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We aim to determine if machine learning techniques, such as support vector machines (SVMs), can predict the
occurrence of a second clinical attack, which leads to the diagnosis of clinically-definite Multiple Sclerosis
(CDMS) in patients with a clinically isolated syndrome (CIS), on the basis of single patient3s lesion features and
clinical/demographic characteristics.
Seventy-four patients at onset of CIS were scanned and clinically reviewed after one and three years. CDMS was
used as the gold standard against which SVM classification accuracy was tested. Radiological features related to
lesional characteristics on conventional MRI were defined a priori and used in combination with clinical/demo-
graphic features in an SVM. Forward recursive feature elimination with 100 bootstraps and a leave-one-out
cross-validation was used to find the most predictive feature combinations.
30 % and 44% of patients developed CDMSwithin one and three years, respectively. The SVMs correctly predicted
the presence (or the absence) of CDMS in 71.4% of patients (sensitivity/specificity: 77 %/66 %) at 1 year, and in 68 %
(60 %/76 %) at 3 years on average over all bootstraps. Combinations of features consistently gave a higher accuracy
in predicting outcome than any single feature.
Machine-learning-based classifications can be used to provide an “individualised” prediction of conversion toMS
from subjects3 baseline scans and clinical characteristics, with potential to be incorporated into routine clinical
practice.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Machine learning is an emerging area of computer science and arti-
ficial intelligence that provides an increasing variety of algorithms capa-
ble of learning patterns from input data to solve classification and
prediction problems (Bishop, 2006). Support vector machines (SVMs)
are well-established classification algorithms (Vapnik, 1995) and a
popular choice due to their simplicity and high performance in a
range of applications. In the context of medical imaging, SVMs have
shownpromise for binary classifications (e.g. disease vs. healthy status),
on the basis of imaging characteristics (Ashburner and Klöppel, 2011).
In this context, SVMs first learn the characteristics of, say, MRI scans in
each of two groups; then, they use that knowledge to assign new
brain scans, which have not been used in the training procedure, to
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one of the two groups. SVMs have been applied in this way to imaging
data from a variety of neurological and psychiatric diseases to assist in
the diagnostic process, including pre-symptomatic Huntington3s
disease (Klöppel et al., 2009), Alzheimer3s disease (Klöppel et al.,
2008a), autism spectrum disorder (Anderson et al., 2011), and major
depressive disorder (Mwangi et al., 2012). A few studies have applied
SVMs to data frompatients withMS, suggesting that SVMsmay become
a useful tool for automatic classification of MS patients vs. healthy con-
trols (Weygandt et al., 2011) and MS patients with different character-
istics (such as patients with early MS vs. those with late MS) (Bendfeldt
et al., 2012). A key question that is of direct clinical relevance, and is
addressed in this study, is whether SVMs can be applied to MRI scans
and clinical characteristics of patients with early features of Multiple
Sclerosis (MS) to predict their prognosis.

For most patients with MS, the onset of their condition is with an
episode of neurological disturbance, known as a clinically isolated syn-
drome (CIS) (Miller et al., 2012). About 30 % of patientswith CIS present
with a second clinical attack within 1 year from onset, leading to the
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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diagnosis of clinically-definite MS (CDMS) (Miller et al., 2012). Howev-
er, about 20 % of CIS patients do not convert to MS after two decades,
even if they have an abnormal brain scan at onset (Fisniku et al.,
2008). Therefore, individual patients presentingwith CIS face theuncer-
tainty of if and when a second relapse will occur.

Research into the predictors of clinical outcome in CIS has demon-
strated that the number, location and distribution of asymptomatic
white matter lesions on a brain scan at first presentation are associated
with the risk of having a second clinical attack (Brex et al., 2002; Giorgio
et al., 2013; Swanton et al., 2007; Tintore et al., 2006). For example,
patients with CIS whose baseline scans fulfil 3 or 4 Barkhof criteria
(i.e., the occurrence of gadolinium enhancing lesion, juxtacortical le-
sion, infratentorial lesion and periventricular lesion) (Barkhof et al.,
1997) have an adjusted hazard ratio of 17 (95 % confidence interval
(CI) 6.7–43.5) for clinical conversion to MS during a 7-year follow-up
(Tintore et al., 2006). When dissemination in space criteria are consid-
ered (i.e., at least one lesion in at least two typical locations:
periventricular, juxtacortical, posterior fossa, and spinal cord) (Polman
et al., 2011), the likelihood ratio for CDMS in patients with CIS is 2.1
(95 % CI 1.7–2.7) during a 3-year follow-up, with a sensitivity of
85.9 % and specificity of 59.4 % (Swanton et al., 2007). Additionally,
demographic and clinical characteristics at the onset of a CIS, such as
younger age, female gender and multifocal neurological involvement,
are also associated with a higher risk of developing MS in short-term
(Miller et al., 2012).

TheseMRI and clinical factors are commonly used in clinical practice
to counsel individual patients about their risk of developing CDMS, but
they are not combined to provide an overall estimate of risk of conver-
sion. Ideally, a person-specific “individualised” risk of a second clinical
relapse would be estimated, instead, based on an individual scan and
clinical characteristics; this represents a crucial step in the improve-
ment of patient management.

Therefore, the primary aim of this study was to determine whether
SVMs can predict clinical conversion to MS (or the absence of clinical
conversion) from CIS during one- and 3-year follow-ups. A secondary
aim was to highlight lesional and clinical/demographic features that
appear important to the prediction of CDMS.

2. Methods

2.1. Subjects

This is a retrospective study. None of the patients studied was on
disease modifying treatments. Seventy-four patients were scanned
after ameanof 6.15weeks (SD 3.4) from the onset of a CIS, and clinically
reviewed after 1 year; 70 patients attended a follow-up visit after
3 years. This represents a subgroup of a larger cohort recruited between
1995 and 2004; to be included in the present study, at least one demy-
elinating lesion must have been visible on baseline scans, and those
scans, together with their corresponding lesion masks, had to be avail-
able for inclusion in this project. Additionally, clinical data at one and
three year follow-ups must have been available.

In all patients, clinical and demographic information at onset, includ-
ing type of CIS presentation (i.e., spinal cord, optic nerve, brainstem,mul-
tifocal), age, gender, and Expanded Disability Status Scale (EDSS) at
baseline, was recorded. Clinical conversion to MS due to the occurrence
of a second clinical attack attributable to demyelination of more than
24 hours in duration and at least 4 weeks from the initial attack was
noted at each follow-up review. Informed consent from each patient
and ethical approval by the local ethics committee was obtained prior
to the study. The patients' characteristics are summarised in Table 1.

2.2. MRI acquisition and pre-processing

Baseline MRI protocol was undertaken using a 1.5 T GE Signa MRI
scanner. A brain FSE dual echo sequence, yielding proton density (PD)
and T2 weighted images (TR = 3200 ms, TE = 15/90 ms, contiguous
3 mm axial slices, in-plane resolution 0.9375 × 0.9375 mm2) was ob-
tained. Binary lesion masks were created by one experienced neurolo-
gist marking the lesions in the PD images of all patients, using the
corresponding T2 images as reference (Fig. 1), with an in-house semi-
automated software.

All the PD and T2 images were spatially normalised to the MNI152
standard space T1 image using a diffeomorphic registration with
NiftyReg (Modat et al., 2010) (http://cmic.cs.ucl.ac.uk/home/software/).
The resulting transformation parameters were applied to the lesion
masks allowing us to define a spatial reference point that can be used to
calculate distance-based features for all patients.

2.3. Classification analysis

In this study, Support VectorMachines (Vapnik, 1995; Vapnik, 2008)
were used for binary classification. SVMs are supervised learners that
work in two phases. In the training phase, a subset of the available
data points as well as their associated classes is used to iteratively find
a linear boundary or hyperplane that separates the two classes optimal-
ly. In the testing phase, new, previously unseen data points in the same
space as the training points are classified depending on their position
relative to the boundary as shown in Fig. 2. In this study, each data
point is a multidimensional vector consisting of a relatively small num-
ber of a priori defined features but, generally, data points can contain
any information associated with the respective subject including
much larger feature sets, such as all MRI voxel intensities, as in e.g.
Klöppel et al. (2008a) or Bendfeldt et al. (2012).

2.3.1. Feature definition
Each feature represents one dimension of the data points used for

training and testing. We selected a priori demographic/clinical features
and lesion features, whichwere chosen to capture information onwhite
matter lesion load, distribution, size, and signal intensity. Themean and
SDs of all features are shown in Supplementary Table 1.

The four demographic/clinical features are age, gender, type of CIS,
and EDSS at baseline. The gender was coded with 1 referring to male
and 0 to female. The CIS type was coded according to 1=optic neuritis,
2=spinal cord, 3=brainstem, and 4=other. This coding was arbitrarily
chosen. A permutation of this numbering, however, has little effect and
reduces the accuracies of the best feature combinations by a maximum
of 1.7 % (detailed results not shown). The following 8 lesion features
were extracted from the PD/T2 images and lesionmasks of each patient:

(1) Lesion count: this feature reflects the total number of lesions in
thebrain, extracted from thenative lesionmasks; itwas computed
using the original binary lesion masks and an 18-neighbourhood
for voxel connectivity.

(2) Lesion load: this feature reflects the total lesion volume, in voxels,
extracted from the native lesion masks

(3) Average lesion PD intensity: this feature reflects the average PD in-
tensity of the lesional voxels marked in the native lesion masks.

(4) Average lesion T2 intensity: this feature reflects the average T2 in-
tensity of the lesional voxels included in the native lesion masks.

(5) Average distance of lesions from the centre of the brain: this
feature gives the average distances between all lesional voxels
and the centre of the brain (defined as the central voxel of the
MNI152 registration template), providing information on how
spread out the lesionswere on the registered images [Supplemen-
tary Fig. 1].

(6) Presence of lesions in proximity of the centre of the brain: this bi-
nary feature is 1 if there are lesions within a cube of 1 cm3 centred
around the central voxel of the SPM template, or 0 if no lesions
were in the central box. This feature was selected because of the
evidence that lesions located in the corpus callosum, which is a
midline brain structure, are useful in predicting conversion to

http://cmic.cs.ucl.ac.uk/home/software/


Fig. 1. Example of T2 and PDweighted images and corresponding binary lesion mask. Axial T2 weighted image (left), and proton density (PD) weighted image (centre), showing hyper-
intense white matter lesions; the corresponding binary lesion mask (right) was used to obtain the lesion features entered into the SVM analysis.
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CDMS in addition to the Barkhof criteria (Jafari et al., 2009).
(7) Shortest horizontal distance of a lesion from the vertical axis of the

brain: this featuremeasures the shortest distance of a lesion3s cen-
troid (centre of mass) from the intersection of themidsagittal and
midcoronal planes of the image. This feature represents an addi-
tional way of reflecting the distance of the lesions from the centre
of the image.

(8) Lesion size profile: this feature reflects the distribution of le-
sion sizes. All lesions in native space were sorted according
to their size and divided into three groups of equal length
representing small (1–15 voxels), medium (16–36 voxels)
and large (37+ voxels) lesions which give reasonably similar
numbers in each category over thewhole data set (see Supple-
mentary Table 1).

2.3.2. Leave-one-out cross-validation
The conversion to MS on the basis of a second clinical episode was

the gold standard against which the SVM3s classification accuracy was
tested. The SVM classification was performed using the functions
svmtrain and svmclassify from the MATLAB (2012a) statistics toolbox.
Different feature combinations of the twelve lesion/demographic/clini-
cal features were tested using a recursive algorithm, subsequently
adding the best performing feature from each individual feature alone,
pairs etc. A polynomial kernel (K(x,y) = (xTy + c)d) of degrees d from
1 to 5 was used; this includes the widely used linear kernel, which is a
polynomial kernel of degree one, but also allows the classifier to use
more complex models. We limit the degree to 5 to avoid overfitting.
Parameter optimisation was performed with an inherent sequential
Fig. 2. Illustration of one permutation within a leave-one-out cross-validation using sup-
port vector machines. Training phase: data points with known labels are used to create
an optimal separating hyperplane (OSH). Testing phase: previously unseen data point
(grey) is assigned a label (converter) based on the position relative to the OSH.
minimal optimisation (SMO) with 10 million iterations to allow for
convergence.

The unbalanced group sizes of 22 converters vs. 52 non-converters
and 31 converters vs. 39 non-converters for one and three years respec-
tively can lead to a bias of the hyperplane weighting towards the larger
group, and, in addition, often results in a high sensitivity and a low spec-
ificity or vice versa. Therefore 100 random samples were selected from
the larger group with size equal to the smaller group. In the case of the
1-year follow-up this means that 22 non-converters were randomly se-
lected from the whole set of 52 non-converters in order to match the
group size of the 1-year converters. This procedure was repeated 100
times to allow for the estimation of a confidence interval from these
bootstraps and give a better idea of how the results will generalise to
the whole cohort. The resulting cohorts of 44 (22 converters and 22
non-converters) and 62 (31 converters and 31 non-converters) for 1
and 3 years respectively were then used to train and test an SVM
using the common leave-one-outcross-validation (LOO-CV) (Young et
al., 2013). In a LOO-CV for our 1-year follow-up 43 out of 44 patients
are used in the training phase to calculate an optimal separating hyper-
plane (OSH). The remaining patient is then classified using this OSH as
shown in Fig. 2. The training and testing samples are permuted until
every patient was used for testing once. The nature of LOO-CV implies
that in each individual training step the classes are slightly imbalanced
(i.e., 21 vs. 22 or 30 vs. 31) as one patient is always left out of the train-
ing cohort. This procedure, however, is performed for both classes in the
exact same way so that this effect can be neglected.

2.3.3. Feature combinations
The performance of the SVMswas investigated by computing the ac-

curacy of the classification for each individual feature aswell as a feature
combination obtained froma feature-selection procedure. Accuracywas
defined as the percentage of patients correctly classified as either con-
verters or non-converters; sensitivity was defined as the percentage of
patients with CDMS correctly classified as converters, while specificity
as the percentage of patients without CDMS correctly identified as
non-converters; positive predictive value (PPV) was defined as the pro-
portion of patients classified as converters who were truly converters,
while negative predictive value (NPV) as the proportion of subjects
classified as non-converters who were truly non-converters. We com-
pute these values for each of the 100 bootstrap samples and report
mean values, CIs and ranges over the 100 resulting values.

A forward recursive feature elimination (fRFE) algorithm was used
to combine features subsequently while testing their classification per-
formance. We start with every individual feature by itself and identify
the one with the highest classification accuracy averaged over the 100
bootstraps. Then, one of the remaining 11 features is added to identify
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Fig. 4. Accuracies of forward RFE for 3-year prediction. Plot showing the development of
accuracies after recursively adding features in order to find the most predictive combina-
tion for conversion within 3 years.
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the best combination of two features. This procedure is repeated subse-
quently to test larger feature combination sets until the obtained classi-
fication accuracy does not increase anymore (Figs. 3 and 4). The features
in the combination associated with the highest classification accuracy
are reported (Table 2).

3. Results

3.1. Classification results using feature combinations

The demographic and clinical characteristics of patients are
summarised in Table 1. 30 % and 44 % of patients developed CDMS
within one and three years respectively. Table 2 presents the average
results from the 100 bootstraps at 1 and 3 years. The highest average
accuracy at 1 year was 71.4 %, which means that, on average, SVMs
correctly predicted CDMS (or the absence of clinical conversion) in
71.4 % of patients (Fig. 3), with a sensitivity of 77 % (i.e., 77 % of patients
with CDMSat 1 yearwere identified as converters) and specificity of 66 %
(i.e., 66 % of patients without CDMS at 1 year were identified as non-
converters) obtained with a polynomial degree of 4. The accuracy
range of the 100 bootstraps was 52–84 %with a 95 % confidence interval
(CI) of 58–84 %. Similarly, the highest average prediction accuracy
at 3 years was 68 % (Fig. 4), with a sensitivity of 60 % and specificity of
76 % obtained with a polynomial kernel of degree 1. The PPV and NPV
were 70 % and 74 %, and 72 % and 65 % for and 1 and 3 years respectively
(Table 2). The accuracy range for the 3-year follow-up was 61–74 % with
a 95 % CI of 61–73 %.

No specific patterns or common characteristicswere observed in pa-
tients whowere not correctly classified as converters or non-converters
on the basis of their baseline scans and clinical characteristics.

3.2. Lesional and clinical features most relevant to the classification

The features in the best combination for prediction of conversion to
CDMS (or not) at 1 year were: type of presentation, gender and lesion
load. At 3 years, the features in the best combination were: lesion
count, PD intensity, mean distance from lesions to the centre of the
brain, shortest distance from lesions to the vertical axis of the brain,
EDSS, and age (Table 2).

These combinations achieved an approximately 10.8 % (1 year) and
4.4 % (3 years) higher accuracy than that obtained with the best
performing single feature (Fig. 5).
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Fig. 3. Accuracies of forward RFE for 1-year prediction. Plot showing the development of
accuracies after recursively adding features in order to find the most predictive combina-
tion for conversion within 1 year.
4. Discussion

SVMs correctly classified CDMS (or the absence of clinical conver-
sion) at one and three years in 71.4 % and 68 % of CIS patients respective-
ly using individually labelled brain scans and associated clinical
information on average over 100 bootstraps with balanced training
data sets using leave-one-out cross-validation for testing. At present,
patients who present with CIS are told that they have a long-term risk
for CDMS of 60–80 % when white matter lesions are seen on the brain
scans, and on the basis of the number and location of brain lesions
have a low, medium and high conversion risk to MS (Tintore et al.,
2006). Female patients are told they have a relative risk of developing
CDMS of 1.20 (95 % CI 0.98−1.46) compared with males (Dobson et
al., 2012). However, there are limitations in accuracy (sensitivity and
specificity) when extrapolating radiological and clinical predictors
from these group studies to individual cases in routine clinical practice.
The main potential of the SVM-based classification is that it can be used
for a single subject (or individualised) prediction of clinical conversion
to MS. This may lead to a more tailored prognosis, which, in turn,
would translate into more timely and better-informed treatment
choices. In addition, accurate prediction of prognosis from individual
subjects3 scansmay also have a beneficial impact on research, by helping
to select patients for clinical trials and research studies.
Table 1
Demographic and clinical characteristics of patients with CIS and at least one lesion at
baseline.

CIS at 1-year follow-up
(total no. = 74)

CIS at 3-year follow-up
(total no. = 70)

Gender (F/M) 49/25 47/23
Age, median, mean,
median (range)
years.

33.1, 34 (19–49) 33.2, 34 (19–49)

EDSS, median (range) 1 (0–8) 1 (0–8)
Type of onset, no
(number of
converters).

Brainstem/cerebellum = 6
(1)

Brainstem/cerebellum = 5
(1)

Spinal cord = 4 (4) Spinal cord = 4 (4)
Optic neuritis = 64 (17) Optic neuritis = 61 (26)
Others = 0 (0) Others = 0 (0)

No. of patients with
different number
of lesions

Up to 3 lesions = 14 Up to 3 lesions = 13
More than 3 and up to 10
lesions = 23

More than 3 and up to 10
lesions = 23

More than 10 lesions = 37 More than 10 lesions = 34
Converters at
follow-up, no. (%)

22 (30 %) 31 (44 %)



Table 2
The most predictive combination of features associated with the highest accuracy of pre-
diction of conversion to CDMS at one and three years estimated from a forward RFE. Accu-
racy, sensitivity, specificity, PPV and NPV are average values of 100 bootstraps.

1 year 3 years

MRI features
Lesion count ●
Lesion load ●
Average lesion PD intensity ●
Average lesion T2 intensity
Average distance of lesions from the centre of the brain ●
Presence of lesions in proximity of the centre of the brain
Shortest horizontal distance of a lesion from the vertical axis ●
Lesion size profile
Clinical features
Type of presentation ●
Age ●
Gender ●
EDSS at onset ●
SVM-based classification
Polynomial degree 4 1
Accuracy (%) 71.4 68.0
Range (%) 52–84 61–74
95 % CI 58–82 61–73
Sensitivity (%) 77 60
Specificity (%) 66 76
PPV (%) 70 72
NPV (%) 74 65

CI = confidence interval; PPV = positive predictive value; NPV = negative predictive
value.
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4.1. SMV-based classification

The 71.4 % and 68 % average classification accuracy obtained with
SVMs is slightly lower than those reported in previous applications of
SVMs to other neurological diseases (Klöppel et al., 2008b; Klöppel et
al., 2009; Mwangi et al., 2012). However, it is important to note that
the classification of patients into those who will develop MS within a
short-term follow-up and those who will not is a more challenging
problem than classifying patients vs. healthy subjects (Hackmack et
al., 2012; Weygandt et al., 2011), since some of the patients in the
non-converter group may still develop MS in the long-term. Studies
on a similar classification task onpatientswithmild cognitive impairment
(MCI) obtained lower or similar accuracies in the range from 62 % to 75 %
Fig. 5.Performance of single features vs. feature combination. Bar plot showing the classification
for distinguishing between MCI-stable patients and MCI patients who
convert to Alzheimer3s disease (Young et al., 2013).

4.2. Lesional and clinical features most relevant to the classification

By considering together the results of the features associated with
the highest accuracy of prediction, we found that lesion load and
count were selected by the fRFE-SVMs to obtain a high classification
accuracy rather than other features, such as lesion size. This is in agree-
mentwith previous papers (Miller et al., 2012). Interestingly, we found
that the distance of lesions to the vertical axis of the brain was associat-
ed with a conversion to MS within 3 years, suggesting that lesion loca-
tion may be an important predictor of future clinical attacks in CIS as
suggested for the corpus callosum (Jafari et al., 2009), for the brainstem
(Tintore et al., 2010), and for the corona radiata, optic radiation, and
splenium of the corpus callosum (periventricularly) (Dalton et al.,
2012). Specifically, a shorter distance of the lesions to the vertical axis
of the brain was seen more often in converters than non-converters.
The role of lesion location on clinical conversion toMShas been recently
demonstrated by the association between a high lesion frequency (ob-
tained by using the MRI lesion probability maps) in specific white mat-
ter regions and conversion to MS (Giorgio et al., 2013).

In addition to the imaging features, we included clinical and demo-
graphic features known to be relevant to the conversion to MS from
CIS, such as age (Ruet et al., 2011) and gender (Dobson et al., 2012),
and have confirmed that these are present in the combinations of
features associated with the highest accuracy for classification at three
and one year respectively; younger, female patients convert to MS
more often than older, male patients. For a short-term conversion to
MS, type of CIS seems to be relevant, as more patients with the spinal
cord type convert within 1 year. Overall, the performance obtained with
the use of single features individually to predict outcome was lower
than that using combinations of both MRI and clinical/demographic
features, suggesting that clinical and demographic characteristics may
become crucial discriminative markers that need to be combined with
imaging features to obtain the best possible accuracy for classification
of individual patients.

Although more complex models (high degree polynomial kernels)
withmore input dimensions (combinationswithmore features) should
always classify training data better than simpler models, our cross vali-
dation test considers, at least partially, generalisation to unseen test
accuracy of all individual features vs. the best combination of features obtainedwith SVMs.
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data so the identification of the best feature combinations is robust to
overfitting. The fact that, the best performing feature combinations con-
tain only a small number of features (3 and 6) and do not use the
highest polynomial degree, even though we allow our model to use
up to twelve features and polynomial kernels up to a degree of five, in-
dicates that the higher classification accuracies obtained from the fea-
ture combinations compared to the individual features are not simply
the result of using a more complex model.

4.3. Limitations and future studies

For classification tasks e.g. with SVMs it is important to make sure
that a patient that has been used during the training phase is not used
for testing as well. Ideally, this is achieved by having completely inde-
pendent training and test sets to avoid any bias. However, this is not
always possible, especially when the available data set is small as in
the case of this study. The presented leave-one-out cross-validation pro-
vides a partial solution to this problem, but this generally introduces a
positive bias in the accuracy. Since all feature combinations in this
study were tested with the exact same methods, the comparison and
ranking of the feature combinations remains valid, but the bias does af-
fect the absolute values of the accuracy that each combination achieves;
it is likely to be lower on unseen data.

An issue often debated relates to the choice of features that need to
be selected to perform the experiments with machine learning tech-
niques (Chu et al., 2012). A limitation of this work is that we only
used features that we selected a priori and were associated with white
matter lesions (visible on T2-weighted scans) that are known to be of
value in the development of MS (Miller et al., 2012) and that discrimi-
nate betweenMS and healthy subjects (Hackmack et al., 2012). At pres-
ent, these features are based on lesion masks, which are manually
created by an observer, rather than the outputs of automated image
analysis methods. It is assumed that the type of presentation is not
directly correlated with the risk of conversion (Giorgio et al., 2013;
Polman et al., 2008) but supports the SVM classification at 1-year
follow-up. Future work will try to match or even surpass the SVM
classification performance using purely automatically derived features,
and features containing information on the different aspects of the im-
aging data (such as scale and directionality information (Hackmack et
al., 2012)).

Additionally, it will be interesting to investigate whether classifica-
tion accuracy improves if MRI features that reflect damage outside
the MS lesions, such as those obtained withmagnetisation transfer im-
aging (Audoin et al., 2006), are included. This is especially true since
studies on MTR as an independent predictor for a second relapse
are inconsistent (Gallo et al., 2007; Traboulsee et al., 2002). Other
MS-related para-clinical abnormalities, including intrathecal syn-
thesis of oligoclonal bands (Tintore et al., 2008), greymatter atrophy
(Calabrese et al., 2011), and genetic factor (Kelly et al., 1993), which
were not available in this cohort, may be predictors of conversion to
MS, and future work will test whether they can improve SVM-based
classification accuracy of converters vs. non-converters. This also ap-
plies to more clinically applicable features such as spinal cord lesions,
which might be particularly important for patients with a non-spinal-
cord type of presentation (Hutchinson et al., 2014; Sombekke et al.,
2013), cortical lesions, which need additional DIR or PSIR MRI acquisi-
tion (Filippi et al., 2010) and Gd-enhancing lesions, which allow the di-
agnosis of MS in CIS patients without a follow-up MRI scan or a second
attack (Polman et al., 2011; Rocca et al., 2008). In theory, the features
used by SVMs can be potentially infinite, although computational time
has to be limited to a reasonable period of time, and not all the features
may be important to reach a high accuracy in the classification.

On the other hand, the fact that we used features provided by con-
ventional (standard) brain imaging protocols and the most straightfor-
ward clinical/demographic features, which are available in any clinical
centre, is an important advantage of our study, because it suggests
that machine learning techniques can be used in centres that lack
specialist research expertise and support the local physicians in their
patient management.

The recursive feature elimination algorithm is a very commonmeth-
od to identify relevant features. However, the greedy nature of the
search means that it often does not find the most predictive combina-
tion of features but only a local maximum. Another option is to search
all possible combinations of features exhaustively. Although computa-
tionally expensive, the exhaustive search is feasible for our 12 features.
Interestingly, this approach identifies the same feature combination as
the fRFE for the 1-year follow up; for the 3-year follow up, it differs
and finds: lesion count, lesion load, shortest horizontal distance of le-
sions from brain centre, age, gender and EDSS. The accuracy obtained
with this combination was 5.5 % higher (73.5 %) than the fRFE result.
However, while interesting to compare, the exhaustive search leads to
a multiple comparisons problem since testing 212 = 4096 different
models on the same classification task is likely to identify a combination
that spuriously performs well on this specific data set (of only 74 data
points) so generalises less well to unseen data, so we believe that the
fRFE performance is more indicative of what we can expect on unseen
data. Our algorithm only adds one feature at each iteration that intro-
duces the highest information gain; this means that the fRFE has an in-
herent control for redundant features. If two features contain the same
information only one of themwill be selected. This resulting feature set
is not necessarily the only one informative about the classification task,
since some highly correlated features may have been rejected. The re-
sult from the exhaustive search across thewhole feature space in fact in-
dicates that there is only one combination of our 12 features that leads
to the reported accuracy values, although this may of course be a spuri-
ous effect from the limited size of the data set. Further study of the cor-
relations among all features using a larger data set would be required to
make strong statements about which feature combination is truly most
informative.

The next step of thiswork is to confirm these findings in an indepen-
dent (and larger) data set, which divides the data into training and test-
ing sets; we are also interested in assessing whether SVMs can work
across centres, so that the possibility of “exchanging” trained SVMs be-
tween clinical centres may be feasible for MS, as it is for other diseases
(Klöppel et al., 2008a; Stonnington et al., 2010). Additionally, we will
test whether better classification rates for progression of disability (or
clinical outcome) may be obtained by including the temporal ordering
of events (i.e., serial clinical and MRI scans), using novel algorithms,
such as those we recently applied to Alzheimer3s and Huntington3s
disease cohorts (Fonteijn et al., 2012).
5. Conclusion

We have shown that state-of-the-art machine learning techniques
offer discrimination between CIS converters and non-converters on
one to three year timescales and used the analysis to suggest lesional
and clinical features whose combinations predict clinical conversion
to MS. This computer-based technique has the potential to be used to
inform clinical practice and research in MS and other neurological
diseases.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.inoche.2014.11.003.
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