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Abstract

We investigate dual frames of modular frames and Riesz bases in Hilbert C∗-modules. In Hilbert C∗-modules, a Riesz basis
may have many dual modular frames, and it may even admit two different dual modular frames both of which are Riesz bases.
We characterize those Riesz bases that have unique duals. In addition, we obtain a necessary and sufficient condition for a dual of
a Riesz basis to be again a Riesz basis, and prove some new related results.
© 2008 Published by Elsevier Inc.
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1. Introduction

Hilbert space frames were originally introduced by Duffin and Schaeffer [2] to deal with some problems in non-
harmonic Fourier analysis. Frames can be viewed as redundant bases which are generalizations of Riesz bases. This
redundancy property sometimes is extremely important in applications such as signal and image processing, data com-
pression and sampling theory. Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the inner product
to take values in a C∗-algebra rather than in the field of complex numbers. Frames for Hilbert spaces have natural ana-
logues for Hilbert C∗-modules [5]. These frames are called Hilbert C∗-modular frames or just simply modular frames.
Modular frames are not trivial generalizations of Hilbert space frames due to the complex structure of C∗-algebras.
It is well known that the theory of Hilbert C∗-modules is quite different from that of Hilbert spaces. For example, we
know that, any closed linear subspace in a Hilbert space has an orthogonal complement. But this is no longer true in
Hilbert C∗-module setting since not every closed submodule of a Hilbert C∗-module is complemented. Moreover, the
Riesz representation theorem for continuous functionals on Hilbert spaces does not hold in Hilbert C∗-modules, and
so there exist nonadjointable bounded linear operators on Hilbert C∗-modules. Therefore it is expected that problems
about frames in Hilbert C∗-modules are more complicated than those in Hilbert spaces. While some of the results
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about frames in Hilbert spaces can be easily extended to Hilbert C∗-modular frames, many others cannot be obtained
by simply modifying the approaches used in Hilbert spaces case (cf. [1–8,13,15,16]).

Riesz bases play important roles in the study of Hilbert space frame theory (cf. [6]). However, we will encounter
several obstacles when we deal with Riesz bases and frames for Hilbert C∗-modules. Firstly, unlike the Hilbert space
case, not every Hilbert C∗-module admits a Riesz basis (see Example 3.4 in [5]). However, the famous Kasparov’s
Stabilization Theorem [9] implies that every finitely or countably generated Hilbert C∗-module has a frame. This
makes the concept of frames more relevant to Hilbert C∗-modules when dealing with issues involving bases and
expansions. Secondly, a Riesz basis for a Hilbert C∗-module can have many different dual frames which are not
necessarily Riesz bases. This is completely different from the Hilbert space setting in which a Riesz basis has a
unique dual and this dual is also a Riesz basis.

The main purpose of this paper is to investigate some basic properties about modular Riesz bases and their duals.
These are the properties that are needed for further investigation of the modular frame theory. A Riesz basis always
has a canonical dual which is necessarily a Riesz basis. However, it can even have two different duals both of which
are Riesz bases. In this paper we obtain a necessary and sufficient condition for a dual of a Riesz basis to be again a
Riesz basis. In particular, we characterize those modular Riesz bases that have unique duals. The characterization is
given in terms of the properties of the range spaces of the analysis operators. As a consequence, we show that when
the underlying C∗-algebra is commutative, every modular Riesz basis has a unique Riesz dual (although it may still
have other duals that are not Riesz bases, see Example 3.6). Several examples are also given to show the differences
between the Riesz bases and their duals in Hilbert C∗-modules with respect to those in Hilbert spaces.

2. Preliminaries

We review some basics about Hilbert C∗-modular frames that will be needed in the proofs of the main results in
Section 3. For basic notations and theory for Hilbert C∗-modules see [9–12,14,16,18].

Definition 2.1. Let A be a C∗-algebra and H be a (left) A-module. Suppose that the linear structures given on A and
H are compatible, i.e. λ(ax) = a(λx) for every λ ∈ C, a ∈A and x ∈H. If there exists a mapping 〈·,·〉 :H×H → A
with the properties

(1) 〈x, x〉 � 0 for every x ∈ H,
(2) 〈x, x〉 = 0 if and only if x = 0,
(3) 〈x, y〉 = 〈y, x〉∗ for every x, y ∈H,
(4) 〈ax, y〉 = a〈x, y〉 for every a ∈A, and every x, y ∈ H,
(5) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 for every x, y, z ∈ H.

Then the pair {H, 〈·,·〉} is called a (left-) pre-Hilbert A-module. The map 〈·,·〉 is said to be an A-valued inner product.
If the pre-Hilbert A-module {H, 〈·,·〉} is complete with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2, then it is called a
Hilbert A-module.

We want to mention here that the Cauchy–Schwartz inequality holds in Hilbert C∗-modules.

Proposition 2.2. Let H be a pre-Hilbert A-module and x, y ∈H. Then

〈y, x〉〈x, y〉 �
∥∥〈x, x〉∥∥〈y, y〉.

Moreover,∥∥〈x, y〉∥∥ � ‖x‖‖y‖.

In this paper we focus on finitely and countably generated Hilbert C∗-modules over unital C∗-algebra A. A Hilbert
A-module H is (algebraically) finitely generated if there exists a finite set {x1, . . . , xn} ⊆ H such that every element
x ∈ H can be expressed as an A-linear combination x = ∑n

i=1 aixi , ai ∈ A. A Hilbert A-module H is countably
generated if there exists a countable set of generators (see [5]).

We now recall the definitions of frames and Riesz bases in Hilbert C∗-modules as follows.
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Definition 2.3. (See [5].) Let A be a unital C∗-algebra and J be a finite or countable index set. A (countable or
finite) sequence {xj }j∈J of elements in a Hilbert A-module H is said to be a (standard) frame for H if there exist two
constants C,D > 0 such that

C〈x, x〉 �
∑
j∈J

〈x, xj 〉〈xj , x〉 � D〈x, x〉

for every x ∈ H, where the sum in the middle of the inequality is convergent in norm. The numbers C and D are
called frame bounds.

Likewise, {xj }j∈J is called a (standard) Bessel sequence with bound D if there exists D > 0 such that∑
j∈J

〈x, xj 〉〈xj , x〉 � D〈x, x〉

for every x ∈H, where the sum in the inequality is convergent in norm.

Definition 2.4. (See [5].) A frame {xj }j∈J for a Hilbert A-module H is said to be a (standard) Riesz basis for H if it
satisfies:

(i) xj 	= 0 for all j ;
(ii) if an A-linear combination

∑
j∈S aj xj with coefficients {aj : j ∈ S} ⊆ A and S ⊆ J is equal to zero, then every

summand ajxj is equal to zero.

Let us introduce the definition of dual sequences of modular frames.

Definition 2.5. Suppose that H is a Hilbert A-module over a unital C∗-algebra A. Let {xj }j∈J be a (standard) frame
and {yj }j∈J a sequence of H. Then {yj }j∈J is said to be a (standard) dual sequence of {xj }j∈J if

x =
∑
j∈J

〈x, yj 〉xj (1)

holds for all x ∈ H, where the sum in (1) converges in norm. The pair {xj }j∈J and {yj }j∈J are called a dual frame
pair when {yj }j∈J is also a frame.

Like the Hilbert space frame case, the following result guarantees the existence of a dual for any Hilbert C∗-module
frame.

Theorem 2.6. (See [5].) Let {xj }j∈J be a standard frame in a finitely or countably generated Hilbert A-module H
over a unital C∗-algebra A. Then there exists a unique positive and invertible operator S on H such that

x =
∑
j∈J

〈x,Sxj 〉xj

for every x ∈H.

The dual in the above theorem is called the canonical or standard dual and it is obviously a frame.
We now introduce a few more notations. For a unital C∗-algebra A, let l2(A) be the Hilbert A-module defined by

l2(A) =
{
{aj }j∈J ⊆ A:

∑
j∈J

aja
∗
j converges in ‖ · ‖

}
.

Let {ej }∞j=1 denote the standard orthonormal basis of l2(A), where ej takes value 1A at j and 0A everywhere else.
For any Bessel sequence {xj }j∈J of a finitely or countably generated Hilbert A-module H, the associated analysis
operator TX : H → l2(A) is defined by

TXx =
∑
j∈J

〈x, xj 〉ej , x ∈ H.

Note that analysis operator TX is adjointable and its adjoint T ∗ fulfills T ∗ej = xj for all j .
X X
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We end up this section with the following inequality which will be used in the proof of Theorem 3.10.

Lemma 2.7. Let A be a C∗-algebra. Suppose that {aj }j∈J and {bj }j∈J are two sequences of A such that both∑
j∈J aja

∗
j and

∑
j∈J bjb

∗
j converge in A, then∑

j∈J

(aj + bj )(aj + bj )
∗ � 2

∑
j∈J

(
aja

∗
j + bjb

∗
j

)
.

3. Duals of Riesz bases in Hilbert C∗-modules

The aim of this section is to have a detailed investigation on the dual sequences of Riesz bases in Hilbert C∗-
modules.

In the Hilbert space case, we know that a frame is a Riesz basis if and only if its analysis operator is surjective [6].
This is no longer true for Hilbert C∗-module frames. We begin this section with a characterization of Riesz bases. Let
Pn be the projection on l2(A) that maps each element to its nth component, i.e. Pnx = {uj }j∈J, where

uj =
{

xn if j = n,

0 if j 	= n,

for each x = {xj }j∈J ∈ l2(A).

Theorem 3.1. Let {xj }j∈J be a frame of a finitely or countably generated Hilbert A-module H over a unital C∗-
algebra A. Then {xj }j∈J is a Riesz basis if and only if xn 	= 0 and Pn(Rang(TX)) ⊆ Rang(TX) for all n ∈ J, where TX

is the analysis operator of {xj }j∈J.

Proof. Suppose first that {xj }j∈J is a Riesz basis.
Note that for any a = {aj }j∈J in l2(A), if

∑
j∈J

ajxj = 0, then ajxj = 0 for all j ∈ J.

Now for any a = {aj }j∈J ∈ Rang(TX)⊥ and x ∈H, we have

0 =
∑
j∈J

〈x, xj 〉a∗
j =

〈
x,

∑
j∈J

ajxj

〉
.

And so ajxj = 0 holds for all j . This implies that

n∑
j=1

〈x, xj 〉a∗
j =

n∑
j=1

〈x, aj xj 〉 = 0.

It follows that a ∈ Pn(Rang(TX))⊥, and so Rang(TX)⊥ ⊆ Pn(Rang(TX))⊥. Consequently Pn(Rang(TX)) ⊆ Rang(TX).
Suppose now that Pn(Rang(TX)) ⊆ Rang(TX) for each n. We want to show that {xj }j∈J is a Riesz basis.
Suppose that

∑
j∈J ajxj = 0, where aj ∈ A.

Fix an n ∈ J, then PnTXx ∈ Rang(TX), so there exists yn ∈ H such that TXyn = PnTXx.
Therefore we get

〈yn, xj 〉 =
{ 〈x, xn〉 if j = n,

0 if j 	= n.

Now for any x ∈ H we have

〈x, anxn〉 = 〈x, xn〉a∗
n =

∑
j∈J

〈yn, xj 〉a∗
j =

∑
j∈J

〈yn, aj xj 〉 =
〈
yn,

∑
j∈J

ajxj

〉
= 0,

which implies that anxn = 0. �
Note that in Hilbert spaces, if {xj }j∈J is a Riesz basis and

∑
j∈J

cjxj converges for a sequence {cj } ⊆ C, then

{cj } ∈ l2. But this is not the case in the setting of Hilbert C∗-modules. We have the following example.



250 D. Han et al. / J. Math. Anal. Appl. 343 (2008) 246–256
Example 3.2. Let l∞ be the set of all bounded complex-valued sequences. For any u = {uj }j∈N and v = {vj }j∈N

in l∞, we define

uv = {ujvj }j∈N, u∗ = {ūj }j∈N and ‖u‖ = max
j∈N

|uj |.
Then A = {l∞,‖ · ‖} is a C∗-algebra.

Let H = c0 be the set of all sequences converging to zero. For any u,v ∈H we define

〈u,v〉 = uv∗ = {uj v̄j }j∈N.

Then H is a Hilbert A-module.
Obviously, {ej }j∈N is an orthonormal basis of H.
For each j we let cj = √

j + 1ej+1.
Then cj ej = 0 and so

∑∞
j=1 cj ej = 0.

But
∑∞

j=1 cj c
∗
j = ∑∞

j=2 jej does not converge in A. Thus {cj } /∈ l2(A).

Following the definition of Riesz bases in Hilbert C∗-modules, to test a sequence {xj }j∈J is a Riesz basis, one
need to show that if

∑
j∈J

cjxj = 0 for some sequence {cj }j∈J ⊆ A, then cjxj = 0 for each j . We claim that we can

restrict the sequence {cj }j∈J in l2(A).

Corollary 3.3. Suppose that {xj }j∈J is a frame of H, then {xj }j∈J is a Riesz basis if and only if

(1) xj 	= 0 for each j ∈ J;
(2) if

∑
j∈J cj xj = 0 for some sequence {cj }j∈J ∈ l2(A), then cjxj = 0 for each j ∈ J.

Proof. See the proof of Theorem 3.1. �
We have mentioned in the introduction that, contrast to the Hilbert space situation, Riesz bases of Hilbert C∗-

modules may possess infinitely many dual frames due to the existence of zero-divisors in the C∗-algebra of coef-
ficients. The following three simple examples show that the dual of Riesz bases of Hilbert C∗-modules are quite
different from and more complicated than the Hilbert space cases.

The following example shows that in Hilbert C∗-modules the dual Riesz basis of a Riesz basis is not unique.

Example 3.4. Let A = M2×2(C) denote the C∗-algebra of all 2 × 2 complex matrices. Let H = A and for any
A,B ∈H define

〈A,B〉 = AB∗.
Then H is a Hilbert A-module.

Let Ei,j be the 2 × 2 matrix with 1 in the (i, j)th entry and 0 elsewhere, where 1 � i, j � 2.
Then {E1,1,E2,2} is a Riesz basis of H and it is a dual of itself.
One can check that {E1,1 + E2,1,E2,2} is also a dual Riesz basis of {E1,1,E2,2}.
It is well known that if {xj }j∈J is a Riesz basis and {yj }j∈J is a dual sequence of {xj }j∈J in a Hilbert space H , then

{yj }j∈J is a Riesz basis which is the unique dual of {xj }j∈J. The following example shows that this is not the case in
Hilbert C∗-modules.

Example 3.5. Suppose H and A are the same as in Example 3.2.
Now let xj = ej and

yj =
{

e1 if j = 1,

ej + jej−1 if j 	= 1.

One can verify that

x =
∑
j∈N

〈x, yj 〉xj

holds for all x ∈ H . But {yj }j∈N is not a Riesz basis, even not a Bessel sequence.
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Note that even the dual sequence of a Riesz basis in Hilbert C∗-modules is a Bessel sequence, it still has the chance
not to be a Riesz basis. We have the following example.

Example 3.6. Suppose H and A are the same as in Example 3.2.
Now let xj = ej and

yj =
{

e1 + e2 if j = 1,2,

ej if j 	= 1,2.

Then {yj }j∈N is a Bessel sequence, and satisfies

x =
∑
j∈N

〈x, yj 〉xj

for all x ∈H.
Therefore, {yj }j∈N is a frame of H. But obviously {yj }j∈N is not a Riesz basis.

The following result was obtained independently by Arambašić [1] and Jing [7]. One of the advantage of this
characterization is that it is much easier to compare the norms of two positive elements than to compare two positive
elements in C∗-algebras.

Proposition 3.7. Let H be a finitely or countably generated Hilbert A-module H over a unital C∗-algebra A and
{xj }j∈J ⊆ H a sequence. Then {xj }j∈J is a frame of H with bounds C and D if and only if

C‖x‖2 �
∥∥∥∥∑

j∈J

〈x, xj 〉〈xj , x〉
∥∥∥∥ � D‖x‖2

for all x ∈H.

Using the above characterization of modular frames we can easily prove the following result.

Proposition 3.8. Suppose that H is a finitely or countably generated Hilbert A-module H over a unital C∗-algebra A.
Let {xj }j∈J and {yj }j∈J be two Bessel sequences in H. If x = ∑

j∈J
〈x, yj 〉xj holds for any x ∈ H, then both {xj }j∈J

and {yj }j∈J are frames of H and x = ∑
j∈J〈x, xj 〉yj holds for all x ∈ H.

Proof. Let us denote the Bessel bound of {yj }j∈J by DY . For all x ∈ H we have

‖x‖4 =
∥∥∥∥
〈∑
j∈J

〈x, yj 〉xj , x

〉∥∥∥∥
2

=
∥∥∥∥∑

j∈J

〈x, yj 〉〈xj , x〉
∥∥∥∥

2

�
∥∥∥∥∑

j∈J

〈x, yj 〉〈yj , x〉
∥∥∥∥ ·

∥∥∥∥∑
j∈J

〈x, xj 〉〈xj , x〉
∥∥∥∥

� DY ‖x‖2 ·
∥∥∥∥∑

j∈J

〈x, xj 〉〈xj , x〉
∥∥∥∥.

Note that in the first inequality we apply the Cauchy–Schwartz inequality in Hilbert A-module l2(A). It follows that

D−1
Y ‖x‖2 �

∥∥∥∥∑
j∈J

〈x, xj 〉〈xj , x〉
∥∥∥∥.

This implies that {xj }j∈J is a modular frame. Similarly, we can show that {yj }j∈J is also a frame of H.
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It follows directly from Proposition 6.3 in [5] that

x =
∑
j∈J

〈x, xj 〉yj

holds true for all x ∈H. �
To prove our main result, we also need the following lemma.

Lemma 3.9. Let {xj }j∈J be a frame of a finitely or countably generated Hilbert A-module H over a unital C∗-
algebra A. Suppose that {yj }j∈J and {zj }j∈J are dual frames of {xj }j∈J with the property that either Rang(TY ) ⊆
Rang(TZ) or Rang(TZ) ⊆ Rang(TY ), where TY and TZ are the analysis operators of {yj }j∈J and {zj }j∈J,respectively.
Then yj = zj for all j ∈ J.

Proof. Suppose that Rang(TZ) ⊆ Rang(TY ). Then for each x ∈ H there exists yx ∈H such that

TY yx = TZx.

Applying T ∗
X on both sides, we arrive at

yx = T ∗
XTY yx = T ∗

XTZx = x,

and so TY x = TZx for all x ∈H.
Equivalently,∑

j∈J

〈x, yj 〉ej −
∑
j∈J

〈x, zj 〉ej = 0,

i.e.
∑

j∈J〈x, yj − zj 〉ej . Hence yj = zj for all j . �
We now give a necessary and sufficient condition about the uniqueness of dual frames in Hilbert C∗-modules. We

also prove that if a frame has a unique dual frame, then it must be a Riesz basis.

Theorem 3.10. Suppose that H is a finitely or countably generated Hilbert A-module over a unital C∗-algebra A.
Let {xj }j∈J be a frame of H with analysis operator TX , then the following statements are equivalent:

(1) {xj }j∈J has a unique dual frame;
(2) Rang(TX) = l2(A);
(3) if

∑
j∈J cj xj = 0 for some sequence {cj }j∈J ∈ l2(A), then cj = 0 for each j .

In case the equivalent conditions are satisfied, {xj }j∈J is a Riesz basis.

Proof. (2) ⇒ (1). Let {x∗
j }j∈J be the canonical dual of {xj }j∈J with analysis operator TX∗ . Then x∗

j = S−1
X xj , where

SX is the frame operator of {xj }j∈J.
Let {yj }j∈J be any dual frame of {xj }j∈J with analysis operator TY , then

Rang(TY ) ⊆ l2(A) = Rang(TX) = Rang(TX∗).

By Lemma 3.9, yj = x∗
j for all j .

(1) ⇒ (2). Assume on the contrary that Rang(TX) 	= l2(A).
By Theorem 15.3.8 in [17], we have

l2(A) = Rang(TX) ⊕ KerT ∗
X.

Let PX be the orthogonal projection from l2(A) onto Rang(TX), then

l2(A) = PXl2(A) ⊕ P ⊥
X l2(A).

Therefore P ⊥l2(A) = KerT ∗ 	= {0}.
X X
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Choose ej0 such that P ⊥
X ej0 	= 0 and define an operator U : P ⊥

X l2(A) → H by

Uw = 〈
w,P ⊥

X ej0

〉
xj0 .

Then U is an adjointable linear operator.
Now let {x∗

j }j∈J be the canonical dual of {xj }j∈J with upper bound DX∗ and set yj = x∗
j + UP ⊥

X ej .
We have∑

j∈J

〈x, yj 〉〈yj , x〉 =
∑
j∈J

〈
x, x∗

j + UP ⊥
X ej

〉〈
x∗
j + UP ⊥

X ej , x
〉

(2)

� 2

(∑
j∈J

〈
x, x∗

j

〉〈
x∗
j , x

〉 + ∑
j∈J

〈
P ⊥

X U∗x, ej

〉〈
ej ,P

⊥
X U∗x

〉)
(3)

� 2

(
DX∗〈x, x〉 +

∑
j∈J

〈
P ⊥

X U∗x,P ⊥
X U∗x

〉)
, (4)

which implies that {yj }j∈J is a Bessel sequence. Note that in inequality (3) we apply Lemma 2.7.
Now for any x ∈ H,∑

j∈J

〈
x,UP ⊥

X ej

〉
xj = T ∗

X

∑
j∈J

〈
x,UP ⊥

X ej

〉
ej = T ∗

X

∑
j∈J

〈
P ⊥

X U∗x, ej

〉
ej = T ∗

XP ⊥
X U∗x = 0.

This yields that x = ∑
j∈J

〈x, yj 〉xj for all x ∈ H. By Proposition 3.8, {yj }j∈J is a dual frame of {xj }j∈J and is
different from {x∗

j }j∈J, which contradicts with the uniqueness of the dual frame of {xj }j∈J.
(2) ⇔ (3). Obvious. �
We now characterize the dual sequences of Riesz bases in Hilbert C∗-modules. The following theorem is straight-

forward.

Theorem 3.11. Suppose that {xj }j∈J is a Riesz basis of a finitely or countably generated Hilbert A-module H over a
unital C∗-algebra A. Let {yj }j∈J be a sequence of H. Then the following statements are equivalent.

(1) {yj }j∈J is a dual frame of {xj }j∈J;
(2) {yj }j∈J is a dual Bessel sequence of {xj }j∈J;
(3) for each j ∈ J, yj = S−1xj + zj , where S is the frame operator of {xj }j∈J, and {zj }j∈J is a Bessel sequence of

H satisfying 〈x, zj 〉xj = 0 for all x ∈ H and j ∈ J.

For the case of a dual sequence of a Riesz basis to be a Riesz basis, we have the following characterization.

Theorem 3.12. Let {xj }j∈J be a Riesz basis and {yj }j∈J a sequence of a finitely or countably generated Hilbert
A-module H over a unital C∗-algebra A. Then {yj }j∈J is a dual Riesz basis of {xj }j∈J if and only if for each j ∈ J,
yj = S−1xj + zj , where S is the frame operator of {xj }j∈J, and {zj }j∈J is a Bessel sequence of H with the property
that for each j ∈ J there exists bj ∈ A such that zj = bjS

−1xj and 〈x, xj 〉bjxj = 0 holds for all x ∈ H.

Proof. “⇒.” Suppose that {yj }j∈J is a dual Riesz basis of {xj }j∈J and let zj = yj − S−1xj .
Then it is easy to see that {zj }j∈J is a Bessel sequence of H.
Now fix an n ∈ J.
From yn = ∑

j∈J〈yn, xj 〉yj we can infer that yn = 〈yn, xn〉yn, i.e.

S−1xn + zn = 〈
S−1xn + zn, xn

〉(
S−1xn + zn

)
.

Consequently, we have

zn = 〈zn, xn〉S−1xn + 〈
S−1xn, xn

〉
zn + 〈zn, xn〉zn.
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To show that 〈S−1xn, xn〉zn + 〈zn, xn〉zn = 0, it suffices to show that〈
S−1xn, xn

〉〈zn, x〉 + 〈zn, xn〉〈zn, x〉 = 0

holds for all x ∈H.
Note that

x =
∑
j∈J

〈x, yj 〉xj =
∑
j∈J

〈
x,S−1xj

〉
xj +

∑
j∈J

〈x, zj 〉xj = x +
∑
j∈J

〈x, zj 〉xj ,

which implies that
∑

j∈J
〈x, zj 〉xj = 0 and so 〈x, zj 〉xj = 0 for all x ∈ H and j ∈ J.

Particularly, we have 〈x, zn〉xn = 0 for all x ∈H. This yields that

〈x, zn〉〈xn, zn〉 = 0 and 〈x, zn〉
〈
xn,S

−1xn

〉 = 0.

Equivalently, 〈zn, xn〉〈zn, x〉 = 0 and 〈S−1xn, xn〉〈zn, x〉 = 0.
Therefore zn = bnS

−1xn, where bn = 〈zn, xn〉.
From 〈xn, zn〉xn = 0, we have

〈y, xn〉〈xn, zn〉〈xn, x〉 = 0

for all x, y ∈H, which is equivalent to 〈x, xn〉〈zn, xn〉〈xn, y〉 = 0, this implies that

〈x, xn〉bnxn = 〈x, xn〉〈zn, xn〉xn = 0.

“⇐.” Suppose now that for each j ∈ J there exists bj ∈ A such that zj = bjS
−1xj and 〈x, xj 〉bjxj = 0 holds for

all x ∈ H. Then for all x, y ∈H we have

〈x, xj 〉bj 〈xj , y〉 = 0.

Equivalently,

〈y, xj 〉b∗
j 〈xj , x〉 = 0.

This implies that 〈y, xj 〉b∗
j xj = 0 for all y ∈H.

Now for arbitrary x ∈H,∑
j∈J

〈x, yj 〉xj =
∑
j∈J

〈
x,S−1xj

〉
xj +

∑
j∈J

〈x, zj 〉xj = x +
∑
j∈J

〈
x, bjS

−1xj

〉
xj = x +

∑
j∈J

〈
x,S−1xj

〉
b∗
j xj

= x +
∑
j∈J

〈
S−1x, xj

〉
b∗
j xj = x,

which implies that {yj }j∈J is a dual sequence of {xj }j∈J.
With the similar argument in (2)–(4), one can easily see that {yj }j∈J is a Bessel sequence. It follows from Propo-

sition 3.8 that {yj }j∈J is a dual frame of {xj }j∈J.
To complete the proof, we need to show that {yj }j∈J is a Riesz basis of H.
Suppose that

∑
j∈J

ajyj = 0, then we have

0 =
∑
j∈J

aj

(
S−1xj + bjS

−1xj

) =
∑
j∈J

aj (1 + bi)S
−1xj .

Therefore aj (1 + bj )S
−1xj = 0, i.e. ajyj = 0 for all j .

We now show that yj 	= 0 for each j ∈ J.
Assume on the contrary that yn = 0 for some n ∈ J. Then zn = −S−1xn. It follows that

0 = 〈x, xn〉bnxn = 〈x, xn〉Szn = −〈x, xn〉xn

holds for all x ∈H.
In particular, letting x = S−1xn, we have 0 = −〈S−1xn, xn〉xn = −xn, and so xn = 0, a contradiction. This com-

pletes the proof. �
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Corollary 3.13. Suppose that H is a finitely or countably generated Hilbert A-module over a unital C∗-algebra A. If
A is commutative, then every Riesz basis of H has a unique dual Riesz basis.

Proof. Choose an arbitrary Riesz basis {xj }j∈J of H. Suppose that {S−1xj + zj }j∈J is a dual Riesz basis of {xj }j∈J,
where S is the frame operator of {xj }j∈J.

Then by Theorem 3.12, for each j ∈ J there exists bj ∈ A such that zj = bjS
−1xj and 〈x, xj 〉bjxj = 0 holds for

all x ∈ H.
Since A is commutative, we have bj 〈x, xj 〉xj = 0 for all x ∈ H and j ∈ J.
Let x = S−1xj . We have

0 = bj

〈
S−1xj , xj

〉
xj = bj

〈
xj , S

−1xj

〉
xj = bjxj ,

which yields that zj = bjS
−1xj = 0. �

Note that under the conditions of Corollary 3.13, though a Riesz basis has a unique dual Riesz basis, it may have
many dual frames. We have the following example.

Example 3.14. Let A = D2×2(C) denote the C∗-algebra of all 2 × 2 complex diagonal matrices. Let H = A and for
any A,B ∈H define

〈A,B〉 = AB∗.

Then H is a Hilbert A-module.
It is obvious that A is commutative.
Let Ei,j be the 2 × 2 matrix with 1 in the (i, j)th entry and 0 elsewhere, where 1 � i, j � 2.
Then {E1,1,E2,2} is a Riesz basis of H, and so it has a unique dual Riesz basis which is itself.
But the dual frame of {E1,1,E2,2} is not unique. For example, one can verify that {E1,1 + αE2,2, βE1,1 + E2,2} is

also a dual frame of {E1,1,E2,2} for any α,β ∈ C.

The following example shows that the converse of Corollary 3.13 is not true, namely, if every Riesz basis of a
Hilbert A-module H has a unique dual Riesz basis, A is not necessarily commutative.

Example 3.15. Let

H =
{(

a 0 0
0 0 0
0 0 0

)
: ∀a ∈ C

}
and A =

{(
a 0 0
0 b c

0 d e

)
: ∀a, b, c, d, e ∈ C

}
.

For any A,B ∈H we define

〈A,B〉 = AB∗.

Then H is a A-module.
Note that A is not commutative.
Let

Eα =
(

α 0 0
0 0 0
0 0 0

)
.

Then {Eα} is a Riesz basis of H.
It is easy to see that any Riesz basis of H has the form of {Eα} for some nonzero α ∈ C. And one can also check

that every dual Riesz basis of {Eα} for each nonzero α is unique.

It is also natural to ask

Question 3.16. If one Riesz basis of a Hilbert C∗-module H has a unique dual Riesz basis, does every Riesz basis of
H have a unique dual Riesz basis?
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Unfortunately, the answer to this question is negative. We have the following example.

Example 3.17. Suppose that A and H are the same as in Example 3.4.
We already know that {E1,1,E2,2} is a Riesz basis of H whose dual Riesz bases are not unique.
Let I be the 2 × 2 identity matrix. Then {I } is also a Riesz basis of H, but the dual Riesz basis of {I } is itself. Of

course, it is unique.

Remark 3.18. From the above example we see that the numbers of elements of two Riesz bases for a Hilbert C∗-
module may be different which can never happen in Hilbert spaces.

We end this paper with the following conjecture.

Conjecture 3.19. Suppose that H is a finitely or countably generated Hilbert A-module over a unital C∗-algebra A.
Then every Riesz basis of H has a unique dual Riesz basis if and only if the set {〈a, b〉: ∀a, b ∈ H} is commutative,
i.e., 〈a, b〉 · 〈c, d〉 = 〈c, d〉 · 〈a, b〉 for all a, b, c, and d in H.
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