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Consider the multivariate linear model for the random matrix Yn_p t

MN(XB, V�7), where B is the parameter matrix, X is a model matrix, not
necessarily of full rank, and V�7 is an np_np positive-definite dispersion matrix.
This paper presents sufficient conditions on the positive-definite matrix V such that
the statistics for testing H0 : CB=0 vs Ha : CB{0 have the same distribution as
under the i.i.d. covariance structure I�7. � 1999 Academic Press
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1. INTRODUCTION

This paper is concerned with testing linear hypotheses about regression
coefficients in the multivariate linear model. For tests of such hypotheses,
one typically assumes multivariate normality of the error terms with an
i.i.d. covariance structure. We are interested in the extent to which the i.i.d.
assumption can be violated without changing the standard i.i.d.-based
sampling distribution properties of test statistics for linear hypotheses. We
shall call covariance structures that achieve this property independence
distribution-preserving (IDP).

The IDP dependency structures established in this paper yield insight
into the robustness of commonly used statistics for testing multivariate
linear hypotheses. The existence of such covariance structures implies that
error terms in the multivariate linear model need not be independent nor
must the marginal covariance structures be equal in order for the usual
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i.i.d.-induced properties of statistics for linear hypotheses to hold. Hence,
under the i.i.d.-normality assumption, some degree of robustness against
dependent error terms exists. Furthermore, under the general IDP error
structure derived in this paper, the marginal covariance matrices of the
error terms need not be identical.

In this section we formulate the problem to be addressed and introduce
notation. We also briefly review the literature and preview our main results.

Let Yn_p represent the random matrix [Y1 , Y2 , ..., Yn]$, where each Y i

is a p_1 random vector. Denote by vec(Y$) the np_1 vector formed by
the vertical concatenation of the Yi s. The random matrix Y is said to
have a matrix normal distribution with mean +n_p=[+1 , +2 , ..., +n]$ and
covariance matrix 5np_np if vec(Y$) has a multivariate normal distribution
with mean vec(+$) and covariance matrix 5. We write YtMN(+, 5). Note
that +i is a p_1 vector for i=1, ..., n. Let Wp(k, 7, 2) denote a noncentral
Wishart distribution with k degrees of freedom, parameter matrix 7, and
noncentrality parameter 2. A central Wishart distribution (2=0) with k
degrees of freedom is denoted by Wp(k, 7).

Let Y be an n_p matrix of n observations on p characteristics and let
X be an n_q model (design) matrix of fixed independent variables of rank
r. Let B be the q_p matrix of coefficient parameters, and let E be an n_p
matrix of random errors. Then, the multivariate linear model is

Y=XB+E, (1.1)

where E(Y)=XB and the first column of the known design matrix X is a
vector of ones. We assume that Var(Y)=Var(E)=W, where the positive-
definite (p.d.) covariance matrix, W, is unknown. Note that in the model
(1.1) we assume that the parameter matrix B is unknown, EtMN(0, W),
and YtMN(XB, W). Let Yi be the i th column of Y$ and let Var(Yi)=7,
where 7 is a p.d. matrix. If we assume the usual i.i.d. covariance structure,
then

W=In �7, (1.2)

where the notation A�B represents the Kronecker matrix product defined
by (aijB), as given in Anderson [1, p. 599], and In is the n_n identity
matrix.

Consider the test of the linear hypothesis

H0 : CB=0 vs Ha : CB{0, (1.3)

where C is an s_q constraint matrix of rank s such that CB is estimable.
Let

P=X(X$X)& X$ (1.4)
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and

P0=(X(X$X)& C$)(C(X$X)& C$)&1 (C(X$X)& X$). (1.5)

Assuming the i.i.d. covariance structure (1.2), we have that

Q=Y$(In&P) YtWp(n&r, 7) (1.6)

and

R=Y$P0YtWp(s, 7, 2), (1.7)

where r=rank(X) and 2=(CB)$(C(X$X)& C$)&1(CB) is the noncentrality
matrix. Under the matrix-normal i.i.d. model defined in (1.1) and (1.2),
common statistics for testing the hypothesis (1.3) are functions of Q and R.
These include, for example, the Lawley�Hotelling trace statistic, LH=
(n&r) tr[(QR&1)]; Wilks' lambda statistic, 4=|Q|�|Q+R|; and Pillai's
trace statistic, PT=tr[R(Q+R)&1], among others. We shall denote an
arbitrary member of this group of test statistics by f (Q, R).

Consider the covariance structure

W=V�7, (1.8)

where V is an n_n p.d. matrix. In this paper we provide necessary and suf-
ficient conditions on the matrix V such that, given the linear constraint
matrix C in (1.3), a test statistic f (Q, R) is distributed exactly as under the
i.i.d. dispersion structure (1.2). In doing so, we also provide conditions on
V which insure that W is p.d.

Our result extends the IDP-related results for univariate linear models
in Mathew and Bhimasankaram [8], Tranquilli and Baldesarri [11],
Jeyaratnam [4], Khatri [5], and Ghosh and Sinha [3]. Our work also
extends the IDP results for the multivariate general linear model by Pavur
[10] and Meaux, Young, and Seaman [9]. Pavur [10] has obtained a suf-
ficient general form of the IDP covariance matrix for some multivariate
analysis of variance test statistics, assuming a particular design matrix X
and a particular form for the constraint matrix C. Meaux et al. [9] have
formulated a general IDP covariance structure for testing hypothesis (1.3),
where C=[0(q&1)_1 : I(q&1)_(q&1)] under the multivariate general linear
model.

In Section 2 we provide some notation and preliminary results which we
utilize in our characterization of the general form of the IDP dependency
structure for testing the coefficients of the multivariate linear model. We
present our main result in Section 3 and conclude with brief comments in
Section 4.
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2. MATHEMATICAL PRELIMINARIES

In this section we establish notation, present two lemmas, and derive a
theorem that is utilized in the proof of the main results. The linear space
of all m_n matrices over the complex field is denoted by Cm_n and the set
of real-valued matrices in Cm_n is represented by Rm_n . Denote the cone
consisting of all nonnegative-definite (n.d.) matrices in Cp_p (Rp_p) by
C�

p (R �
p ). Let C >

p (R >
p ) be the interior of C �

p (R �
p ), which consists of all

p.d. matrices in Cp_p (Rp_p). Also, let RS
p represent the set of all symmetric

matrices in Rp_p . The symbol A* denotes the conjugate transpose of a
matrix A # Cm_n . Let U+ denote the Moore-Penrose pseudo-inverse of the
matrix U # Cm_n(Rm_n), and use N(A) and R(A) to denote the null space
and range space, respectively, of A # Rm_n .

The following two lemmas and theorem are utilized in the proof of our
main theorems. The first lemma is a combination of Corollaries 2.3.2 and
2.4.2 in Wong, Masaro, and Wang [12].

Lemma 1. Let YtMN(+, V�7), where + # Rn_p , V # R �
n , and 7 # R �

p .
Consider the multivariate quadratic forms Y$Ai Y, i=1, 2, where Ai # RS

n .
Then, for i=1, 2, Y$Ai YtWp(k i , 7, 2i) with k i=rank(VA i) degrees of
freedom and noncentrality parameter 2i=+$Ai+ if and only if the following
conditions hold:

(i) VAi VAiV=VAi V;

(ii) +$AiVAi VAi+=+$AiVAi+=+$Ai+;

(iii) VA1 VA2V=0;

(iv) VA1 VA2+=0;

and

(v) +$A1VA2 +=0.

Moreover, given Y$Ai YtWp(k i , 7, 2i), then Y$AiYtWp(ki , 7) if and
only if Ai+=0, i=1, 2.

The following lemma is well known and, therefore, stated without proof.

Lemma 2. For F, G # Cm_n , the matrix equation FF*=GG* holds if
and only if F=GQ for some unitary matrix Q # Cn_n .

The following theorem is an extension of a result proved in Baksalary
[2] which gives a representation of the general n.d. solution to the single
matrix equation AXA*=K where A # Cm_n and K # C �

m , provided such a
solution exists. The theorem gives a representation of the general n.d.
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common solution to the pair of matrix equations Ai XAi*=Ki , i=1, 2,
where K1 and K2 are n.d. matrices.

Theorem 1. Let Ai # Cm_n , let Ki # C �
m , and let K i=BiB i*, where Bi is

an arbitrary but fixed m_n matrix, i=1, 2. The matrix equations

Ai XAi*=Ki ; i=1, 2, (2.1)

have a common n.d. solution if and only if

A1A+
1 B1=B1 (2.2)

and

[A2(In&A+
1 A1)][A2(In&A+

1 A1)]+ (B2&A2A+
1 B1)=(B2&A2 A+

1 B1).

(2.3)

If a common n.d. solution exists, a representation of the general common n.d.
solution is X=UU*, where

U=A+
1 B1+(In&A+

1 A1)[A2(In&A+
1 A1)]+ (B2&A2A+

1 B1)

+(In&A+
1 A1)(In&[A2(In&A+

1 A1)]+ [A2(In&A+
1 A1)]) Z (2.4)

and Z is free to vary over Cn_n .

Proof. Consider the two matrix equations

A1U=B1 (2.5)

and

A2U=B2 . (2.6)

Equation (2.5) has a solution if and only if condition (2.2) holds and a
representation of the general solution is

U=A+
1 B1+(In&A+

1 A1) Z, (2.7)

where Z # Cn_n is arbitrary. Substituting (2.7) into (2.6), we have that (2.5)
and (2.6) have a common solution if and only if (2.2) and (2.3) hold. We
note that a common solution to (2.5) and (2.6) exists if and only if a
common n.d. solution to the equations (2.1) exists.

Now, consider the pair of matrix equations (2.1). Provided a common
n.d. solution exists, one can readily show that the matrix X=UU*, where
U, defined in (2.4), is a common n.d. solution to the two matrix equations
(2.1), regardless of the choice of Z. To prove that X=UU* yields a
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representation of the general common n.d. solution to the pair of matrix
equations (2.1), assume that X0 is an arbitrary common n.d. solution to the
matrix equations (2.1). Let A=[ A1

A2
] and B=[ B1

B2
]. If the matrix X0 is a

common n.d. solution to the pair of matrix equations (2.1), then there
exists a matrix U0 such that X0=U0U0* and AU0U0*A*=BB*. From
Lemma 2 it follows that AU0U0*A*=BB* if and only if AU0=BQ for
some unitary matrix Q. Now, let Z=U0Q* in (2.4). Then,

U=A+
1 B1+(In&A+

1 A1)[A2(In&A+
1 A1)]+ [B2&A2A+

1 B1]

+(In&A+
1 A1)(In&[A2(In&A+

1 A1)]+ [A2(In&A+
1 A1)]) U0Q*

=A+B+(In&A+A) U0Q*

=A+B+U0Q*&A+AU0 Q*

=A+B+U0Q*&A+B

=U0Q*.

Hence, we have X0 = U0 U0* = U0Q*QU0* = UU* = X. Thus, X is a
representation of the general n.d. solution to the pair of matrix equations
(2.1). K

3. THE MAIN RESULTS

The main results of this paper are contained in the following two
theorems. In the first theorem, assuming the error covariance structure
W=V�7, we provide an explicit characterization of the general p.d.
matrix V such that a pair of multivariate quadratic forms are distributed
as independent noncentral Wishart random matrices.

Theorem 2. Let YtMN(+, V�7) where V # R>
n and 7 # R >

p , and let
Gi # R�

n , i=1, 2, be idempotent matrices such that G1G2=0. Then,
Y$Gi YtWp(ki , 7, 2i) and are independent with ki=rank(G i) and 2i=
+$Gi+, i=1, 2, if and only if

V= :
2

i=1

G i+\In& :
2

i=1

Gi+ H+H$ \In& :
2

i=1

Gi+ , (3.1)

where H=Z[�2
i=1 Gi+

1
2 Z$(In&�2

i=1 Gi)] and Z is free to vary over the
set [Z # Rn_n : N(Z$) & N(�2

i=1 Gi)=[0] and R(�2
i=1 G i) & R[Z$(In&

�2
i=1 Gi)]=[0]].
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Proof. We first prove necessity. Assume that Y$G iYtWp(k i , 7, 2i),
i=1, 2, that Y$G1Y is independent of Y$G2Y, and that V # R >

n . Then,
from Lemma 1 we have that V is a common p.d. solution of the matrix
equations VGi VGi V=VG iV, i=1, 2. Because V # R >

n and G i # R �
n ,

i=1, 2, it follows that V is a common p.d. solution to the pair of matrix
equations

Gi VGi=Gi , (3.2)

i=1, 2. By Theorem 1 a representation of the general n.d. matrix V which
simultaneously satisfies the matrix equations (3.2) is of the form

V=\ :
2

i=1

G i+_`
2

i=1

(In&Gi)& Z+\ :
2

i=1

G i+_`
2

i=1

(In&Gi)& Z+$

=_ :
2

i=1

G i+\In& :
2

i=1

Gi+ Z&_ :
2

i=1

Gi+\In& :
2

i=1

G i+ Z&$

= :
2

i=1

Gi+\ :
2

i=1

Gi+ Z$ \In& :
2

i=1

Gi++\In& :
2

i=1

G i+ Z \ :
2

i=2

G i+
+\In& :

2

i=1

Gi+ ZZ$ \In& :
2

i=1

Gi+
= :

2

i=1

Gi+\In& :
2

i=1

G i+ Z _ :
2

i=1

G i+
1
2 Z$ \In& :

2

i=1

Gi+&
+_ :

2

i=1

Gi+
1
2 \In& :

2

i=1

Gi+ Z& Z$ \In& :
2

i=1

G i+
= :

2

i=1

Gi+\In& :
2

i=1

G i+ H+H$ \In& :
2

i=1

Gi + ,

where

H=Z _ :
2

i=1

Gi+
1
2Z$ \In& :

2

i=1

Gi+& .

We now give conditions on Z which insure that V # R >
n . Following

Baksalary's [2] method for restricting the arbitrary matrix Z to insure
that V # R >

n , we have that rank(V)=n if and only if rank[�2
i=1 Gi+

(In&�2
i=1 Gi) Z]=n if and only if

rank _\In& :
2

i=1

Gi + Z&=rank _\In& :
2

i=1

Gi +& (3.3)
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and

rank _ :
2

i=1

Gi+\In& :
2

i=1

G i+ Z&
=rank \ :

2

i=1

Gi++rank _\In& :
2

i=1

G i+ Z& . (3.4)

Corollary 6.2 in Marsaglia and Styan [7] implies that (3.3) holds if and
only if N(Z$) & N(�2

i=1 Gi)=[0]. Also, from a result in Marsaglia and
Styan [6] restriction (3.4) holds if and only if

R \ :
2

i=1

Gi+& R _\In& :
2

i=1

Gi + Z&=[0] (3.5)

and

R \ :
2

i=1

Gi+& R _Z$ \In& :
2

i=1

G i+&=[0].

Restriction (3.5) is trivially true.
To prove sufficiency, note that V, defined in (3.1), is a common p.d.

solution to the matrix equations Gi VGi=Gi , i=1, 2, and G1VG2=0.
Thus, from Lemma 1, Y$Gi YtWp(ki , 7, 2i), with k i=rank(G i) and
2i=+$Gi +, i=1, 2. Furthermore, Y$G1Y is independent of Y$G2 Y. K

The expression for V given in (3.1) represents a complete solution to
the problem of characterizing the general p.d. IDP covariance matrix of
the form W=V�7 such that the quadratic forms Y$Gi Y, i=1, 2, are
distributed as independent noncentral Wishart random matrices. The
following theorem presents the second of the two main results of this paper.

Theorem 3. Let YtMN(XB, V�7) where V # R >
n and 7 # R >

p . The
distribution of the test statistic f (Q, R) is identical to the distribution of
f (Q, R) assuming the model YtMN(XB, I�7) if and only if

V=(In&P+P0)+(P&P0) H+H$(P&P0) (3.6)

where P and P0 are defined in (1.4) and (1.5), respectively, H=
Z[(In&P+P0)+ 1

2Z$(P&P0)], and Z is free to vary over the set [Z #
Rn_n : N(Z$) & N(In&P+P0)=[0] and R(In&P+P0) & R[Z$(P&P0)]
=[0]].

Proof. The proof follows directly from Theorem 2 if we let G1=In&P
and G2=P0 . K

We note that the sufficiency portion of the last theorem is statistically
relevant but mathematically trivial. On the other hand, the necessity
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portion of the above theorem is statistically irrelevant but mathematically
interesting.

We now give an example to demonstrate the form of an IDP covariance
matrix for the multivariate general linear model. Consider the model (1.1)
with the following parameterization. Let n=4, p=2, q=3

7=_ 4
0.1

0.1
3 & , and X=_

1
1
1
1

2
5
5

10

9
13

7
17& .

Also, let

Z=_
3.25
3.25
3.25
3.25

3.25
3.25
3.25
3.25

3.75
3.75
3.75
3.75

4.75
4.75
4.75
4.75&

in H, where H is defined in Theorem 3, and let C=[ 0
0

1
0

0
1].

From expression (3.4) one possible IDP covariance structure for testing
H0 : CB=0 vs Ha : CB{0 is

W=V�7=

230.0 5.75 226.0 5.65 228.0 5.7 232.0 5.8

.

5.75 172.5 5.65 169.5 5.7 171.0 5.8 174.0

226.0 5.65 230.0 5.75 228.0 5.7 232.0 5.8

5.65 169.5 5.75 172.5 5.7 171.0 5.8 174.0

228.0 5.7 228.0 5.7 234.0 5.85 234.0 5.85

5.7 171.0 5.7 171.0 5.8 175.5 5.8 175.5

232.0 5.8 232.0 5.8 234.0 5.85 242.0 6.05

5.8 174.0 5.8 174.0 5.85 175.5 6.05 181.5

One can readily see that this IDP covariance matrix differs considerably
from the i.i.d. covariance structure (1.2). In particular, it allows for non-
zero covariance among observation vectors and for heteroscedastic
marginal covariance matrices.

4. DISCUSSION

The covariance structure W=V�7, where V is given in (3.6) and
7 # R >

p , yields a set of IDP p.d. covariance matrices for the test statistics
f (Q, R) for testing the linear hypothesis (1.3), provided W is of the general
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form (1.8). Our IDP p.d. general covariance structure differs from most
of the other results concerning IDP dependency structures for the linear
model. The difference is that we give explicit restrictions on the general
form for V which insures that all IDP covariance matrices are p.d. Note
that for the univariate case where 7=_2, the general IDP covariance
structure presented in this paper reduces to a form of the general IDP
dependency structure of Jeyaratnam [4].

The existence of IDP covariance structures for the multivariate
regression model has two notable consequences for the application of
multivariate regression analysis. First, the existence of IDP dependency
structures implies that the error terms do not have to be independent in
order for the distribution of the usual statistics for testing the linear
hypothesis H0 : CB=0 vs Ha : CB{0 to hold. This result implies that,
under the normality assumption, there is at least some degree of robustness
against dependent error terms. Second, under the general IDP error struc-
ture given in (3.6), the marginal covariance matrices of the error terms
need not be identical. Thus, a test statistic f (Q, R), although derived under
the usual i.i.d. assumption, W=In �7 possesses some degree of robustness
against heteroscedastic error terms in conjunction with dependence of the
error terms.

ACKNOWLEDGMENT

The authors thank an anonymous referee for his corrections and helpful suggestions which
greatly improved this paper.

REFERENCES

1. T. W. Anderson, ``An Introduction to Multivariate Analysis,'' Wiley, New York, 1984.
2. J. K. Baksalary, Nonnegative definite and positive definite solutions to the matrix equa-

tion AXA*=B, Linear and Multilinear Algebra 16 (1984), 133�139.
3. M. Ghosh and B. K. Sinha, On the robustness of least squares procedures in regression

models, J. Multivariate Anal. 10 (1980), 332�342.
4. S. Jeyaratnam, A sufficient condition on the covariance matrix for F tests in linear models

to be valid, Biometrika 69 (1982), 679�680.
5. C. G. Khatri, Study of F-tests under a dependent model, Sankhya� Ser. A 43 (1981),

107�110.
6. G. Marsaglia and G. P. H. Styan, When does rank(A+B)=rank(A)+rank(B)?, Canad.

Math. Bul. 15 (1972), 451�452.
7. G. Marsaglia and G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear

and Multilinear Algebra 2 (1974), 269�292.
8. T. Mathew and P. Bhimasankaram, On the robustness of the LRT with respect to

specification errors in a linear model, Sankhya� Ser. A 45 (1983), 212�225.

174 YOUNG, SEAMAN, AND MEAUX



9. L. M. Meaux, D. M. Young, and J. W. Seaman, Jr., Multivariate regression analysis with
dependent observations: Conditions for the invariance of the distribution of the Lawley�
Hotelling test for model utility, Statistica 54 (1995), 139�150.

10. R. Pavur, A characterization of the covariance structure in which certain quadratic forms
are independent and follow chi-square distributions, Sankhya� Ser. A 51 (1989), 382�389.

11. G. B. Tranquilli and B. Baldessari, Regression analysis with dependent observations: Con-
ditions for the invariance of the distribution of the F-statistic, Statistica 47 (1988), 49�57.

12. C. S. Wong, J. Masaro, and T. Wang, Multivariate version of Cochran's theorem, J. Mul-
tivariate Anal. 39 (1991), 154�174.

175DEPENDENCY STRUCTURES


	1. INTRODUCTION 
	2. MATHEMATICAL PRELIMINARIES 
	3. THE MAIN RESULTS 
	4. DISCUSSION 
	ACKNOWLEDGMENT 
	REFERENCES 

