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Abstract 

Let G be a graph and let DffG) be the set of vertices of degree 1 in G. Veldman (1994) proves 
the following conjecture from Benhocine et al. (1986) that if G -  DI(G) is a 2-edge-connected 
simple graph with n vertices and if for every edge xy C E(G), d(x)+d(y)  > (2n)/5 - 2 ,  then for 
n large, L(G), the line graph of G, is hamiltonian. We shall show the following improvement 
of this theorem: if G - D~(G) is a 2-edge-connected simple graph with n vertices and if for 
every edge xy E E(G), max{d(x),d(y)} >>,n/5 - 1, then for n large, L(G) is hamiltonian with 
the exception of a class of well characterized graphs. Our result implies Veldman's theorem. 

1. Introduction 

We use [2] for terminology and notation not defined here, and consider loopless finite 

graphs only. Let G be a graph. Then K(G), x~(G) and A(G) denote the connectivity, 

the edge-connectivity and the maximum degree of  G, respectively. Let O(G) denote 

the set of  all vertices in G with odd degrees. An eulerian graph is a connected graph G 

with O(G) = 0. The graph KI is an eulerian graph. 

An eulerian subgraph H of  a graph G is dominating if G - V(H)  is edgeless, and 

in this case we call H a dominating eulerian subgraph (DES). For an integer i~> 1, 

define 

Di(G) = {v C V(G): d(v) = i}. 

The line graph of  a graph G, denoted by L(G), has E(G) as its vertex set, where two 

vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent. 

There is a close relationship between dominating eulerian subgraphs in graphs and 
Hamilton cycles in L(G). 
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Theorem 1.1 (Harary and Nash-Williams [8]). Let G be a graph with [E(G)[~>3. 
Then L(G) is hamiltonian if and only if G has a DES. 

Various sufficient conditions for Hamilton cycles in L(G) in terms of degrees of 
vertices in G have been found. See Catlin's survey [5] for references. The most recent 
result is obtained by Veldman. He proves the following which was conjectured in [1]. 

Theorem 1.2 (Veldman [9]). If  G is a simple graph with tc'(G-DI(G))>~2 and with 
n vertices, and if for every edge xyEE(G), 

2 d(x) + d(y) > gn - 2, (1.1) 

then for n large, L( G) is hamiltonian. 

Chen and Lai showed that if G is 3-edge-connected, then the bound in (1.1) can be 
further reduced with stronger conclusions [6, 7]. 

For every edge xyCE(G), if (1.1) holds, then we have 

max{d(x), d(y)} i> In - 1. (1.2) 

Therefore, it is natural to consider if (1.1) can be replaced by (1.2). In this note, we 
investigate this problem and find some exceptional cases. 

In Section 2, we present the main results. In Section 3, Catlin's reduction method 
is introduced. The main result will be proved in Section 4, using Catlin's reduction 
method and a similar idea of Veldman [9]. The last section shall be devoted to an 
auxiliary result, which will be needed in the proof of the main result. 

2. Main results 

Let G be a graph and let X C_E(G). The contraction G/X is the graph obtained 
from G by identifying the two ends of each edge in X and then deleting the resulting 
loops. We define G/~ = G. If H is a subgraph of G, then we write G/H for G/E(H). 
If H is a connected subgraph of G, and if vH denotes the vertex in G/H to which H 
is contracted, then H is called the preimage of vH. A vertex v in a contraction of G 
is nontrivial if v has a nontrivial preimage. 

Let/£2,3, /£2,5, W3 ~, W4 ~, Lt, L2 and L3 be the graphs defined in Figs. 1-3, and let 
= {K2,3,K2,5, W3', W4~,L1,L2,L3}. Using the labels in Figs. 1-3, for each L E ~-, we 

define B(L), the bad set of L, to be the vertex subset of V(L) that are labeled with 
the bi ' s .  The notation B(L) will be used throughout this paper. 

Let G be a simple graph with n vertices. Let p >~2 be an integer, and define 

Jp(G)= {vE  V(G): d(v)>>-n 

We are ready to state our main result of this paper. 
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Fig. 1. The graphs 1£2,3 and K2,5. 
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Fig. 2. The graphs W 3' and W4 ~. 
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Fig. 3. The graphs LI,L2 and L3. 

a ~  b l a2 

b 4 ~ b 5  

Theorem 2.1. Let G be a simple graph with x'(G -Dl (G))>~2 and with n vertices, 

and/et  J = Js(G). I f  (1.2) holds for every edge xy  E E(G), then for n large, one of  
the following must hoM: 

(i) G has an eulerian subgraph L such that J c_ V(L ), or 

(ii) G can be contracted to a member L E ~ such that the preimage of  every vertex 
in B(L) intersects J. 

Note that if (1.2) holds for every edge of G, then V(G) - J (J = Js(G)) is an 
independent set of G. Hence, any eulerian subgraph H of G with J C V(H) must be 
a DES of G. Therefore by Theorems 1.1 and 2.1, we have 

Corollary 2.2. Let G be a simple graph with K ' ( G -  DI(G))>~2 and with n vertices. 
I f  (1.2) holds for every edge xyCE(G) ,  then for n large, either 

(i) L(G) is hamiltonian, or 
(ii) G can be contracted to a member L E ~-~ such that the preimage of  every vertex 

in B(L) intersects Js(G). 
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Corollary 2.3. Theorem 1.2 follows from Corollary 2.2. 

Proof.  Let G be a graph satisfying the hypothesis o f  Theorem 1.2 with n > 150 

vertices. By contradiction, assume that L(G) is not hamiltonian. Then by Corollary 

2.2, G can be contracted to a member L E ~ By n > 150 and by Corollary 1.4(ii), 

each vertex in B(L) is nontrivial. 

Let H be the preimage of  a nontrivial vertex in L. Since E(H) ~ 0, by (1.1), 

1 2 1 IV(H)I > ~[(gn - 2) - A(L)] + 1 ~>gn - 5. (2.1) 

Since n > 150, L has at most 5 nontrivial vertices. 

Suppose that L ~/£2,3 and L has 5 nontrivial vertices. Then by (2.1), the preimage 

of  each nontrivial vertex must have at most n - 4(n/5 - 5) = n/5 + 20 vertices. Since 

L ¢/£2,3, there is an edge e = xyEE(G) such that eEE(L) and such that x is a trivial 

vertex in V(L). Since n > 150 

1 2 2, a(x) +d(y)<~A(L) + (½n + 20) = ~n + 2 5  < g n -  

contrary to (1.1). 

I f  L = K2,3 and L has 5 nontrivial vertices, then since n > 150 and by A(K2,3) = 3, 

the preimage of  each vertex in L must have an edge not adjacent to any edge in E(L), 
and so by (1.1), the preimage of  each vertex in L must have order at least 

1 2  1 ~ ( ~ n - 2 ) + l  = ~n. 

Since G has n vertices, the preimage of  each vertex in L must have exactly n/5 vertices. 

Let e = xyEE(G) such that eEE(L). Then 

d(x) + d(y)<~2(ln - 1) = ~n2 _ 2, 

contrary to (1.1). 

Hence, we assume that L has at most 4 nontrivial vertices, and so [B(L)[ ~<4, which 

implies L E {K2,3, WJ}. Note that L always has a trivial vertex o f  degree 3, and so 

there is an edge e = xyEE(G) such that eEE(L) and such that x is a trivial vertex 

in L. By (1.1) and since n > 150, each of  the three vertices in L adjacent to x must be 

nontrivial, and the preimage of  each of  these 3 nontrivial vertices must have at least 

(2n/5 - 2 ) - 3  = 2n/5 - 5  vertices. It follows that G has at least n > 6n/5 - 15 vertices, 

contrary to n > 150. 
This proves Corollary 2.3. 

3. The reduction method 

Let G be a graph and let F C V(G) be a vertex subset. An eulerian subgraph (ES) H 
of  G is called an F-eulerian subgraph (F-ES) i f F  C_ V(H). A graph G is supereulerian 
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if  it has a V(G)-ES (see [5] fbr supereulerian graphs). Catlin [4] invented a method 
to find a V(G)-ES for given G. A graph G is collapsible if  for every subset R C_ V(G) 

with IR] even, G has a spanning connected subgraph HR such that O(HR) = R. In 
[4], Catlin showed that every graph G has a unique collection of  maximal collapsible 

C 
subgraphs HI,H2 . . . . .  Hi.. The reduction of  G is G'  = G/(Ui=t Hi), the graph obtained 
from G by contracting all nontrivial maximal collapsible subgraphs of  G. A graph G 
is reduced if the reduction of G is G. 

Theorem 3.1 (Catlin [4]). Let G be a graph. Each of  the jbllowing holds: 

(i) Let L be a collapsible subgraph of  G, VL the vertex in G/L to which L is 
contracted, and M C V ( G ) -  V(L). Then G has an ES H such that Mto V(L)C_ V(H) 

if  and only if  G/L has an ES H' such that M tO {VL} C_ V(H'). 
(ii) I f  G is reduced, then G is a simple graph with 6(G)~<3 and with either 

G E {KI,K2}, or IEfG)I ~<21V(G)[ - 4. 
(iii) Any subyraph of  a reduced graph is reduced 

Proposit ion 3.2. Let G be a 2-edge-connected graph and let F C_ V(G) - D2(G). 

Suppose that vcD2(G)  and that e~E(G )  such that v is incident with e in G. (Thus, 
we can regard F C V(G/e) - Dz(G/e).) The following are equivalent. 

(i) G has a F-ES. 
(ii) G/e has an F-ES. 

Proof.  That (i) ~ (ii) is trivial since i f H  is an F-ES of  G, then either H ( i f e f [E(H) )  

or Hie ( i f  e E E(H))  is an F-ES of  G/e. Conversely, suppose that G/e has an F-ES 

H ' ,  and assume that the two neighbors of  v are u and w, and that the two ends of  e 
are v and u. 

I f  v = w, then G/e = G -  v, and so an F-ES of  G/e is also an F-ES of  G. Thus we 
assume that v ~ w. Then wv can be regarded as an edge in E(G/e) and that E(H')  
can be regarded as an edge subset of  G/e. Let 

G[E(H' )] if wv f[ E(H'),  

H = G[E(H') to {uv}] if  wv E E(H'). 

It is easy to see that H is an F-ES of  G. [] 

Let G be a connected graph such that G - D 1 ( G )  is 2-edge-connected, and let G be 
the graph obtained from G -  Dl(G) after eliminating all vertices in D 2 ( G -  Dl(G))  

by repeatedly contracting an edge that is incident with a vertex of  degree 2 until no 
such vertex is left. Note that 

either G = KI, or both ~c'((~)>~2 and 6(G)~>3. (3.1) 
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Also, if G is connected, but G - D I ( G )  is not 2-edge-connected, then we cannot 
guarantee x~(G)>~2. An example is the graph obtained from two vertex disjoint K4 by 
joining these two Ka's by a new edge. 

Note also that if X CE(G)  denotes the set of edges that are incident with some 
vertex in DI(G), then G -  Dl(G) = G/X, and so G is in fact a contraction image 
of G. Therefore, if H is a connected subgraph of G which is contracted to a vertex 
vH in G, then we say that H is the preimage of vH, as before. 

Let G be a connected graph and let F C V(G) - (DI (G)UD2(G) )  be a vertex subset. 
Let/~ _c V(G) be such that v' E P if  and only if the preimage of v t in G contains at 

least one vertex in F. 

Corollary 3.3. Let G be a connected graph and let F C V(G) - (Dt(G) U D2(G)). 
The following are equivalent. 

(i) G has an F-ES. 
(ii) G has a F-ES. 

Proof. Since F n D 1 ( G ) =  O, G has an F-ES if and only if G - D I ( G )  has an F-ES. 
By Proposition 3.2 and by induction on ]D2(G-DI (G) )  l, we can see that G - D l ( G )  
has an F-ES if and only if G has an F-ES. [] 

Let G' denote the reduction of G. Let ,~' c V(G t) be the vertex subset such that 
v E PP if and only if the preimage of v in G contains a vertex in F. 

Proposition 3.4. Let G be a connected graph and let F C_ V ( G ) -  (DI(G)U D2(G)). 
Then G has an F-ES  i f  and only i f  G~ has an P~-ES. 

Proof. This follows by Corollary 3.3 and Theorem 3.1(i) [] 

Proposition 3.5. Let G be a 2-edge-connected graph and let F C_ V(G) with [F[ <<, 5. 

I f  G - F is edgeless, and i f  G does not have an F-ES, then G is contractible to a 
member L E ~  such that F intersects the preimage of  every vertex in B(L). 

The proof of Proposition 3.5 will be postponed to the last section. 

4. Proof of Theorem 2.1 

Throughout this section, we let G be a connected simple graph with ~c'(G-DI(G)) 
~> 2 and with n vertices, and let G" = G', the reduction of G. Note that G" is reduced 
by definition. Let n' --[V(G")I.  

We shall approach the problem slightly more generally. Let p ~> 3 be an integer, and 
consider the condition that for every edge xyEE(G) ,  
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max{d(x),d(y)} >~ n _ 1. (4.1) 
P 

We shall assume that (4.1) holds and that n is sufficiently large (say n~> max{3p 3 + 

10p 2 + 7p, 6p 2 + 1 5 p ÷  1}). 

L e t c = 3 p + 7  and let 

W = {v E V(G") :  da,,(v)<~c} and W' = {v E W: v is nontrivial}. 

We shall prove several lemmas to help us to establish the conclusion of  our main 

result. 

L e m m a  4.1. For any vEW ~, if Hv denotes the preimage of v in G, then 

i V(/_/u) 1 >~ n _ dc,,(v). 
P 

(4.2) 

Proof.  Let Out(Hv) = {x E V(Hv): N6(x) ¢ NH,(x)} and In(Hv) = V(H~) - Out(H~). 

I f  there is an edge xy E E(H~) such that d(x)>~d(y) and such that x E In(H,,), then 
by (4.1), IV(H~)l>~d(x)+ l>~n/p, and so Lemma 4.1 holds. Therefore, we assume 

that for any edge xy E E(H~) with d(x)>~d(y), we always have x E Out(Hv). Thus 

IOut(H~,)] ~> 1, and so by (4.1), 

n 
[ V(Hv)l = IIn(H~)[ + IOut(H~)l ~> 1 + de(x) - dG,,(v)>~ -- - dc,,(v). 

P 

This proves Lemma 4.1. [] 

Corollary 4.2. I W'l ~ p, 

Proof .  By Lemma 4.1, we have n>~lW'I(n/p- c). This is equivalent to [W'I~< 

np/(n-pc) .  Since [W' I is an integer, we have IW'l<~p when n>~3p3+lOp2+7p. [] 

Lemma 4.3. V(G")= W. 

Proof .  By contradiction, we assume that V ( G " ) -  W ~ O. Note that every vertex in 

V ( G " ) -  W has degree at least c + 1 in G". Since G" is simple by Theorem 4.1(ii), 

this means 

n I ~> c + 2. (4.3) 

Count the incidences to get c ] V ( G " ) -  WI<~21E(G")I<<,4n ' -  8, which means 

I V ( G " ) -  W I ~ < ( 4 n ' -  8)/c. It follows that 

I W l = n ' - I V ( G " ) - W l > ~  1 -  n ' + - .  (4.4) 
C 

By (3.1), G"  is 2-edge-connected and reduced, and every vertex in W -  W ~ has degree 
at least 3 in G". Therefore, by Theorem 3.1(ii), by the fact that W -  W' is independent 



100 H.-J. Lai/Discrete Mathematics 178 (1998) 93-107 

in G" when n>>.6p 2 + 15p + 1, by (4.4) and by Corollary 4.2, 

2n'-4>~IE(GI)[>~31W- W'[>~ 3 -  n' + - -  - 3p. 
c 

It follows that 

3 p - 4 > ~ ( 1 - ~ )  n'+24-'c (4.5) 

By (4.3), n'>~c+2. Thus, (4.5) implies that 

3 p - 4 ~ >  ( 1 - ~ ) ( c + 2 ) +  24 - -  = c - 1 0 ,  
c 

and so 3p+6>~c=3p+7, a contradiction. Therefore, we must have V ( G ' ) = W .  [] 

Corollary 4.4. Every vertex in Jp(G) & contained in the preimage of  some vertex 

in W t. 

Proof. Since n>>.3p 2 + 9p, the degree of vertices in Jp(G) will exceed c, and so 

Corollary 4.4 follows from Lemma 4.3. [] 

Proof of Theorem 2.1. Note that J = Js(G) in Theorem 2.1. Note also that by Corol- 
lary 4.4 and by Theorem 3.1(i), if G" has a W~-ES, then G has a J-ES. 

Applying the discussion above to the case when p :  5, we conclude that I W~[ ~< p : 5. 
Thus, by Proposition 3.5, either G" has a W~-ES, thereby G has a J-ES and so Theorem 
2.1(i) holds; or G" can be contracted to a member L E ~  such that W ~ intersects the 
preimage of every vertex in B(L), and so Theorem 2.1(ii) must hold. [] 

5. Eulerian subgraphs that contain given vertices 

We shall prove Proposition 3.5 in this section. Let G be a 2-edge-connected graph 
and let F C V(G) with ]F[ ~<5. By contradiction, we assume that 

G is a counterexample to Proposition 3.5 with [V(G)I minimized. (5.1) 

Thus, we assume that 

G -  F is edgeless, (5.2) 

and that 

G does not have an F-ES. (5.3) 

Lemma 5.1. G is reduced, lc(G)~>2 and G is not contractible to a member L E 
such that F intersects the preimaffe o f  every vertex in B(L ). 
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Proof. By (5.1), G cannot be contracted to a member L E ~ such that F intersects 
the preimage of every vertex in B(L). 

Let G' denote the reduction of G, and let F'C_ V(G') be a subset such that v E F '  

if and only if the preimage of v in G contains a vertex in F, and so IF'] ~< IFI ~<5. By 
(5.2), G' - F '  is also edgeless. If G is not reduced, then I V(G')[ < IV(G)I, and so by 
(5.1), G' can be contracted to a member L ~ ~ such that F '  intersects the preimage 
of every vertex in B(L). Therefore, G is contractible to L E ~ such that F intersects 
the preimage of every vertex in B(L), contrary to (5.1). Hence G is reduced. 

Assume then that G has a cut vertex v, and G - v has components HI, . . . ,Hc.  Let 
C Gi = G[V(Hi)U{v}], (1 <~i<<.c). Then F C V(G) = Ui=~ V(G;). By (5.2), F n V ( G ; )  ¢ 

(3, (1 <~i<~c). Let Fi = (FN V(Gi))U{v}. Then I~1 ~<5. By (5.1), Proposition 3.5 holds 
for each G;, and so either each G; has an F;-ES Hi, and so H :- UH; is an F-ES of G, 
contrary to (5.3), or there is some i such that G; is contractible to a member L E .~- 
such that F intersects the preimage of every vertex in B(L). So the same holds for G, 
contrary to (5.1). Hence K(G)~>2. [] 

Lemma 5.2. Let H be a subgraph of  G such that F C_V(H). I f  P is a path in 
G - E(H)  with end vertices in V(H) and all internal vertices in V(G) - V(H), then 

one of  the following must hold: 
(i) IE(P)I = 1, and P has at least one end in F. 

(ii) IE(P)I = 2, and both ends of  P are in F. 

Proof. This follows from (5.2). [] 

Lemma 5.3. I f  H is 2-connected, and if  bl,bz,b3 E V(H), then one o f  the followin 9 
must hold: 

(i) H has a cycle C with bl,b2,b3E V(C). 

(ii) H has two vertices al, a2 ~ {bl, b2, b3 } and three internally disjoint (al, a2 )-paths 
PI,P2,P3 such that biE V(Pi), (1 ~<i~<3). (This subgraph P1 UP2 UP3 of  H is called 

a Kz,3(bl,b2, b3) of  H.) 

Proof. Since ~c(H)~>2, by Menger's Theorem, there is a cycle C containing bl and b 2. 

If b3 C V(C), then (i) of Lemma 5.3 holds. Thus we assume that b3 ~ V(C). By Menger's 
Theorem again, there exists al,a2 E V(C) such that G has a (al,b3)-path Q and a 
(b3,a2)-path Q' with V(Q)N V(Q') = {b3}. If {al,a2} does not separate bl and b2 
in C, then C has a (al,a2)-path Q" that contains both bl and b2. It follows that 
Q ~5 Q~tJ Q" is a cycle containing bl, b2 and b3, and so Lemma 5.3(i) holds. If each of 
the two (al,a2)-paths P1 and/°2 (say) contains exactly one of bl and b2, then Lemma 
5.3(ii) holds. [] 

Lemma 5.4. Let M be a graph, and let R C V(M) with b ~ R. I f  M has a cycle C 
containing R - {b), but no cycles containin 9 R, and if  M has a (a,b)-path Q and an 
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(d, b)-path Q' with V(Q)N V(Q) = {b}, and with a, a' E V(C), then each component 
of  C - {a,d} must contains a member of  R - {b}. 

Proof .  I f  C-{a,a '}  has a component C '  with V(C')fqR = ~, then (C-v (C ' ) )uQUQ'  
is a cycle of  M containing R, a contradiction. [] 

Lemma 5.5 (Catlin [4, 3]). The 9raphs 1£3 and/£3,3 - e (g3,  3 minus an edge) are 
collapsible. 

Therefore by Lemmas 5.1 and 5.5, and by Theorem 3.1(ii), we have 

G is simple and does not have K3 or K3,3 - e as a subgraph. (5.4) 

We need one more notation. I f  C = z .  • • u - .  • w.  - • v. • • z denotes a cycle (together 

with the indicated orientation), then uCv denotes the section u . . .  w . .  • v of  C. I f  P = 

XlX2 ""Xn-lXn is a path, then po = x2 ""xn-1 with the agreement that when IE(P)I = 1, 

then po denotes the only edge in P.  

Proof  of Proposition 3.5. I f  F = {bl,b2,b3}, then by Lemma 5.3, we assume that G 

has a K2,3(bl,b2,b3) (denoted H) .  By (5.2) and by the fact that F = {bl,b2,b3}, 
H ~ K2,3. I f  G - E(H) has a path Q, then by Lemma 5.2, H U Q has either a/£3 or 

a K3,3 - e, contrary to (5.4). Hence we assume that IFI ~>4. 

Case 1: F = {bl,b2,b3,b4}. By Lemma 5.3, either G has a cycle C containing 

bl,b2, b3, or G has a subgraph Gi = K2.3(bl,b2,b3). 
Case 1A: G has a cycle containing bl,b2, b3. Since tc(G)~>2, there are a,a~E V(C) 

such that G has an (a, b4)-path Q and an (a',b4)-path Q' with V(Q)f3 V(Q') --  {b4}. 

By Lemma 5.4, each component of  C -  {a,a'} contains a vertex in {bl,b2, b3}. By 

(5.3), we assume C = bl . . -  b 2 . . - a . . ,  b3 - - .  d . - .  bl ,  where b2 -- a is possible but a ~ 

{b3, bl }. (We shall use the convention here that i f  b2 --= a, then b2a denotes the single 

vertex b2.) By (5.2), ab3,b3d, dbl E E(C), Q = b4a and Q / =  b4d. Also by (5.2), 

either there is a vertex a" E V(C) such that C -- bla"b2ab3dbl, or C = blb2ab3dbl. 
L e t H = C U Q U Q ' .  I f G = H ,  then 

G/{blb2} i f  C = blb2ab3a'bl, 

L = G/{bl a", a"b2} i f  C = bl a"b2ab3dbl 

is a desired member in o ~.  Thus, we suppose that there is a (x ,y) -pa th  P in G - E ( H )  
with x, yE V(H). 

I f  such an (x, y)-pa th  P exists only when {x, y} C_ V(b~ Cb2), then G can be con- 

tracted to a K2,3 whose edge set is {bla~,b2a, aba, a'b4,ab3,db3}. Thus, we assume 

that {x, y} ~ V(6, Cb2 ). I f  {x, y} C F ,  then since we may assume that either {x, y} = 

{bl,b3}, whence (H - {bla',ab3}) U P is an F-ES;  or {x,y} = {bl,b4}, whence 

( H -  {blaP, baa})UP is an F-ES ,  contrary to (5.3) in any case. Thus, by Lemma 5.2, 

we may assume that x c F  and yq~F. 
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I f x  = bl, then by (5.4), y must be a, and so ( H -  {b la ' } )+xy  is an F-ES, contrary 

to (5.3). Similarly, x ~ b2. By the symmetry of  b3 and b4 in H, we may assume that 

x = b4. By (5.4), we must have C -- bJtbzab3dbl and y = a". Note that any path 
in G - E(H + b4a") will result in an F-ES of  G, and so G = H + b4d t ~ W3 t with 

B(W3 ~) = F. This completes the proof for Case 1A. 

Case 1B: G has a subgraph G1 = K2,3(bl,b2,b3) and 

G does not have a cycle containing any three members o f  F. (5.5) 

By (5.5), b4~V(Gt)  and so by (5.2), G has two vertices a ,d  such that 

V(G,) = {a, at, bl,b2, b3} and E(G~)= {ab,,ab2, ab3,atbl,atb2, db3}. (5.6) 

Since ~c(G)~>2, G has two vertices c,c'E V(GI) and a (c, b4)-path Q, and a (c t ,  b4)  - 

path Q' with V(Q) A V(Q' )= {b4}. By (5.5), we must have {c,c'} = {a,a'}, and so 
G~ U Q u Qt is an F-ES of  G, contrary to (5.3). 

Case 2: F = {bl,bz,b3,ba, b5}. Since K(G)>~2, G has a cycle C with IV(C)NFI 
maximized. By (5.3), 2 <~]V(C) • F] <~4. 

Case 2A: I V ( C ) n  F I = 4. We assume that C = h i . . .  b z ' . .  b 3 " "  b4 . . .  bl. Since 
b5 ~ V(C) and since t~(G)>~2, G has a (a, bs)-path Q and a (at, bs)-path Qt with 

V(Q) • V(Q') = {bs}, and with a,a t E V(C). By Lemma 5.4, each component o f  

C {a,a'} has a vertex in F - {bs}. 

Case 2Al:  a, d E F - { b s } .  By Lemma 5.4, we may assume that a = b2 and a t = b4. 

Let H1 = C U Q tA Qt. If  G = H1, then G can be contracted to K2,3 E .~-. So we assume 

that G - E(HI ) has an (x, y)-path P with x, y E V(H1 ). If  x, y E F,  then without 

loss of  generality, either {x,y} = {b~,b2}, whence (H~ - (b~C~') )UP is an F-ES; or 

{x,y} = {bt,bs}, whence (H, -(b,C~2 U Q,O))u P is an F-ES; or {x,y} = {bz,b4}, 

whence HI U P is an F-ES, contrary to (5.3) in any case. Thus, by Lemma 5.2, we 

may assume that x E F and y ~ F  with E ( P ) =  {xy}. Without loss o f  generality, we 

assume that y E  V(Q), and so by (5.2), Q = bsyb2. By (5.4), xE {bl,b3,b4}. I f x  = bl 

(or b3 ), then (H1 - (b~ C~, U {yb2 } )) + bl y (or (HI - (b, C~ tJ { yb2 })) + b3 y) is a cycle 

of  G containing F;  if x = b4, then (Ht - {Yb,.})+ b4y is an F-ES, contrary to (5.3) 
in any case. This proves Case 2A1. 

Case 2A2: a ~ F  - {bs} and a'~F.  We may assume that a -- b2. Then by (5.3), a '  

cannot be in t,, Cb,, and so we may assume that, by (5.2), C = b~ .. • b2 • • • b3 • • • b4dbl, 
and Qt = bsd. Let HI = C U Q u Qt. If  G = H1,  then G is a subdivision of  a 

1£2,3 which can be contracted to a desired member in ~'~ Therefore we assume that 

G -E(H1 ) has an (x, y)-path P with x, y E V(HI ). If  such an (x, y)-path P exists only 

when {x,y} c_ V(b~Cb~), then G can be contracted to a 1£2,3. Hence, we assume that 

{x,y} ~ v(b~c~4). 
If  {x,y}C_F, then either {x,y} = {bl,b3}, whence ( H i -  (b2C~3 Ua, C~,))tAP is 

an F-ES; or we have a case similar to Case 2A1. Hence, we may assume that x E F  
and y ~ F  with E(P) = {xy}. If  y = a t, then by (5.4), either x = b3, whence 

(HI -~,: C~' ) + b3d is an F-ES of  G; or x -- b2 whence Hj + bza t is an F-ES of  G, 
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contrary to (5.3). Hence, y ¢ a ' ,  and so for some i, (1~<i~<3), y E V(b, Cb,+,). By 

(5.2), biCb~+, = biybi+l. 
Suppose that i = 1. Then by (5.4), x E {b3,b4,bs}. I f  x E {b4,bs}, then (HI - 

{yb2,xd}) + x y  is an F-ES,  and so x = b3. Suppose that i = 2. Then xE{bbb4,bs}.  
I f xE{b l ,bs} ,  then (Ill - - {xa ' , yb2} )+xy  is an F-ES of  G, and so x = b4. 

Thus, we may summarize these discussions to conclude that any edge in E ( G ) -  
E(H1 ) must be el = yl b3, where Yl c V(b, C~: ); or e2 = y2b4, where Y2 E V(b2 C~ 3 ), or 

e3 = y3bl, or e4 = y3b2, or e5 = y3bs, where Y3 E V(b3C~,). Table 1 shows that if the 

indicated ei, ej E E ( G ) -  E(H1 ), then the subgraph F defined in Table 1 is an F-ES of  

G. 

Thus, by Table I, I E ( G ) -  E(HI)[ ~<2, where equality holds if and only if E ( G ) -  

E(H1) = {e,,e4} or E ( G ) - E ( H 1 ) =  {ez, e4}. Table 2 shows that in all the possible 

cases of  E ( G ) -  E(H1 ), G can be contracted to a graph W which can be easily shown 

to be isomorphic or can be contracted to the element o f  ~ in the third column. 

This completes the proof o f  Case 2A2. 

Case 2A3: a, a t C F.  Let c be the maximum number such that G has (ak, bs)-paths 

Qk, 1 <~k<~c, with al . . . . .  ac E V(C) - F and with V(Qi) N V(Qj) = {bs}, whenever 

i ¢ j .  By (5.2), 

[E(Qk)[ = 1 and so Qk = bsak for each l<~k<~c. (5.7) 

Since x(G)~>2 and by (5.3), 2~<c~<4. Let H( = C U  (U~= 1Qk)- 

Suppose that c = 4. Then by (5.7), we may assume that C = blalb2a2b3a3b4a4bl. 
Note that if G = HI,  then G ~ W4 ~ E Y. Thus, G - E(H[) has an (x, y)-path P with 

x, yE  V(H1). Then by Lemma 5.2, [{x, y}nF]  /> 1. Table 3 defines a subgraph F which 

is an F-ES of  G, contrary to (5.3). 

The missing cases in Table 3 can be either obtained by symmetry, or eliminated 

by (5.4). 

Suppose that c = 3. Then we may assume that C = blalb2a2b3a3b4.. "bl, with 

possibly a vertex a4 inserted between b4 and bl. I f  G = H(, then G/E(b4Cb, ) ~- W3~E o~. 
Therefore, we assume that G -  E(H() has an (x,y)-path P with x ,y  E V(HI) and 

[{x,y} n f [ / >  1. I f  such an (x,y)-path exists only when {x,y} C_ V(b4Cb, ), then G can 

Table 1 

ei, ej C E(G) - E(Ht ) Subgraph F 

el e2 
el e3 
el e5 
e2 e3 
e2 e5 
e3 e4 
e3 e5 
e4 e5 

(HI - {atb4, ylb2, y2b3}) + {el,e2} 
(Hi -- {a'bl,  Yl b2, y3b3 } ) + {el, e3 } 
(H1 -- {a 'bs,  Yl b2, y3b3 }) + {eb e5 } 
(HI - {atbl ,y2b2,y3b4})+ {e2,e3} 
(H1 - {a'bs,y2b2,y3b4}) + {ez,e5} 
(HI - {a tbl})  + {e3,e4} 
((H1 - {a'bl }) -- QO) + {e3, es} 
(HI -- {atb5}) + {e4, es} 
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Table 2 

E(G) - E(H1 ) Contraction W Element of .~ 

{el } G/(E(h2 Ch~ ) U {el, b2yl }) /'(2,3 
{e2 } G/(E(h3 Cha ) U {e2, 33 Y2 } ) /~2, 3 
{e3} G LI 
{e4} G/(E(b 2 Ch 3 ) U {e4, b3 Y3 }) KZ3 
{es} C W~' 
{el, e4} G/(E(b2 Ch 3 ) U {el, e4, b2Y2, y2b3}) K2,3 
{e2,e4} G L 2 
0 G/{e4) K2,3 

Table 3 

x y Subgraph F 

b! b2 (H( - {blal,b2a2,b5a3,b5a4} ) U P 
bl b3 (H( - {bla4, b3a2,b5al,b5a3} ) U P 
b| b5 (H( - {blal,bsa2,bsa3,bsa4} ) U P 
bl a2 (H( - {blal,bsa3,b5a4}) U P 

Table 4 

x y Subgraph F 

bl b2 
bl b3 
bl b5 
bl a2 
bl a3 
b2 b3 
b2 b5 
b2 a3 

(H( - {blal ,b2a2,bsa3 } ) tO p 
(H( - {blal,b3a3,b5a2}) U P 
(H( - {blal,bsa2, bsa3}) U P 
( H~ - { bl ab bsa3 } ) tO P 
(H( - {blal ,bsa2})  U P 
(H( - {bsal,b3a3,b2a2}) U P 
(H~ - {bsat,b2a2}) U P  
(H~ - {bsal,b2a2}) U P 

be contracted to a desired W3 ~ E ~ .  Hence, we assume that {x, y}  ~ V(b4 Cb, ). Table 4 
defines a subgraph F which is an F-ES of  G. 

The missing cases in Table 4 can be either obtained by symmetry, or eliminated 
by (5.4). 

Suppose that c = 2. By Lemma 5.4, we may assume that either C = blalb2a2b3 

• • " b4 • ' '  b l  o r  C = bl  • - • b 2 a z b 3 .  •. b 4 a l b l .  

First we assume that C = blal bzazb3 . . .  b 4 . . .  b l. If G-E(H()  has a (b2, b5)-path P, 

then ( H ( -  {bza2, a lb5 })UP is an F-ES of  G, and so we exclude this possibility. If G = 
H(, or if there is no path in G-E(H( )  joining {al,  b2, a2, b5} to V(G) - -  {a l ,  b2, a2, bs} ,  

then G/(E(b3Cb, ) ~/£2,3 is a desired contraction. Therefore, we assume that there is an 

(x,y)-path in G -  E(H() with xE {al,b2,az,bs} and y c  V ( G ) -  {abb2,a2,bs}. Note 
that H ( -  b2 is a cycle containing F - {b2}. So we can assume x¢{b2,b5}, otherwise 
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we are in Case 2A1 or 2A2 or we have c~>3. Therefore, by (5.4) and Lemma 5.2, 

E(P) = {xy} and xy E {alb4,a2b4,alb3,a2bl}. If  {x,y} = {al,b3} (resp. {a2,bt}), 
then (11(- {a2b3})UP (resp. ( H ( -  {albl})UP) is an F-ES. If  both alb4,a2b4 CE(G), 
then H( + {alba, a2b4} is an F-ES. Thus, we may assume that P = alb4. 

If for some aE V(b4Cb, ), G - E ( H ( )  has an (a, b3)-path P ' ,  then ((H( - {a2b3}) - 
b4 C O ) LJ P U P~ is an F-ES of  G, and so we assume no such paths exist. Therefore if 

b3Cb4 -~- b3b4, then G/E(b4Ca, ) ~  K2,3, and if b3Cb4 = b3a364, then G/E(a3Ca, ) TM K2,3. 
In either case, we have a desired contraction image in 

Then we assume that C = bl . . . b2a2b3 . . . baalbl. Since H;/(E(b, Cb2 )U E(b3 Cb4) ) TM 

K2.3 E ~ ,  we assume that there is an (x, y)-path P in G -  E(H;) with x, y E V(H;) and 
with both {x, y} 9~ V(6, Cb: ) and {x, y} ~ V(b3 Cb 4 ). We can assume b5 ~ {x, y}, other- 
wise we have a case already examined. Note that if such (x, y)-path exists only when 

{x, y} C_ V(b4Cb, ) (or {x, y} _C V(b,C~4)) , then G is contractible to a desired K2,3 EJ~ 
Thus, we assume that {x,y} ~ V(b4Cb, ) and {x,y} ~ V(b, C~4). Note also that if there 
are two (b l, xi)-paths P/, (1 ~<i~< 2), where xi E V(b3 C~4 ) -{b4 }, then G is contractible to 
a desired 1£2,3 E~, ~, and that if there is only one (bl,xl)-path with xl E V(b3C~,,) - {b4}, 
then G is contractible to a desired L1 E ~ .  Therefore, without loss of  generality, we 
assume that either {x,y} -- {bl,b3}, whence ( H ( -  {albl,a2b3})UP is an F-ES of  G; 
or {x, y} = {bl,a2}, whence (H( - {albl })tO P is an F-ES of  G, contrary to (5.3) in 
either case. This concludes Case 2A. 

Case 2B: IV(C) n F[ = 3, and 

G has no cycle that contains 4 vertices in F. (5.7) 

We may assume that C = b l . . . b 2 . - . b 3 . . . b l .  Since ~¢(G)~>2, G has a (b4,al)-  
path Q1 and a (b4,a3)-path Q2 such that al,a3 E V(C) with V(Q1)N V(Q2) = {b4}. 
Similarly, G has a (bs,a)-path Q3 and a (bs, a ')-path Q4 such that a,a~E V(C) - F  
with v(o3) A v ( o 4 )  = {b5 }. By (5.7), b 4 ~ V(Q 1 [...J 02) and b5 ~ V(Ol tA Q2). By (5.2), 
[E(pi)[ = 1, (1 ~<i~<4). Therefore, V(Ql tA 02)  fq v(o3 u 04)  - - - -  0. 

By (5.7), {al,a3} ~ F .  Hence, we may assume that C = blalb2.. "b3a3bl, where 
a3 = b3 is possible (in this case b3a3 denotes the single vertex b3). 

If  {a,a'} = {al,a3}, then C tO (U~=I ai) is an F-ES of  G, contrary to (5.3). Hence 
{a,a'} ¢ {al,a3}. By (5.2), there is at most one vertex not in F that lies between b2 
and b3 in C, and so by {a,a'} ~ {al,a3}, we may assume that a' = a3, and a = a2 
(say) and that C = blalbza2b3a3bl. Let H2 = C tA ([_Ji4=l Qi). By (5.2), we have 

V(H2) = V(C) to {b4,bs} and E(H2) = E(C) td {b4al,b4a3,b5a3,bsa2}. 

If  G = / / 2 ,  then G/{a2b3,b3a3,a3bs, bsa2} ~- K2,3 is a desired member in ~ .  Therefore, 
G -  E(H2) has an (x,y)-path P. 

A straightforward analysis shows that the only possibilities for {x, y} are {x, y} = 

{bl,a2},{b2,a3},{b3,al},{b4,a2} or {bs,al}. All other choices for {x,y} contradict 
(5.2), (5.4), Lemma 5.2, or they give a cycle that contains 4 vertices of  F,  hence 
contradicting (5.7). If  {x,y} E {{bl,a2}, {bs,al},{b3,al},{b4,a2}}, then it is easy to 
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find an F-ES. So the only case remaining is {x,y} = {b2,a3}. But then the graph can 

be contracted to L3. This proves Case 2B. 

Case 2C: IV(C) N F I = 2, and 

G has no cycle that contains 3 vertices in F. (5.8) 

By Lemma 5.3, G has a subgraph G1 = K2,3(bl,b2,b3). By (5.8), ha, b5 f[ V(G1), and 
so by (5.2), G has two vertices a,a t such that (5.6) holds. 

Since K(G)~>2, G has two vertices c, ctE V(GI) and a (c, ba)-path Q, and a (c/,b4) - 

path Q'  with v ( o ) n  V(Q') = {b4}. By (5.6), and by (5.4), we must have {c,c'} = 
{a ,d} ,  and so baa, baa ~ E E(G).  Similarly, bsa, bsd E E(G). L e t / / 3  be the subgraph 

of  G with 

V(H3) ~- V(GI) U {ba, bs} and E(H3) = E (GI )  U {b4a, b4a',bsa, bsa'}. 

Then/ /3  ~ K2,5. Thus, we assume that G - E ( H 3 )  has an (x, y)-path P. By Lemma 5.2, 

I{x,y}nFI = 1. It is straightforward to check that we always can form a cycle 

containing 3 vertices of  F ,  contradicting (5.8). 

This completes the proof of  Proposition 3.5. [] 
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