of i with s parts.

Given y € Pars(N), we say that 711’ X né € Sy x Sy is equivalent to 1 X mp € Sy X Sy, here
Sy is the permutation group of N letters, if for all zy, ..., zy, wi, ..., wy € Cg,

K (Zal (Y Wal (1) -+ 2| ) Wy () - - - K @l (oot A D W by 1) - - - 2] (V) W (V)

can be obtained from the analogous expression for 7 X o by a permutation of the s factors

k (- --) and/or by cyclic permutation of the variables (e.g., k (zjw1z2w2z3w3) = kK (Z3W3Z1W1Z2W2)).
The set of equivalence classes is denoted by [Sy x Sy]1(y). The following result was due to

Jakobsen—Kac [15].

Lemma4.5.Letzl,z2,...,zN,wl,wz,...,wNe(Cq[sil,til]
0 zi 0 zo 0 zn 0 O 0 O 0O O |
0 0 0O 0/ °\0 O w; O wy 0/ " \wy 0/
N
=2 X > (=D = @y (1) Wra(1) -~ Ty (1) Wra )

s=1 yePars(N) [ xm]e(Sy xSy)(y)
(=D (= K Tty (4 D) Wi (141 - - - Ty () Wrea ()

(=D T K oty (e A D Wra (bt 41 - - 2 (N Wy W)-1. (4.6)

We shall call & the level of the element E2(r1)... E21(rx).1 € V, where k € Z, U {0}, r; =
sMighi j=1,...,n,m;,n; €.

Proposition 4.7.
(1) The hermitian form on different level is 0.

(ii) Let h be an element of level n. Then (h, h) is a polynomial in p with the leading term c(h) "
for some constant c(h) > 0.

(02 ) (% 0) (8 9)) vz
(5 5) (2 0) (8 8))=0

Proof. Since

then WLOG, assume s > ¢,
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o

(2 )& o2 02 o) o)
(b (6 5) 6 %) 50 o)
(e (3 )0 T) S T )en)

(according to Lemma 4.5 here ¢ € C)

=0.

This proves (i).
Let h = E2i(ZN)E21(Zn=1) ... E21(Z1), I = Ez1(w1)E21(w2)
sMighi ;= slig'i | then according to Lemma 4.5,

...E>(wy), where z; =

N
==V > > (=" (=p)

s=1 yeParg(N) [ xm]€(Sy X Sn)(¥)

X K (Zy (1) Wy (1) - - - 2y (1) Wrra (1))

(=D =K oy (4 D) Wi 41 - - - Ty () Wrea ()

—1
e (DT K @y oy D Wra s+ - - 2y (V) W (N))

is a polynomial P of w, whose coefficients depends on /& and /’.

If degP = N, then there exists at least a w € Sy, such that x(z;wz()) # 0, that is
K(t—n[s—misln(i)trrr(i)) — q(l”(i)_mi)(_ni)s(ln(i)—mi,rn(,-)—ni),(0,0) # 0, hence 7Z; = wy(; for any 1 <
i < N.Soif h=H, the coefficient of " is the number of such elements 7, otherwise it equals

zero. Hence with Lemma 4.2, we proved (ii). O
Next we prove the unitarity of the hermitian form.
Theorem 4.8. (7x ., V) is unitarizable if and only if u > 0.

Proof. Since

0 0 0 O
(<Smtn 0) 1, (Sltk 0) ~1) = 48 —1,00n—k,0

for any m,n € N, then if (;rx ,, V) is unitarizable, u > 0.
Let w; = s™it", z; =t~lis™*i fori, j=1,...,N,then

K(ZIW1Z2Wa - .. ZpWy) = K([_lls_klsml P t—lzs—kzsmztnz o t—lrs—krsmrtnr)

=qg%§ 1)
q " O—ky+my—ky+my—---—ky+m, 00—l +n|—lp+ny—--—Il+n,,0»

where

a= (ki +m)(=l) + (ks +m)(=ly +n1 — ) +---
+(—kr +m)(=li+n—bh+ny—- L1 +n—1—1)).
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Consider the linear transformation 7 ;, of C, determined by

Ta’b(scltdlscztdg B .Sckl‘dk) — Scl+atd1+bscz+utd2+b B .Sck+atdk+b

(a, b € Z). Extend this operator to a linear operator f(:b on V by
~1(0 O 0 0 0 0
=l o) 0)- (o))
_ 0 0 0 0 0 0 |
B Typr1 O Tapr2 O) "\ Tapry 0)°7

forry,...,r; E(Cq[sil,ti]].

Letz; = T_q —p(zi), Wj = Ty p(w;), then
K(Z1W122W3 - . . Zr Wr)
—K (tfll 7bsfk17asm1+atn1+btflths7k27asm2+atn2+b . tfl,7bs7k,-7asm,-+atnr+b)
=4%5 5
q O—ky+mi—ky+my—-—ky+m,,00—11+n;—lp+ny—-—l+n,,0s
where

a=(-ki—a+mi+a)(=li =b)+(-kx—a+my+a)(=l1 —b+n +b—-L—-b)+---
+ (—k, —a+m, +a)

x(=ly—=b+n+b—-Lh—-b+n+b—---—L,_1—b+n_1+b—1.—b)
= (ki +m) (=) + (ks +m2)(=li +n1 =) +---

+ =k +m)(=h+n1—b+ny—---—=lL_1+n_1—1)

—b(=ki+mi—ky+my—---—k, +m,;),

s0 kK (Z1W1 22w ... 2, Wy) = k(Zjwi1z2w3 ...z w,). It then follows from Lemma 4.2 that f:b
preserves the hermitian form on V.
We need to prove positivity at all levels as the hermitian form on different levels are zero.
Since 7/“;, preserves the hermitian form on V, we may then assume that %, in level r only
involves elements s™i " with m; = 0, n; = 0. Denote

0 0 0 0 0 0
Lj(M,N):Span{ (smlt’” 0><sm2t"2 0)"'<sm’t"" O).l‘m,go, n; 20,

r r
Zm,’ §M, Zi’li éN}
i=1 i=1

From the above discussions, we know that the hermitian form restricted to every level should
be positive definite for p big enough. Assume that the form is not positive definite for some
(possible all) u > 0. Let 59 be the lowest level at which there is nonunitarity. It is clear that
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so > 1. So there exist M, N such that the form restricted to L+ (M, N) is not positive definite.
Following (4.7), the form on L (M, N) varies smoothly with /L, then we can find a ;9 (we can
think it is the first place going from oo towards 0) at which the form is not positive definite, while
for all > g, the form is positive definite. We write (-,-),, to be the hermitian form at p.
Claim. The radical of the form is nontrivial at .

At first for all ' € L} (M, N), (h', h'),, > 0. Otherwise, there exists h € L] (M, N) such
that (&, h),, < 0. From (4.7), the form varies smoothly with w, and (&, h),, > 0 if  — o0, then
there exist ' > 1 such that (h, h), = 0, this contradicts with the fact that for all u > o, the
form is positive definite.

Since the form is positive semi-definite but not positive definite at 11, the radical of the form
must be nontrivial. Thus,

0#heLi(M,N), Vhe LE(M,N) suchthat (b, h),, =0.

Let hg,—1 be an arbitrary element of L:B_l (M, N), and let ¢ € C, then

(@ 5)ine), o

From the assumption of sg, we have ( )h 0, for any ¢ € C. Replacing n by T_p _,,(h) if
necessary, we can write

S0 i

~ 0 0

h= E ai<1 O) xi.l,
i=1

where x; = [T}, ’( ) (here is the finite sum), and each v; ; is the form of s'¢* (here , k
cannot both be O)
Let ip be the smallest i, 1 <i < so, such that a;; # 0. It follows that

-1
0 0 0
(0 ¢)mpon(?0) wrnmo

where R contains a power of ((1) 8 ) greater than ig — 1. Observe that

(5 5)G o) =) G a)e(8) (%)

1 io—1
+(—2)MO2 )(? 8)

(this can be easily proved by induction on ig).
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Since

0 0 .
((C) _c)x,-o.l = Xi ((C) _C) A4 (=2¢)(s0 — i0)xi»

we have
B = c(—iopo +io(—2)(so — i0)) + (—c)io(io — 1) = cio(—po — (so — io) — (so — 1)).

Since sg = ip = 1 and o > 0, B # 0 which contradicts with (8 8 )ﬁ =0.
So for any u > 0, the hermitian form is positive definite. O
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