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In this paper, we investigate the representability of a family of theories as the set of extensions of a
default theory. First, we present both new necessary conditions and sufficient ones for the representabil-
ity by means of general default theories, which improves on similar results known before. Second, we
show that one always obtains representable families by eliminating countably many theories from a
representable family. Finally, we construct two examples of denumerable, representable families; one
is not supercompactly nonincluding, and the other consists of mutually inconsistent theories but fails
to be represented by a normal default theory.C© 2001 Academic Press
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1. INTRODUCTION

Reiter’s default logic [12] is one of the most prominent formalizations of nonmonotonic reasoning,
and is extensively investigated by the community of logical foundations of artificial intelligence [1, 2,
4, 5, 7, 15, 16]. A default theory1 describes a collection of formula sets, namely the family of all
extensions of1, which represents a family of belief sets of a reasoning agent. An important issue is,
then, to characterize those families of sets that can be represented as the set of extensions for a certain
default theory. This issue is called the representation theory for default logic.

Several significant contributions have been made to the representation theory for default logic (see,
for example, [8–11, 14]). In particular, the case for default theories with a finite set of defaults and the
case for normal default theories were addressed successfully. However, the infinite, nonnormal case is
considered a rather hard open problem [11]. This paper aims at tackling this hard problem.

By ext(1) we denote the family of all extensions of a default theory1. There is a well-known constraint
on the familyext(1) obtained first by Reiter [12] that such a family must benonincluding. Moreover,
Mareket al. [11] showed that if a finite family is nonincluding, then it can be represented by a default
theory. Unfortunately, this is not true for infinite families as they actually constructed a denumerable
family of nonincluding theories [11] that is not representable. In this paper, we present a new necessary
condition for those families that can be represented by default theories. In addition, we present sufficient
conditions for representability for infinite families of theories, which are much weaker than those in [11].
We further address the representability problem with respect to subfamilies of a representable family.

The family of extensions of anormaldefault theory is not only nonincluding, but all its members are
pairwise inconsistent [12]. Again, this stronger constraint could not fully characterize those families
of theories representable by normal default theories. Marek and Truszczyński [9] raised an interesting
question: Is the familyext(1) of all extensions of a default theory1 representable by a normal default
theory under the conditions thatext(1) is not empty with all its members mutually inconsistent?2 Marek
et al. [11] constructed an example of a denumerable family of pairwise inconsistent theories that are
not representable by normal default theories. However, this example is not representable by any default
theory and thus does not answer the question above. In this paper, we construct another denumerable
family of pairwise inconsistent theories, which is representable by a default theory but not by any normal
default theory, and hence we answer this question negatively.

1 This work has been supported in part by the National Natural Science Foundation of China under Grants 60073056 and
69733020, the Guangdong Provincial Natural Science Foundation under Grant 001174, the Foundation for University Key
Teachers by the Ministry of Education, and the MOE Project of Key Research Institute of Humanities and Social Science in
University.

2 In personal correspondence by e-mail, Marek told the author of this paper that the answer to the question is negative.
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2. PRELIMINARIES

In this paper, byL we denote a language of propositional logic with a denumerable set of atomsAt.
We denotepropositional provabilityby ` and the corresponding consequence operator byCn. By a
theorywealwaysmean a subset ofL closed under propositional provability. LetB be a set of standard
monotone inference rules. As in [9], we obtain a formal proof system (denoted byPC+B) by extending
propositional calculus with the rules fromB. The derivations in the systemPC+ B are built by means
of propositional provability and rules inB. More formally, by aproof in the systemPC+ B, we mean
any sequence of formulasϕ1, . . . , ϕn such that for everyi = 1, . . . ,n,

1. ϕi stands for a tautology, or is obtained from formulasϕ j andϕk, with j, k < i, by means of
modus ponens, or

2. there is a ruleα
β

in B such thatα = ϕ j , for somej < i andβ = ϕi .

The corresponding provability operator is analogously denoted by`B and the consequence operator by
CnB(·).

A default is an expressiond of the form α:0
β

, whereα andβ are formulas fromL and0 is afinite
list of formulas fromL. The formulaα is called theprerequisiteof d (p(d), in symbols) andβ is called
theconsequentof d (c(d), in symbols). The set of formulas0 is called thejustificationset ofd and is
denoted byj (d). This terminology is naturally extended to a set of defaultsD. Namely, theprerequisite,
consequent, and justification set ofD, in symbolsp(D), c(D), and j (D), are defined by

p(D) =
⋃
d∈D

{p(d)}, c(D) =
⋃
d∈D

{c(d)}, j (D) =
⋃
d∈D

j (d).

If p(d) is a tautology,d is calledprerequisite-free. In such case,p(d) is usually omitted from the
notation ofd. If j (d) = {c(d)}, d is callednormal. If j (d) = {c(d)∧ γ } for some formulaγ , d is called
seminormal.

By adefault theorywe mean a pair1 = (D,W), whereD is a set of defaults andW a set of formulas.
The setW is called theobjectivepart of (D,W). We say that (D,W) is aprerequisite-freeif all defaults
in D are prerequisite-free,normal if they are normal, andseminormalif they are seminormal.

Following [9], we give an alternative definition of extension, which is proved equivalent to the original
one by Reiter. First, we need the following concepts.

For a defaultd and a set of defaultsD, define

Mon(d) = p(d)

c(d)
and Mon(D) =

{
p(d′)
c(d′)

∣∣∣∣ d′ ∈ D

}
.

Given a set of formulasS, those defaultsd such thatS 6` ¬γ for everyγ ∈ j (d) are calledS-
applicable. A setD of defaults isS-applicableif all its members areS-applicable.

Remark that for every setSof formulas, those defaults with the empty justification set areS-applicable
(even if S is inconsistent), and if a finite setD of defaults isS-applicable, then those default with the
justification setj (D) areS-applicable also.

We define

DS = Mon({d∈ D : S 6` ¬γ for everyγ ∈ j (d)}).

A theoryS is anextensionof a default theory (D,W), if and only if

S= CnDS(W).

The family of all extensions of (D,W) is denoted byext(D,W).
We now define some key concepts concerning the representability issue for default logic.

DEFINITION 2.1. Two default theories1 and1′ are said to be equivalent to each other (denoted
by 1 ≈ 1′), if they have the same extensions, i.e.,ext(1) = ext(1′). A default theory is said to be
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representable in a class of default theories if the default theory is equivalent to some default theory in
the class.

DEFINITION 2.2. LetT be a family of theories contained inL. The family is representable by a default
theory1 if ext(1) = T . A family (of theories) is calledrepresentableif it is representable by a default
theory.

3. REPRESENTABILITY BY GENERAL DEFAULT THEORIES

We get a necessary condition for extensions of a default theory, which is stronger than the well-
known necessary condition obtained first by Reiter [12] that extensions be pairwise nonincluding. We
then present some sufficient conditions improving on similar conditions known previously (see, for
example, [11, Proposition 3.3, Theorem 4.2]).

To prove these results, we need a lemma allowing us to replace any default theory with an equivalent
default theory in which all defaults are prerequisite-free. This result was obtained independently by
Schaub [17], Bonatti and Eiter [3], and Mareket al. [11]. However, our argument shows that the
equivalent theory can be simpler, in theinference-freeform defined as follows.

DEFINITION 3.1. A default theory (D,W) is calledinference-freeif

1. The default theory is prerequisite-free.

2. The objective partW is empty.

3. For prerequisite-free defaultsd, d′, if d ∈ D andd′ has the same justification set asd and
c(d′) is logically inferred fromc(d), thend′ ∈ D also.

4. For every two defaultsd, d′ in D, the default:j (d) ∪ j (d′)/c(d) ∧ c(d′) is also inD.

LEMMA 3.1. For every default theory1 there is an inference-free default theory1′ equivalent to1.

Proof. Given a default theory1 = (D,W), we define another default theory1′ = (D′, ∅)3 as

D′ =
{

: j (D′′)
ϕ

∣∣∣∣ϕ ∈ L, D′′ is a finite subset ofD andW `Mon(D′′) ϕ

}
.

It is trivial to check that the default theory1′ is inference-free. We now prove that1′ is equivalent
to1; i.e., they have exactly the same extensions. Recalling the definition of an extension, it suffices to
show that, for all sets of formulasS,

CnDS(W) = CnD′S(∅)

or that for every formulaϕ,

W `DS ϕ iff `D′S ϕ.

Assume first thatW `DS ϕ. Then there is a finite subsetB of DS such thatW `B ϕ. There must be,
by the definition ofDS, a setD′′ of defaults such thatMon(D′′) = B andD′′ is S-applicable. Hence, the
default :j (D′′)/ϕ is in D′ and isS-applicable. SinceMon(:j (D′′)/ϕ) = >/ϕ, where> is a tautology,
we have that the rule>/ϕ is in D′′S, which leads tò D′S ϕ.

To prove the converse implication, assume that`D′S ϕ. Then there must be a finite subsetD∗ of D′

such that all defaults inD∗ areS-applicable and̀ Mon(D∗) ϕ. By the definition ofD′, we can assume
that

D∗ =
{

: j (D′′i )

ϕi

∣∣∣∣ i < n

}
,

3 By ∅ we denote the empty set.
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wheren is a natural number. Observe that, for eachi ,

W `Mon(D′′i ) ϕi .

Moreover, since :j (D′′i )/ϕi is S-applicable, those defaults inD′′i are alsoS-applicable. Observe that
`Mon(D∗) ϕ is equivalent to{ϕi | i < n} ` ϕ. Hence,

W `
Mon
( ⋃

i<n
D′′i
) ϕ.

It follows thatW `DS ϕ. j

We now introduce three notions of anonincluding familyof sets.

DEFINITION 3.2. LetF be a family of theories. Then we say thatF isnonincludingif F is an antichain
(that is, forT, T ′ ∈ F , if T ⊆ T ′ thenT = T ′); compactly nonincludingif for every theoryE ∈ F and
every formulaα ∈ E, there exists a finite list of familiesF0, . . . ,Fk−1 such that

1.
⋃

i<k Fi = {T ∈ F : α /∈ T}
2. for everyi < k, (∩Fi − E) 6= ∅;

and supercompactly nonincludingif for every theoryE ∈ F , there exists a finite list of families
F0, . . . ,Fk−1 such that

1.
⋃

i<k Fi = F − {E}
2. for everyi < k, (∩Fi − E) 6= ∅.

It is important to remark that the list of familiesF0, . . . ,Fk−1 in the last two parts of Definition 3.2
could be empty. In this case, we have thatk = 0, and by mathematical conventions,

⋃
i<k Fi = ∅ and it

is trivially true that “for everyi < k, (∩Fi − E) 6= ∅.” Accordingly, the family of a single inconsistent
theory is both compactly nonincluding and supercompactly nonincluding.

Clearly, if a family of theoriesF is supercompactly nonincluding, then it is compactly nonincluding,
but not vice versa (see the example in the proof of Proposition 5.1). In addition, we have the following
result.

PROPOSITION3.1. If a family (of theories)is compactly nonincluding,then it is nonincluding.

Proof. Suppose that a familyF is compactly nonincluding. We must show it is nonincluding also.
Assume conversely thatF1 ⊆ F2 hold for some distinct theoriesF1, F2 ∈ F , and hence there exists a
formulaα ∈ F2−F1. By the assumption thatF is compactly nonincluding, there exists a list of families
F0, . . . ,Fk−1 such that

1.
⋃

i<k Fi = {T ∈ F : α /∈ T}
2. for everyi < k, (∩Fi − F2) 6= ∅.

As α /∈ F1, there is aj < k such thatF1 ∈ F j and hence∩F j ⊆ F1. So, by the assumption that
F1 ⊆ F2, we have that∩F j − F2 is an empty set, contradicting the latter assertion aboutFi s. j

The converse of the above proposition does not necessarily hold. We demonstrate this with an example.
Let {p0, p1 . . .} be a set of propositional atoms. DefineTi = {pi }, i = 0, 1, . . . , andT = {Ti : i =
0, 1, . . .}. It follows immediately that this familyT is nonincluding but not compactly nonincluding.

To gain more intuitive impression on these three notions, we restate their definitions using the concept
of ahitting set, which was widely used in the literature (see, for example, [6, 12]). A setH is ahitting
setfor a familyF of theories ifH ∩ F 6= ∅ holds for everyF ∈ F .

PROPOSITION3.2. LetF be a family of theories.

(a) F is nonincluding iff, for each F∈ F , there is a hitting set forF − {F} that is not a hitting
set forF .
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(b) F is compactly nonincluding iff,for each F∈ F andα ∈ F , there is afinite hitting set for
{T ∈ F : α /∈ T} that is not a hitting set for{T ∈ F : α /∈ T} ∪ {F}.

(c) F is supercompactly nonincluding iff, for each F∈ F , there is afinite hitting set forF−{F}
that is not a hitting set forF .

Proof. The result of (a) follows immediately by the definition.
To prove the “if” part of (b), we can associate each formulaϕ j in the hitting set being considered with

the family of those theories that contain the formula. For the “only if” part of (b), givenF ∈ F andα ∈ F ,
we then get the familiesF j as in the definition of compact nonincluding. The result follows if we select
a formulaα j in ∩F j − F for each j and consider the set of thoseα j s. This completes the proof of (b).

The proof of (c) is similar to that of (b). j

The next proposition says that the three notions above are equivalent to each other for finite fami-
lies.

PROPOSITION 3.3. Let F be a finite family of theories. Then the following three propositions are
equivalent to each other:

(a) F is nonincluding.

(b) F is compactly nonincluding.

(c) F is supercompactly nonincluding.

Proof. As we have demonstrated already that (a) implies (b) and (b) implies (c), it suffices to prove
(c) implies (a), but this is trivial by Proposition 3.2 and the finiteness ofF . j

What follows is a new necessary for families representable by default theories.

THEOREM 3.1. If F is representable by a default theory,then it is compactly nonincluding.

Proof. Suppose thatF is representable by a default theory1, E is a theory inF andα is a formula
in E. By Lemma 3.1, we can assume that1 is inference-free. Let1 = (D, ∅). As the extensions of the
default theory (D, ∅) are exactly those theories inF , E is an extension of (D, ∅). By the definition of
extension, we then have thatE = CnDE (∅), and henceα ∈ CnDE (∅). It follows that there exists a finite
subsetD′ of D such that each default inD′ is E-applicable and̀ Mon(D′) α holds, i.e.,c(D′) ` α since
the default theory (D, ∅) is inference-free. We now have that the default

dα = : j (D′)
α
∈ D.

Suppose thatj (D′) consists ofα j s (for j < k). For eachα j , let

F j = {T ∈ F | ¬α j ∈ T andα /∈ T}.

ThenF j ⊆ {T ∈ F | α /∈ T}. On the other hand, for thoseT ∈ F such thatα /∈ T , we have that
α /∈ CnDT (∅), which yields thatdα is notT-applicable. Thus there is anα j such that¬α j ∈ T , and we
have thatT ∈ F j . So we have proved that⋃

i<k

Fi = {T ∈ F | α /∈ T}.

Now we need only to show that, for eachj < k, ∩F j − E is nonempty, but¬α j ∈ ∩F j and¬α j /∈ E
(recall thatα j ∈ j (D′) and each default inD′ is E-applicable). j

Since a family being compactly nonincluding implies the family nonincluding, we get the following
well-known result [9, 12] as a corollary.

COROLLARY 3.1. If F is representable by a default theory then it is nonincluding.

The converse of Theorem 3.1 does not necessarily hold. In other words, Theorem 3.1 gives a necessary
condition for representable families, but this conditions is not a sufficient one.



86 KAILE SU

PROPOSITION3.4. There exists a family that is compactly nonincluding but not representable.

Proof. The result follows from a cardinality argument. There are continuum-many default theories
in the given (denumerable) language, while there are more than continuum-many families that are
compactly nonincluding since there is a default theory1 with continuum-many extensions and hence
all subsets ofext(1) are compactly nonincluding. j

We wonder whether there exists a denumerable family that is compactly nonincluding family but not
representable.

The next result completely characterizes subfamilies of representable families.

THEOREM 3.2. A familyF is a subset of a representable family if and only if it is compactly non-
including.

Proof. The “only if” part follows immediately from Theorem 3.1 and the fact that if a family is
compactly nonincluding, so are its subfamilies. As for the “if” part, assume that a family of theoriesF
is compactly nonincluding. GivenE ∈ F andα ∈ E, we obtain, by the assumption above, a finite list
of familiesF0, . . . ,Fk−1 such that ⋃

j<k

F j = {T ∈ F : α /∈ T}

and for eachj < k, there is anα j such that

α j ∈ (∩F j − E).

By dE,α, we denote the default :{¬α0, . . . ,¬αk−1}/α. Now consider the default theory (D, ∅), where

D = {dT,ϕ | T ∈ F andϕ ∈ T}.

We want to prove thatT ⊆ ext(D, ∅), i.e., for eachT ∈ F ,

T = CnDT (∅).

On one hand, for eachϕ ∈ T , dT,ϕ is T-applicable, andϕ ∈ CnDT (∅). On the other hand, for all
T-applicable defaultsdT ′,α′ , we must prove thatα′ ∈ T . By the construction ofdT ′,α′ , we can assume
that j (dT ′,α′ ) = {α′0, . . . , α′k′−1}, and there are familiesF ′0, . . . ,F ′k′−1 such that

⋃
j<k′
F ′j = {S∈ F : α′ /∈ S}

and for everyj < k′,

¬α′j ∈ ∩F ′j .

Suppose thatα′ /∈ T . Then we would have thatT ∈ F ′j for somej < k′. Thus,¬α′j ∈ T , contradicting
the assumption that the defaultdT ′,α′ is T-applicable. j

We now propose a sufficient condition for the representablity of a family.

THEOREM 3.3. If a familyF is supercompactly nonincluding,then it is representable by a default
theory.

Proof. Assume that a family of theoriesF is supercompactly nonincluding. Since the empty family
is representable, we assume further thatF is a nonempty family. Given an arbitraryE ∈ F , we obtain,
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by the assumption above, a finite list of familiesF0, . . . ,Fk−1 such that

⋃
j<k

F j = F − {E}

and for eachj < k, there is anα j such that

α j ∈ (∩F j − E).

For eachE ∈ F , we fix one such finite set of¬α j s, denoted byJE. As in the proof of Theorem 3.2, by
dE,α, we denote the default :JE/α. Now consider the default theory (D, ∅), where

D = {dT,ϕ | T ∈ F andϕ ∈ T}.

We shall prove thatF is representable by the default theory (D, ∅). First, we show thatF ⊆ ext(D, ∅).
GivenT ∈ F , we must proveT = CnDT (∅). On one hand, for eachϕ ∈ T , dT,ϕ is T-applicable, and
henceϕ ∈ CnDT (∅). On the other hand, for everyT-applicable defaultdT ′,α′ in D, we proveα′ ∈ T as
follows. By the construction ofdT ′,α′ , we can assume thatj (dT ′,α′ ) = {¬α′0, . . . ,¬α′k′−1}, and there are
familiesF ′0, . . . ,F ′k′−1 such that ⋃

j<k′
F ′j = F − {T ′}

and for everyj < k′,

α′j ∈ ∩F ′j .

Suppose thatα′ /∈ T . Then we would have thatT 6= T ′ for α′ ∈ T ′, and henceT ∈ F ′j for somej < k′.
Thus,α′j ∈ T , contradicting the assumption that the defaultdT ′,α′ is T-applicable.

Now, we show thatF ⊇ ext(D, ∅). Given anE ∈ ext(D, ∅), we must proveE ∈ F .
Without loss of generality, we assume thatE 6= Cn(∅); otherwise, all extensions of (D, ∅) are

Cn(∅), and the result follows sinceF ⊆ ext(D, ∅) andF 6= ∅. As E = CnDE (∅) 6= Cn(∅), there is an
E-applicable defaultdT ′,α′ in D, whereT ′ ∈ F . Hence, for allϕ′ ∈ T ′, dT ′,ϕ′ is alsoE-applicable. This
leads toϕ′ ∈ CnDE (∅) = E. Thus,T ′ ⊆ E. As a result,T ′ = E since we have proved thatT ′ is an
extension of (D, ∅). This completes the proof.j

Again, the converse of Theorem 3.3 does not hold. In Section 5, we will actually construct a denu-
merable family that is representable by a default theory but is not supercompactly nonincluding.

We say that a familyF of theories has astrong system of distinct representatives(SSDR) if for every
T ∈ F there is a formulaϕT ∈ T that does not belong to any other theory inF (see [11]).

PROPOSITION3.5. If a familyF of theories is compactly nonincluding and has an SSDR then it is
supercompactly nonincluding.

Proof. Suppose thatF is a compactly nonincluding family that has an SSDR. By the definition, for
eachE andα ∈ E, there exists a finite list of familiesF0, . . . ,Fk−1 such that⋃

j<k

F j = {T ∈ F : α /∈ T},

and for eachj < k,

(∩F j − E) 6= ∅.
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Consider the case whereα is the formulaϕT ∈ T , which does not belong to any other theory inF .
It follows immediately thatF is supercompactly nonincluding, since we have that

{T ∈ F : ϕT /∈ T} = F−{E}. j

As a corollary of Theorem 3.3 and the proposition above, we obtain another sufficient condition for
the representablity of a family.

COROLLARY 3.2. If a familyF is representable by a default theory, then every familyG ⊆ F that
has an SSDR is representable by a default theory.

Corollary 3.2 improves a closely related result in [11].

COROLLARY 3.3 [11, THEOREM 4.2]. If a familyF is representable by a default theory and has an
SSDR,then every familyG ⊆ F is representable by a default theory.

Proof. The result follows immediately from the fact that if a familyF has an SSDR, so does every
subfamily ofF . j

The result of [11, Theorem 4.2] essentially says that a family that has an SSDR is representable under
the condition that it is a subfamily of a representable family that has an SSDR, while Corrollary 3.2
weakens the condition by that it is a subfamily of a representable family. In the next section, we shall
improve the result of [11, Theorem 4.2] in another direction.

4. ELIMINATING COUNTABLY MANY EXTENSIONS

In this section, we address the representablity problem with respect to subfamilies of a representable
family. Mareket al. [11] showed that ifF is representable by a default theory and has an SSDR, then
every subfamily ofF is also representable by a default theory. Note that every family that has an SSDR
must be countable. We surprisingly show that the above result of Mareket al.still holds if we replace
the condition thatF has an SSDR simply by thatF is a countable family.

THEOREM 4.1. Let F be representable by a default theory,and letF ′ ⊆ F be countable. Then
G = F − F ′ is also representable by a default theory.

Proof. Suppose thatF is a representable family andE0, . . . , Ej , . . . are theories inF . We must
prove thatF − {E0, . . . , Ej , . . .} is representable.

First, we can assume, by Lemma 3.1, thatF is representable by an inference-free default theory
(D, ∅).

Since the theories inF are nonincluding, for every numberj and everyi < j , there is a formulaϕi, j

such thatϕi, j ∈ Ej andϕi, j /∈ Ei . Thus, the formulaϕ0, j ∧ · · · ∧ ϕ j−1, j , denoted byϕ j , is in Ej , but
not in Ei for eachi < j . For convenience, letϕ0 be a fixed tautological formula.

To construct a default theory such that all its extensions are exactly those inF − {E0, . . . , Ej , . . .},
we introduce some notations. Letg be a fixed encoding function for defaults inD; thus, for each default
d ∈ D, g(d) is the unique encoding number ofd. For a finite subsetD′ of D, by m(D′) we denote the
default inD′ with the largest encoding number.

For a defaultd ∈ D, by Nd, we denote the set of those natural numbersk such that there is a finite
subsetD′ of D satisfying that

1. every default inD′ is Ek-applicable,

2. c(D′) ` ϕk,

3. d = m(D′).

Note that for each finite subsetD′ of D, there is at most onek satisfying the first two properties. To
prove this, suppose that for anotherk′, every default inD′ is Ek′ -applicable andc(D′) ` ϕk′ . Then both
c(D′) ⊆ CnDEk′ (∅) = Ek′ andc(D′) ⊆ CnDEk (∅) = Ek hold, and hence bothEk′ ` ϕk andEk ` ϕk′ .
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This is impossible for differentk andk′. On the other hand, for a fixedd, there are only finitely many
finite subsetsD′ of D such thatd = m(D′). Thus, we obtain thatNd is a finite set of numbers.

For a finite set of natural numbersN, let
∏

i∈N Ei be the Cartesian product of the familyEi : i ∈ N.
Thus, everyf in

∏
i∈N Ei is a function onN and for eachi ∈ N, we have thatf (i ) ∈ Ei .

Now, we define

N ⊗ d =
{

: j (d) ∪ {¬(ϕn ∧ f (n) : n ∈ N}
c(d)

∣∣∣∣∣ f ∈
∏
i∈N

Ei

}
.

So, given a sequence of formulasαn (n ∈ N) such that for everyn ∈ N, αn ∈ En, we have that

: j (d) ∪ {¬(ϕn ∧ αn : n ∈ N}
c(d)

∈ N ⊗ d.

We have the following observation immediately from the fact that for every natural numberj ,ϕ j ∈ Ej .

Claim 0. If j ∈ N then each default inN ⊗ d is not Ej -applicable.

Now, consider the default theory (D∗, ∅), whereD∗ is obtained by replacing every defaultd ∈ D by
all defaults inNd ⊗ d; i.e.,

D∗ =
⋃
d∈D

Nd ⊗ d.

It is easy to see the following two claims holding.

Claim 1. For eachd′ ∈ D∗, there exists ad ∈ D such thatj (d) ⊆ j (d′) andc(d) = c(d′).

Claim 2. For an arbitrary theoryS, if for everyk, Ek 6⊆ S, then for eachS-applicable defaultd ∈ D,
there is anS-applicable defaultd′ ∈ D∗ such thatc(d) = c(d′).

Accordingly, we have that, for an arbitrary theoryS,

CnD∗S(∅) ⊆ CnDS(∅),

and if Ej 6⊆ S for all j s then

CnD∗S(∅) = CnDS(∅).

Claim 1 is trivially true. To prove Claim 2, supposeEk 6⊆ Sfor all ks. We must show that for an arbitrary
S-applicable defaultd ∈ D there isS-applicable defaultd′ ∈ D∗ with c(d′) = c(d). Let βk ∈ Ek − S,
and consider the default

d′ = : j (d) ∪ {¬(ϕn ∧ βn) : n ∈ N}
c(d)

.

Thend′ ∈ Nd ⊗ d ⊆ D∗ by βn ∈ En, andd′ is S-applicable byβn /∈ S; therefore, we have proved
Claim 2.

To complete the whole proof, we want to show thatext(D∗, ∅) = F − {Ej : j ∈ ω}. SinceF is
nonincluding, it follows immediately that eachT ∈ F − {E0, . . . , Ej , . . .} is an extension of (D∗, ∅)
asCnD∗T (∅) = CnDT (∅) = T . Therefore, it suffices to show the following claims:

Claim 3. If E = CnD∗E (∅) thenE ∈ F .

Claim 4. Ej 6= Cn
D∗E j (∅)

To prove Claim 3, supposeE = CnD∗E (∅). If Ej 6⊆ E for all j s, thenCnD∗E (∅) = CnDE (∅) and hence
E is also an extension of (D, ∅). Thus, we getE ∈ F . Otherwise, for somej , Ej ⊆ E. This leads to
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CnDE (∅) ⊆ CnDE j (∅). As CnD∗S(∅) ⊆ CnDS(∅), for an arbitrary theoryS, we have that

Ej ⊆ E = CnD∗E (∅) ⊆ CnDE (∅) ⊆ CnDE j (∅) = Ej .

Accordingly,E = CnDE (∅).
As for Claim 4, it suffices to showϕ j /∈ Cn

D∗E j (∅). Suppose not. Then there is a finite subsetD′ of
D∗ such that every default inD′ is Ej -applicable andc(D′) ` ϕ j .

By the definition ofD∗, for each defaultd′ ∈ D∗ there is a default inD, denoted byKer(d′), such
thatd′ is of the form

d′ = : j (Ker(d′) ∪ 0)

c(Ker(d′))

and for eachk ∈ NKer(d′), d′ is not Ek-applicable. Note also that for an arbitrary set of formulasS, if
Ker(d′) is S-applicable, so is the defaultd′.

Let D′′ = {Ker(d′) : d′ ∈ D′}. Then all defaults inD′′ areEj -applicable since all defaultsd′ ∈ D′

are Ej -applicable. Asc(D′′) = c(D′) ` ϕ j , we have thatj ∈ Nm(D′′). It follows that there exists a
defaultd∗ ∈ D′ suchKer(d∗) = m(D′′), and henced∗ is notEj -applicable. This is a contradiction.j

COROLLARY 4.1. LetF be a denumerable family that is representable by a default theory, and let
G ⊆ F . ThenG is also representable by a default theory.

We conclude this section with an example of a denumerable family that is supercompactly non-
including (and hence representable) but has not any SSDR; Corollary 4.1 is thus an improvement of
[11, Theorem 4.2].

EXAMPLE 4.1. Let P = {p0, p1, . . .} be a set of propositional atoms. DefineTi = Cn(P − {pi }),
i = 0,1, . . . , andT = {Ti : i = 0, 1, . . .}.

It is clear thatT is countable and supercompactly nonincluding as for eachTi , {pi } is a hitting set
for T −{Ti } but not forT . Moreover, we show thatT has not any SSDR as follows. It suffices to prove
that, for an arbitrary formulasϕ, if Ti ` ϕ holds for somei , then there is another natural numberj such
thatTj ` ϕ. By the condition thatTi ` ϕ andTi ⊆ Cn(P), we have a finite setS⊆ P such thatS` ϕ.
The result follows since there are infinitely manyTj s such thatS⊆ Tj .

5. TWO MORE EXAMPLES

In this section, we actually construct two denumerable, representable families. The first family is
not supercompactly nonincluding. The second one consists of mutually inconsistent theories but is not
representable by any normal default theory.

PROPOSITION5.1. There is a denumerable family that is representable but not supercompactly non-
including.

Proof. Let us construct an example of denumerable, representable families that are not supercom-
pactly nonincluding. LetP = {pi : i ∈ ω} andQ = {qi : i ∈ ω}4 be two disjoint sets of propositional
atoms. Define, for everyj ∈ ω,

Sj = {pi : i < j } ∪ {qi : i ≥ j }

and

F = {Cn(Sj ) : j ∈ ω} ∪ {Cn(P)}.

4 By ω, we denote the set of all natural numbers.
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We prove thatF is not supercompactly nonincluding as follows. AssumingH is a finite hitting set for
{Cn(Sj ) : j ∈ ω}, we want to show that it is a hitting set forF also. By the finiteness ofH , there is
a formulaϕ such thatϕ ∈ Cn(Sj ) for infinitely manySj s. Letk be a natural number such that those
atomsqi , wherei ≥ k, do not occur inϕ. Let k′ ≥ k be such thatϕ ∈ Cn(Sk′ ), i.e., Sk′ ` ϕ. Replacing
qi s, i ≥ k′ in Sk′ ` ϕ by a tautological formula>, we obtain that{pi : i < k′} ` ϕ (see the following
remark for the justification of this technique). Henceϕ ∈ Cn(P) andH is a hitting set forF .

To complete the proof, we must show thatF is representable. Denoting the set{¬qi : i < j }∪{¬pj }
by 0 j , we define

D =
{¬qi

pi
: i ∈ ω

}⋃{
0i

α
: i ∈ ω andα ∈ Si

}
.

We now consider the default theory (D, ∅). It is easy to check thatCn(P) andCn(Si )s are extensions
of this default theory, that is,F ⊆ ext(D, ∅). On the other hand, we shall prove thatF ⊇ ext(D, ∅),
whenceF is representable by (D, ∅). SupposeS ∈ ext(D, ∅), and we want to showS ∈ F . Here are
two cases:

Case 1. If qi /∈ S for all i ’s, then all defaults¬qi /ai in D areS-applicable; hencepi ∈ CnDS(∅) =
S. Accordingly, Cn(P) ⊆ S, which leads toCn(P) = S since extensions of a default theory are
nonincluding.

Case 2. If there exists ani such thatqi ∈ S, then letn be the least such one. Since¬qn ∈ 0i for all
i > n, we have that allS-applicable defaults inD fall into the set

D′ =
{¬qi

pi
: i 6= n

}⋃{
0i

α
: i ≤ n andα ∈ Si

}
.

ThusS= CnDS(∅) ⊆ Cn(c(D′)). Clearlyc(D′) 6` pn and henceS 6` pn. Thus the defaults0n/α, where
α ∈ Sn, areS-applicable, which leads to thatS= CnDS(∅) ⊇ Sn. It follows thatS= Sn.

In both cases,S is inF , so we have proved the result of (b).j

Remark. In the proof above, there is a maneuver of replacingpj by > (true) and then inferring
something. The justification for this technique is as follows:

Given an arbitrary setS of propositional formulas, propositional formulasϕ andα, and primitive
formula p, byϕ( p

α
) we denote the formula obtained fromϕ by replacing each occurrence ofp with α.

By S( p
α

) we denote the set{φ( p
α

) | φ ∈ S}. “Replacingp in the provability relationS |= ϕ with α”
results in the provability relationS( p

α
) |= ϕ( p

α
). What we want to show here is thatS |= ϕ implies that

S( p
α

) |= ϕ( p
α

).
By the replacement theorem for propositional calculus,|= ϕ implies that|= ϕ( p

α
), and S |= ϕ

iff there areα1, . . . αn ∈ S such that|= (α1∧, . . . ,∧αn)→ϕ, which by the same reason implies that
|= ((α1∧, . . . ,∧αn)→ ϕ)( p

α
); that is,|= (α1( p

α
)∧, . . . ,∧αn( p

α
))→ ϕ( p

α
), implying thatS( p

α
) |= ϕ( p

α
).

PROPOSITION5.2. There is a denumerable family of mutually inconsistent theoriesF such thatF is
representable by a default theory but not by any normal default theory.

This proposition is significant in that it guarantees the existence of such a default theory that has
exactly infinitely many, mutually inconsistent extensions but fails to be representable in the class of
normal default theories, which gives a negative answer to the question of Marek and Truszczyński
as to whether the following proposition holds without the assumption that the extensions are finitely
generated [9, p. 130].

PROPOSITION5.3 [9, COROLLARY 5.10]. If a default theory(D,W) has at least one extension and all
the extensions for(D,W) are finitely generated and pairwise inconsistent, then the default theory is
representable in the class of normal default theories.

As mentioned in the introduction, Mareket al.[11] constructed an example of a denumerable family
of pairwise inconsistent theories that are not representable by normal default theories. However, their
example is not representable by any default theory and thus does not answer the question above.
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To prove Propositon 5.2, we present our counterexample as follows:

EXAMPLE 5.1.5 Let qi s, pj s, andai j s (i ≤ j ) be different atoms, and let

W0 = {qi → ¬pj | i 6= j }

and fori < j ,

aji = ¬ai j .

Then, we define

Ej = Cn(W0 ∪ {pj } ∪ {ai j | i ∈ ω}),

for all j ∈ ω, and

E = {Ej | j ∈ ω}.

It is clear thatE is denumerable and consists of mutually inconsistent theories. In addition,E is
supercompactly nonincluding and hence representable, because for eachEj in E , {¬qj } is a hitting set
for E − {Ej } but not forE . It remains to show thatE is not representable by any normal default theory.
For this purpose, we must get some essential properties to distinguish the familyE from those families
representable by normal default theories. Fortunately, the next lemma gives an important feature of
those families that are representable by normal default theories, and Lemma 5.2 guarantees that our
family E does not share this very feature.

LEMMA 5.1. Let (D,W) be a normal default theory,then for all extensions E, E′ of (D,W) such
that E 6= E′ there is a sentenceα such thatα ∈ E and E′ ∪ {α} is inconsistent,and for every extension
E∗ of (D,W), eitherα ∈ E∗ or E∗ ∪ {α} is inconsistent.

The proof of this lemma is omitted here. It can be inferred easily from the complete representability
result for normal default theories obtained by Mareket al. [11] that a familyT of theories inL is
representable by a normal default theory if and only ifT = L or there is a set of formulas9 such that
T = {Cn(8) : 8 ⊆ 9 is maximal so that8 is consistent}.

Lemma 5.1, which gives a new essential feature of normal default theories, is closely related to
Reiter’s corresponding result [12, Theorem 3.3], i.e., the inconsistency of any two extensions of normal
default theory, which says that there is a sentenceα in one extension but the negation of the sentence
is in the other. Somewhat stronger than Reiter’s theorem, our theorem says that this sentenceα can
be such one as if:α

α
were a default of the default theory being considered; in other words, for every

extensionE∗, the consistency ofE∗ ∪ {α} impliesα ∈ E∗.

LEMMA 5.2. Let Ej s be as in Example5.1,γ an arbitrary sentence such thatγ ∈ E0, and¬γ ∈ E1.
Then there is an Ei such thatγ 6∈ Ei and¬γ 6∈ Ei .

The proof of this lemma is omitted also.

6. CONCLUSION AND OPEN QUESTIONS

The representability theory is of key importance for default logic. Representability by certain classes
of default theories provides insights into the expressive power of the corresponding branches of default
logic. This kind of study will be helpful for users to find simpler representation for their default theories.

The usefulness of Reiter’s default logic for specifying multiple belief sets of an agent was investigated
by Mareket al. [11]. However, they did not find a complete characterization of families of theories that
are representable by general default theories. This paper has given a new necessary condition for the

5 This example was previously presented as a default theory in [14].
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representability by means of general default theories and presented several sufficient conditions that
are weaker than similar ones known previously. Moreover, this paper has improved some interesting
results of [11]. For example, Mareket al. showed that every subfamily of a representable family that
has an SSDR that is representable, whereas we have obtained that every subfamily of a denumerable
representable family is representable. Our result is more satisfying in that an arbitrary family that has
an SSDR must be denumerable.

It is well known that there exists an extension and two different extensions are inconsistent for every
normal default theory (i.e., the existence and orthogonality of extensions, see [12, Theorems 3.1 and
3.3]). In this paper, we have given a new feature of extensions of a normal default theory, by which we
show that our example of a denumerable, representable family of mutually inconsistent theories is not
presentable by any normal default theory.

However, we have not found some essential and distinguishing features for other important classes
of default theories, such as the class of semi-normal default theories [7], and the class of unitary default
theories (i.e., the class of those default theories in which each default has exactly one justification). The
following problems seem more difficult and remain open:

Problem 1: Is each default theory equivalent to a semi-normal default theory?

Problem 2: Is each default theory equivalent to a unitary default theory?

Problem 3: Is each unitary default theory equivalent to a semi-normal default theory?

We note that if Problem 1 or Problem 2 has an affirmative answer, then, from a representation
viewpoint, the user is allowed to characterize families of belief sets for his/her agents by using only
semi-normal default theories or unitary default theories instead of general ones.
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