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and proton pumping of the ATP synthase of Escherichia coli in isolated native
membranes have been measured and compared as a function of ADP and Pi concentration. The ATP hydrolysis
activity was inhibited by Pi with an half-maximal effect at 140 μM, which increased progressively up in the
millimolar range when the ADP concentration was progressively decreased by increasing amounts of an ADP
trap. In addition, the relative extent of this inhibition decreased with decreasing ADP. The half-maximal
inhibition by ADP was found in the submicromolar range, and the extent of inhibition was enhanced by the
presence of Pi. The parallel measurement of ATP hydrolysis activity and proton pumping indicated that, while
the rate of ATP hydrolysis was decreased as a function of either ligand, the rate of proton pumping increased.
The latter showed a biphasic response to the concentration of Pi, in which an inhibition followed the initial
stimulation. Similarly as previously found for the ATP synthase from Rhodobacter caspulatus [P. Turina, D.
Giovannini, F. Gubellini, B.A. Melandri, Physiological ligands ADP and Pi modulate the degree of intrinsic
coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus, Biochemistry 43 (2004)
11126–11134], these data indicate that the E. coli ATP synthase can operate at different degrees of energetic
coupling between hydrolysis and proton transport, which are modulated by ADP and Pi.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
FOF1-ATPases or ATP synthases can be found in bacteria, mitochon-
dria and chloroplasts [1–5]. These highly conserved enzymes catalyze
ATP synthesis at the expense of a transmembrane electrochemical
potential difference of protons (or Na+ ions in some species) but can also
work in theATPhydrolysis direction, in thisway building up a proton (or
Na+) electrochemical potential difference. They are composed of a
membrane embedded hydrophobic sector, FO, which is involved in
proton translocation across the membrane, and in its simplest form
contains 3 subunits in stoichiometry ab2c10–15, and of a hydrophilic
extrinsic sector, F1, which in its simplest form contains 5 subunits in
stoichiometry α3β3γδɛ and the catalytic sites. In 1994 the first crystal
structure of thebovinemitochondrial F1was reported byAbrahams et al.
[6]. Following this achievement, further high resolution structural
ydrophylic subcomplex of the
roxymethyl)ethyl] glycine; PK,
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information for the soluble part has continued to appear, but a high
resolution structure of the whole complex is still lacking.

As first proposed by Boyer [7,8], the catalytic nucleotide binding
sites on the β-subunits operate in a cyclic way, which is accomplished
by a rotatory movement of the γ-subunit within the α3β3-subunit
hexamer (reviewed in [3,9]). Beside the γ-subunit, the rotor is
composed also of the ɛ-subunit in F1 and of the c-subunit ring in FO,
and the rotary movement of the latter against the a-subunit is
believed to be coupled to proton flow within FO.

The stoichiometry of protons transported per ATP hydrolyzed or
synthesized has usually been considered a fixed parameter under
physiological conditions (but see [10] and references therein, [11,12]),
although there have been several reports of conditions under which
this stoichiometry was decreased, i.e. in mutated or chemically
modified ATP synthases (see e.g. [13–18] and references therein), or
when using non-physiological ligands such as Ca2+ in place of Mg2+

[19,20] or sulfite in place of Pi during hydrolysis [21]. Recently, we
have found that the efficiency of proton transport in the ATP synthase
of the photosynthetic bacterium Rhodobacter capsulatus can be
decreased during physiological ATP hydrolysis, provided the concen-
trations of either Pi or ADP are kept sufficiently low [22].

One of the best known and most investigated ATP synthases, from
a biochemical, functional and structural point of view, is that of E. coli.
Therefore, it was of interest to check whether the same phenomenon
could be found in this organism. It is already known that its ATP
synthase, purified and reconstituted into liposomes, is inhibited in the
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hydrolysis direction by the binding of ADP and Pi, with apparent Kd's
of 10 and 470 μM, respectively, and that the inhibited ATP hydrolysis
activity is recovered if a protonmotive force is applied [23].

In the present work, our goal was to investigate whether the
binding of ADP and Pi to the E. coli ATP synthase was not only
inhibitory of hydrolysis but would also elicit the transition from a
partially uncoupled to a fully coupled form of the enzyme. Our results
show that regulatory phenomena of proton transport involving ADP
and Pi binding are operative also in the ATP synthase of E. coli,
although their features differ somewhat from those shown in Rb
caspulatus. They open the way to mutational studies, easily performed
in this bacterium, aimed at investigating the coupling mechanism in
the ATP synthases. A preliminary account of these results has been
presented in [24].

2. Materials and methods

2.1. Membrane preparation

Cells from the XL1Blue E. coli strain carrying the kanamycin
resistanceon theplasmidpNK1 (Stratagene)were grownon LBmedium,
and harvested at a late exponential phase. Membranes were isolated
from cells essentially as described in [25]. Cells were resuspended with
5 ml/g wet weight of a buffer containing 10 mM Tricine/NaOH pH 7.5,
5 mM MgCl2, 10% glycerol, 6 mM p-aminobenzamide and disrupted at
138 Mpa (20,000 p.s.i.) with a French-Press. Unbroken cells were
removed by centrifugation at 16,000 rpm and the remaining super-
natant was recentrifuged in a Beckman type 50.2 Ti rotor at 40,000 rpm
for 90 min. The pellet was resuspended in a small volume of the same
buffer, rapidly frozen as 50 μl aliquots in liquid nitrogen, and stored at
−80 °C. Total protein concentration was measured by the Bradford
method [26].

2.2. ATP hydrolysis

All reactions were carried out in sample holders thermostated at
26 °C. In the absence of pyruvate kinase (PK), ATP hydrolysis was
measured by detecting the scalar protons released upon ATP
hydrolysis with the colorimetric pH indicator Phenol Red. Membranes
were suspended to 0.025mg/ml in the following buffer: 1 mM Tricine,
50 mM KCl, 2.0 mM MgCl2, NaOH to pH 8.0, and 1 μM valinomycin to
minimize Δφ. Phenol Red was added to 100 μM. Prior to each
measurement, the sample pH was adjusted to 8.0 with NaOH. The pH
changes of the suspension were followed as a function of time by the
absorbance changes at 625–587 nm, and were calibrated after about
200 s of reaction by 3 sequential addition of 15 μMHCl. The overall pH
change of the suspension at the end of the measurements was never
higher than 0.3 U. The calibration signals showed that the addition of
3mMPi in the poorly buffered assaymedium caused a less than 2-fold
increase of the buffering power. The changes of proton concentration
were transformed to changes of ATP concentration as described [27].
At pH 8.0 an H+/ATP ratio of 0.94 was used. When ATP hydrolysis was
measured in parallel samples with the malachite green assay [28], the
same rates were obtained within experimental error, indicating
absence of significant artefacts in the Phenol Red assay. For
measurements in the presence of PK (ADP trap), the reaction
temperature and ATP hydrolysis mixtures were the same as used in
the Phenol Red assay, including the low buffer concentration, except
that 2 mM PEP, PK to variable amounts, 25 U/ml of lactate
dehydrogenase (LDH), 0.15 mM NADH and 2 mM KCN were present
and no Phenol Red was added. The PK was supplied from Sigma (P-
9136) as a ion-free lyophilized powder. The ADP trap was thus coupled
to NADH oxidation, and the absorbance changes at 340 nm were
followed as a function of time. Again, control samples were set up in
which ATP hydrolysis wasmeasured with themalachite green assay in
the presence of the ATP regenerating system, and the same rates were
obtained within experimental error. In the absence of ATP, no
significant NADH oxidation could be detected, and in control ACMA
assays it was confirmed that 2 mM KCN were enough to completely
inhibit the NADH-driven ACMA quenching, indicating a sufficient
inhibition of the E. coli respiratory chain. DCCD inhibition was
obtained by incubating the membranes for at least 30 min at a
concentration of 2.5 mg/ml in the presence of 250 μM inhibitor; under
such conditions the activity measured in the presence of 0.5% LDAO
was not significantly affected, indicating that the observed inhibition
did not involve the F1 sector.

2.3. 9-Amino-6-chloro-2-methoxyacridine (ACMA) assay

The ACMA assays were carried out under experimental conditions
as close as possible to those used for ATP hydrolysis measurements.
The ACMA fluorescence emission was recorded as a function of time
(RC=0.25 s) in a Jasco FP 500 spectrofluorometer (wavelength 412 and
482 nm for excitation and emission respectively) at 26 °C. For
measurements in the absence of PK, the assay mixture was the same
as used for Phenol Red assay, including the low buffer capacity, except
that Phenol Red was omitted and 1.5 μM ACMA was added. When an
ADP trap was present, the assay mixture was the same as used for
measurements of ATP hydrolysis in the presence of PK, except that
LDH, NADH and KCN were omitted. In control measurements it was
shown that pyruvate up to 100 μMdid not affect the quenching signals.

2.4. Measurement of pyruvate kinase activity

The activity of PK under the experimental conditions of the present
work was measured at 26 °C. The buffer in the absence of any
membranes was supplemented with 2 mM PEP, 2 mM ADP, 0.15 mM
NADH, 25 U/ml LDH. The reaction was started in the spectro-
photometer by addition of PK (nominally 0.03 U/ml) and the coupled
NADH oxidation was recorded at 340 nm.

3. Results

In order to evaluate the relative coupling degree of the E. coli
enzyme as a function of Pi and ADP, we carried out both hydrolysis and
proton pumping measurements in parallel in the isolated membrane
vesicles, taking special care in keeping constant all experimental
conditions in each double series of measurements.

3.1. Effect of Pi on ATP hydrolysis and proton pumping

Inorganic phosphate has been reported to strongly inhibit the ATP
hydrolysis of the isolated, reconstituted EF1FO [23] andof the isolatedEF1
[29,30], with apparent Kd's in the order of a few hundred micromolar.

Therefore, we first measured ATP hydrolysis as a function of Pi, to
check whether this behavior could be reproduced in the isolated
internal membranes. Fig. 1A shows the amount of hydrolyzed ATP as a
function of time after addition at t=0 s of 25 μMATP, in the presence of
increasing Pi concentrations; valinomycin and 50 mM K+ were also
present, in order to have the same assay composition as used in the
ACMA assay (see below). The rates of ATP hydrolysis at t=0 s and
t=50 s were evaluated by fitting the spectrophotometric data
(collected at a rate of 1/s) with a monoexponential function and
taking the first derivatives at t=0 s and t=50 s respectively. These rates
decreased at increasing Pi concentrations, confirming that Pi inhibited
the hydrolysis activity also in the non-isolated enzyme. The DCCD-
insensitive activity is also shown for comparison. At each Pi
concentration, the hydrolysis rates decreased with time, an effect
which can be attributed to decreasing ATP and/or accumulating ADP,
since the same reactions carried out in the presence of an enzyme-
coupled ATP regenerating system had a fully linear time-course (see
below). By plotting the initial rates as a function of Pi (Fig. 1B, full



Fig. 1. ATP hydrolysis rate as a function of Pi concentration. The ATP hydrolysis assay was carried out with Phenol Red as a pH indicator for the release of scalar protons as described in
the Materials and methods. (A) The ATP hydrolysis reaction was started at time t=0 s in the spectrophotometer by addition of 25 μM ATP and the absorbance (625–587 nm) was
measured as a function of time. Absorbance values were converted to hydrolyzed ATP as described in theMaterials andmethods. Different Pi concentrations were added to each assay
as indicated. For specifically inhibiting the ATP synthase activity, the reaction mixture was incubated in the presence of 250 μM DCCD for 30 min before starting the reaction. The
experimental traceswere best fitted bymonoexponential functions (or linear in the case of DCCD) up to 100 s (75 s for Pi=1mM). (B) Rates of ATP hydrolysis at t=0 s (●) and at t=50 s
(▴) and DCCD-insensitive rate (◊) are from Panel A and additional measurements, and have been calculated from the fitting functions; the errors of the rates at t=0 s have been
calculated from the errors associated with the amplitude and time constant of the monoexponentials. The curves through the ATP hydrolysis data points are the best fit to the data of
the hyperbolic function P1−P2 ·x/ (P3+x), with resulting best fit parameters P3=140±50 μM (●) and P3=400±200 μM (▴) respectively, corresponding to the apparent Kd values.
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circles), an hyperbolic trend was obtained, with a best-fitting value of
140 μM for the apparent Kd. The rates at t=50 s are also plotted (full
triangles), which can be similarly interpreted as having an hyperbolic
trend.

The proton translocating activity of the ATP synthase was
estimated using the fluorescent ΔpH-sensitive acridine dye ACMA.
The fluorescence measurements were carried out under the same
experimental conditions of the ATP hydrolysis measurements, except
for the absence of Phenol Red and the presence of ACMA. Valinomycin
and 50 mM K+ were always present in order to minimize the electrical
component of the protonmotive force, so that the Δ μ̃H+ consisted of
ΔpH only.
Fig. 2. ACMA fluorescence quenching as a function of Pi concentration. The ACMA assay was c
was started in the spectrofluorimeter cuvette by addition of 25 μM ATP at time t=0 s and the
added to each assay as indicated. For each trace, addition of 2 μMnigericine recovered the 100
obtained at Pi concentrations ≤100 μM (A) are reported in gray in (B) for comparison). (C) The
for showing the initial rates of quenching. The arrows indicate the time points of ATP addition
or 2 (1–3 mM Pi) s of reaction (5 or 9 data points). (D) The percentage values of the initial rat
controls (7.6% · s−1 and 33.8%, respectively) were determined from (B) and (C). The errors of t
the linear regressions. The values of the initial rates of ATP hydrolysis (●) and of the rates at
data points were drawn by hand.
Fig. 2A and B shows the ACMA fluorescence as a function of time in
the presence of different added Pi concentrations. After starting the
proton transport reaction by addition of 25 μM ATP at t=0 s, a rapid
fluorescence quenching was observed in all cases, indicating a rapid
acidification of the vesicles' interior, which settled to a steady state
quenching level within 1–2min, and could be reversed by the addition
of nigericin. No significant fluorescence quenching was detected in
samples pretreated with DCCD (not shown). Notably, this steady state
level was increased in the presence of Pi concentrations up to 100 μM
(Fig. 2A), while higher concentrations resulted in a progressive
inhibition of proton pumping (Fig. 2B). A similar biphasic response to
Pi could also be observed in the initial rates of fluorescence quenching
arried out as described in theMaterials andmethods. (A,B) The proton pumping reaction
ACMA fluorescence was recorded as a function of time. Different Pi concentration were
% fluorescence level. The traces are reported in two panel for improved clarity (the traces
traces in (B) are reported here on a shorter time scale and displaced along the time axis
, the numbers the Pi concentrations. The linear fits were calculated over 1 (0–500 μMPi)
es of fluorescence quenching (○) and of fluorescence quenching at t=50 s (Δ) relative to
he initial rates of quenching are the errors associated with the first-order coefficients of
t=50 s (▴) are reported for comparison from Fig. 1B. The curves through the quenching
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(Fig. 2C). In Fig. 2D both the steady state (at t=50 s) and the initial rate
values offluorescence quenchingwere plotted as a function of added Pi
(open symbols). In the same figure the hydrolysis rates from Fig. 1B (at
t=0 s and t=50 s) are also reported for comparison (closed symbols).
The plot highlights the different courses of both quenching curves,
markedly biphasic (first activatory and then inhibitory), and of the two
hydrolysis curves, monotonically inhibitory. Analogous experimental
results had been preliminarily obtained using vesicles from the ATPase
superproducer strain of E. coli AN1460, carrying a copy of the unc
operon on the multicopy pAN45 plasmid (data not shown). The very
fast fluorescence response of ACMA observed using these vesicles had
prevented us, however, from performing an analysis in terms of initial
rates.

In the case of a pumping enzyme which keeps the number of
protons translocated per hydrolyzed ATP constant, a parallel
behavior of hydrolysis and ACMA response is expected. In such a
case, a higher initial rate of hydrolysis will be associated, at
constant internal buffering capacity, with a higher rate of ACMA
quenching. In fact, the ACMA quenching has been shown to be a
monotonically increasing, though not linear, function of transmem-
brane ΔpH (see e.g. [31] for a theoretical model and [32–34] for an
experimental calibration of the response of ACMA and other
acridine dyes by means of acid-base transitions). Similarly, again
in the case of a constant number of protons transported per
hydrolyzed ATP, the steady state transmembrane ΔpH, and there-
fore the steady state fluorescence quenching, is expected to
increase or decrease in parallel with the rate of ATP hydrolysis,
provided the passive proton permeability coefficient of the
membrane does not change. In fact, the higher the inward proton
flux, the higher will be the ΔpH at which this active inward proton
flux will be balanced by the passive outward proton flux (which at
Fig. 3. ACMAfluorescence quenching as a function of ATP concentration. The ACMA assaywas
10 μM, (c) 25 μM, (d) 50 μM, (e) 100 μM. For the trace at 5 μMATP, a second addition of 50 μM
the traces at (5+50) μMand 100 μMATP are indicated by arrows. (B) The traces from (A) are re
fits were calculated over 1 or 2 s of reaction (5 or 9 data points). (C) The values of the in
concentration. The errors of the initial rates of quenching are the errors associated with th
hydrolysis (●) and their errors were determined, similarly as described for Fig. 1, frommonoe
function of ATP concentration. The curve through the quenching data points was drawn by ha
KM=190±20.
constant proton permeability coefficient is an increasing function of
the ΔpH itself).

3.2. Evaluation of the ACMA response in the E. coli membrane system

The following measurements were carried out in order to confirm
that also in our system the response of ACMA increased in parallel to
increasing steady state ΔpH and initial rate.

The ACMA response was measured as a function of ATP
concentration, and the results were indeed as expected, in that the
steady state quenching increased in parallel with ATP (Fig. 3A, traces
(a) through (e)), and so did the initial rate of quenching (Fig. 3B). These
initial rates of quenching are plotted as a function of ATP concentra-
tion together with the initial rates of ATP hydrolysis (Fig. 3C), which
were measured in parallel in the Phenol Red assay under the same
experimental conditions. The increase in the rate of hydrolysis was
almost linear in the measured range, consistent with a KM value in the
hundreds of μM range (KM=140 μM ATP was obtained in the isolated
and reconstituted enzyme in [35]) and was closely paralleled by the
initial rate of quenching, which had a less linear run, consistent with
the non-linear response of ACMA to the transmembrane ΔpH [32–34].
During the recording of the trace at 5 μM ATP ((a) in Fig. 3A), the
further addition of 50 μM ATP restored a steady state quenching value
similar to the one of the 50 μM ATP trace (d), indicating that the slow
regain of fluorescence in trace (a) was mainly due to substrate
depletion. Addition of 50 μM NADH (both trace (a) and trace (e))
showed that the activation in parallel of a second source of proton
translocation (respiratory chain) further increased the steady state
quenching, consistent with a parallel increase of inward proton flux
and consequently with a higher steady state ΔpH. Finally, it can be
noted that in Fig. 3C the highest quenching rate values obtained as a
carried out as described in the legend of Fig. 2. The ATP concentrationswere (a) 5 μM, (b)
ATP after about 200 s is indicated by an arrow. The further additions of 50 μMNADH for
ported on a shorter time scale. The numbers indicate the ATP concentrations. The linear
itial rates of fluorescence quenching (○) (from (B)) are reported as a function of ATP
e first-order coefficients of the linear regressions. The values of the initial rates of ATP
xponential fitting of Phenol Red traces of ATP hydrolysis measurements carried out as a
nd, the curve through the hydrolysis data points is a best fitting hyperbole with apparent



Fig. 4. ATP hydrolysis rate as a function of Pi concentration in the presence of increasing
PK activity. ATP hydrolysis reactions as a function of Pi concentrationwere started in the
presence of PK by adding 25 μMATP andweremeasured as the disappearance in time of
NADH absorbance in the presence of an enzyme-coupled ATP regenerating system, as
described in the Materials and methods. Data points obtained in the absence of PK (●),
or after inhibition by DCCD (◊) are reported from Fig. 1B for comparison. The ATP
regenerating system contained increasing activities of PK as indicated. The curves
through the data points at 0 (●), 2 (○), 10 (▴) and 55 U/ml (Δ) are the best fit to the data
of the hyperbolic function P1−P2 ·x / (P3+x), with resulting best-fit parameters P3=140±
50, 290±80, 520±60 and 1100±400 μM, respectively, as indicated by the dashed lines.
The curve through the data points at 110 U/ml (■) is a linear fit.
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function of ATP concentration are in the same range as the highest
rates obtained as a function of Pi (Fig. 2D), indicating that these latter
were not significantly limited by lack of kinetic competence of ACMA.
This kinetic competence is consistent with the data reported in
[32,36], indicating that acridines respond to ΔpH changes within
hundreds of milliseconds.

As mentioned, the interpretation of the increasing rates of ACMA
quenching (data in Fig. 2) as corresponding to increasing rates of
proton translocation mainly requires that the internal buffer capacity
of the vesicles remains constant in the range of Pi concentration in
which the phenomenon is observed. Assuming complete permeation
of Pi through the membrane (which is an extreme assumption in view
of its 1–2 charges at pH 8), it can be excluded that a few hundred μMPi
(with pK=7.2) could significantly alter the buffer capacity of the inner
bulk phase, which should be buffered by 1 mM Tricine (pK=8.2), and
even in this case, the buffering would determine a decrease of the
initial rate, relative to the initial rate at Pi=0, and not an increase. As to
the decreasing phase of the Pi dependency of the quenching rate, it
cannot be excluded that a small part of the observed decrease was due
to Pi permeation to the vesicle inside, but a very similar decrease was
observed also when the buffer contained 20 mM Tricine (not shown).

The interpretation that the increasing steady state of ACMA
quenching, seen with increasing Pi (data in Fig. 2), corresponds to
increasing rates of proton translocation also requires, as mentioned,
that the proton permeability of the membrane is not changed by the
changing concentration of Pi (e.g. through Pi binding to, and activation
of, membrane channels).We checked for this possibility bymeasuring,
as a function of Pi, the steady state quenching signal induced by 50 μM
NADH, or, in order to include nucleotides as well, by repeating the
same measurements in the presence of 20 μM ATP and 5 μM ADP in a
DCCD inhibited sample (not shown). No significant change in the
steady state quenching could be detected in either case.

We conclude that the interpretation of increasing initial quenching
rates and increasing steady state quenching in the low Pi concentra-
tion range as being due to increasing proton translocation rates by the
ATP synthase is warranted in our system. According to this
interpretation, the binding of Pi at low concentration to ATP synthase
increases its rate of proton translocation while decreasing its rate of
ATP consumption. The only plausible explanation for this phenom-
enon that we can see is that Pi binding at low concentration increases
the ratio of protons translocated per hydrolyzed ATP, or, in other
words, that it increases the efficiency of proton translocation from a
relatively inefficient state to a much more efficient one.

3.3. Effect of ADP depletion on the Pi inhibited ATP hydrolysis

The inhibition by saturating Pi of the ATP hydrolysis by the isolated
and reconstituted E. coli ATP synthase has been shown to be strongly
enhanced by the presence of ADP and, vice versa, the inhibition by
saturating ADP was strongly enhanced by Pi [23].

We checked, therefore, whether the same phenomenon could be
shown in the enzyme embedded in native membranes. Given the high
Pi inhibition observed in the absence of added ADP, it was likely that
ADP was already present in our system, either pre-bound to the
synthase or present in sufficient amounts in the ATP solution. In order
to deplete our system from ADP, we measured the rate of ATP
hydrolysis with an enzyme-coupled ATP regenerating system (see
Materials andmethods), inwhich PK and PEP operated as an ADP trap,
and LDH and NADH (in the presence of KCN for inhibiting the NADH-
driven respiratory chain) coupled the ATPase reaction (through the PK
and LDH reaction) to the absorbance changes at 340 nm. The steady
state ADP concentrationwas modulated through the amount of added
PK: different series of measurements as a function of Pi were carried
out in the presence of increasing amounts of PK in the assay, i.e. at
decreasing concentration of steady state ADP. At all Pi and PK
concentrations, addition of 25 μM ATP started a decrease in the
absorbance, i.e. ATP hydrolysis, which was linear over the whole
measuring time (200 s), except for an initial fast phase of 1–2 s, which
could be attributed to rapid phosphorylation of the ADP present as a
contaminant in the ATP solution, since it could be observed also in the
absence of membranes. The hydrolysis rates are plotted in Fig. 4 as a
function of Pi concentration for all tested PK activities, together with
the hydrolysis rates from Fig. 1B (full circles) obtained in the absence
of PK. The curves through the data points are hyperbolic functions
best-fitted to the data. An effect of PK on the inhibition by Pi is
evident: at intermediate PK amounts (2, 10, and 55 U/ml) the apparent
Kd's for Pi shift to progressively higher values (290, 520, and 1100 μM
respectively) until, at the highest PK amount (110 U/ml), an inhibition
by Pi is barely detectable. The asymptotic levels of inhibition were
gradually decreased as well. Therefore the activating effect of the ADP
trap is most evident at the highest Pi concentrations.

These results confirm and extend those first obtained in the
isolated and reconstituted EF1FO [23], in showing that ADP bound to
the enzyme is required for Pi to be able to inhibit ATP hydrolysis.
Analogously, Pi is required for a stronger inhibition by ADP, although
the inhibitory effect of ADP can be observed also in the absence of
added Pi.

3.4. Effect of ADP depletion on proton pumping

We then measured the ATP-driven ACMA fluorescence quenching
under the same experimental conditions of Fig. 4. The assay
compositions were identical to those of Fig. 4 except that LDH,
NADH and KCN were omitted and ACMA was present. In the
fluorescence traces shown in Fig. 5, Pi was kept constant at 200 μM,
and the amount of PK added to the assay was progressively increased
from 0 to 110 U/ml. After addition of 25 μM ATP at t=0 s, a fast rate of
fluorescence quenching was observed in all cases, which declined
with time. Such decline was most pronounced in the case of no added
PK, showing that substrate depletion and ADP accumulation con-
tributed to this decline. Noticeably, the overall quenching signal was
significantly increased, relative to no addition, by the presence of 2 U/
ml of PK, but such high quenching level was progressively decreased
when increasing PK activities were added. A very similar trend could
be observed in the initial rate of fluorescence quenching (Fig. 5B). The
increase in both overall quenching signal and initial quenching rate at
2 U/ml PK was in agreement with the increase of the hydrolysis rate
observed at 200 μM Pi at the corresponding level of PK (see Fig. 4). By



Fig. 5. ACMA fluorescence quenching at constant Pi concentration in the presence of increasing PK activity. (A) The ACMA assay was carried out as described in the legend of Fig. 2, but
the reactionmixture contained in addition 200 μMPi, 2 mM PEP and increasing activities of PK as indicated. The trace recorded in the absence of PK (thick line) can also be recognized
by its slow recovery of fluorescence. (B) The traces from (A) are reported on a shorter time scale and displaced along the time axis for showing the initial rates of quenching. The
arrows indicate the time points of ATP addition. The linear fits were calculated over 2 s of reaction (9 data points). (C) The steady state ADP concentration for each PK concentration
was estimated as described in the text. The percentage values of the initial rates of fluorescence quenching (○) and the percentage values of fluorescence quenching at t=50 s (Δ)
relative to controls, i.e. to the values obtained at the lowest estimated ADP concentration estimated in the presence of 110 U/ml of PK (5.0% · s–1 and 29.5%, respectively), were
determined from (B) and (A), and the values of the initial rates of ATP hydrolysis (●) relative to control (5.0 nmol ATP· s–1· mg protein–1) were measured in an enzyme-coupled ATP
regenerating system as described in the text. The errors of the initial rates of quenching are the errors associated with the first-order coefficient of the linear regression. The curves
through the data points are the best fit to the data of a hyperbolic function.
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contrast, while the hydrolysis rate kept increasing with the PK activity
(Fig. 4), both the overall quenching signal and the initial quenching
rate were markedly decreased (Fig. 5A, B). To check for possible
interferences of the PK/PEP components with the permeability system
of themembrane, the NADH-induced quenchingwasmonitored in the
presence of PEP and of increasing PK amounts, or the ATP-induced
quenching was monitored in the presence of PEP alone or of PK alone
or pyruvate. Again, no alteration of the quenching signal could be
detected under these conditions, letting us conclude that the decrease
in the quenching was due to a decrease of the proton translocation
rate by the ATP synthase with increasing PK, in spite of the increasing
rate of ATP hydrolysis.

The ADP concentrations present at the different PK activities can be
calculated by imposing a steady state concentration for ADP, in which
its rate of production by the ATP hydrolysis reaction (v(hyd)) balances
the rate of ADP depletion by the PK (v(PK)). The attainment of a steady
state [ADP] is consistent with the fact that, after an initial pre-steady
state, the hydrolysis rate in the presence of the PK-LDH system is
constant. Assuming a Michaelis–Menten kinetics of the PK reaction,
one has:

v hydð Þ = v PKð Þ =
V ADP
max d ADP½ �ss
ADP½ �ssþK ADP

M

ð1Þ

where [ADP]ss is the ADP concentration in the steady state, and
Vmax

ADP and KM
ADP refer to the PK reaction. Vmax

ADP was measured
directly (see Materials and methods), KM

ADP=0.3 mM was taken from
the literature [37] and v(hyd) are those reported in Fig. 4. While
competition between ATP and ADP, and other possible kinetic
alterations of the PK activity, have not been considered here, this
calculation should provide a good first estimate of [ADP]ss.
In Fig. 5C, the hydrolysis rates from Fig. 4 (closed circles) and the
quenching data from Fig. 5A, B (open circles: quenching rates,
triangles: quenching value at t=50 s) were plotted as a function of
the calculated steady state ADP concentration. The lowest calculated
ADP concentration corresponds to the highest PK activity (110 U/ml).
In such a plot the diverging course between the ATP hydrolysis and
the quenching data can be fully appreciated, as well as their
dependency on the estimated ADP concentration. Noticeably, the
very low ADP concentrations calculated in such a way (submicro-
molar range) indicate that a very high affinity binding site for ADP is
involved.

3.5. Effect of ADP depletion on proton pumping as a function of Pi
concentration

Similar experiments were performed at different concentrations of
Pi and the final results are summarized in Fig. 6, where the quenching
level at t=50 s (Fig. 6A) and the initial quenching rates (Fig. 6B) at
different PK activities are plotted as a function of Pi. At all intermediate
PK activities, a maximum of both quenching level and initial
quenching rate was observed close to 100–200 μM Pi, followed by a
decrease at higher concentrations. This biphasic course, as well as the
extent of Pi inhibition in the high concentration range, were
progressively attenuated at the highest PK activities, until no
biphasicity was detectable at PK=110 U/ml, and a veryweak inhibition
was left. The biphasic trend observed at the intermediate PK activities
was similar to what was found in the absence of PK (reported for
comparison in Fig. 6A, B, open symbols) and was again particularly
striking, given that the ATP hydrolysis rates were, on the contrary,
monotonically decreasing as a function of Pi (see Fig. 4) at all the
intermediate PK activities tested.



Fig. 6. ACMA fluorescence quenching as a function of Pi concentration in the presence of increasing PK activity. The ACMA assay was carried out as described in the legend of Fig. 2,
but contained in addition 2 mM PEP and variable concentrations of PK and Pi as indicated. (A) The fluorescence quenching at t=50 s is plotted as a function of the added Pi
concentration for each PK activity. The open symbols (no added PK) are reported from Fig. 2D for comparison. (B) The initial rates of fluorescence quenching were determined by
the linear fits calculated over 1 s of reaction (5 data points) and are plotted as a function of the added Pi concentration for each indicated PK activity. The data at PK=55 U/ml were
omitted for clarity. The errors of the initial rates of quenching are the errors associated with the first-order coefficient of the linear regression. The open symbols (no added PK) are
reported from Fig. 2D for comparison. (C) The ADP concentration for each PK activity at 1 mM Pi was estimated as described in the text. The percentage values of the initial rates of
fluorescence quenching (O) and the percentage values of fluorescence quenching at t=50 s (Δ) relative to controls, as specified in the legend of Fig. 5 (4.2% · s–1 and 27.6%,
respectively), are from (B) and (A) (values at 1 mM Pi), and the rate values of ATP hydrolysis (●) relative to control (4.8 nmol ATP · s–1 · mg protein–1) are from Fig. 4 (values at
1 mM Pi). The curves through the data points are the best fit to the data of a hyperbolic function. (D) The ADP concentration for each PK activity at no added Pi was estimated as
described in the text. The percentage values of the initial rates of fluorescence quenching (O) and the percentage values of fluorescence quenching at t=50 s (Δ) relative to controls,
as specified in the legend of Fig. 5 (5.9% · s–1 and 31.6%, respectively), are from (B) and (A) (values at 0 mM Pi), and the rate values of ATP hydrolysis (●) relative to control (4.9 nmol
ATP · s–1 · mg protein–1) are from Fig. 4 (values at 0 mM Pi). The curves through the data points are the best fit to the data of a hyperbolic function.
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In addition, for all tested Pi concentrations, a trend similar to the
one recorded at Pi=200 μM (Fig. 5) was evident: the lowest PK activity
was the one at which both quenching level at t=50 s and initial
quenching ratewere the highest, and increasing PK activities induced a
decrease of both these parameters. Also for these series of data, it was
possible to calculate the steady state ADP concentration present in
each assay and to plot the hydrolysis and quenching data as a function
of [ADP]ss for each Pi concentration. In Fig. 6C one such plot is
presented, in which the Pi concentration was 1 mM. In Fig. 6D the
analogous plot is presented for the data obtained in the absence of
added Pi; also in this latter case, the same divergent trend between
hydrolysis and quenching is evident, as in the presence of Pi, indicating
that ADP alonewas also able to induce the phenomenon, although to a
lower extent and with a lower binding affinity (the Pi present at the
beginning of the reaction as a contaminant in the ATP solutionwas not
higher than 0.5 μM, as measured by the green malachite method [24],
and the Pi released during 50 s of ATP hydrolysis can be calculated and
was not higher than 6 μM, i.e. negligibly small).

We conclude that the binding of ADP at very low concentration,
and more markedly when Pi is present, induces in the ATP synthase a
higher efficiency state, in which more protons per hydrolyzed ATP are
translocated across the membrane.

4. Discussion

The major finding of the present work was that low concentrations
of ADP and Pi inhibit the rate of ATP hydrolysis by the ATP synthase in
E. coli internal membranes, while at the same time increase the rate of
inward proton translocation. This experimental observation can be
rationalized if it is assumed that, in binding these two ligands, the ATP
synthase changes its catalytic mode, shifting from a partially
uncoupled to a fully coupled ATP hydrolysis. This general conclusion
parallels the one previously reached for the ATP synthase of Rb. cap-
sulatus [22]. The occurrence of this phenomenon in these two
Prokaryotes suggests that it might be a common feature in the
prokaryotic ATP synthases, and possibly in the eukaryotic ones as well.

To our knowledge, a modulation of the coupling efficiency by
physiological ligands has never been documented in any other ATP
synthase so far, even though states of uncoupling have been reported
in mutated, or chemically modified, ATP synthases [13–18], and in the
presence of non-physiological ligands, such as Ca2+ and sulfite [19–
21]. The results obtained in the laboratories of Capaldi [38] and
Yoshida [39], according to which the trapping of the ɛ subunit in two
different conformations generates either a “synthase” or a “hydrolase”
form, can be considered consistent with the existence of two
conformations having different coupling efficiencies, although alter-
nativemechanisms could also explain those experimental findings. An
intrinsic uncoupling has been reported for other chemiosmotic
enzymes such as cytochrome oxidase (reviewed in [40]), V-ATPases
[41–43], and Ca-ATPases (reviewed in [44]), in which its possible
regulatory role has been discussed. Analogously, a regulatory role can
also be hypothesized for the intrinsic uncoupling we observe in the
ATP synthase, since it is possible that the intracellular Pi concentration
varies in the hundreds of micromolar range. On the other hand, it
seems likely that the protonmotive force also have a role in
modulating the pump efficiency, and the binding competition with
ATP as well, even though these possibilities have not been explored in
the present work.

Similarly as seen in the ATP synthase of Rb. capsulatus, the ADP
concentrations able to induce this phenomenon were in the sub-
micromolar range, and could be attained during hydrolysis only by
supplementing the assays with an ATP regenerating system acting as
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an ADP trap. This implies the involvement of a site for ADP binding,
whose very high affinity, manifest even in the presence of a large
excess of ATP, is a strong indication in favor of its catalytic nature. The
presence on the enzymeof such a site is consistentwithmeasurements
performed, in the absence of a proton gradient, in an E. coli ATP
synthase in which Trp's introduced through mutagenesis into the
catalytic sites were used as fluorescence reporters of nucleotide
binding; these measurements detected two ADP binding sites with Kd
of 0.18 and13 μMrespectively [45]. Very recently, ADP trappingwith an
ATP regenerating system has revealed also in the ATP synthase of P.
denitrificans a high affinity ADP binding site, whose occupancy was
required for maintaining the activated state of the enzyme [46].

The uncoupling/coupling transition observed in the present work
was dependent on Pi as well, similarly again to what was shown in Rb.
capsulatus. However, a striking difference was that Pi, which slightly
activated the hydrolysis in the photosynthetic bacterium, was instead
inhibitory for hydrolysis in the E. coli enzyme, which makes the
stimulation of the proton translocation rate observed at Pi concentra-
tion up to 100 μM even more striking. The bell shaped dependence of
proton transport on Pi concentration suggests that two Pi binding sites
are involved, one with higher affinity, whose occupancy increases the
pumping efficiency (leading to an overall higher rate of proton
translocation in spite of the underlying inhibition) and a second one
with lower affinity, causing inhibition of hydrolysis (reflected in the
inhibition of proton translocation visible at higher Pi concentrations).
The apparent Kd measured for Pi inhibition of ATP hydrolysis was
140 μM (Fig. 1), while the steep rise of the ACMA quenching rate and
steady state between 0 and 100 μM Pi (Fig. 2) indicates that the Kd for
the high affinity site could be in the order of tens of μM. The effect on
the hydrolysis rate of the higher affinity binding site cannot be
determined from our results, since the experimental data as a function
of Pi could be fitted not only by a single hyperbolic function but
equally well by the sum of two hyperbolic functions with two Kd's,
one higher and one lower than 140 μM. The occurrence of two Pi
binding sites has been shown in the isolated EF1 by direct binding
studies, and the resulting Kd (at pH 7.5) were both in the range of
0.1 mM [47]. In addition, Pi binding to EF1 has been demonstrated
indirectly through its effect on the trypsinization pattern of the ɛ

subunit (apparent Kd=50 μM) [48], and its binding to EF1 and EF1FO
through the changes induced in the emission intensity of a fluorescent
probe covalently bound to the γ subunit (apparent Kd=280 μM) [30].
An inhibition of ATP hydrolysis by Pi has also been reported, under
deenergized conditions, in the isolated and reconstituted EF1FO
(apparent Kd=500 μM) [23], and in the isolated EF1 (apparent
Kd=280 μM) [30]. In the light of the present data (Fig. 4), it should
be considered that the value of the apparent Kd can depend on the
fraction of ATP synthase molecules which have ADP bound. Moreover,
according to data obtained in chloroplasts [49] and in P. denitrificans
[50], the ATP synthase affinity for Pi may depend on the extent of the
protonmotive force.

Both the Pi-inhibition of hydrolysis and the Pi-induced enhance-
ment of coupling efficiency were lost in our system when the ADP
concentration was drastically lowered by the presence of high
amounts of the ADP-trapping PK (Figs. 4 and 6), indicating that
these Pi effects were strictly dependent on the occupancy of a very
high affinity binding site for ADP. The ADP requirement for the Pi-
inhibition of hydrolysis is in agreement with the results obtained in
the isolated and reconstituted EF1FO [23]. Interestingly, the presence
of Pi has also been shown to be required for relief of ADP inhibition by
the protonmotive force in TF1FO, both in thewild-type and in a mutant
lacking the C-terminal domain of the ɛ subunit [51]. Similarly, data
obtained in the bovine mitochondrial F1 [52] showed that the
preliminary incubation of ADP at concentrations equimolar with F1
(μM range) was necessary for F1 to bind Pi (present at 500 μM); this
high affinity ADP binding site was also shown by the same group to be
exchangeable and catalytic [53]. The most straightforward picture is
that a catalytic site binds ADP, thereby closing the β subunit, and
creating after this closure a Pi binding site which reinforces the
closure.

In summary, the data presented in this work indicate that Pi can
modulate the coupling efficiency of EF1FO, by binding to a high affinity
site filled with ADP. We think that this modulation is likely to be
brought about by the interconversion of two states of the enzyme, one
of which has a lower coupling efficiency than the other. The possibility
of modulating the coupling efficiency might require the existence of a
structural device acting somehow as a clutch. The ɛ subunit appears to
us as a possible candidate for this role, since it has frequently been
indicated as a key regulatory and structural feature in the coupling
mechanism (see e.g. [13–18,54] and for reviews [55–58]). In particular,
the drastic changes in the ɛ trypsinization pattern induced by Pi [48]
are consistent with Pi triggering the interconversion between two
conformations, and the occurrence of drastically different conforma-
tions in this subunit has been confirmed by structural [59,60] and
mutational studies [38,39]. One of these different conformations of
the ɛ subunit could induce a more frequent slippage for instance
within the rotor at the joint between the γ subunit and the c-subunit
ring, or between stator and rotor at the interface α3β3-barrel/γ-shaft.
This last possibility would be consistent with the finding that
mechanically driven ATP synthesis in TF1 was more efficient if the ɛ

subunit was added [61]. Interestingly, the ɛ subunit appears to control
the conformations of the γ subunit (reviewed in [56]) and tomodulate
the rate of Pi release under unisite conditions [62].

An alternative possibility is that the observed uncoupling
phenomena could be related to a premature release of the hydrolysis
products from a catalytic site perturbing the ordered release sequence
necessary for a productive cooperative interaction within the α3β3

hexamer. The analysis of such an interpretation would require a
careful correlation between a kinetic reaction model, the rotational
mechanism and the energetics of the different catalytic sites (for this
type of analysis see in particular [63,64]).

A final consideration is that, if indeed the switching from a low to a
high efficiency state of the enzyme is brought about by ADP and Pi
binding to a high affinity catalytic site, this binding has to be transient,
otherwise there would be no chance of observing a more coupled
hydrolysis. In other words, the ligands have to dissociate from the
enzyme in steps subsequent to the binding and to the conformational
switch. The two ligands could be released as such, or even as ATP, if a
sufficiently high protonmotive force is available. As already noted [22],
it is interesting in this respect that low levels of ATP synthesis, from
medium ADP and Pi, are always found during ATP hydrolysis in the
presence of a protonmotive force (so called “ATP-Pi exchange”) even at
very high ATP/ADP ratios [65,66]. Moreover, single molecule experi-
ments have shown that the MgADP-inhibited TF1FO could be
reactivated by a forced rotation of the γ subunit not only in the
hydrolysis but also in the synthesis direction [67], which suggests that
F1FO can release tightly bound ADP either as such or, possibly, as ATP.
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