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Abstract

This paper presents a family of Continuous Third Derivative Block Methods (CTDBM) of order k + 3 for the solution of stiff
systems of ordinary differential equations. The approach uses the collocation and interpolation technique to generate the main
Continuous Third Derivative method (CTDM) which is then used to obtain the additional methods that are combined as a single
block methods. Analysis of the methods show that the method is L-stable up to order eight. Numerical examples are given to
illustrate the accuracy and efficiency of the proposed method.
c⃝ 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of Nigerian Mathematical Society. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Consider the first order ordinary differential equation

y′
= f (t, y) y(t0) = y0. (1)

Eq. (1) occurs in several areas of engineering, science and social sciences. It is well known that some of these problems
have proved to be either difficult to solve or cannot be solved analytically, hence the necessity of numerical techniques
for such problems remains vital. Many physical problems are modeled into first order problem (1), while those
modeled in higher order differential equations are either solved directly or solved by first reducing them to system
of first-order differential equations. There are various methods available for solving systems of first order IVPs [1,2].
Linear multistep methods for the solution of (1) have been developed varying from discrete linear multistep method
to continuous ones. Continuous linear multistep methods have greater advantages over the discrete methods such
that they give better error estimation, provide a simplified form of coefficients for further evaluation at different
points, and provides solution at all interior points within the interval of integration, (see [3,4]). These methods are
first derivative methods that are implemented in predictor corrector mode, and Taylor series expansion are adopted
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to supply starting values. The setback of the predictor–corrector methods are that they are very costly to implement,
longer computer time and greater human effort and reduced order of accuracy, which affect the accuracy of the
method. Second derivative methods have been proposed by Enright [5], Ismail [6], Hojjati [7]. Recently Ezzeddine
and Hojjati [8] proposed third derivative method of order k + 3. These methods are implemented in a step-by-step
fashion in which on the partition Γ , an approximation is obtained at tn+1 only after an approximation at tn has been
computed, where Γ : a = t0 < t1 < · · · < tN = b, tn+1 = tn + hn = 0, 1, . . . , N − 1 h =

b−a
N is the constant

step-size of the partition of Γ , N is a positive integer, and n is the grid index. High-order continuous third derivative
formulas with block extensions have also been proposed by Jator et al. [9] for the direct solution of the general second
order ordinary differential equations. In this paper, a family of Continuous Third Derivative Block Method (CTDBM)
that will not only be self starting but are also of good accuracy and have stability properties for effective and efficient
solution of stiff system of ordinary differential equations of the form (1) is proposed.

2. Derivation of the method

In this section, a k-step third derivative method of the form

yn+k = yn+k−1 + h
k

j=0

α j (t) fn+ j + h2βk gn+k + h3ηkγn+k (2)

is developed for (1) on the interval from tn to tn+k .

The initial assumption is that the solution on the interval [tn, tn+k] is locally approximated by the polynomial

Y (t) =

k+3
j=0

τ j t
j , (3)

where τ j are unknown coefficients. Since this polynomial must pass through the interpolation points (tn+k−1, yn+k−1)

and the collocation points (tn, yn, tn+1, yn+1), . . . (tn+k, yn+k), we require that the following (k + 4) equations must
be satisfied.

k+3
j=0

τ j t
j
= yn+i , i = k − 1. (4)

k+3
j=0

jτ j t
j−1

= fn+i , i = 0, . . . , k. (5)

k+3
j=0

j ( j − 1)τ j t
j−2

= gn+i , i = k. (6)

k+3
j=0

j ( j − 1)( j − 2)τ j t
j−3

= γn+k, i = k. (7)

The (k + 4) undetermined coefficients τ j are obtained by solving Eqs. (3)–(6) and are then substituted into (2).
After some algebraic simplification the continuous representation of the third derivative method obtained is given in
the form

Y (t) = yn+k−1 + h
k

j=0

α j (t) fn+ j + h2βk(t)gn+k + h3ηk(t)γn+k (8)

where α j (t), j = 0, 1, . . . , k, βk(t), and ηk(t), are continuous coefficients k is the step number, and h is the
chosen step-length. We assume that yn+ j = Y (tn + jh) is the numerical approximation to the analytical solution

y(tn+ j ), y′

n+ j = f (tn+ j , yn+ j ) is an approximation to y′(tn+ j ), gn+k =
d f
dt (tn+k, y(tn+k)), and γn+k =

d2 f
dt2

(tn+k, y(tn+k)).
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The same continuous method (7) is then used to generate the main and additional methods which are combined as
block method to provide a global solution for (1).
In what follows the block methods for k = 2(1)4 are presented by following the process of derivation above and
evaluating (7) at t = (tn, tn+2), t = (tn, tn+1, tn+3) and t = (tn, tn+1, tn+2, tn+4) respectively for k = 2, 3 and 4 to
yield

yn = yn+1 −
49h

160
fn −

13h

10
fn+1 +

97h

160
fn+2 −

33h2

80
gn+2 +

23h3

240
γn+2

yn+2 = yn+1 −
h

160
fn +

3h

10
fn+1 +

113h

160
fn+2 −

17h2

80
gn+2 +

7h3

240
γn+2

 (9)

yn = yn+2 −
121h

405
fn −

23h

15
fn+1 +

h

3
fn+2 −

203h

405
fn+3 +

10h2

27
gn+3 −

4h3

45
γn+3

yn+1 = yn+2 +
h

90
fn −

61h

160
fn+1 − h fn+2 +

533h

1440
fn+3 −

11h2

48
gn+3 +

11h3

240
γn+3

yn+3 = yn+2 +
h

810
fn −

7h

480
fn+1 +

h

3
fn+2 +

8813h

12960
fn+3 −

83h2

432
gn+3 +

17h3

720
γn+3


(10)

yn = yn+3 −
2649h

8960
fn −

643h

420
fn+1 −

99h

560
fn+2 −

291h

140
fn+3 −

29083h

26880
fn+4 −

317h2

448
gn+4 +

33h3

224
γn+4

yn+1 = yn+3 +
29h

3360
fn −

1021h

2835
fn+1 −

557h

420
fn+2 −

23h

105
fn+3 −

9367h

90720
fn+4 +

125h2

1512
gn+4 −

5h3

252
γn+4

yn+2 = yn+3 −
59h

26880
fn +

101h

3780
fn+1 −

243h

560
fn+2 −

361h

420
fn+3 +

65059h

241920
fn+4 −

629h2

4032
gn+4 +

19h3

672
γn+4

yn+4 = yn+3 −
11h

26880
fn +

47h

11340
fn+1 −

41h

1680
fn+2 +

151h

420
fn+3 +

479833h

725760
fn+4 −

2159h2

12096
gn+4 +

41h3

2016
γn+4


.

(11)

3. Analysis of the method

3.1. Order of accuracy

Following Lambert [1] and Fatunla [10] we define the local truncation error associated with the above methods to
be the linear difference operator

L[y(t); h] =

k
j=0

ϕ j y(t + jh) − h
k

j=0

α j y′(t + jh) − h2βk y′′(t + kh) − h3ηk y′′′(t + kh). (12)

Assuming that y(t) is sufficiently differentiable, we can write the terms in (12) as a Taylor series expansion of about
the point t to obtain the expression

L[y(t); h] = C0 y(t) + C1hy′(t) + C2h2 y′′(t) + · · · , + C ph p y p(t) + · · · (13)

where the constant coefficients C p, p = 0, 1, 2, . . . are given as follows:

C0 =

k
j=0

ϕ j

C1 =

k
j=1

jϕ j −

k
j=0

α j

C2 =
1
2!


k

j=1

j2ϕ j − 2
k

j=0

jα j


− βk
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Table 1
Orders and error constants for block methods k = 2, 3 and 4.

k Order p Error constant C p+1

2 (5, 5) (− 1
200 , − 1

1800 )T

3 (6, 6, 6) ( 29
6300 , − 59

50400 , − 11
50400 )T

4 7, 7, 7, 7 −
31

6272 , 1
1323 , − 23

56448 , − 89
846720

C3 =
1
3!


k

j=1

j3ϕ j − 3
k

j=0

j2α j


− kβk − ηk

C4 =
1
4!


k

j=1

j4ϕ j − 4
k

j=0

j2α j


−

1
2!

k2βk − kηk

...

C p =
1
p!


k

j=1

j pϕ j − (p − 1)

k
j=0

j p−1α j


−

1
(p − 2)!

k p−2βk −
1

(p − 3)!
k p−3ηk .

According to Henrici [11], the method (2) has order p if

L[y(t); h] = O(h p+1), C0 = C1 = · · · = C p = 0, C p+1 ≠ 0. (14)

Therefore, C p+1 is the error constant and C p+1h p+1 y(p+1)(tn) the principal local truncation error at the point tn . It
was established from our calculations that the block methods for k = 2, 3 and 4 have orders and error constants as
displayed in Table 1.

3.2. Stability analysis

In what follows, the k-step third derivative block method can generally be rearranged and rewritten as a matrix
finite difference equation of the form

A(1)Yω+1 = A(0)Yω + h B(1)Fω+1 + h B(0)Fω + h2 D(1)Gω + h3 E (1) Rω Fω (15)

where

Yω+1 = (yn+1, yn+2, yn+3, . . . , yn+k−1, yn+k)
T ,

Yω = (yn−k+1, yn−k+2, yn−k+3, . . . , yn−1, yn)T

Fω+1 = ( fn+1, fn+2, fn+3, . . . , fn+k)
T ,

Fω = ( fn−k+1, fn−k+2, fn−k+3, . . . , fn−1, fn)T

Gω+1 = (gn+1, gn+2, gn+3, . . . , gn+k)
T ,

Rω+1 = (γn+1, γn+2, γn+3, . . . , γn+k)
T ,

for ω = 0, . . . and n = 0, k, . . . , N − k.

And the matrices A(1), A(0), B(1), B(0), D1 and E (1) are k by k matrices whose entries are given by the coefficients of
(9)–(11)

3.2.1. Linear stability
The linear stability properties of the newly derived methods are determined by expressing them in the form (15)

and applying them to the test problem y′
= λy, y′′

= λ2 y, y′′′
= λ3 y, λ < 0 to yield

Yω+1 = M(z)Yω, z = λh, (16)
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Fig. 1. Region of absolute stability for k = 2.
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Fig. 2. Region of absolute stability for k = 3.

where the amplification matrix M(z) is given by

M(z) = −(A(1)
− zB(1)

− z2 D1
− z3 E1)−1(A(0)

+ zB0). (17)

The matrix M(z) has eigenvalues {ζ1, ζ2, ζ3, . . . , ζk} = {0, 0, 0, . . . , ζk}, where the dominant eigenvalue ζk is the
stability function R(z) : C → C which is a rational function with real coefficients. In particular, taking k = 2, 3, 4,
we have that

K = 2

ζ2(z) =
1 + 0.6z + 0.1z2

1 − 1.4z + 0.9z2 − 0.3333333z3 + 0.06666667z4

K = 3

ζ3(z) =
−1 − z − 0.366667z2

− 0.05z3

−1 + 2z − 1.86667z2 + 1.05z3 − 0.375z4 + 0.075z5

K = 4

ζ4(z) =
−1 − 1.439z − 0.833z2

− 0.238z3
− 0.02857z4

−1 + 4.735z − 0.6666z2 + 3.3809z3 − 0.9963z4 + 0.39365z5 − 0.07619z6 .

The Region of Absolute Stability (RAS) of the methods are plotted using the root locus technique. The RAS for
methods k = 2, 3, and 4 are shown below. (see Figs. 1–3)
The unstable region is the interior of the curve while the stable region contains the entire left half complex plane.
Clearly, the methods are A-stable and also L-stable since the stability function ζk(z) satisfies the additional condition
limz→∞ζk(z) = 0.
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Fig. 3. Region of absolute stability for k = 4.

4. Numerical examples

In this section, numerical examples are presented to illustrate the efficiency of the derived third derivative block
methods. All absolute errors of the approximate solution are given as |y − y(x)|. All computations were carried out
using a written code in Matlab 14.0.

Example 4.1. Consider the stiff system

y′

1 = −y1 − 15y2 + 15e−t y1(0) = 1,

y′

2 = 15y1 − y2 − 15e−t y1(0) = 1.

Its Exact solution is y1(t) = y2(t) = e−t .

This system has eigenvalues of large modulus lying close to the imaginary axis −115i . This problem is solved using
one of the derived methods and compared with that of k = 2 with the numerical solution of 2-step Hojjati SDMM
and 3-step EBDF with h = 0.01. It is seen that 2-step third derivative block method is superior to the 2-step Hojjati
SDMM and 3-step EBDF.

Example 4.2. Consider the Stiffly nonlinear problem which was solved by Vaquero and Vigo-Aguiar [12] and Hojjati
et al. [7] in the range 0 ≤ t ≤ T

y′

1 = −(ϵ−1
+ 2)y1 + ϵ−1 y2; y1(0) = 1.

y′

2 = y1 − y2 − y2
2 ; y2(0) = 1.

The smaller ϵ is, the more serious the stiffness of the system. Its exact solution is given by

y1 = y2
2 , y2 = e−t .

The results for this problem obtained by Vaquero and Vigo-Aguiar [12] using an Exponentially-Fitted Gauss (EF-
Gauss-2s) and Gauss-2s methods of order 4 together with that obtained by Hojjati et al. [7] using Second Derivative
Multistep Method (SDMM) and Extended Backward Differentiation Formula (EBDF) are displayed in Tables 3 and
4 and compared with the results given by the newly derived CTDBM.

It is seen from Tables 3 and 4 as expected that the CTDBM for k = 2 performs better than those in [12] and [7]. Below
is the result for the CTDBM for k = 3, 4.

Example 4.3. We consider the system of stiff differential equations

y′

1 = −20y1 − 0.25y2 − 19.75y3; y1(0) = 1.

y′

2 = 20y1 − 20.25y2 + 0.25y3; y2(0) = 0.

y′

3 = 20y1 − 19.75y2 − 0.25y3; y3(0) = −1.
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Table 2
The absolute error at t = 5, 10, 15, 20 for Example 4.1.

t Error in EBDF (K = 3) Error in SDMM (K = 2) Error in CTDBM (K = 2)

y1 y1 y1
y2 y2 y2

5.0 2.37 × 10−12 6.09 × 10−14 3.73 × 10−17

2.59 × 10−12 2.24 × 10−14 9.54 × 10−18

10 1.81 × 10−14 7.17 × 10−16 4.68 × 10−19

3.00 × 10−14 1.12 × 10−16 2.71 × 10−19

15 1.01 × 10−16 6.64 × 10−18 3.92 × 10−21

2.86 × 10−16 2.86 × 10−19 2.44 × 10−21

20 3.36 × 10−19 5.32 × 10−20 4.30 × 10−23

2.39 × 10−18 1.31 × 10−20 4.14 × 10−24

Table 3
The absolute error at T = 5, for Example 4.2.

h Error in Guass-2s
(p = 4)

Error in EF-Guass-2s
(p = 4)

Error in CTDBM (K = 2, p = 5)

0.1 5.12 × 10−6 8.35 × 10−7 6.78 × 10−10

0.01 6.45 × 10−12 4.24 × 10−16 1.00 × 10−16

Table 4
The absolute error h = 0.01 for Example 4.2.

t Error in EBDF (K = 4, p = 5) Error in SDMM (K = 3, p = 5) Error in CTDBM (K = 2, p = 5)

y1 y1 y1
y2 y2 y2

5.0 3.92 × 10−15 3.92 × 10−16 1.00 × 10−16

2.70 × 10−13 3.72 × 10−14 7.49 × 10−15

10 3.43 × 10−19 4.56 × 10−20 9.11 × 10−21

3.61 × 10−15 5.00 × 10−16 1.00 × 10−16

20 1.18 × 10−27 1.28 × 10−28 3.74 × 10−29

3.30 × 10−19 4.56 × 10−20 9.08 × 10−21

The theoretical solution is given by

y1(t) =
1
2
(e−0.5t

+ e−20t (cos(20t) + sin(20t)))

y2(t) =
1
2
(e−0.5t

− e−20t (cos(20t) − sin(20t)))

y3(t) = −
1
2
(e−0.5t

+ e−20t (cos(20t) − sin(20t))).

5. Conclusion

A newly derived family of Continuous Third Derivative Block Method has been developed for the solution of stiff
systems of ordinary differential equations and used to simultaneously solve (1) directly without the need for starting
values or predictors. The efficiency of the CTDBM has been demonstrated on some standard numerical examples.
Details of the numerical results are displayed in Tables 2–6.
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Table 5
The absolute error for Example 4.2.

h T Error in CTBDM (K = 3) Error in CTBDDM (K = 4)

y1 y1
y2 y2

0.1 5.0 6.33 × 10−13 4.63 × 10−14

4.73 × 10−12 3.50 × 10−12

10 5.82 × 10−17 4.06 × 10−18

6.36 × 10−13 4.47 × 10−14

15 3.82.01 × 10−21 2.75 × 10−22

6.24 × 10−15 4.53 × 10−16

20 2.31 × 10−25 1.65 × 10−26

5.62 × 10−17 4.01 × 10−18

0.01 5.0 7.30 × 10−19 5.62 × 10−21

5.46 × 10−17 4.18 × 10−19

10 6.06 × 10−23 4.99 × 10−25

7.27 × 10−19 5.50 × 10−21

15 4.47 × 10−27 2.75 × 10−29

7.30 × 10−21 4.53 × 10−23

20 2.69 × 10−31 1.65 × 10−33

6.55 × 10−23 4.01 × 10−25

Table 6
The absolute error h = 0.01 for Example 4.3.

t Error in CTBDM (K = 2) Error in CTBDM (K = 3) Error in CTDBM (K = 4)

y1 y1 y1
y2 y2 y2
y3 y3 y3

10 1.16 × 10−16 4.20 × 10−19 1.57 × 10−21

1.16 × 10−16 4.20 × 10−19 1.57 × 10−21

1.16 × 10−16 4.20 × 10−19 1.57 × 10−21

20 1.56 × 10−21 5.65 × 10−20 2.12 × 10−23

1.56 × 10−21 5.65 × 10−16 2.12 × 10−23

1.56 × 10−21 5.65 × 10−16 2.12 × 10−23

30 1.58 × 10−23 5.71 × 10−28 2.14 × 10−25

1.58 × 10−23 5.71 × 10−28 2.14 × 10−25

1.58 × 10−23 5.71 × 10−20 2.14 × 10−25
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