
Discrete Applied Mathematics 129 (2003) 371–382
www.elsevier.com/locate/dam

A polynomial algorithm for #nding T -span of
generalized cacti

Krzysztof Giaro, Robert Janczewski∗;1 , Micha l Ma la#ejski
Foundations of Informatics Department, Faculty of Electronics, Telecommunications and Informatics,

Technical University of Gda�nsk ul. Narutowicza 11/12, Gda�nsk, Poland

Received 31 October 2000; received in revised form 18 June 2002; accepted 29 July 2002

Abstract

It has been known for years that the problem of computing the T -span is NP-hard in general.
Recently, Giaro et al. (Discrete Appl. Math., to appear) showed that the problem remains NP-hard
even for graphs of degree �6 3 and it is polynomially solvable for graphs with degree �6 2.
Herein, we extend the latter result. We introduce a new class of graphs which is large enough
to contain paths, cycles, trees, cacti, polygon trees and connected outerplanar graphs. Next, we
study the properties of graphs from this class and prove that the problem of computing the
T -span for these graphs is polynomially solvable.
? 2003 Elsevier B.V. All rights reserved.

Keywords: T -coloring; T -span; Cactus; Outerplanar graph

1. Introduction

In order to establish some notation and terminology that will be necessary later on,
let us recall that if T is a T -set, i.e. a #nite set of non-negative integers such that
0∈T , then a T -coloring of a given simple graph G=(V; E) is any function c : V → Z
such that |c(u)− c(v)| �∈ T whenever {u; v}∈E. The T -span of G, denoted by spT (G),
is the minimum span over all T -colorings of G, where the span of a T -coloring c of
G is the distance between the largest and the smallest color used by c.

∗ Corresponding author.
E-mail addresses: giaro@eti.pg.gda.pl (K. Giaro), skalar@eti.pg.gda.pl (R. Janczewski), mima@

eti.pg.gda.pl (M. Ma la#ejski).
1 Supported by FNP.

0166-218X/03/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
PII: S0166 -218X(02)00575 -9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82272158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:giaro@eti.pg.gda.pl
mailto:skalar@eti.pg.gda.pl
mailto:mima@eti.pg.gda.pl
mailto:mima@eti.pg.gda.pl

372 K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382

T -colorings and T -span are strictly connected with ordinary vertex colorings and the
chromatic number of graphs. For instance, it is known [1] that if set T is r-initial, i.e.
{0; 1; : : : ; r} ⊆ T and T contains no positive multiples of r + 1, then spT (G) = (r +
1)(�(G) − 1), where �(G) is the chromatic number of G. Furthermore, Raychaudhuri
[7] showed that if T is a k multiple of s set, i.e. T ⊆ {0; s; s + 1; s + 2; : : : ; ks} and
{0; s; 2s; : : : ; ks} ⊆ T , then

spT (G) =

{
(k + 1)�(G) − ks− 1 if s|�(G);

ks	 �(G)
s
 + �(G) − 1 otherwise:

T -colorings and T -span have been studied for two decades, mostly because of their
potential application in the channel assignment problem (refer to [4,8] for details). A
number of their properties have been discovered. We need some of them so let us
recall that the problem of computing the T -span is NP-hard in the strong sense even
for complete graphs (see [5] for the proof of NP-hardness and [3] for the proof of
NP-hardness in the strong sense) as well as r-regular (r¿ 3) and subcubic graphs (see
[2]). Of course, there are several cases where considered problem becomes polynomial.
The problem is easy for bipartite graphs since it is known that if G is a bipartite graph,
then

spT (G) =

{
mT if G is not edgeless;

0 otherwise;
(1)

where mT is the smallest positive integer not belonging to T . Giaro et al. [2] showed
that the problem of computing the T -span of graphs with degree not exceeding two is
polynomial. Herein, we generalize this result.

The remainder of the paper is organized as follows. Section 2 contains some pre-
liminary de#nitions and results. We introduce a notion of a CP-decomposition of a
graph and de#ne thorny graphs. Next, we discuss some of their properties. A number
of examples are given in the third section. We prove that every path, cycle, cactus,
tree, polygon tree and connected outerplanar graph is a thorny graph. A polynomial
time algorithm for #nding the T -span of thorny graphs is given in the #nal section of
this paper.

2. Preliminaries

Let us recall that if G is a simple graph then symbols V (G); E(G); m(G) and n(G)
denote the set of vertices, the set of edges, the number of edges and the number of
vertices of G, respectively. We shall drop the reference to the graph, if G is clear from
context.

De�nition 1. A union of graphs G and H , denoted by G ∪ H , is the graph satisfying
V (G ∪ H) = V (G) ∪ V (H) and E(G ∪ H) = E(G) ∪ E(H).

K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382 373

Fig. 1. An example of a thorny graph.

De�nition 2. An intersection of graphs G;H which are not vertex disjoint, denoted by
G∩H , is the graph satisfying V (G∩H)=V (G)∩V (H) and E(G∩H)=E(G)∩E(H).

Let us note that the union and intersection of simple graphs have almost the same
properties as union and intersection of sets—these operations are all associative and
commutative, for example. Moreover, the union of connected graphs which are not
vertex disjoint is connected and the following equality:

�(G ∪ H) = max{�(G); �(H)} (2)

holds if simple graphs G;H are vertex disjoint or their intersection is a path with at
most two vertices. These simple observations will be used later to prove some of the
properties of thorny graphs.

De�nition 3. A sequence G1; G2; : : : ; Gk of subgraphs of a given graph G is said to be
a CP-decomposition of G of length k iM the following conditions are ful#lled

(1) all graphs in the sequence are cycles or paths,
(2) (G1 ∪ · · · ∪ Gi−1) ∩ Gi is K1 or K2 for each i = 2; 3; : : : ; k,
(3) G = G1 ∪ · · · ∪ Gk .

De�nition 4. A graph G is said to be thorny iM it has at least one CP-decomposition.

Every cycle and every path are thorny graphs because every path and cycle has a
CP-decomposition of length one. Also, the graph G of Fig. 1 has a CP-decomposition
of length three, e.g. G1; G2; G3 where G1 = G({v1; v2; v3}), G2 = G({v2; v3; v4; v5}) and
G3 =G({v4; v5; v6}). Lots of other examples will be given in the next section. Now we
restrict our attention to the properties of CP-decompositions and thorny graphs.

Proposition 5. Every thorny graph is connected, planar and tripartite.

374 K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382

Proof. Connectivity and planarity of thorny graphs follow directly from their de#nition.
Tripartiteness will be proved by induction with a little help of equality (2). Let G be a
thorny graph and let G1; G2; : : : ; Gk be any of its CP-decompositions. Let H1; H2; : : : ; Hk

be a sequence of graphs de#ned as follows:

Hi = G1 ∪ G2 ∪ · · · ∪ Gi; i = 1; 2; : : : ; k:

We will use induction on i to show that every graph Hi, i = 1; 2; : : : ; k is tripartite; it
will complete the proof since G = Hk . The claim is obvious for i = 1, so to complete
the proof it suNces to note that if graph Hi (i¡ k) is tripartite then graph Hi+1 is
tripartite, which follows from equality (2) and the fact that graph Hi+1 is a union of
tripartite graphs Hi; Gi+1 whose intersection is K1 or K2.

In the following we will denote by k(G) the minimum length over all possible
CP-decompositions of a given thorny graph G. The reader can easily verify that cycles
and paths are the only thorny graphs satisfying k(G) = 1 and if G is the graph shown
in Fig. 1, then k(G) = 3.

Proposition 6. If G is a thorny graph with at least two vertices, then

m(G)6 2n(G) − 3: (3)

Proof. Let G1; G2; : : : ; Gk be a CP-decomposition of G such that k = k(G) and let
H1; H2; : : : ; Hk be a sequence of graphs de#ned as follows:

Hi = G1 ∪ G2 ∪ · · · ∪ Gi; i = 1; 2; : : : ; k:

We will use induction on i to show that every graph Hi, i=1; 2; : : : ; k satis#es inequality
m(Hi)6 2n(Hi) − 3; it will complete the proof since G = Hk .

We begin by observing that all graphs in the CP-decomposition under consideration
must have at least two vertices and therefore m(Gi)6 2n(Gi)−3 for each i=1; 2; : : : ; k.
Assume that i¡ k and m(Hi)6 2n(Hi) − 3. There are only two cases to consider.

(1) Gi+1 ∩Hi is K1. Then n(Hi+1) = n(Hi) + n(Gi+1)− 1, m(Hi+1) =m(Hi) +m(Gi+1)
and thus

m(Hi+1)6 2n(Hi) − 3 + 2n(Gi+1) − 3 = 2n(Hi+1) − 4:

(2) Gi+1∩Hi is K2. Then n(Hi+1)=n(Hi)+n(Gi+1)−2, m(Hi+1)=m(Hi)+m(Gi+1)−1
and thus

m(Hi+1)6 2n(Hi) − 3 + 2n(Gi+1) − 3 − 1 = 2n(Hi+1) − 3:

Let G1 be the path satisfying the equality V (G1) = {1; 2} and Gn (n¿ 2) be the cycle
satisfying the equality V (Gn) = {n− 1; n; n+ 1}. All graphs in the sequence Tn de#ned
recursively as follows:

Tn =

{
G1 if n = 2;

Tn−1 ∪ Gn−1 if n¿ 2:

K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382 375

Fig. 2. The graph T4.

are thorny (T3 is a cycle with three vertices and T4 is shown in Fig. 2). The reader
can easily verify that n(Tn) = n and m(Tn) = 2n− 3 so the upper bound (3) is tight.

Proposition 7. Let G be a thorny graph. If H is an induced subgraph of G then H
is thorny if and only if H is connected.

Proof. It suNces to show that if H is an induced and connected subgraph of G then
H is a thorny graph. The implication is obvious whenever k(G) = 1. Assume that
the implication is true for all thorny graphs with k(G)¡p (p¿ 2). Let G be a
thorny graph with k(G) =p and G1; G2; : : : ; Gp be a CP-decomposition of G. If H is a
subgraph of Gp or a subgraph of G′ =G1 ∪G2 ∪ · · ·∪Gp−1, then the claim is obvious.
If H is neither a subgraph of Gp nor a subgraph of G′, then V (H) ∩ V (Gp) �= ∅ and
V (H) ∩ V (G′) �= ∅. The reader can verify that graphs H1 = H ∩ G′ and H2 = H ∩ Gp

are connected. H2 must be a path or cycle as a connected subgraph of a cycle or path
Gk and H1 must be thorny as a connected and induced subgraph of a thorny graph
G′ with k(G′)¡p. Let H ′

1; H
′
2; : : : ; H

′
k be a CP-decomposition of H1. To complete the

proof, it is suNcient to note that H ′
1; H

′
2; : : : ; H

′
k ; H2 is a CP-decomposition of H .

To express other properties of thorny graphs we must mention the de#nition of
the core of graph. Note that the word ‘induced’ cannot be removed from the text of
Proposition 7 (see Fig. 3 for a counter-example).

De�nition 8. The core of a graph G is a subgraph obtained by pruning away all
pendant vertices successively until there is no vertex of degree one.

Proposition 9. Let G be a simple graph and H be its core. Then G is thorny if and
only if H is thorny.

Proof. (⇒) The core of any connected graph is a connected and induced subgraph of
the graph. The claim follows now from Proposition 7.

376 K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382

Fig. 3. An example of a thorny graph (left) and its subgraph (right) that is not thorny.

(⇐) A graph obtained from a thorny graph by adding one pendant vertex is thorny.
Thus, G is thorny as a result of adding pendant vertices one after the other to thorny
graph H .

In the following, we will say that connected graph G that is not a cycle has a
pendant cycle iM there is such a graph H and a cycle C that G = H ∪ C and H ∩ C
is K1 or K2.

Proposition 10. Every thorny graph other than a cycle has a pendant vertex or a
pendant cycle.

Proof. It follows immediately from the de#nition of a pendant cycle and the de#nition
of thorny graphs.

Corollary 11. Every thorny graph has a vertex of degree less than or equal to 2.

In general, it may be hard to decide whether a given graph belongs to a given
class or not. It appears that deciding whether a given graph is thorny or not is easy.
Moreover, we can easily #nd a CP-decomposition of any thorny graph. The reader can
verify that the following algorithm tests whether a given graph G is thorny and if so
then it returns one of its CP-decompositions.

(1) Let list L = ∅. If G is not connected, then stop.
(2) If G is edgeless or it is a cycle, then make G the head of L and stop.
(3) If G has nor a pendant vertex neither a pendant cycle, then let L = ∅ and stop.
(4) If G has a pendant vertex v then there are graphs G1 and G2 such that G=G1∪G2,

V (G1 ∩G2) = {u} and G2 is a path with two vertices u and v, where u is the only
neighbor of v. Make G2 the head of L, let G = G1 and go to Step 2.

(5) If G has a pendant cycle, i.e. there is a cycle C and a graph H such that G=H∪C
and all other requirements are satis#ed then make C the head of L, let G=H and
go to Step 2.

K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382 377

The algorithm returns a list L which is non-empty if graph G is thorny. If the list is
not empty then it contains one of CP-decompositions of G.

The above algorithm performs at most n steps. In each step it #nds a pendant vertex
or pendant cycle of G, removes some vertices from G and adds a new item to list L.
It is obvious that we are able to #nd all pendant vertices of G, remove some vertices
from G and add a new item to L in O(n2) time. It appears that #nding pendant
cycles of G is also realizable in O(n2) time since to #nd them it suNces to build a
subgraph of G induced by vertices of degree 2 and for each connected component of
the subgraph (these components must be paths) verify whether their endpoints have
common neighbor or adjacent neighbors in the rest of G. Thus, the computational
complexity of the algorithm is O(n3).

3. Examples

Now we are ready to prove that many well-known graphs are thorny. Let us recall
that a simple connected graph G is said to be a cactus iM every two diMerent cycles
in G have at most one vertex in common.

Proposition 12. Every cactus is a thorny graph.

Proof. Since the only edgeless cactus is thorny, we may assume that a given cactus
G has at least one edge. Let S = {G1; G2; : : : ; Gk} be a set containing all subgraphs
of G which are cycles or paths with only one edge being a bridge in G. Let � :
{1; 2; : : : ; k} → {1; 2; : : : ; k} be a function de#ned recursively as follows:

�(i) =

{
1 if i = 1;

min{r �∈ �({1; 2; : : : ; i − 1}) : V (Gr) ∩ V (Hi−1) �= ∅} if 26 i6 k;

where Hi = G�(1) ∪ G�(2) ∪ · · · ∪ G�(i). Since G is connected, � is a well-de#ned
one-to-one function. We will use induction on i to show that G�(1); G�(2); : : : ; G�(i)

is a CP-decomposition of Hi for each i = 1; 2; : : : ; k; it will complete the proof since
G = Hk .

Clearly, the claim is true for i = 1. Assume that the claim holds for i (i¡ k). To
prove that it holds for i+ 1 it suNces to show that graphs Hi; G�(i+1) have exactly one
vertex in common. There are only two cases to consider.

(1) G�(i+1) is a path, i.e. the only edge {u; v} of G�(i+1) is a bridge in G. If both
vertices u; v were also vertices of Hi then there would be two diMerent paths
connecting u; v in G—bridge {u; v} and a path connecting u; v in Hi (such a path
exists since Hi is connected)—a contradiction. Thus, the graphs have exactly one
vertex in common.

(2) G�(i+1) is a cycle. G is a cactus so graphs G1; G2; : : : ; Gk must be edge disjoint and
therefore graphs G�(i+1); Hi are edge disjoint. If graphs Hi and G�(i+1) had at least

378 K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382

two common vertices u; v then there would be at least three edge disjoint paths
connecting these vertices (two paths in G�(i+1) and at least one in Hi; these paths
are edge disjoint, since graphs G�(i+1); Hi are edge disjoint)—a contradiction. Thus
the graphs have exactly one vertex in common.

Proposition 13. Every connected outerplanar graph is thorny.

Proof. Throughout the proof, S(G) denotes a set containing all subgraphs of a con-
nected outerplanar graph G which are cycles surrounding faces or paths with exactly
one edge being a bridge in G. We will use induction on the cardinality of S(G) to
show that elements of S(G) can be put in a sequence being a CP-decomposition of G.

The claim is true for paths with at most two vertices and cycles, i.e. connected
outerplanar graphs satisfying |S(G)|6 1. Assume that it holds for graphs satisfying
|S(G)| = k (k¿ 1) and let us check whether it holds for graphs with |S(G)| = k + 1.
Let G be such a connected outerplanar graph that S(G) = {G1; G2; : : : ; Gk+1}. There
are only two cases to consider.

(1) Every two diMerent elements of S(G) have at most one common vertex. Then G
must be a cactus and the claim follows from the proof of Proposition 12.

(2) There are such numbers i; j that 16 i¡ j6 k + 1 and the intersection of graphs
Gi; Gj is a path with two vertices. Without loss of generality we assume that
i = k and j = k + 1. Let e be the only edge of Gk ∩ Gk+1. Since Gk and Gk+1

must be cycles, the graph H obtained from G by removing edge e must be a
connected outerplanar graph. Furthermore, S(H) ={H1; H2; : : : ; Hk}, where Hi =Gi

for i=1; 2; : : : ; k−1 and Hk is a cycle obtained from Gk ∪Gk+1 by removing e. By
the inductional hypothesis, there is such a one-to-one function � : {1; 2; : : : ; k} →
{1; 2; : : : ; k} that H�(1); H�(2); : : : ; H�(k) is a CP-decomposition of H . Let l=�−1(k).
The reader can easily verify that if we replace Hk in the decomposition by Gk; Gk+1

(if Hk ∩(H�(1)∪H�(2)∪· · ·∪H�(l−1)) is a subgraph of Gk) or Gk+1; Gk (otherwise),
then we obtain a CP-decomposition of G.

Proposition 14. Every tree of polygons is a thorny graph.

Proof. It is clear since they may be de#ned as the smallest class of graphs G such
that (1) cycles are in G and (2) if G ∈G then G ∪ H ∈G for all cycles H such that
G ∩ H is K2.

4. The algorithm

To show how to compute eNciently the T -span of a thorny graph, we have to intro-
duce the notion of odd girth of a graph, prove that it can be found in polynomial time,
write some words about the so-called T -graphs and solve the problem of computing
the T -span of odd cycles. We begin with the de#nition of odd girth.

K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382 379

De�nition 15. Let G be any non-bipartite graph. The odd girth of G, denoted
by og(G), is the minimum number of vertices over all odd cycles being subgraphs
of G.

It is well known that the distance between any vertices u; v of G, denoted here by
dG(u; v), may be computed in O(m + n) time. It appears that the odd girth of any
non-bipartite graph may be found in polynomial time, too. The theorem given below
tells us that it can be done in O(n2 + mn) time.

Theorem 16. Let G be a non-bipartite graph and H be de9ned by V (H) = V (G) ×
{1; 2} and E(H) = {{(u; 1); (v; 2)}; {(v; 1); (u; 2)} : {u; v}∈E(G)}. Then

og(G) = min{dH ((v; 1); (v; 2)): v∈V (G)}

Proof. Let k = og(G) and l= min{dH ((v; 1); (v; 2)): v∈V (G)}. Throughout the proof,
the phrase “a sequence v0; v1; : : : ; vk−1 of vertices constitutes a path (a cycle)” means
that all vertices in the sequence are diMerent and vi is a neighbor of vi+1 for each
i = 0; 1; : : : ; k − 2 (vi is a neighbor of v(i+1) mod k for each i = 0; 1; : : : ; k − 1).

By de#nition of k, there is a sequence v0; v1; : : : ; vk−1 of vertices of G which con-
stitutes an odd cycle. It is easy to check that the sequence (v0; 1); (v1; 2); : : : ; (vk−1; 1);
(v0; 2) constitutes a path in H . Hence l6dH ((v0; 1); (v0; 2))6 k.

Let w0 =(u0; 1); w1 =(u1; 2); : : : ; wl−1 =(ul−1; 1); wl=(u0; 2) be a sequence of vertices
of H that constitutes a path of length l. Clearly, the number l must be odd and vertices
ui; u(i+1) mod l must be adjacent in G for each i = 0; 1; : : : ; l− 1. We will show that all
vertices in the sequence u0; u1; : : : ; ul−1 are diMerent; it will complete the proof since
if it holds then u0; u1; : : : ; ul−1 constitutes an odd cycle in G, which yields k6 l.

Suppose that there are indices i; j∈{0; 1; : : : ; l − 1} for which i¡ j and ui = uj.
Then the set of positive integers k such that ui = ui+k for some i∈{0; 1; : : : ; l − 1}
is non-empty. Let k0 denote its minimum and i0 be such an integer that ui0 = ui0+k0 .
Since adjacent vertices cannot be equal, we see that k0 ¿ 1. Moreover, k0 cannot be
even since otherwise wi0 = wi0+k0 . All vertices in the sequence ui0 ; ui0+1; : : : ; ui0+k0−1

must be diMerent so the sequence wi0 ; wi0+1; : : : ; wi0+k0 constitutes a path connecting
vertices (ui0 ; 1); (ui0 ; 2). The length of the path is k0 ¡l, which is a contradiction to
the de#nition of l.

It is known that there is a relation among the T -span, homomorphisms of graphs
and T -graphs. Liu [6] showed that if d is a positive integer then spT (G)6d − 1 iM
G → Gd

T , where Gd
T is the graph satisfying

V (Gd
T) = {0; 1; : : : ; d− 1}; E(Gd

T) = {{u; v} : |u− v| �∈ T}

and the symbol G → H means that there is a homomorphism from G to H , i.e. a
function h : V (G) → V (H) such that {h(u); h(v)}∈E(H) whenever {u; v}∈E(G). Gd

T
is called the T -graph of order d and it was introduced by Liu. It appears that the odd
girth of T -graphs can be found in O(d2) time.

380 K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382

Theorem 17. Let d be such a positive integer that graph Gd
T is not bipartite and H

be de9ned by E(H) = {{(u; 1); (v; 2)}; {(v; 1); (u; 2)} : {u; v}∈E(Gd
T)} and V (H) =

V (Gd
T) × {1; 2}. Then

og(Gd
T) = dH ((0; 1); (0; 2)):

Proof. Let us note that construction transforming Gd
T into H has the following nice

property—it changes cycles of odd length into paths of the same odd length (see the
proof of Theorem 16). The claim now follows from Theorem 16 and the fact that 0
is a vertex of one of the shortest odd-length cycles in Gd

T .

Theorem 18. If d is a positive integer, then spT (C2n+1)6d− 1 if and only if Gd
T is

not bipartite and og(Gd
T)6 2n + 1.

Proof. (⇐) First, observe that if k6 n then C2n+1 → C2k+1. Hence C2n+1 → Gd
T since

Gd
T contains an odd cycle with the number of vertices that is less than or equal to

2n + 1. Thus spT (C2n+1)6d− 1.
(⇒) The graph Gd

T cannot be bipartite since C2n+1 → Gd
T . Moreover, homomorphic

image of a cycle C2n+1 must contain an odd cycle with the number of vertices less
than or equal to 2n + 1. Therefore og(Gd

T) ≤ 2n + 1.

As we mentioned in the Introduction, the problem of computing the T -span of odd
cycles had been solved—Giaro et al. invented algorithm for #nding spT (C2n+1) that
is of complexity O(n|T |2 log |T |). Below we improve their result by introducing an
algorithm for #nding spT (C2n+1) with complexity O(|T |2 log |T |).

Let us observe that to verify whether spT (C2n+1)6d− 1, it suNces to do the three
following steps: (1) build Gd

T , (2) check whether Gd
T is not bipartite and (3) compute

the odd girth of Gd
T . The #rst step can be done in O(d|T | + d2) time, the second and

the third in O(d2) time. Therefore, the inequality spT (C2n+1)6d− 1 can be tested in
O(d|T | + d2) time. With the aid of binary search and the following inequality:

spT (G)6 2|T |;
which holds for all tripartite graphs (see [9,10] for far more general shape of the
inequality), we are able to #nd the exact value of spT (C2n+1). The algorithm performs
at most O(log|T |) steps; the complexity of each step is O(|T |2) since all values of d
that are used satisfy the inequality d6 2|T |. Thus, the computational complexity of
the algorithm is O(|T |2log|T |).

Claim 19. For every two pairs u1; v1 and u2; v2 of adjacent vertices of a cycle, there
is an automorphism ’ of the cycle such that ’(u1) = u2 and ’(v1) = v2.

Theorem 20. If G is any non-bipartite thorny graph then G → Cog(G).

Proof. Let G1; G2; : : : ; Gk be a CP-decomposition of G. We will use induction on i to
show that if i∈{1; 2; : : : ; k} and Hi = G1 ∪ G2 ∪ · · · ∪ Gi then Hi → Cog(G).

K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382 381

The claim is true for i = 1 since G1 is a bipartite graph or an odd cycle satisfying
n(G1)¿ og(G). Assume that the claim holds for i (i¡ k) and let us check whether it
holds for i+ 1. Since Gi+1 is a bipartite graph or an odd cycle with n(Gi+1)¿ og(G),
we see that Gi+1 → Cog(G). Let h1 : V (Hi) → V (Cog(G)) and h2 : V (Gi+1) → V (Cog(G))
be homomorphisms. By Claim 19, there is an automorphism ’ : V (Cog(G)) → V (Cog(G))
such that ’(h2(v))=h1(v) for each v∈V (Hi)∩V (Gi+1). It is easy to verify that function
h : V (Hi+1) → V (Cog(G)) de#ned as follows:

h(w) =

{
h1(w) if w∈V (Hi);

’(h2(w)) if w∈V (Gi+1)

is a homomorphism.

Now we are ready to show how to compute the T -span of any thorny graph G and
how to #nd an optimal T -coloring of G, i.e. a T -coloring with span equal to spT (G).
We start with the following observation—the method used to prove the above theorem
may also serve as a description of an algorithm for #nding a homomorphism from
any non-bipartite thorny graph G to Cog(G). Previous considerations shows that the
algorithm runs in time O(n3) (the cost of #nding a CP-decomposition is O(n3); the
algorithm performs also k6 n steps which are realizable in O(n2) time).

Corollary 21. If G is a thorny graph then

spT (G) =

0 if G is edgeless;

mT if G is bipartite but not edgeless;

spT (Cog(G)) otherwise:

Theorem 22. The T-span of any thorny graph G can be found in time O(n2 +
|T |2 log |T |). Moreover, it is possible to 9nd an optimal T-coloring of G in time
O(n3 + |T |2 log |T |).

Proof. By Corollary 21, to compute the T -span of a thorny graph G it suNces to
make at most two tests (check whether G is edgeless/bipartite) and select the proper
number from 0, min ST , spT (Cog(G)) as the T -span depending on these tests. Since
both these tests can be done in O(n2) time, the odd girth of G can be found in time
O(n2) (by Proposition 6, m = T(n)) and the complexity of computing spT (Cog(G)) is
O(|T |2 log |T |), we see that the computational complexity of the algorithm is O(n2 +
|T |2 log |T |).

Finding an optimal T -coloring of G is not far more complicated. It can be easily
done in O(n2 + |T |) time if G is bipartite. If G is not bipartite, it suNces to #nd
a CP-decomposition of G (realizable in O(n3) time), compute the odd girth of G
(realizable in O(n2) time), use the method described in the proof of Theorem 20 to
#nd a homomorphism from G to Cog(G) (realizable in O(n3) time) and #nd an optimal
T -coloring of Cog(G) (realizable in O(|T |2 log |T |) time). Thus, the overall complexity
is O(n3 + |T |2 log |T |) time.

382 K. Giaro et al. / Discrete Applied Mathematics 129 (2003) 371–382

Summarizing, we have just proved that the problem of #nding the T -span and optimal
T -colorings of thorny graphs is polynomially solvable. Our algorithms can be applied
to solve the problem of #nding the T -span for a wider class of graphs, namely bipartite
and thus non-bipartite for which G → Cog(G). Unfortunately, it is known [2] that it is
NP-complete to verify whether G → Cog(G) even if G is a subcubic graph.

References

[1] M.B. Cozzens, F.S. Roberts, T -colorings of graphs and the channel assignment problem, Congr. Numer.
35 (1982) 191–208.

[2] K. Giaro, R. Janczewski, M. Ma la#ejski, The complexity of T -coloring problem for graphs with small
degree, Discrete Appl. Math., [doi: 10.1016/S0166-218X(02)00576-0].

[3] A. GrVaf, Distance graphs and the T -coloring problem, Discrete Math. 196 (1999) 153–166.
[4] W.K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980) 1497–1514.
[5] K. Jansen, A rainbow about T -colorings for complete graphs, Discrete Math. 154 (1996) 129–139.
[6] D.D.-F. Liu, T -colorings of graphs, Discrete Math. 101 (1992) 203–212.
[7] A. Raychaudhuri, Further results on T -colorings and frequency assignment problem, Discrete Math.

7 (1994) 605–613.
[8] F.S. Roberts, T -colorings of graphs: recent results and open problems, Discrete Math. 93 (1991)

229–245.
[9] B. Tesman, T -colorings, list T -colorings and set T -colorings of graphs, Ph.D. Thesis, Department of

Mathematics, Rutgers University, New Brunswick, NJ, 1989.
[10] B. Tesman, Applications of forbidden diMerence graphs to T -colorings, Congr. Numer. 74 (1990)

15–24.

	A polynomial algorithm for finding T-span of generalized cacti
	Introduction
	Preliminaries
	Examples
	The algorithm
	References

