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A b s t r a c t - - W e  prove that the mimetic finite-difference discretizations of Laplace's equation con- 
verges on rough logically-rectangular grids with convex cells. Mimetic discretizations for the invariant 
operators' divergence, gradient, and curl satisfy exact discrete analogs of many of the important the- 
orems of vector calculus. The mimetic discretization of the Laplacian is given by the composition 
of the discrete divergence and gradient. We first construct a mimetic discretization on a single cell 
by geometrically constructing inner products for discrete scalar and vector fields, then constructing 
a finite-volume discrete divergence, and then constructing a discrete gradient that is consistent with 
the discrete divergence theorem. This construction is then extended to the global grid. We demon- 
strate the convergence for the two-dimensional Laplace equation with Dirichlet boundary conditions 
on grids with a lower bound on the angles in the cell corners and an upper bound on the cell aspect 
ratios. The best convergence rate to be expected is first order, which is what we prove. The tech- 
niques developed apply to far more general initial boundary-value problems. (~) 2004 Elsevier Ltd. 
All rights reserved. 

K e y w o r d s - - M i m e t i c  discretization, Convergence, Finite-volume method. 

1. I N T R O D U C T I O N  

We prove t h a t  the solut ions of mimet ic  finite-difference discret izat ions  of Laplace ' s  equat ion,  and  

their  gradients ,  converge a t  first order to the solut ion and  gradient  of the  c o n t i n u u m  problem 

in  logical ly-rectangular  grids wi th  convex cells. Numer ica l  examples  indica te  t h a t  the  me thod  is 

first-order convergent  on rough grids and  second-order  convergent  on smooth  grids. 

Mimet ic  finite-difference methods ,  derived by the suppor t -opera to rs  m e t h o d  [1], create dis- 

cret izat ions  of the  gradient ,  curl, and  divergence t h a t  satisfy m a n y  propert ies  of the  c on t i nuum 
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operators, for example, that  the discrete curl of the discrete gradient is zero, that  the discrete gra- 
dient and divergence exactly satisfy a discrete analog of the divergence theorem, that  if the curl 
of a discrete vector field is zero, then it is a discrete gradient of a discrete scalar field, etc. [2-8]. 

The study [9] showed that  on nice problems, the mimetic finite-difference method was of com- 
parable accuracy to other methods, and on difficult problems, the mimetic method was superior 
to the mixed finite-element method. Extensions to higher-order methods can be found in [10-12]. 
Mimetic finite-difference methods have been applied in two-dimensional diffusion [9,13-15], three- 
dimensional diffusion [3,16], Maxwell's equations [17,18], hydrodynamics [19,20], and flow through 
porous media [21]. These successes motivate the need to prove the convergence properties of the 
method on rough grids. The proof techniques presented in this paper can be extended to gen- 
eral grids with convex cells (with triangles, quadrilaterals, and more complex polygonal cells), 
to problems with variable--even discontinuous--and anisotropic material properties, to general 
Robin or mixed boundary conditions, to higher dimensions, and other coordinate systems. 

The derived mimetic discretization, on nonuniform grids, are not given by local operators. 
However, in [14,16], it was observed that  by adding some auxiliary discrete scalar variables, the 
support-operators method could be viewed as local, with some computational advantages. In 
this paper, we extend this idea to a complete development of the mimetic ideas from a local, 
that  is, single cell point of view. This is done by having discrete scalar variables located at the 
cell center and at the centers of the cell edges, while the normal component of vector fields are 
located only at the centers of cell edges. Then one can retain the scalar values at the cell edge 
center and use the solution methods in [14,16], or these values can be eliminated and the usual 
support-operators method recovered. 

In fact, the development of mimetic finite-difference methods for a general quadrilateral cell 
in two dimensions is algebraically complex, so we begin all discussions with the one-dimensional 
case, as this adds clarity, and all calculations can be done explicitly. Many of the formulas in this 
paper were derived using a computer algebra system. As these systems do not support abstract 
vector computation, their use for our problems is not straightforward. 

Most of the early work on the support-operators method was done by Samarskii et al. [22,23] 
and the term "support-operators method" comes from early translations of this work. The 
textbooks [24,25] have extensive references to the early literature, and proofs of convergence 
for finite-difference methods similar to the methods presented here. An alternate convergence 
proof for the mimetic finite-difference method, based on viewing mimetic discretization as a 
mixed finite-element method, is contained in [26]. The paper [27] contains proofs of higher-order 
convergence for similar finite-difference methods in grids whose elements are rectangular, while the 
paper [28] studies "almost" second-order convergence for variable coefficients and mixed boundary 
conditions in rectangular grids. The related I-D natural finite-volume difference discretization 
introduced in [29] is shown to converge at second order on rough grids. Also, because we use a 
standard finite-volume discretization of the divergence, our method is a finite-volume method [30], 
and is closely related to the mixed finite-element method [31-35]. 

Methods where the solution of a discretization converge at a rate better than the order of 
the truncation error are called supraconvergent in [36]. Although the solutions of the mimetic 
finite-difference discretization of Laplace's equation are first-order convergent, the mimetic finite- 
difference discretization of the Laplacian has zero-order truncation error on irregular grids or on 
uniform grids near the boundary, even in one dimension, so the discretization is supraconvergent. 
However, both the divergence and gradient have truncation error of at least order one. In our 
analysis, we estimate the error in the solution of Laplace's equation in terms of the error in the 
divergence and gradient, as is natural in a mimetic formulation. The methods described in [25] 
and [24] can also have zero-order truncation error for the Laplacian on irregular grids. These 
authors rely on decompositions of the errors and special estimates for each part of the error to 
obtain their convergence results. 
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In this paper, we prove that the mimetic finite-difference method converges under modest 
assumptions on the grids. The proof is based on the mimetic properties of the discretization, and 
thus, will directly generalize to mimetic discretizations of other problems. 

We prove our low-order convergence estimates without relying on the smoothness of the grids. 
We also lay some groundwork for later studying higher-order convergence on such grids. In fact, 
suppose that we have a smooth map of the unit square to a domain and then we build grids on the 
domain by mapping rectangular grids on the unit square to the domain [37], then as these grids 
are refined, the cells approach parallelograms given by the image of a small rectangle transformed 
by the Jacobian of the map generating the grid. Numerical studies have verified that the mimetic 
method is second-order accurate for smooth grids, which indicates that our discretization should 
have special properties for parallelograms. This observation motivates our expressing the error 
estimates so that we can see what happens when the grid cell is a parallelogram. 

In Section 2, we develop the mimetic finite-difference method for a single quadrilateral cell. 
The first objective is to show that the scheme satisfies a summation by parts (discrete divergence) 
theorem. The proof of the mimetic properties requires that we define discrete inner products for 
both scalar and vector fields. In one and two dimensions, the inner product of discrete scalars is 
simply the product of the values at the cell centers times the size of the cell; the cell edge values 
of the scalar are not used in the inner product. The inner products of vectors are given by a 
geometric construction, which is not so simple for two-dimensional irregular quadrilateral cells. 
The divergence is discretized using standard finite-volume ideas and then the discrete analog of 
the divergence theorem is used to define the discrete gradient. In two dimensions, the values 
for the gradient are defined by solving a local system when the scalar edge values are retained, 
or a global system when the scalar edge values are eliminated. Finally, the inner products are 
bounded from above and below and then the errors in the divergence and gradient are estimated. 

In Section 3, the results for a single cell are translated to a global logically rectangular grid. 
The discrete gradient satisfies a system of equations that is independent of the celt-edge values 
of the scalar field. This system is symmetric positive definite and strictly diagonally dominant. 

In Section 4, we introduce the global formal operators that allow us to explicitly compute the 
discrete inner products for scalar and vector fields, the discrete divergence, and most importantly, 
the system of equations that  define the gradient. This is useful for creating and analyzing solution 
algorithms, and provides a framework for proving a discrete Friedrichs-Poincar4 inequality that 
is critical to the convergence proof. 

In Section 5, we discretize the Laplace equation with Dirichlet boundary conditions using the 
discrete divergence and gradient defined in Section 3. We then introduce an abstract mimetic 
setting and use this to prove that the error in the solution of the boundary-value problem and 
its gradient are estimated by the truncation error in the divergence and gradient, observed in 
Section 3. Throughout the paper, all estimates are given in terms of a cell aspect ratio and the 
sine of the smallest angle in the grid. Therefore, all of our estimates are uniform and convergence 
is clear for families of grids where the aspect ratios are bounded above and the angles are bounded 
below. 

2. T H E  L O C A L  M I M E T I C  D I S C R E T I Z A T I O N  

The central goal in the mimetic method is to find a discretization of the divergence and gradient 
operators that satisfy exactly a discrete analog of the divergence theorem. For a grid cell C, this 
theorem states that 

/ c V  . ~ u d V  + / c ' ~ .  V u d V  = ~ocU~.  ~dS , (2.1) 

where OC is the boundary of the cell, ~ is the outward normal to the boundary of the cell, dS is 
the surface differential on the boundary, dV is the volume differential, u and ~ are, respectively, 
smooth scalar and vector fields defined on the closure of the cell, V. is the divergence, and V is 
the gradient (see [1]). 
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If U (1) and u (2) are scalar fields and ~(1) and W(2) axe vector fields, then the natural cell-based 
continuum inner products for scalars and vectors are 

and <~(1),~(2)> = / w ( 1 )  . w(2) dV, (2.2) 
J C  

and the divergence theorem (2.1) can be written as 

(2.3) 

We first derive the one-dimensional discretization before studying the more complex two- 
dimensional case. In both cases, we define discrete analogs of the continuum inner products (2.2) 
and use the finite-volume method to discretize the divergence and the discrete divergence theorem 
to discretize the gradient. 

2.1.  O n e - D i m e n s i o n a l  D i s c r e t i z a t i o n  

A generic one-dimensional cell (shown in Figure 1) is given by its left and right end points 
XL < Xl~. We define x c  = (XL + x R ) / 2  to be the center of the cell and k c  -- x R  - XL to be the 
length of the cell. 

t • I - -  x 

X L x C x R 

Figure 1. A typical cell [XL, xa] in a one-dimensional grid with center x c  = (XL + 
=R)/2. 

In one dimension, the divergence and the gradient are simply the first derivative and the 
divergence theorem is integration by parts for two scalar fields defined on the cell in Figure 1, 

/? /.? w'(x)u(x)  dx  + w(x)u ' (x)  dx  = W ( X R ) U ( X R )  -- W ( X L ) U ( X L ) .  
L 

(2.4) 

2 .1 .1 .  D i s c r e t e  v a r i a b l e s  a n d  t h e i r  i n n e r  p r o d u c t s  

We introduce a discrete scalar field u that  has the value u c  associated with the cell center, and 
two auxiliary values UL and UR associated with the cell end points, and also a discrete vector 
field w with values WL and wR that  are associated with the cell end points. The values uL 

and uR are called auxil iary because they can be eliminated from the discretization except at the 
boundary of the domain. 

If u(1) and u (2) are two discrete scalar fields and w (1) and w (2) are two vector fields defined on 
the cell, then their inner products are 

U(1), U(2) >,S (1) (2). ~---U C U C L C ,  

(1) (2) A_ ~ (1) ,(2) 
< W ( 1 )  W ( 2 ) >  = W L  W L  ~ ~ R  'J"R Lc ,  (2.5) 

' w 2 

where l-c = XR -- XL is the length of the cell. The values UL and u R  are not included in the inner 
product because they are eliminated in the global discretization. 

The two discrete inner products correspond to midpoint and trapezoid integration rules, which 
are third-order accurate on a single cell. The upper and lower bounds on the inner products in 
one dimension are 

+ (2.6) (u, u> = Lcu~, (w, w> = Lc 2 
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2.1.2. T h e  d ive rgence  

In (2.4), w'  is the analog of the divergence V. of a vector field which produces a scalar rid& 
So the discrete divergence of a discrete vector variable is a cell quantity 

(Z~W)c = w R  - w L  
kc (2.7) 

This definition is the standard finite-volume discretization. 

2.1.3. I n t e g r a t i o n  by  pa r t s  and  t he  g rad ien t  

In (2.4), u'  is the analog of the gradient of a scalar field which produces a vector field. So the 
discrete gradient ~ of a discrete scalar field u has two values in a cell: (GU)L and (Gu)R. The 
natural discrete analogs of the terms in (2.4) are 

L 

f =R w(x)u ' (x)  dx ~ <w, Q u ) v  = WL (~U)L + WR (QU)R kc; 
2 

(2.s) 

(2 .9)  

and 

w ( = R ) u ( = R )  - W ( = L ) u ( x L )  ~ ~ R ~ R  -- ~ L ~ L  

The discrete analog of the integration by parts theorem is 

(2.1o) 

(wR - w r )  uc  + 
(gu) L 

(G~,_~,R k c  = w R u R  - w L u L .  
WL + WR 

2 
(2.11) 

For (2.11) to hold for all vector fields w, the gradient must be defined by 

(Qu) L _ u c  - UL uR -- u c  (2.12) 
L c / 2  ' (gU)R= L c / 2  

We now have a mimetic discretization of the two inner products (2.5) and the analogs of the 
divergence ,and gradient which satisfy a discrete analog of the integration by parts theorem (2.4) 

<w, G~>v + ( v w ,  ~>s = wRuR -- wLuL. (2.13) 

2.1.4. T h e  p r o j e c t i o n s  f rom t h e  c o n t i n u u m  

We analyze the accuracy of the mimetic discretization, by comparing the discrete values with 
the values of continuum fields projected onto the cell. The projection Ps  of a continuum field u 
are its values at the mid and end points of the cell 

u~ = (Psu)~ = u (x~), a e {C, L, R}, (2 .14)  

while the projection ~v of a vector field are only its values at the end points of the cell 

w~ = (PvW)~ = w(x~), ~ e {L, R}. (2.15) 
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2.1.5.  The  t runcat ion  e r ro r s  

The truncation error 7~ for the discrete divergence (2.7) is defined by 

7 v ( w )  = P s w '  - Z ) P v w ,  (2.16) 

where w is any smooth field. A Taylor series expansion gives 

5r~(w)l = w'(~c) - w(xR)xR -- x~W(X~) I < C~L~, (2.17) 

where Ck is a numerical factor, independent of I-c, times the maximum of the k-derivative of the 
continuum fields over the cell. 

The truncation error Tg for the discrete gradient (2.12) is defined by 

T~(u)  = P v u '  - gPsu, (2.18) 

where u is any smooth field. A Taylor series expansion gives 

p=r~(u)~l = u'(xL) - u (xc)zc - xLU (zL) l < c2Lc, (2.19) 

with a similar estimate at the right end point. 
The divergence given by (2.7) is second-order accurate (2.17) while the gradient given by (2.12) 

is first-order accurate (2.19). 

2.2. T w o - D i m e n s i o n a l  D i sc re t i za t i on  

We begin with a detailed discussion of the geometry of a quadrilateral cell and a coordinate 
system in the cell based on bilinear interpolation. We define a local coordinate representation of 
all of the geometric formulas for the cell in terms of the vectors that are the sides of the cells. This 
formulation is independent of the coordinate system, and the resulting formulas are significantly 
simpler than if they were written in terms of a global coordinate system. Next, the inner product 
for vectors is given by an intuitive geometric construction. The discrete divergence is defined 
by a finite-volume approximation of the divergence theorem for a vector field, and the gradient 
is uniquely defined implicitly as the solution to a system of equations based on the divergence 

theorem (2.1). 
The upper and lower bounds on the inner products play an important role in the convergence 

theory for the discrete operators. We introduce the projections of continuum fields onto the 
grid and estimate the accuracy of the discrete divergence and gradient. We define a compact 
geometric formulation for the truncation error for the divergence and then estimate its accuracy 
based on a Taylor series analysis. The truncation error in the gradient is derived from the system 
of equations that the gradient satisfies. 

2.2.1. T h e  q u a d r i l a t e r a l  

The two-dimensional cell shown in Figure 2 is determined by its four corners Pi = (x~, yi), 
0 < i < 3. The sides of the cells are labeled by the letters D, R, U, and L (which stand for down, 
right, up, and left). We assume that the lengths of all of the sides of the cell are positive, that 
the angles in the corners of the cells are nonzero, and that the cell is convex. If the vectors J6i 
connect the origin to the point Pi, then vectors tangent to the edges are given by the edges 

~ = Pl - P0, ~R = ~ - Pl, Y~ = ~ - ~ ,  ~ : P~ - P0, (2.20) 
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L 

4 

Figure 2. The cell edge tangent vectors T and normal vectors /Y in a generic two- 
dimensional grid cell satisfy the identities TD + TR ---- TL + TU and /YD + /YL = 
~R + lqu. 

while vectors normal  to the  edges are given by 

~:~ = ; × %,  ~R = -;~ × TR, ~ = ~ × T~, ~L = - ;  × :%, (2.21) 

where f~ is the  unit  vector  normal  to  the  coordinate  plane. The  direct ions of these tangents  and 

normals  are chosen to  be those tha t  are used in a global  logically rec tangular  grid ra ther  than,  

say, exterior  normals.  The  lengths of side of the  quadr i la te ra l  are given by  

L,~ = Im~l = IN~l, ~ e {L ,R ,D ,U} .  (2.22) 

NOTE. We define the formulas for all the important parameters of a cell in terms of tangent 

vectors. The formulas are more compact than if these are expressed in terms of the coordinates 

of the points, and importantly, the tangent vector representation formulas are clearly invariant 

under coordinate transformations. The tangent identity in Figure 2 tells us that these formulas 

are not unique; we can always eliminate one of the tangent vectors. This makes using a computer 

algebra system to find the formulas decidedly nontrivial, particularly, it is difficult to find the 

"simplest" representation of the formulas. 

The bilinear transformation 

/6(~, ~7) ---- (1 -- ~)(1 - ~7)/~o + (1 - ~)~7/63 + ~(1 - ~/)/51 + ~77/62 

= ]6o + (i - ()~IPL + ((I -- N)TD + (77 (TD + TR) (2.23) 

maps  the corners of the  unit  square 0 _< ~, ~ < 1 to the  corners of the  cell shown in Figure  2. 

Because the  cell is convex, the  mapping  from the unit  square is onto the  cell. Later ,  we will show 

tha t  the  Jacobian  of this  map  is nonzero for convex cells wi th  nonzero angles in the  corners, so 

this  mapp ing  is one-to-one. Consequently,  this  bi l inear  map defines a coordina te  system, called 

logical coordinates ,  for the  quadri la teral .  

PROPOSITION 2.1. The bilinear map (2.23) is linear if and only if the quadrilaterM is a parallel- 
ogram. 

PROOF. A quadr i la te ra l  is a paral le logram if and only if TL ---- TR and TD ---- Tu. We can 

rewri te  (2.23) as 

which makes the  result  clear. 
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If ~" = (x,  y ) ,  then the center of the cell and the centers of the faces of the cell are given by 

~'O -- /6 (1 ,  1 )  ~'D ----- /6 (1 ,  0) ~'U--/~ ( 1 1) 

?'R -- P (1, i )  , 

and then 

(2.24) 

(2.2=) ~ =Ao+y ,  ~v = Ao +T= +- - ,  ~L =Ao+y,  

and 

ec = P ° + & + P ~ + &  = R +  fv 4 V + - - - T -  : f L + T R = p O + ~ + T ~ + T v  ~ (2.28) 

It will simplify the formulas to define the vectors relative to the center of the cell 

ev  - v~ = + ~  + , eD - e c  = - ~  + , 

(2.27) t i (~ +~) 

The coordinate lines in the unit square are given by ((, r/), 0 _< ~ < 1, with 7/fixed in [0, 1], and 
((, 7/), 0 _< ~l < 1, with ( fixed in [0, 1]. The image of these coordinate lines under the bilinear 
map (2.23) are the logical coordinate lines in the quadrilateral. Tangents to these coordinate 
lines are given by 

T+(V) = ~ f ( ( ,  V) = (1 - , )To  + ,Tv,  
uq (22s) Op, 

The normal vectors pointing in the direction of increasing ( and rl are given by 

(2.29) 
#,(7) = +r~ × ~+(,7) = (1 - ,7)frD + ,7~v, 

where k is the unit normal to the x-y-plane. The Jacobian for the bilinear map is given by 

The last two terms in the Jacobian are zero for a parallelogram. That is, the Jacobian for a 
parallelogram is constant. The area of the cell is given by integrating the Jacobian 

2 

= - ~ k .  x . 

The areas of the triangles defined by two adjoining sides of the quadrilateral play an important 
role in the definition of the discrete inner product for vectors. These areas can be written in 
terms of the cross products of tangents (being careful of the order) 

f i . ~  xZ~ f i . ~  x¢~ 
A D ' L  ---- 2 ' A D , R  = 2 ' 

(2.32) 
#-fv x f~ # . fv  x f~  

A u ,  R = 2 , AU,  L = 2 ' 
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and then the area of the cell can also be written 

A c  = AD,L + Au, R = AD,R -F AU, L. (2.33) 

We can complete the list of formulas given in (2.32) 

; "  TD x 2~U = 2 (AD,.£ -- Am,L) = 2 (Au,.e - AU, L ) ,  

f i" TL x TR = 2 (AD,L -- AU, L) = 2 (AD,R -- AU, R).  

(2.34) 

(2.35) 

A little algebra gives 

J(~,  r/) = 2 (AD,L(1  -- 4 ) ( I  -- r/) + AU, L(1 -- { ) r / +  AD,R{ (1  -- 7/) + AU, R{~/).  (2.36) 

If the areas of the corner triangles are positive then, as the Jacobian is a convex combination of 
these areas, the Jacobian is positive. 

The dot product of tangents and normals can be computed from the formula for the triple 
scalar product 

and the definitions of the normal vectors (2.21). This allows us to write the formulas in (2.32) in 
several different ways in terms of normal and tangent vectors. The angles in the corners of the 
quadrilateral shown in Figure 2 are given by 

2AD,L 
sin (OD,L) - -  LDLL ' 

sin (0u R) = 2Au, R 
' ku LR ' 

2AD,R 
sin (OD,R) = LD[-R ' 

2Au, L 
sin ( Ou, L ) = k- '-~" 

The error estimates will be a function of the size of the cell, so we define 

(2.38) 

Lmm =min{LL ,  LR, LD, Lu},  Lmax ---- max {LL, LR, LD, Lu}. (2.39) 

We define p to measure the aspect ratio of the quadrilateral 

- m a x  

P -  Lmin" 

The distortion of the cell can be measured by 

(2.40) 

= min {sin (SD,L), sin (0D,R), sin (Ou, R), sin (SU,L)}. (2.41) 

PROPOSITION 2.2. 
0 < ~ _ < 1 ,  l _ < p < c ~ .  (2.42) 

PROOF. The assumption that the angles are not zero gives fl > 0. In an orthogonal grid, fl -- I. 

The assumption that the sides of the cell are positive implies that p is finite. 

2.2.2. T h e  d i s c r e t e  sca la r  a n d  v e c t o r  va r i ab l e s  

In the cell shown in Figure 2, for a discrete scalar variable u, we define the cell value uc and 
the four auxiliary edge values UD, uR, uu, and UL. For a discrete vector variable w, we define 
the four normal flux variables WD, wR, WU, and WL. As in one dimension, the scalar variables 
on the cell edges are called auxiliary because, except on the boundary of the domain, they can 
be eliminated from the global formulation of the discretization [14,16]. 
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2.2.3. T h e  d i s c r e t e  inne r  p r o d u c t s  

The values of UD, UR, UU, and UL do not explicitly appear in the inner product for scalars or 
the global formulation of the discretization. So a natural cell-based inner product for two discrete 
scalar fields u (1) and u (2) is 

<U(1) U(2)) s = ~tc(1)(2)--Uc no,  (2.43) 

where Ac is the area of the cell. 
An inner product for discrete vector fields, called the vertex inner product, is defined using a 

geometric construction [38]. At the corner P0 between the L and D sides in Figure 2, a vector 
can be represented in terms of the tangent vectors. Let 

 .nL 
WD = LD ' WL = LL , (2.44) 

and then 
WDLD WLLL ,.~ "WDLD ,.~ WLLL ,-~ = + = - =  = + 

To. NL 2AD,~ ~L 2-~-~-~,L'D. 
Here, we have used (2.37), (2.21), and (2.32) to see that  

We can view (2.45) as a way of interpolating the normal components WD and WL to a constant 
vector field on the triangle with vertex at the corner 0. 

If two vectors w(0 and w (2) are represented by (2.45), then their Cartesian inner product is 
given by 

;w(1),w(2) I __ ,,~(1). ~(2) 
D,L 

LDLL2 2 (w(~)w(~) +W(1)w(2)'~L L ) + LDLLTL .TD/ wL WD(2) + (1) (2)~ WD WL j (2.47) 

4A~,/  

This can be repeated for each corner of a cell and the weighted average of the four values used 
to define a bilinear form. 

A natural choice for the weights is the area of the triangle near the corner divided by the area 
of the quadrilateral. By (2.33), the sum of the weights is 2, so dividing by this and multiplying 
by the area defines a vector bilinear form 

LDLL (TL" TD [ (1) (2) ,(1). (2)~ fw(1) .  ( 2 ) _  (1). ( 2 ) ~  ~WL wo +~D ~L )+LDLL~, 19 ~D "UWL ~L 1) 
(w(1)'w(2)}V = 8AD,L 

c 
LDLR (TL :rR / (1), (2)_ (i). (u)~ + LoLR (~o(~)~o(~) 

+ sA19,R (2.48) 
LLLu (7~v -:PL L (~) ,(2)_ (i) (2)~ / (1)~ (2) _ _  (I) (2)'~'~ ~,~U ~L ~-WL wu )+LLLuiwL ~L "I-WU wu )) 

+ SAu, L 

LRLu (:Tu :T /wO)w(~) ±w (I) ,(2)'~ (wOL (2) (I) (2)V~ • R~, u a T R ~ u ) + L n L u  k n ~n +wu Wu )1 
+ 8Au, R 

PROPOSITION 2.3. The bilinear forms (u (1), U(2)>8 and (w (1), w(2))V are symmetric and positive 
definite, and thus, inner products. 

PROOF. The properties of the scalar form are obvious. The properties of the vector form follow 
from the observation that  each corner inner product is an inner product on the normal vectors 
to the sides adjacent to the corner, and the bilinear form is a positive convex combination of the 
corner inner products. 
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2.2.4. T h e  d ive rgence  

The finite-volume discrete divergence 

LRWR -- LLWL -b kuwu - LDWD 
= (2.49) ('/)w)c Ac 

is a natural choice given the way variables are defined in a cell. The signs of the terms are 
determined by noting that WR and wu use outer normals while WD and WL use inner normals. 

2.2.5. The gradient 

The gradient ~u of a discrete scalar field u is a discrete vector field given by the normal vector 
components (6U)D, (~U)R, (~U)u, and (6U)L. The natural analog of the divergence theorem (2.1) 
is the discrete divergence theorem 

(:Dw, u)s + (w, Ou)v = Luuuwu - LDUDWD + LRURWR -- LLULWL, (2.50) 

where (., ')s is given in (2.43), (., ")v is given in (2.48), the divergence 7) is given by (2.49), and 
the gradient ~ is to be found. The signs of the terms for the boundary integral are determined 
by noting that divergence theorem (2.1) uses the outward normal while WD and WL use the inner 
normal. 

PROPOSITION 2.4. Formula (2.50) uniquely determines the gradient ~. 

PROOF. Because (., ")v is an inner product, and we want (2.50) to hold for all discrete vector 
fields w, there must be a unique Gu satisfying (2.50). 

2.2.6. E s t i m a t e s  for  t he  inner  p r o d u c t s  

THEOREM 2.5. For 13 defined in (2.41) and Lmi~ and Lm~× defined in (2.39), the scalar inner 
product (2.43) satisfies the estimate 

2 2 2 2 (2.51) ~LminUC ~ (u, U)8 ~ Lm~xUc, 

while the vector inner product (2.48) satisfies the estimate 

f12 L 2 1 2 ~-  rain (w~) -b w~ -b W b -b W 2) <: (W,W)v < ~Lma x (w 2 -b w 2 q- w b -k w2).  (2.52) 

PROOF. The estimate for the scalar inner product is clear. For the vector inner product, the 
proof is based on the well-known inequality 

(1 - I~1) (x 2 + v 2) _ x 2 + 2~=v + y~ <_ (1 + I~[) ( ~  + v2) • (2.53) 

We also need to know that if sin(0) satisfies (2.41), then 

/3 2 
leos(0)l < 1 - T 

From the definition of the corner inner product (2.47), we have 

4AD,L UDLL ] 

LLLD 
-- 2 sin (OD,L) (w2 + w~ + 2 cos (OD,L) WLWD). 

(2.54) 

(2.55) 
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From (2.39), (2.41), and (2.54), we have 

so that 

Lmin _< L~ < [max, o" e {L, R, D, U}, 

1 I 
1 _< sin (OD,L) <- -~' 

/32 
- -  < 1 - k o s ( 0 ) l  x + Icos(0)l < 2, 

L 2 /32 2 1 min'-~'- (W2D + W2L) <-- AD,L(W, W)D,L <_ Lm~x~ (w b + w~) .  (2.56) 

This estimate holds for any corner, so we can sum these four estimates and divide by 2 to get 

the desired estimate. 

2.2.7. Projections 

To assess the accuracy of the discretization, we project continuum fields to the grid. If u is a 
smooth scalar field and ,,V is a smooth vector field, then their projections are 

u~ = (~ , su )~  = u ( G ) ,  cre  {C, L, R, D, U}, (2.57) 

E {L, R, D, U}. (2.58) 

2.2.8. T h e  a c c u r a c y  of  t he  d ive rgence  

The truncation error for the divergence is 

(2.59) 

where ~ is any smooth vector field. 

THEOREM 2.6. The truncation error for the divergence satisfies the estimate 

2 {I R }, (2.60/ I:r~, (~)1 < ~c~ {L a + L 2 + L 2 + L 2 } + ~C2 - TL -4- -- 

where/3 is defined in (2.41), p is defined in (2.40), and Ck is a numerical constant times the 
maximum of the absolute values of all of the k th derivatives of the components of ~ over the 
ceil. I f  the quadrilateral is a parallelogram, then the last term in the estimate is zero and the 
truncation error for the divergence is second order. 

PROOF. We will estimate the truncation error for the divergence in the logical coordinates given 
in (2.23). For any vector field 

(2.61) 

a chain-rule computation gives 

Nd~)" o~ + ~ . ( , 7 ) -  o,~ 
¢- ~(~, 7) = 

From this, we see that the projection of the divergence is 

+ + + 

(2.62) 

(2.63) 

A c  
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while the discrete divergence of the projection of the vector field is 

(79Pvi)c = 

We write the truncation error as 

where 

and 

+/VR' i (1 ,  1/2) -/VL" if(0, 1/2) + ]Va' i (1/2 ,  1) - ]VD" i (1/2 ,  0) 
Ac 

:%(i)  = :rD'u + ¢rL'R 
Ac 

~,~  ~h + ~ . .  o~ = 2 0"--ff ( 2 ' 1 )  - (hFRff ( 1 ' 1 )  ---h~Lff (0' 1 ) )  

~D,U ----- 

These terms can be rewritten as 

and 

00~ (1,  ~)  - (/~Uff (~,  1) -/~D@ ( 1 , 0 ) )  • 

(i (1, 21-) - i (0, 2))) 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

1) 0)) ,269, 

When we form the sum TD,U + TL,R, the last terms in the above expressions will add to zero by 
the identities given in Figure 2, so they do not need to be estimated. We estimate the remaining 
terms by using Taylor's theorem in the cell coordinates (4, 7) and the chain rule to transform 
logical derivatives to spatial derivatives. 

If f is a smooth scalar field of a single variable, then Taylor's theorem with remainder gives 

f(1) - f(O) - f' (i) = ~f'" (41), 0<41<1, 
(2.70) 

f ( 1 ) - 2 f ( 1 )  +f(0)--lf ' ' (42) '4 0 < 4 1 < 1 .  

For any smooth scalar field u, 
0u 
0-7 = 7~(~)" V.,  (2.n) 

where V is the gradient with respect to the spatial variables. Because the tangent vector is 
independent of 4, 

02u 
042 = f~(~)H(~)Y~(~), (2.72) 

where H, the Hessian, is the matrix of second derivatives of u, with similar expressions for the 
higher derivatives. 
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From (2.28), we have 

IT'(") I -- + t.,,. 
Consequently, the logical derivatives can be estimated by 

~k u 
_< Ck (LD + Lu) k , 07/k _<Ck(LL+Ln)  k, 

(2.73) 

where Ck is some numerical constant times the maximum of the absolute values of all of the k th 

derivatives of u over the cell. 

To estimate an expression like 

(2.75) 

we apply Taylor's theorem in the ( variable to each component of @ and then apply the first 
estimate in (2.74). Thus, 

- , 

These terms are divided by the area Ac in the discrete divergence, therefore we need an estimate 
of the form 

(LL+Ln)  2 < 2  L 2 + L ~  < 2L~ 2L~ _ 4LL 4LR 
Ac  - Ac  - ~ + Au, n LD sin (SD,L) "}- Lu sin (~U,R) 

and similarly 

(LD + LU) 2 < 4 -p , 
Ac 

where fl is defined in (2.41) and p is defined in (2.40). 
Combining these estimates gives 

_ ~ C 3 ( L o  + Lu) + NR p -~Cs(LL + LR) 
Ac 

+ ~ o - &  c2+ ~L--~'R C~. 

Noting that 

IND+NuI < LD + Lu, NL + -NR _< LL + Ln, 

- ~ - . G  = ¢~-~,  

gives the required estimate (2.60). 

(2.76) 

<_ 4~,  (2.77) 

(2.78) 

(2.79) 

(2.80) 

(2.74) 
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Under the assumptions o[ Theorem 2.6, the divergence is first-order accurate, 

(2.81) 

in any convex cell with positive sides and second-order accurate, 

/9 2 
~  C3Lma,,, 

when the cell is a paraJ1elogram. 

PROOF. From Theorem 2.6, the first-order accuracy follows from the trivial estimates 

'/~u-TD -< Lu+LD, TR --TL I <_ LR + LL, 

while in a parallelogram TR ---= TL and Tu = TD- 

(2.82) 

(2.83) 

MD,D = L2L + L2R MD,R -- TD " TR MD,L = TD " TL MD,U = O, 
8AD,L 8AD,R' 8AD,R ' 8AD,L ' 

L2D L~ Tu" TR 
MR,R = + MR,L = O, M R  u -- , 

8AD,R 8AU, R' ' 8Au, R 

ML,L =- - -  4- - -  ML,U = ~ ,  
8A D ,L 8Au, L ' 8Au, L 

M u u -  L2 + L2R 
' 8Au, L 8Au, R" 

(2.85) 

The discrete divergence theorem (2.50) holds for all discrete vector fields w, so collecting the 
coefficients of the components of w, and then multiplying each component by an appropriate ka, 
gives the following system of determining equations for the gradient: 

UC -- UD : LD~DMD,D + LR~RMR,D ~- Lu~uMu,  D + LL~LML,D, 

uR - -  uc  ---- LD6DMD,R + LR6RMR,R + LuOuMu,  R + LL6LML,R, 

u e  -- uc  = LD6DMD,u + LR6RMR,u + LuOuMu,  u + LL6LML,u,  

uC - -  UL = LD6DMD,L + LR~RMR,L + L u 6 u M u ,  L + LL6LML,L, 

(2.86) 

where we have written ~ for (~u)~. The gradient is the unique solution of this system of 

(wO)'w(2)}V = E L'~ L~-M~a-wO) w(2)' (2.84) 
aJ'E{L,R,D,U} 

where M~,~ = Mr,o and 

2.2.9.  T h e  accuracy  of  t h e  gradient  

Because of the complexity of the vector inner product, the discrete divergence theorem (2.50) 
does not provide us with a simple formula for ~. It is possible, using a computer algebra system 
to find the formula for the gradient in terms of the coordinates of the corners of the quadrilateral, 
but the resulting expressions are so large that they are computationally useless and difficult to 
analyze. We will take an indirect route to analyze the accuracy of the gradient. 

The vector inner product (2.48) can be written in the form 
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Our next goal is to estimate the accuracy of the gradient defined by system (2.86). The 
truncation error Tg for the gradient is defined by 

~ ( u )  = P v ~ u  - 6 P s u ,  (2.87) 

where u is any smooth scalar field. We first observe that the truncation error, with the abbrevi- 
ations T~ = TG(u)~ , satisfies the system of equation 

where 

LDTDMD,D + LR~-RMR,D + LuTuMu, D + LLTLML,D =- RD, 

LDTDMD,R + LRTRMR,R + LuTuMu, n + LLTLML,R =- RR, 

LDTDMD,u + LR~RMR, u -~ LuTuMu, u + LLTLML,u = RU, 

LDTDMD,L + LRTRMR,L -P LuTuMu, L + LLTLML,L = RL, 

(2.88) 

From (2.52), we have 

LLn (=r~ + T~ + =r~ + ZZ) _< (Z, T/v. (2.~2) 

These two estimates give 

16 2 2  2 2  2 2  
_ RLLL) (2.93) ?~ + T~ + T~ + 7"~ < ~ (R2DL2 D + RRLR + RuLu + • 

Using the fact that L~ _< Lm~× and the p defined in (2.40) gives the estimate. 

THEOREM 2.9. The R~ satisfy 

1 2 max {IRDI, IRRI, IRul, IRLI} < C2~Lmax, (2.94) 

where g is defined in (2.41), Lmin and Lm~x are defined in (2.39), and C2 is a numerical constant 
times the maximum of the absolute values of second derivatives of u over the cell. 

We first multiply the equations in (2.88) by LDT"D, LRTR, LVTU, and LLTL to obtain 

(T ,T)v  = RDLDTD + RRLnTR + RuLuTu + RLLLTL 

2 2 2 2 2 2 D 2 / 2 " ~ 1 / 2  + RRL R + ,~LLL] (T 2 + T~ + T 2 + T~)1/2 (2.91) <_ (RD LD + RV Lu 

RD = JV9 " ~u  (~'D) MD,D + Nn" ~ u  (~'n) MR,O +/Vu" ~ u  (~'u) MU, D 
(2.89) 

+ N L  " V u  (r'L ) M L , D  --  (Uc -- UD) ,  

with similar formulas for RR, Ru, and RL. The symmetry of these equations allows us to consider 
only one of the R formulas in detail. 

We first show that the truncation error is estimated by R~, cr 6 {L, R, D, U}, and then that 
the Rs are small. 

THEOREM 2.8. The truncation error for the gradient (2.87) satisfies 

16p 2 
Z~ + ~d + Zd + T~ _< ~ (R~ + R~ + R~ + R D , (2.90) 

~- rain 

where Lmin and kmax is defined in (2.39), g is defined in (2.41), and p is defined in (2.40). 

PROOF. 
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We can use that fact that Mu, D = MD,U = MR,L :- ML,R = 0 to rearrange (2.89) 

RD MR,DNR MU,D IVU 
.--$ ~ ~u(~) = + + + 

+ MR,D]VR • (Vu  (~'n) - Vu (~'v)) 

ML,DIVL " - Vu( D)) - ( u c  - (2.951 + 

I ( T L  TR) = ~ + • 9 u  ( ~ )  - ( u c  - u ~ )  

+ 

We now have the RD written as the sum of two types of terms, and each can be estimated 
using Taylor series. For example, (2.27) gives 

1 

C 2 <~ C 2 (LL + LR) 2 ~ 2kmax, 

where C2 is a numerical constant times the maximum of the absolute values of second derivatives 
of u. An example of the second type of terms is 

(2.97) 

4 sin (~?D,R) 

So 

where C2 is a numerical factor times the maximum of the abso.lute values of the second-derivative 
of u. All other terms can be estimated in the same way, which gives the result. 

We can now estimate of the accuracy of the gradient. 

COROLLAI~Y 2.10. Under the assumptions of Theorems 2.8 and 2.9, the gradient is/~rst-order 
accurate, 

p2 
I(Tgu)a I <: C2~-Skmax , a e {n, R, D, U}. (2.99) 

In this section, for a quadrilateral cell, we have introduced inner products for discrete scalar 
and vector fields and then defined a divergence and gradient that satisfy a summation by part 
theorem. We have given an upper and lower bound on the inner products and shown that the 
divergence and gradient are first-order accurate in cells that are convex and have side with positive 
length. 

3. T H E  G L O B A L  M I M E T I C  D I S C R E T I Z A T I O N  

Global mimetic finite-difference discretizations for the divergence and gradient have been de- 
scribed in detail [1,9,13,15]. In this section, we give a concise description of how to use the 
local discretization described in the previous section to create a global discretization on logically 
rectangular grids in one and two dimensions. The global divergence and gradient satisfy a sum- 
mation by parts formula and satisfy the same error estimate for global grids as they do on a 
single cell. An important result in this section is that the global gradient does not depend on the 
auxiliary scalar values. In two dimensions, we show that the gradient is defined by a symmetric 
diagonally-dominant system of linear equations. 
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3.1. O n e - D i m e n s i o n a l  D i s c r e t i z a t i o n  

We begin by describing a one-dimensional general grid in a finite interval [a, b] along with 
a recipe for translating single cell quantities to globally indexed quantities. The global inner 
products are simply the sum of the cell inner products, while the global divergence is the same as 
the local divergence. To preserve the mimetic properties, the global gradient must be determined 
by solving a system of linear equations and does not depend on the auxiliary values of the scalar 
field except those on the boundary of the region. 

3.1.1. A gene ra l  gr id  on  t h e  reg ion  

The nodes  of the grid are given by the points xi for 0 < i < I ,  with x0 = a < b -- xz. The 
cells of the grid are labeled with i + 1/2 for 0 < i < I -  1, with the nodes defining this cell given 
by xl, and xi+l. The cen te r  of this cell is xi+1/2 -= (x i  ÷ x i + l ) / 2  and the length  of this cell is 
Li+I/2 = xi+l - xi, 0 < i < I - 1. The length of the region is given by 

I--1 

k = X l  - xo =- ~ Li-F1/2. (3.1) 
i : 0  

All of the positions in the i -t- 1/2 cell are given by 

1 k 
i + ~ ÷ ~, Ikl -< 1, (3.2) 

and so these points can be labeled with k E { -1 ,  0, 1}. The nodes are given by the condition that  
Ik[ : 1. Most formulas for Section 2.1 can be translated to this global setting by the replacements 

X L  ~ 2Ci: 2CC ~ Xi-F1/2  ~ 2~R ~ $iZrl~ and so forth. 
We define 

Lmax 
Lmin=  min L~+1/2, Lm~.×- max L~+1/2, p =  • (3.3) 

O < i < I - i  0<~:<_I-1 " Lmi n 

3.1.2. Sca la r  a n d  v e c t o r  fields on  the  gr id  

As in the local discretization, we introduce discrete scalar and vector fields on the global grid 
by giving their values for each cell. The space ~ s  of scalar-valued fields have a value for each 
cell 

u /+l /2 ,  0 < i < I - 1, (3.4) 

while the auxiliary values of scalar fields are given by 

us, 0 < i < I .  (3.5) 

The space of vector-valued fields ~ v  have a value for each node 

w/, 0 < i < I .  (3.6) 

3.1.3. G r i d  inne r  p r o d u c t s  

The mimetic finite-difference method satisfies the discrete integration by parts theorem. There- 
fore, a discrete inner product must be defined on the spaces T/s and T/v [1]. So if u (1), u (2) E ~ s ,  
then their inner product is given by the sum over all cells of the cell inner product for scalars 
defined in (2.5) 

I - 1  I--1 

/ i + 1 / 2  "~" ~ /+1/2  /+1/2 i + 1 / 2 ,  
i=0 i=0 

where L/+l/2 = X/+l  - x i .  
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If  W (1), W (2) E ~'~V, then their inner product  is given by the sum over all cells of the cell inner 
product  for vectors defined in (2.5) 

1-1  1--1 (1)Wi(2) -}- ~i+I" (1) W(2) 

V ~i=0 \ / i+1/2 i-~O 2 

The  norms associated with these inner products  are HuN~ = <u,u)8 and ]lwll~ = <w,w},. 

Because the one-dimensional cell scalar and vector  bilinear forms are inner products ,  we have the 
following. 

PROPOSITION 3.1. The two symmetric bilinear forms <U(1),U(2)>S and <w(2),w(2))V are inner 

products, and consequently, the two quadratic forms [lulls and ][w[[ V axe norms. 

3.1.4.  T h e  d i v e r g e n c e  a n d  g r a d i e n t  

From (2.7), we see tha t  the divergence is given by 

W~+l - wi 0 < i < I - 1. (3.9) 
(:Dw)i+l/2-- Li+1/2 ' 

In defining the gradient, we assume the scMar and gradient fields are continuous across the 
edges of the cells. T h a t  is, at  the interface between two cells, the value uR from a cell on the left 
equals the value of UL from the cell on the right, and the same holds for (gU)R from the cell on 
the left and (gU)L from the cell on the right. 

The  continuity condition on the gradient gives a system of equations for comput ing the cell 
values of u from the auxiliary values or the auxiliary values of u from the boundary  values and 
the cell values. For example,  formulas (2.12) give 

( ~ u ) ,  = 2 ( ~ , + 1 / 2  - ~ ' ) ,  ( ~ u ) , + l  = 2 ( ~ + 1  - u ~ + l / ~ )  , 1 < i < ± - 1. (3 .10)  
Li+I/2 Li+1/2 

Equat ions (3.10) can be solved in terms of either 

(1) the gradients; 
(2) the values of ui; or 
(3) the values of ui+1/2. 

In particular,  we have 

(6u)~ = 2 ui+l/2 - u~-1/2 
Li+1/2 -}- Li-1/2 ' 

1 < i < I - 1, (3 .11)  

with the gradients at i = 0 and i = I being still given by the formulas in (3.10). The  analog of 
the sys tem of equations (3.10) in two dimensions cannot  be solved explicitly for the gradients, 
but  can be easily solved numerically. 

3.1.5. Summation by parts 

A crucial p roper ty  of the mimetic  discrete divergence and gradient opera tors  is tha t  they satisfy 
a summat ion  by parts  formula. 

PROPOSITION 3.2. For any u E 7~s and w E ?iv,  

(ow,  u ) s  + (w, 6u>v = w i u i  - wouo. (3.12) 

PROOF. Both  global inner products  in (3.12) are sums of the local cell inner products.  By 
summing the cell summat ion  by parts  formula (2.13) over all cells, the boundary  te rms  form a 
collapsing sum to give the result. 
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3.1.6. Accuracy 

Let u and w be smooth fields defined on the domain, then the projection of u on cells is 

U,+l/2 = (Psu) i+l /2  = u (x,+1/2),  0 < i < i - 1, (3.13) 

while the projection of u on the nodes is 

u~ = ( P s u ) ~  = u(x~) ,  0 < i < I .  (3.14) 

Similarly, the projection of w onto the nodes is 

wi = (Pvw),  -- w(z~), 0 < i < I .  (3.15) 

As in (2.16) and (2.18), the truncation errors for the divergence and gradient on any smooth 
field u and w defined on the grid are defined by 

' / - v ( w )  = " p s w '  - ~ p v w ,  7 b ( u )  = p v u '  - 6ps~. (3.16) 

The truncation error estimates given for each cell in (2.17) and (2.19) imply the following. 

PROPOSITION 3.3. The divergence given by (3.9) is second-order accurate, the gradient given 
by (3.11) is first-order accurate 

1"7-_t ~ I < C3 [_2 
max i .,-v ~.w/,:_ 1/21 m~x, O<i<_I--1 m a x  ITa(uhl < C2Lmax. 

0 < i < I  
(3.17) 

Here Ck is a numerical constant times the maximum of the k-derivative of  w or u over the domain 
and kmax is defined in (3.3). 

3.2. Two-Dimensional  Discret izat ion 

The goal of this section is to create a global two-dimensional mimetic finite-difference dis- 
cretization on a two-dimensional logically rectangular grid [5,6]. We first define the scalar and 
vector fields along with their global inner products. The divergence is the same as the local di- 
vergence, but global gradient is implicitly defined by a system of linear equations. This system is 
independent of the auxiliary values of the scalar field, and the system has excellent computational 
properties. Most importantly, the divergence and gradient satisfy a summation by parts formula. 
The local error estimates easily give error estimates on the global grid. 

In two dimensions, the region ~ will be a polygon and we assume that  the boundary of the 
grid and ~ are the same. 

3.2.1. A general logically-rectangular grid on the  region 

A generic cell in the grid used for the mimetic discretization is displayed in Figure 3. Some of 

the geometric definitions come from viewing the cell as a two-dimensional projection of a three- 
dimensional cell. For example, the faces of a cell in three dimensions are the same as the edges of 
a cell in two dimensions and the nodes of a cell in one dimension. In two dimensions, the nodes 
of the grid are given by the points (xid,Yi,j) for 0 < i  < I a n d 0  < i <  J .  F o r 0  < i < I - 1  
and 0 < i < J - 1, the cells of the grid are labeled with (i + 1 /2 , j  + 1/2) and the nodes defining 
this cell are (xi j ,  Yi,j), (x~+x,j,Yi+l,j), (Xi+l,j+l,Yi+l,j+l), (Xi,j+l, Yi,j+l), while the center of this 
cell is (x~+l/2,j+l/2, Yi+1/2j+l/2). There are two types of edges in the grid, those labeled with 
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(i+lj+1) 

(id) O* lnd) O+ l d) 0- (1' 

_ /  
(0,+I) 

/ 

/ 

(o,o) (+Lo) i R 

(O3) 

(a) Global indexing. (b) Local indexing. 

Figure 3. The global indexing for a typical cell and the local indexing for defining 
parts of the typical cell. 

(i + 1/2, j )  and given by the line joining the nodes ( i , j )  and (i + 1,j),  and those labeled with 
( i , j  + 1/2) and given by the line joining the nodes ( i , j )  and ( i , j  + 1). 

The translation from the cell notation in Figure 2 to the global and local indexing given in the 
table in Figure 3 is clear from the figures. The local positions in the (i + 1 /2 , j  + 1/2) cell are 
given by 

( k + l .  ~__~) 
i + T ,  3 +  , Ikl_<l, I l l < l ,  

and these points are labeled with (k, l). In particular, the nodes are given by the condition 
Ikl = Ill = 1, while the edges are given by Ikl + Ill = 1. The local coordinates will be used for 
defining the corner angles and the areas of the corner triangles, and for defining the elements of 
the bilinear form B, and the elements of the matrices M, A, and S (see Appendix A). 

The formulas for tangents (2.20) and the normals (2.21) become 

 +1/2,j = - : , , , ,  

= - 

and the lengths of the cell sides are given by 

Lij+l/2 = 2~,~+1/21 , 

Li+l/2,j = ~ + 1 / 2 , j  I , 

Ni+l/2,j = fg X ~i~i+l/2,j, 

Ni+l/2,j+ 1 .=- k × Ti+l/2,j+l, 

0 < i < I ,  O < _ j < _ J - 1 ,  

0 < i < I - 1 ,  O < j < J .  

The formulas for the areas of triangles (2.32) and the angles in the corners (2.38) become 

OA(--1,--1) 
(~9(--1,--i) "~ z'~i+I/2,jq-1/2 

sin ~ i+ i /2 , j+1 /2 )  = L~+~/2,jL~,j+I/2' 

( 3 . 1 8 )  

(3.19) 

A ( - - 1 , + 1 )  ~ ~ ~ 
r,,i_kl/2,j+l/2 = k • Ti+l/2, j x Ti+l,j+l/2, (3.20) 

• f,~(- I,-F i) "~ 
sm (,'~+i/2,j+i/2} 

2A(+I,+ I) 
i+I /2 , j+1/2  

2A(-1,+1) 
i+1/2,j+1/2 

Li+ l/2,j Li+ l,j+ i/2 ' 

-~ k" Ti+l/2,j+ 1 x Ti+l,j+l/2, 
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2A(+1,+1) 
(0(+1,+~) h ~+1/~,j+1/2 

sin k i+1/2,j+1/2) -~ [-i+l/2,j+1[.i+1,j+l/2' 

2A(+~,-1) ~ ~ _ i+1/2,j+1/2 = k" Ti+l/2, j+ 1 × Ti , j+I/2.  

2A(+1,-1) 
(D(+I , - -1)  ~ i+1/2,j+112 

s i n  k~ i+1/2,j+ l/2 ] ~.= Li+ l/2,j+ l [.i,j+ l/2 . 

The area of the quadrilateral is then 

(3.20) (cont.) 

- - A (+1'+1) - - - - -  A (-1'+1) q- A (+1'-1) (3.21) 

and the area of the region is given by 

A = ~ Ai+l/2,j+l/2. 
0<i<:I--1 
0<_j<J-1 

(3.22) 

Using the same notation as in the single cell, we define 

k-rain ~- min 

[-max = m a x  

min [-i+1/2,j, min 
O~i<I--1 O<i<I_ _ 
O<j~J O<j~Y-1 

max Li+l/2,j, 
o<_i<I-1 
o<_j<_y 

Lid+l/2 / , 

max Li,j+l/2) , 
o<i<I 

o<_~'<3-1 

(3.23) 

and then set 
[-max 

P = kmin " 

We also define/3 to be the sine of the smallest angle in the grid 

(3.24) 

rain rain {sin (0}+~'/21j)1/2),sin (0}:11'/+2,1j)1/2), 
o<i<I-1 
o<_j<J-1 

(0(+1, +1 ) ~ (0(+1, -1) ~ l 
sin k i+112,j+112) ' sin k i+112,j+1/2) f " 

(3.25) 

3 .2 .2 .  S c a l a r  a n d  v e c t o r  f i e lds  o n  t h e  g r i d  

As in the local discretization, we introduce the space of scalar fields 7"/8 associated with the 
cells 

u~+l/2,j+l/2, 0 < i < I - 1 ,  0 _ < j _ < J - 1 .  (3.26) 

Additionally, we use the auxiliary values of the scalar on the cell edges 

u~,j+l/2, 0 < i < I, 0 <_ j < J -  1, 
ui+l/2,j, 0 < i < 1 - 1 ,  O<_j<_J. (3.27) 

The space of vector fields T/l; associated with the edges as given by the w has the values 

w~+l/2j, 0 < / < I ,  0 _ < j < J - 1 ;  
(3.28) 

w~j+l/2, 0 < i < I - 1 ,  0_< j_<J .  
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3.2.3. G r i d  inner  p r o d u c t s  

The global inner products of scalar and vector fields is the sum of the cell inner products given 
in (2.43) and (2.48). We define the global inner product for u (1), u (2) E ~ s  as the sum over all 
cells of the cell inner product (2.43) 

I--1 J--1 

/ i + 1 / 2 , j + 1 / 2  
i=O j=O 
x - t  J -~  (3.29) 

= E V"  u O) u (2) A i+1 /2 , j+1/2  i+1/2 , j+1/2  i+1/2 , j+1/2 .  
i=0 j=0 

If w(1),w (2) E 7-/v, then the global inner product is defined by the sum over all cells of the cell 
inner product (2.48) as written in (2.84) 

I--1 J--1 
{W(1)'W(2))V : E E (W(1)'W(2)~ (3.30) 

\ l i + 1 / 2 , j + 1 / 2  7 i=0 j=0 

where 

Ikl+lzl=l 

w (1) w (2) 
X i + l / 2 + k / 2 , j + l / 2 + l / 2  i + l / 2 + r / 2 , j T 1 / 2 + s / 2 '  (3.31) 

BI~,~{(~,~;~/2_ ki+l12+k12,j+l12+I/2[-i+I/2+r/2,j+l/2+s/2 

Ai+1/25+1/2 

M(k,z)(~,~) X i+1/2 , j+1/2 '  

where the matrix M is described in (A.1) in Appendix A. Both M and B are symmetric in 
their upper indices. The norms associated with these inner products are llulls = <u,u>s and 
Ilwllv = (w,w)v. Because the two-dimensional cell scalar and vector bilinear forms are inner 
products, we have the following. 

PROPOSITION 3.4. The two N//near forms (u, v )s  and (v, w)v  are inner products, and conse- 

quently, the two quadratic forms [lulls and Ilwtlv are norms. 

3.2.4. T h e  d ive rgence  and  g rad ien t  

In the global grid notation, the discrete divergence (2.49) is given by 

( ~ W ) i + l / 2 , j + l / 2  = L i + l , J + l / 2 W i + l , j + l / 2  - L i , j + l / 2 W i , j + l / 2  

Ai+1/2,~+1/2 (3.32) 

_~ ki+l/2,j+1wi+l/2,j+l - ki+l/2,jwi+1/25 0 < i < I - 1, 0 < j < J - 1. 
A i + l / 2 , j + l / 2  

Recall that the global gradient is required to satisfy the system of determining equations (2.86). 
These equations are written out in detail in (A.2) in Appendix A in a form that eliminates the 
auxiliary edge values of the scalar variable to produce as system of equations with the stencil or 
footprint illustrated in Figure 4. 

PROPOSITION 3.5. The gradient, with 6i,j+1/2 = (6U)i,j+l/2 and g~+l/2,j = (6u)i+1/25, satisfies 
a system of equations of  the form 

Ik l=l l l= l  (3.33) 
= U i + l / 2 , j + l / 2  --  U i _ l / 2 , j + l / 2 ,  

1 < i < I - 1 ,  0 _ < j _ < . / - 1 ;  
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(ilf2j+ l ) (i+ l/2j+ l ) 

(u,qd) 

rid 

(i+l/2d) 

(a) Stencil for the  gradient at (i,j + 1/2). 

O J, 

OJ)--~ _ 

(ti 

,/2) 

~) 

(i+L +1i2) 

(;+i,Td) 

(i+L lf2) 

(b) Stencil for gradient at (i + 1/2 , j ) .  

Figure 4. The stencil or footpr int  of the finite-difference equations defining the  
discrete gradient in (3.33) and (3.34). 

Ikl=Nl=l 

= U i + l / 2 , j + l / 2  --  ~i+1/2,j--112, 

O < i < / - 1 ,  l < j _ _ _ J - 1 ;  

(3.34) 

0,j+l/2 I/ ,j+l/Z-kl/2 Ul/2,j+l/2 UO,j+I/2, 
Ill=z 

0 _ < j _ < J - 1 ;  

Ai~3°)+l/2~I,j+l/2 + E Ai,jl+l~/2~I-1/2,j+l/2+l/2 = uI,j+l/2 -- uI-1/2,j+1/2' 
Iq=l 

O _ < j _ < J - 1 ;  
(o,o) K-" A(k,+ 1) Ai+1/2,0~i+1/2, 0 "{- ~ i+l/2,0YiT1/2"bk/2,1/2 = Ui+l/2,1/2 --Ui+l/2,0, 

Ikl=l 
0 < i < I - 1 ;  

A(O,O) i+l/2,J ~i+l/2'J + E A~k'~/12), J~i+x/2+k/2,J-1/2 = Ui+l/2'J - -  Ui+l/2'J-1/2' 
Ikl=l 

0 < i < I - 1 .  (3.35) 

The explicit formulas for matrix  A and a proof  that it is diagonally dominant  are given in 

Append ix  A. 

3.2.5. Summat ion  by parts  

The two-dimensional divergence and gradient satisfy a summation by parts formula obtained 
by summing the one-cell summation by parts formula (2.50) over all the cells. 

PROPOSITION 3.6. For any u E ~s and w E "]-iv 

(7)w, u)s + (w, Ou)v = - ~ k~+ll2,oWi+V2,oU~+V2,o 
i=0,I--1 

~- E Li+l/2,Jq2)i-kl/2'J~ti+l/2'J 
i = 0 , I - 1  

(3.36) 
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-- E L°,j+l/2W°,j-l-1/2uO,j+l/2 
j=o , J - i  

-[- E LI'j+l/2WI'j+l/2uI'j+l/2" 
j=o,J--I 

(3.36) (cont.) 

PROOF. Both  inner products  in (3.36) are sums of cells inner products .  If  we sum the cell 
summat ion  by parts  formula (2.50) over all cells, then the cell boundary  te rms  form collapsing 
sums to  give the result. 

3.2.6. Accuracy 

The  projection of the smooth  scalar field u on cells is 

ui+l /2, j+l /2 = (~su) i+ l /2 , j+ l /2  = u (Xi+l/2,j+l/2, Yi+l/2,j+l/2), 

0 < i < I - 1 ,  0 < j _ < J - 1 ,  
(3.37) 

and the projection of u onto edges is 

u~,5+~/2 = ( P s u ) ~ j + ~ / 2  = u(x~,j+l/2, y~j+ l /2 ) ,  0 < i < I ,  0 _< j < J - 1, 

Ui+l/2, j -~- ( 7 ) s U ) i + l / 2 , j  ~- U(Xi+l/2,j,Yi+l/2,j) , 0 < i < I -- 1, 0 ~_ j ~_ J. (3.38) 

Similarly, the projection of a smooth  continuum vector field "~ onto the edges is 

Wi,j+l/2 = (~)vW)i,j+l/2 = ~ (Xi,j+l/2,Yi,j+l/2) , 0 < i < I, 0 <_ j < J - 1, 
(3.39) 

~ri+l/2, j = (PV~)i+U2,j  = ~ (Xi+l/2, j ,yi+l/2j)  , 0 < i < I - 1, 0 ~_ j ~ J. 

The  t runcat ion  error for the divergence and gradient are defined as in (2.59) and (2.87) 

Tz)(~') = 7)sV • x~ - :DTVv~, Z~(u) = 7)vX~u - ~ P s u ,  (3.40) 

where again u and ~ are any smooth  fields defined on the region f~. 
From (2.60) and (2.99) come the following. 

PROPOSITION 3.7. The divergence D given by (2.49) and the gradient ~ given by Corollary 3.5 
are first-order accurate 

7-v('~)~+l/2,jl/~ I P max _~ ~ (C2 -}- C3Lmax) Lmax, 
O~_i~_I--1 
O<_j<_J-1 

m a x  m a x  IT~(u)i,j+l/2l,  max [T~(u)i+l/2,jl , < 
0<i<I 0<i<I-- I -- C2p ° Lmax' 

1,0<Y<~-i 0<j<J 

(3.41) 

where Lm~x is de~ned in (3.23), fl is defined in (3.25), p is defined in (3.24), and Ck is a numerical 
constant times the m ax im um  of  the absolute values of  k th derivatives o f  u or w over the cell. 

4. T H E  F O R M A L  M I M E T I C  T H E O R Y  

We now introduce formal inner products  on the spaces of discrete scalar and vector fields 
along with the formal discrete divergence and gradient operators .  We use these tools to define 
the discrete natural divergence and gradient operators  introduced in the  previous section. This 
viewpoint facilitates bo th  the programming and analysis of mimetic  finite-difference methods.  At 
the end of this section, we prove natura l  Friedrichs-Poincar4 inequality for the discrete natural  
operators,  critical in the proof  of convergence, in one and two dimensions. 
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4.1. One -Dimens iona l  Fo rma l  O p e r a t o r s  

If u (1), u (2) E 7-/8 and w (1), w (2) E ~ v ,  then their formed inner products are 
I--1 I 

, / /  <4.,) 
i=0 i=0 

The associated norms are I[[uill 2 = ((u,u))s  and IHu[[[~ = ( (u ,u ) ) , .  
To represent the natural inner products and the divergence and gradient in terms of formal 

objects, we begin by noting the following. 

PROPOSITION 4.1. Because the formal and natural bilinear forms are inner products on the same 
space, there exist positive-definite symmetric operators A~ and S such that 

The definition of the scalar inner product (3.7) implies that 

(f14u)i+l/2 = Li+w2Ui+l/2, 0 < i < I -  1, (4.3) 

while the definition of the vector inner product (3.8) gives 

(Sw) o = ---~wo, ($w) i = Li-l/2 + L~-I/~ (Sw) s 
LI 

2 wi ,  ---- -2112w1' (4.4) 

l < i < S - 1 .  

Consequently, we have the estimates 

Lmi,,lllulll~ -< <<'u,.Mu)}s < Lm,,xlllulll,~, L~'"III~III~, < <<~,S~))v _< Lm,,xIIIwlll~,, (4.5) 
where Lmin and Lm~x are defined in (3.3). Applying Theorem 3 from [39, p. 201] bounds the 
norms of the f14 and S operators 

Lmin < l i t .Mil ls < Lmax, imi------~n < IIISlllv < Lmax. (4.6) 

4.1.1. T h e  fo rmal  d ive rgence  and  g rad ien t  

The formal divergence D and the formal gradient G operators are defined by 

(Dw)i+l/2 = wi+ 1 - -  W i ,  0 < i < I -- 1, (4.7) 

(Gu)o = u l / 2  - uo, (Gu)  s = u s  - u s - l ~ 2 ,  

(Gu)i = ui+l/2 - ui-1/2, 1 < i < I - 1 (4.8) 

PROPOSITION 4.2. For any u E Tls and w E ~ v ,  the formal divergence and gradient sat is~ a 

summation by parts formula 

( (Dw ,  u ) ) s  + <(w, Gu>)v  = w i u I  - wouo .  (4.9) 

PROOF. We start with an analog of the product rule 

(wit1 - wi) ?Ji+1/2 -t- wi (?Ji 11/2 - %ti-1/2) ~--- Wi+lUi+l/2 - wiui-1/2, (410) 

and sum this to get 
I - 1  I - 1  

i=1 i=1 

Adding one more term to the first sum gives 
1--1 1--i  

- + - = -  oul/ . ( 4 . 1 2 )  

i=0 i=1 

Now adding 
wo (u112 - uo) + wI (uI - us-l /2)  (4.13) 

to both sides of the equation gives the result. 
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P R O P O S I T I O N  4.3. The formal divergence and gradient can be represented as 

:D = AA-1D, ~ = $ - I G ,  (4.14) 

PROOF. The formula for the na tura l / )  follows from (3.9) and definition (4.3) of the Ad operator. 
The formula for the natural gradient follows from formula (3.11) and definition (4.4). 

To motivate the formula for the natural gradient in two dimensions, compare the natural 
summation by parts formula (3.12) with the formal summation by parts formula (4.9) and note 
that 

(I)w, u)s + (w, 6u)v = ((Dw, u) ) s + ( (w, Gu) )v. (4.15) 

We also know from (4.2) that 

(/)w, u)s = (gA-1Dw, u)s  = ( (gct- lDw, 2¢Iu)> s = ((Dw, u})a, 
(4.16) 

(w, ~u}8 = (w, ,..q-lGu>s = ((w, ,.q,.q-lGu)>,.s = ((w, Gu)) s . 

These equations are strong consistency requirements between the natural and formal summation 
by parts formulas and the formulas for the natural gradient and divergence and their formal 
counterparts. 

4.2. Two-Dimensional  Formal Operators 

The formal inner product of u(1) , u (2) E 7-/s is 

1--1 J-1 
< <'t/,(1), U(2) > >,..q = E E '0,(1) U (2) (4.17) i+1/2,j+1/2 i+1/2,j+1/2, 

i=0 j=0 

while the formal inner product of w0), w (2) 6 ~/v is 

1-1 d I d-1 
~+1/2,j ~+U2j + E  ~-~w~d+U2 i,j+U2" 

i=0 j=.O i=0 j=O 
(4.18) 

The associated norms are l[[ul[]~ = ((u,u))s and tl[u[[]~ = ((u,u))v. 

PROPOSITION 4.4. There exist positive-definite symmetric operators AA and $ such that 

(4.19) 

PROOF. Because the formal and natural bilinear forms are inner products on the same space, 
such operators must exist. 

PROPOSITION 4.5. The operator AA is given by 

(J~u)i+U2,j+l/2 = Ai+U2j+I/2ui+I/2,d+I/2, 0 < i < I - 1, 0 < j < d - 1. (4.20) 

In the interior, the operator S is given by 

b~l=lal=l (4.21) 

1 < i < I - 1 ,  O<_j<_d-1,  

Ikl=lZl=l 

0 < i < I - 1 ,  l <_d<_J-1,  
(4.22) 
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while on the boundary the operator 8 is given by 

' S ( + l ' t )  w 2 

I11=1 
(o,0) ~(-1,0 

( S W ) I , j + I / 2  -- S I , j + I / 2 W I , j + I / 2  Jc E 0 < j < J - 1, -- ~ i , j+1/2%vi_1/2 , j+l /2+l /2 ,  _ _ 
Ill=~ 

-(o,0) 
-- + o < ,  < i, 

Ikl=1 
~(0,0) ,~(k,-1)  (S~),+I/~,j + ~ 0 < i < I - 1. ~ i + l / 2 , j W i + l / 2 , J  _ _  ~ i + l / 2 , j W i w 1 / 2 + k / 2 , J - 1 / 2 ,  

I~1=1 

The formula for A4 follows from (3.29), while formulas for the S matrix are given in Section A.3 
in Appendix A. 

We will also need the operator £: : Tlv --* 7-{1~ defined by 

(F.W)i,j+I/2 ---- L i , j + l / 2 W i , j + l / 2 ,  0 < i < I, 0 << j <_ J - 1, 

(£w)i+l/2,j = Li+u2,jwi+l/2,j, 0 < i < I - 1, 0 < j < J. (4.23) 

PROPOSITION 4.6. The operators f. and 2vf are diagonal matrices with positive entries, while 
the operator S has a five-band symmetric matrix with positive entries. All three matrices are 
positive definite. 

PROOF. Because A4 and 8 give inner products (see (4.19)), their matrices must be symmetric 
and positive definite. The formulas for the matrices, (4.20), (4.23), and (4.22), define the band 
structure and also show that they are symmetric. We estimate the positive definiteness of these 
operators in the next proposition. 

PROPOSITION 4.7. The operators A4, S, and £ satisfy 

2 2 L~mi.ZlII~III,~ _< <<~,M~>>s < Lm~xlll~llls, 
]3 2 2 2 2 
q-L~,~lll~lll~ < (<w,S~>>v < ~L~. l l lw l l lv ,  (4.24) 

Lminlllw]l}~ <__ <<w, Lw))'g < L..~xlliwlll~,. 
where Lmin and Lmax are defined in (3.23), and ~ is defined in (3.25) as the sine of the smallest 
angle. These estimates imply the operators are positive definite. 

PROOF. The estimate for A4 follows from (4.20) and the estimate for E follows from (4.23). 
For 8, we sum estimate (2.52) over all of the cells, then except at the boundaries, each value 
of w is counted twice, so the lower estimate remains unchanged but the upper estimate must be 
multiplied by 2. 

COROLLARY 4.8. 
2 L~i.~ --- IIIMIlis ~ Lmax, 

f1212 _ 2 2 < IIISlll, < ~-Lm~, T-n,~. 
f 

Lm~. _< tll~:IIIv < L,.~x. 

PROOF. This follows from Theorem 3 of [39, p. 201]. 

4.2.1. T h e  fo rma l  d ive rgence  and  g rad ien t  

The formal divergence is defined by 

( D w ) i + l / 2 , j + l / 2  : Wi+l , j+ l /2  -- Wi , j+l /2  Q-Wi+l /9 , j+ 1 "~- Wi+l /2 , j ,  

w h e r e 0 < i < I - 1 , 0 _ < j _ <  J - l .  

(4.es) 

(4.26) 
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The definition of the formal gradient has two parts: for 0 _< j < J - 1, 

(Gu)o , j+I /2  = Ul/2, j+l/2 - Uo,j+l/2, 

(Gu)i, j+l D_ = Ui+l/%j+l/2 - ui-1/2j+l/2,  1 < i < I - 1, (4.27) 

( G u )  I,j+ I/2 = uI , j+ l/2 -- ~ti_ l/2,j+ l/2, 

and for 0 < i < I - 1 ,  

(Gu)~+l/2,0 = u~+1/2,1/2 - u~+1/2,0, 

(Gu)i,j+U2 = ui+l/2,j+l/2 - ui+l/2,j-1/2, 1 <_ j _ J - 1, (4.28) 

(Gu)~+l/2, J = uiq_l/2, J - uiq_l/2,J_l/2. 

The formal divergence and gradient satisfy a summation by part  formula in two dimensions. 

PROPOSITION 4.9. For any u E T/s and w E 7-/v, 

(<Dw,u>)s + <<w, Gu}>v = - E Wi+i/2'OBi+I/2'0 
i=0,I--1 

-~ E Wi+l/2'JUi+l/2'J 
i=0,I-1 

-- E Wo'j+l/2UO'j+l/2 
j=O,J--i 

-b E wLJ+l/2uIJ+l/2" 
j=0,J-I 

(4.29) 

PROOF. This follows from two parameterized applications of the one-dimensional proof. 

THEOREM 4.10. The natural divergence and gradient can be expressed in terms of the formal 
divergence and gradient 

D = ,~4-1D£, 6 = $ - 1 £ G .  (4.30) 

PROOF. The formula for the divergence follows from (3.32). For the gradient, we combine the 
natural (3.36) and formal (4.29) summation by parts to get 

((D£w, u>)s + ((Ew, Gu>>v = (Dw, u)s + (w, 6u)v. (4.31) 

But 

and so 

<Dw, u>s = <M-iDEw, u>s = (<M-IDEw, Mu}} s = ((DEw, u>)s, (4.32) 

(4.33) 
This implies that  £ G  = 8 6  or 6 = 8 - 1 £ G  as was required. 

COROLLARY 4.11. The matrix o r s  is diagonally dominant. 

PROOF. We first observe that  (4.30) gives £ - 1 3 6  = G. Comparing this with (3.33) and (3.34), 
we see that  the matrix for E -1S  is given by the matrix A which is shown to be diagonally 
dominant in Section A.2.1. Multiplying a diagonally dominant matrix by a positive diagonal 
matrix does not change the measure of dominance given in (A.14). 

4.3. Formal Friedrichs-Poincard Inequalities 

In the continuum, the Friedrichs-Poincar@ inequalities estimate the value of a scalar field in 
terms of its gradient along with some side condition that  takes care of constant fields. The 
discrete analogs of these inequalities involve estimating the value of discrete fields in terms of 
differences. There are many possible estimates, but the mean-square estimate is fundamental in 
the discrete case. 
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LEMMA 4.12. Let  an, 0 < n < N be a sequence of  real numbers, then 

N - 1  

l a N  - -  aol 2 _< N E (an+l - an) ~ • 
rt=0 

(4.34) 

PROOF. A s tandard  "collapsing sum" argument  gives 

N - 1  

aN -- ao = ~_~ an+l -- an, 
n=0 

and the Cauchy-Schwartz inequality gives 

(4.35) 

which gives the result. 

N-1  N-1  
laN --a°12 ---~ E ( a n + l  - -  an)2 E 12' (4.36) 

n = O  n = O  

4.3.1. One-dimensional  inequalities 

PROPOSITION 4.13. I f  u E 7-lS and uo = O, then the discrete Friedrichs-Poincar6 inequality holds 

III~III~ -< ZlllG~lllv. (4.37) 

P R O O F .  

ui+l/2 - u ~ - l / 2  in (4.34) gives 
Choosing N = i, a0 = u0 = 0, ai = u~-112, 1 < i < I ,  az+l  = uz, and (Gu) i  = 

which implies tha t  

Summing this equation 

and subst i tut ing 

i--1 I 

k=O k-----O 
(4.38) 

1-1  I 
---- u 2 I2  2 III~III,~ ~ i+1/2<< E ( G u ) k ,  (4.40) 

i=0 k=0 

I 

IIIG~III~ = ~ (G~)~, (4.41) 
i=0 

II1~111~ -< S~IIIG~IIt~, (4.au) 
which gives the result. 

COROLLARY 4.14. Under the assumptions of  Proposition 4.13, 

L 
lll~llls < Lmin llla~lll,, (4.43) 

where L = xz - xo is the length of the interval. 

We now convert the formal Friedrichs-Poincar4 inequality (4.43) to a na tura l  Friedrichs-Poin- 
car4 inequality. 

gives 

I 

~,\1/2 -< I ~ (G~)~. (4.39) 
k=0 
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THEOREM 4.15. I f  u is zero on the boundary of the grid, then there exists a constant K inde- 
pendent of the grid spacing such that 

IJulJs <_ KJl~ull v. (4.44) 

PROOF. 

[]u[l 2 -- (u ,u)s  

= ((u, M u } } s  (by (4.2)) 

[.rnaxll [U] ] ] 2 (by (4.5)) 

< k 2 ~ [ l [ G u ] ] [  2 (by (4.43)) 

=k2~lllsS-lC~l]lv 
= L~I I ISG~f l I ,~  (by (4.14)) 

3 
2 Lmax 2 < k 7-y---lIl~u}IIv (by (4.6)) 

--  Lmin 
3 

,-)/2 Lmax < - ~  ,---~-<(6u, SGu)}v (by (4.5)) 
--  Umin 

= 2L2p3][~ul[~; (by (3.3)). 

Here L is the length of the interval and p = Lmax/Lmin iS finite by assumption, so we have the 
estimate. 

4.3.2. Two-d imens iona l  inequal i t ies  

PROPOSITION 4.16. H u E 7-lS, Uo,j+W2 = O, 0 < j <_ d - 1, and U~+l/2,0 = 0, 0 < i < I - 1, 
then 

I[lull]s <_ min(I, J)lllGulllv.  (4.45) 

PROOF. In two dimensions 

while 

I - 1  d - 1  

IIt  Ll  = E E ' Ui+l/2,j+1/2~ 
i=0 j = 0  

I J-I I-i d 

LILG IIL  E Z 2 2 = (Gu)~+l/2, j 
i=0 j = 0  i-~0 j = 0  

We can rewrite (4.39) as 
I 

(Gu)k,~+l/2, 
k=0 

and then repeat the one-dimensional arguments to get 

{llulil~ ~ I211{Gu{]i~. 

Interchanging the roles of i and j gives 

Illulll2s <_ J2111Gulll~. 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

These last two estimates imply the result. 
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Under the assumptions of Proposition 4.16, 

Illullls < 2L~n IIIG~IIIv, (4.51) 

where P is the perimeter of the domain in which the grid ties. 

PROOF. There are 2(I q- J) boundary segments of the grid lying on the boundary of the grid, 
and so the sum of their lengths must be less than the perimeter of the domain, but the length of 
each segment is longer than Lmln, so 

2(1 + Y)Lmin _< e. (4.52) 

However, min(I, J) ~ max(/,  J) < S + J so 

P 
min(I, J) < 2kmi----~' (4.53) 

which when combined with (4.45) gives the result. 

We now convert the formal Friedrichs-Poincar~ inequality (4.51) to a natural Friedrichs-Poin- 
car~ inequality. 

THEOREM 4.18. I f  u is zero on the boundary of the grid, then there exists a constant K inde- 
pendent of the grid spacing such that 

II~lls < KIlGullv. (4.54) 

PROOF. If P is the perimeter of the domain, then 

I l u l 5  = 

_< 

('~, 72)8 

((u, M u ) ) s  (by (4.19)) 

L 2 u 2 max[J] I]lS (by (4.24)) 
p2 L2m~x 

<_ ~ - ~  IIG~III~, (by (4.51)) 
p2 2 

IIl :-iss-  :Cq 
4 Lmi ~ 
2 2 _ P Ln ,~  

- -,-z-IIIL- s qll,  (by (4.30)) 
4 Lmi n 
2 2 P Lm~x u 

< --,-q--lllSG III~, (by (4.25)) 
- 4 Lmi n 

p2 6 Lm~x u < - - ~ I I I G  111,5 (by (4.25)) - f12  

4p2 6 
Lmax ((Gu, S~u>>v (by (4.24)) < ~ - ~ -  

-- Lmin 
4p2p 6 

_< ---zr--Ila~ll~, (by (3.24)), 

where p = Lmax/Lmin and /3 defined in (3.25) is the sine of the smallest angle are finite by 
assumption. So we have the estimate with K = 2Pp3/~ 2. 
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5. C O N V E R G E N C E  O F  S O L U T I O N S  

O F  B O U N D A R Y - V A L U E  P R O B L E M S  

We discretize the one- and two-dimensional Dirichlet boundary-value problem for the Laplacian 
using the mimetic discretizations of the divergence and gradient and then estimate the error in the 
discrete solution and its gradient. We first estimate the error on a single grid. The requirement 
that the constants in the error estimates remain bounded as the grid is refined gives the modest 
smoothness conditions the grids need to satisfy to give first-order convergence of the solutions 
and their gradients. 

We begin by introducing an abstract mimetic theory independent of the detailed structure of 
the grid, the details of the definition of the inner products, and the details of the definition of the 
divergence and gradient. The crucial point is that the discrete divergence and gradient satisfy 
an abstract summation by parts formula. 

5.1. A b s t r a c t  M i m e t i c  F o r m u l a t i o n  

The abstract mimetic formulation assumes there are two real linear spaces of discrete fields. 
The space 7-/s is associated with values of scalar fields in ceils, while ~ v  is associated with values 
of normal components of vector fields on cell boundaries. Each of these spaces is endowed with 
an inner product: (., ")s on 7-/.¢ and (., ")v on 7-/v, and associated norms I1" [I 2 and !1' [[~. 

There are also two linear operators, the discrete divergence D and the discrete gradient G such 
that 

: 7-/v --* ~ s ,  6 : 7-/s --* 7-/v, (5.1) 

and most importantly 

(79w,u)s+(w, Gu)v=O, V u e ~ s ,  Vw~Hv .  (5.2) 

The mimetic one- and two-dimensional discretization described in Section 5, with the assump- 
tion that the scalar fields are zero on the boundary of region f~, both satisfy these assumptions (see 
(3.4), (3.6), (3.9), (3.11), and (3.12) for one dimension and (3.26), (3.28), (3.32), Proposition 3.5, 
and (3.36) for two dimensions). 

The discrete Laplacian defined by 

£ = - ~ g  : 7-/s -~ 7-/s (5.3) 

is positive because, using (5.2), 

u ) s  = = >_ 0. 

It is more important to show that the Laplacian is positive definite, as we will do below. 

(5.4) 

5.2. T h e  B o u n d a r y - V a l u e  P r o b l e m  

We consider the continuum boundary-value problem (BVP) for the smooth scalar field u defined 
on polygonal domain f~ that satisfies Laplace's equation 

- x ? .  = f, (5.5) 

where f is some given smooth scalar field on the interior of f~ and u = 0 on the boundary of 
the domain 0fL We assume that the boundary of the grid is identical to the boundary of the 
domain. The discrete BVP is to find a discrete scalar field u E ~ 8  that satisfies 

Lu = f,  (5.6) 

where f E 7/s is a given discrete scalar field on the interior of the grid and u = 0 for all grid 
points on the boundary of the grid. 
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5.3. S o l v a b i l i t y  o f  t h e  D i s c r e t e  B o u n d a r y - V a l u e  P r o b l e m  

We assume that  if u E 7-/3 and u -- 0 on the boundary  of the grid, then there exists a constant 
C > 0 that  only depends on ~ such tha t  the discrete Friedrichs-Poincar~ inequality 

[Mls -< CflGultv (5.7) 
bounds the discrete scalar field in terms of its gradient (see (4.44) and (4.54)). 

THEOREM 5.1. The discrete Laplacian with Dirichlet boundary conditions is positive definite. 
That  is, i f  u E ~ s  and u = 0 on the boundary of  the grid, then 

1 
<z:~, u>s > 3z  (~' ~>s, (5.s) 

where C is defined in (5.7). Consequently the discrete boundary-value problem is uniqueIy 

solvable and the solution satisfies 

Ilulls < CUlls.  (5.9) 

PROOF. Formula (5.4) and the Priedrichs-Poinear~ inequality (5.7) imply tha t  

1 
<z;~, ~>s = <Gu, ~u>v _> ~-~ <~, u>s, (5.10) 

which gives the first part  of the theorem. A positive matrix tha t  is bounded below is invertible, 
so the discrete boundary-value problem is uniquely solvable. Setting £ u  = f in the first part  of 

the theorem gives the second part. 

5 . 4 .  P r o j e c t i o n s  a n d  T r u n c a t i o n  E r r o r  

We also assume that  there are two linear operators: 7)3 that  maps smooth scalar fields u 
defined on ~ and zero on 0f~ to a discrete scalar field :P~cu E 7-is with P s u  = 0 on the boundary 
of the grid; and 7~v tha t  maps smooth vector fields f f  defined on f} to a discrete scalar field 

P v ~  e 7-iv. 
If  the continuum divergence is given by V., then the t runcat ion error of the discrete divergence 

D : 7-/v ~ 7-/s is 
7-v(~) = 79s9 • ~ - 7379v ~ .  (5.11) 

If  the continuum gradient is given by V, then the t runcat ion error of the discrete gradient 

: 7-/s ~ 7-/v is 
~ ( u )  = P v ~ u  - g ~ u .  (5.12) 

If  the continuum Laplacian is given by A = - V  • V, then the discrete Laplacian £ = - D G  : 

7-[s --* 7-[s has t runcat ion error 
TL(u) = 79sAu - £TPsu. (5.13) 

The truncation error for the Laplacian can be broken into two parts, 

5.5. T h e  E r r o r  in  t h e  S o l u t i o n  a n d  I t s  G r a d i e n t  

We want to compare the solution of the continuum and discrete boundary-value problems, so 
let the smooth  continuum scalar field u satisfy (5.5), while u is a discrete field tha t  satisfies the 
discrete boundary-value problem (5.6) where f = ;°sf .  The error e compares the projection of 
the solution u of the continuum problem (5.5) to the solution u of the discrete problem (5.6), 

e = 5Osu - u, (5.15) 

while the error in the discrete gradient of the solution is 

E = P v V u  -- ~u. (5.16) 

We assume tha t  e = 0 on 0f~ because both u = 0 and u = 0 on 0fL 
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PROPOSITION 5.2. The error satis/ies the discrete boundary-vMue problem 

/:e = --TL(U) 

and e is zero on the boundary of the grid. 

PROOF. By assumption e = 0 on Ow. Next, 

1599 

(5.17) 

£e  = E ( P s u  - u) (by (5.15)) 

= L p s u  - p s g .  9 u  + P s g .  9 u  - c~  

= -TL(u) + P s f  - f (by (5.13), (5.5), and (5.6)) 

= --TL(u) (by the definition of f)  

as was to be proved. 

It is easy to verify that the error in the gradient can be decomposed into two parts. 

PROPOSITION 5.3. 
E = Tg(u) + ~e. (5.18) 

We estimate the error in the solution and gradient of the solution in terms of the truncation 
errors for the divergence and gradient. 

THEOREM 5.4. There exists a constant K independent of  the grid size such that  

Ilells +HENv < K @T~(u)llv + 2r:D (Vu)  •). (5.19) 

PROOF. Prom (5.18), we have 

IIEllv _< II~ (u)llv + IlGellv, (5.20) 

and so we need to estimate the second term on the right of this inequality. Equations (5.17) 
and (5.14) give 

£e  = :DT6 (u) + T:D ( V u ) .  (5.21) 

If we take the inner product (5.21) with e and apply (5.2) to two of the terms, then 

This implies that 

(~e,~e)v : {~e, Tg(u)}v + <e,T~ ( ~ u ) > S "  (5.22) 

ILGe[l~ <_- HGellv ][T~ (u)ilv + Ilells T~ (~u)  s" (5.23) 

The Friedrichs-Poincar4 inequality (5.7) and division by the norm of the discrete gradient of the 
error gives 

il6eliv < t[7~(u)liv + c 7~ ( g u )  s (5.24) 

Now, (5.20) gives 

IIEthv _< 2tIT~(u)llv + C ~-~ (Vu)  s '  

and the priedrichs-Poincar6 inequality (5.7) gives 

liens <_ CIIT~(u)IIv + C 2 T~ ( V u ) I s "  

These last two inequalities imply the theorem with K = max{2 + C, C + C2}. 

(5.25) 

(5.26) 
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5.6. So lu t ion  Er ro r  E s t i m a t e s  for t h e  B o u n d a r y - V a l u e  P r o b l e m s  

THEOREM 5.5. In one dimension, if the discrete boundary-value problem (5.6) is created us- 
ing (3.9) to discretize the divergence and (3.11) to discretize the gradient, then there exists a 
constant [( independent of the grid such that 

Ilells + IIEIIv < kLm.x, (5.27) 

where the error in solution e is defined in (5.15) and the error E in the gradient is defined 
in (5.16). 
PROOF. In the following, Ck is a numericM constant times the maximum of the k-derivative 
of u over the domain. We need to estimate the right-hand side of (5.19) and start  by estimating 

II'Z'v(~)lls. 
From (3.7), we see that  

II~lls < ~ max 1~,+~/21 (5.28) 
- -  0_<i<I-I 

so that  

where L is the length of domain (3.1). From (3.17), with w = Vu, we get 

7v ( ) ~-112 2 (5.30) max ~ u  < C41-m~ x. 
O<_i<_I-1 

Next, we estimate I I ~ ( ~ ) l l v .  From (3.8), we see that  

Ilwllv < ¢E max  I~,+~/~l, 
- o<~<z 

(5.31) 

so that  

It  follows from (3.17), that  

117~ (u)llv < ~ max Tg ( U ) / + l / 2  . 
- -  O<i<_I 

max lq-g (u), l  < C2kmax. 
o_<~<s 

Combining these estimates gives the result with 

(5.32) 

(5.33) 

k <_ Kv/-k(C2 + C4Lmax). (5.34) 

THEOREM 5.6. In two dimensions, if the d/screte boundary-value problem (5.6) is created using 
the discrete divergence (3.32) and the discrete gradient given by (3.33)-(3.35), then there exists 
a constant f(  such that 

liens + IIEIIv < klm~ x. (5.35) 

PROOF. From (3.41), with w = ~ u ,  we get 

max 
o<~<j-t O~j<J-1 

•Tu ~['~) ( )i+1/2,j+112 P (C3 + CaLmax) Lmax. 
-<7 

(5.36) 

Also, from (3.29), we see that  

Ilulls _< v'~ max I~,,+v~,j+,l~l, (5.37) 
0<i<I--1 O<_j<_a--1 
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where the area of region A is defined in (3.22). Replacing u by Tv(Vu) gives 

From (3.41), we have 

2F~ (VU) s < (Ca + C4Lm~x) P _ _  v/-A~ Lmax • 

Also, 

m a x {  max [TO(u)i,d+l/21, max 
0<i<I O<i<_I--1 

o<j<d-1 o<d<_J 

Ac > 
_ L2mi Z, 

p2 
1'7-g (u)i+l/2,j I ~ C2 ~-g Lmax. 

where r is defined in (2.41) and then from (2.52) 

p2 
{w, w)v < 4 A c - -  max w~c , -- r 2 XE{D,R,U,L} 

where p is defined in (3.3). Summing this over all cells gives 

- o<m l o< <I 
I, ¢_<7<_J o<j<J-1 

Replacing w with Tq (u), we obtain 

p3 
IIT (u)llv <_ 2C2v/'A Lmax. 

Combining these estimates gives the result with 

P 2c2N k<_Kv~ (C3 -F C4Lmax) ~ -F 

5.7. Gr id  Conve rgence  

I?JJi'j+l/2[ } ' 
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(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

To study convergence, we will choose a family of grids where Lm~x converges to zero as the 
number of grid points goes to infinity, and moreover, the grids do not degenerate. 

ASSUMPTION 5.7. In one dimension, there is a finite Po such that for every grid in the family, 
P < Po, where p = Lm~x/Lmi, (see (3.3)). 

ASSUMPTION 5.8. Ill two dimensions, there exists finite Po and flo > 0 such that for every grid 
in the family, p < P0, and fl > rio, where p -- Lm~×/Lrnin (see (3.24)) and r is defined in (3.25) as 
the sine of the smMlest angle in the grid. 

THEOREM 5.9. In one dimension, assume we have a sequence of grids contedning n points, with 
n -* c~ that satisfy Assumption 5.7 and, in addition, there exists a constant c > 0 such that 
km~x <_ e/n. Then, the solutions the discrete boundary-value problem (5.6) created using (3.9) 
to discretize the divergence and (3.11) to discretize the gradient converge at first order to the 
solution of the continuum boundary-value problem (5.5). 

PROOF. This follows from the estimate in Theorem 5.5 and that Assumption 5.7 bounds p. 
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THEOREM 5.10. In two dimensions, assume we have a sequence of grids containing n points, 
with n --~ oo, and that there exist a constant k > 0 so that I > k v ~  and J > kv~ .  Furthermore, 
the grids satisfy Assumption 5.8 and there exists a constant c > 0 such that hm~x <_ c/v/-n. Under 
these assumptions, the solutions the discrete boundary-value problem (5.6) created using (3.32) 
to discretize the divergence and the discrete gradient given by (3.33)-(3.35) converge at first order 
to the solution of the continuum boundary-value problem (5.5). 

PROOF. This follows from the estimate in Theorem 5.6 and that Assumption 5.8 bounds p 
and 1/~. 

Note that the error for the solution of the boundary-value problem is estimated in different 
norms for different grids, so we need to know that the norms converge as the grid is resolved. We 
will show that the inner products converge, which implies that the norms converge. 

PROPOSITION 5.11. In one dimension, i fuO) and u (2) are smooth scalar fields on [a, b], then 

( P $ u ( 1 ) , P s u ( : ) ) 8 - *  LbuO)(x )u(2) (x )dx ,  (5.45) 

while i fwO) and w (2) are smooth vector fields on [a, b], then 

(~E)~)W(1), ~vW(2))~; --~ Lbw(I)(x)w(2)(x)dx, (5.46) 

for any family of grids satisfying Assumption 5.7, as kmax -"* 0. 

PROOF. The discrete inner products (3.7) and (3.8) correspond to midpoint and trapezoid inte- 
gration rules which are known to be globally second-order accurate. This implies that the discrete 
inner products converge to the global inner products with a second-order convergence rate. 

PROPOSITION 5.12. In two dimensions, if  u(1) and u (2) are smooth scalar fields on the region ~, 
then 

(~sU(1), ~sU(2))~q --+ ~ u(1)(x,y)u(2)(x,y)dxdy, (5.47) 

while if  ~(1) and ~(2) are smooth vector fields on the region ~, then 

(TvV~,(1),TVv~r(2))V --~ ~ . ( D ( x , y )  . ~ (2 ) ( x , y )dxdy  , (5.48) 

for any family of grids satisfying Assumptions 5.8, as tmax -~ 0. 

PROOF. The inner product (3.29) is a Riemann sum for the integral, and therefore, converges. 
Furthermore, the convergence is at least first order. 

For the inner product of vector fields, we will estimate the "corner" inner products, such 
as (2.47), by the inner product of the projection of the vector fields at the center of a cell. First, 
if ~ is a smooth vector field, then ~ ( r c )  - W ( r v )  and ~ ( r c )  - ~r(rL) are first order in Lm~x, 
and then consequently, so are 

f ~  (,~(rc) _ ~ ( r L ) ) .  ~7~ (5.49) 
(~(~c)  - ~ ( ~ ) ) .  L~ '  LL 

(see (2.45)) because we have taken dot products with unit vectors. We can write these expressions 

as 
(5.50) 

If we substitute these expression into (2.45), we find that 

(5.51) ~(rc)  ~ L + "ZAD,L 
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is also order one with a constant proportional to p2/fl. This implies that  

w(1)(rc) "W(2) (TC) -- ( 7~v~(1)' ~:~vW(2)} D,L (5.52) 

is first order. Now multiplying by AD,L/2 and summing over the four corners gives 

~(1)(rC)- ~(2)(rc)A C - -  (~:~V~(1),~D~2~(2)}V (5.53) 

is order one with a constant that  is proportional to Acp2/ f l .  As the sum over all cells of the first 
part  of this expression is a Riemann sum for the integral, we have the convergence at order one 
for families of grids that  satisfy Assumption 5.8. 

6. S U M M A R Y  

We have defined mimetic discretizations for the divergence and gradient operators and used 
these to discretize the Laplacian with homogeneous Dirichlet boundary conditions in one and two 
dimensions. The one-dimensional problem is used to motivate the more complex two-dimensional 
case. The main result is that  in two dimensions this discretization is first-order accurate in 
logically-rectangular grids with a bounds on the ratio of cell edge lengths and the size of the 
angles in the corners of the cells. 

The discretization is first defined on a single quadrilateral cell, where we show that  the discrete 
divergence and gradient satisfy a discrete analog of the divergence theorem and are first-order 
accurate. This discretization is then moved to a global logically rectangular grid where the same 
results hold. Next, special representations of these natural divergence and gradient operators are 
given in terms of formal operators. This provides explicit matrix representations for the natural 
divergence and gradient operators along with the inner products of scalar and vector fields. These 
matrices are combined to give a matrix representation of the Laplacian. Additionally, the formal 
structure is used to prove a discrete analog of Friedrichs-Poincar~ inequality. 

The truncation error for the Laplacian is typically order zero in rough grids, and thus, cannot 
be used to prove convergence. We introduce an abstract version of the mimetic discretization and 
prove that  the error in the discrete solution and the discrete gradient of this error are bounded 
by the truncation error in the discrete divergence and gradient operators, which leads to the 
convergence result. 

A P P E N D I X  A 

E X P L I C I T  F O R M U L A S  F O R  T H E  M A T R I C E S  M ,  A,  A N D  S 

In this appendix, we will list the explicit formulas for matrix M required in (3.30). We also 
derive the formulas matrix A used in the determining equations (3.33)-(3.35). Using these 
formulas, in Section A.2.1 we give a proof that  A is diagonally dominant. Finally, we give 
formulas for the matrix S used to define the S operator (4.22). 

A.1.  F o r m u l a s  for  M a t r i x  M 

The vertex-based inner product (3.30) requires formulas for matrix M. We will translate the 
formulas in Figure 3 by using M~,r ~-* M (a'b)(c'd) where (a, b) gives side a and (c, d) gives side r. 
The symmetry of M in ~ and ~- gives M (a,b)(c,d) = M (c,d)(a,b), so we only need the explicit 
formulas 

L2,j_{_ I/2 2 L~+I'J+I/2 (A.1) 

ur~iw1/2,j+l/2 "'i+1/2,j+1/2 
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M(O,-1)(+~,o) T~+V2j • T~+Ij+I/2 
~ + 1 / 2 a + 1 / 2  = ~ i , + ~ - f f - ' - -  , 

• "i+1/2,j+1/2 

M~1/1),~_11'/0 2) = T/+l/2,J  ' T ~ , j + I / 2  

M(O,-1)(o,+1) i+1/2j+1/2 : 0) 

2 2 
M(+l,O)(+l,O) Li+l/2,j Li+l/2,j+l 

i+1/2,j+1/2 -- 8A(-1,+l) + 8A(+l,+l) , 
• "i+I/2,j+1/2 i+I/2,j+1/2 

M(+l,O)(-1,o) 
~+112j+1/2 = 0, 

M(+1,o)(o,+1) ~/~-}-l/2,j+l " ~ '~+l, j+l/2 
~ + 1 / 2 a + 1 / 2  = ~ , + I - T T - -  ' 

~+1/2,j+1/2 

L 2 2 
M~+ ~>o),~+11,~ - ,+1/2j + I-,+i/2,5+1 

sA +l,-l> , 
I:-F 1/2,]-t- 1/2 

M(-1,o)(o,+1) ~+i/~,~+~ "~,~+~/2 
,+1/=,~+1/= = ~ ~  ' 

i + I / 2 d + 1 / 2  

2 2 
M(o,+I)(O,+I) Li,j+I/2 Li+l, j+l/2 

i+1/2,j+1/2 - -  8 A ( + 1 , - , )  + 8A(+~ ,+~ )  ' 
i + ~ / 2 j + ~ / 2  ~ + i / 2 , j + ~ / ~  

(A.1) (cont.) 

Recall that the global gradient is required to satisfy the system of determining equations (2.86) 
f o r O <  i < I -  l, O < j < J - 1 ,  

Ui+l/2,j+l/2 -- Ui+l/2, j ~- 

Ui+l,j+l/2 -- Ui+l/2,j+l/2 = 

Ui+ll2,j% 1 - -  Ui+l/2,j+l/2 ~- 

UiW1/2,j+l/2 - -  Ui,j.kl/2 = 

l-i+ 1/2jGi+ 1/2 jM~+',/~)?_~ ,/~ 

-~- Li 1 " 1/2~i--1 ' 1 " -M(+I ' 0 ) (0 ' - I )  + ,3+ I "t ,j'i- /'z i+I/2,j+I/2 

. ~ ~,r(-1,o)(o,-t) 
"i,j+I/2Wi,j+I/2±v*i+I/2,j+i/2 ) 

L~+ 1/2,jGi+ 1/2,jM~1/lI,(~+~'~ 

Li~ . . . . .  ~ i ' 1  " M (+1'°)(+1'°) 
Jr- - -* , JT . . t [~  T ,2-F1/2 i+1/2,j+1/2 

, p. M(O,+l)(+l,O) 
-~ Li+I/2,j-FlWi+I/2,j+I i+1/2,j+1/2 

• ~ M(-1,o)(+1,o) 
-~ Li,j+i/2~i,J+I/2 ~4-i/2,j+1/2' 

t n M(O,- I)(o,+ 1 ) ~+l/2,j~+l/2,j ~+1/%i+U2 
L .. , ~" M (+1'°)(°'+1) 

Jv i-i-.~,j-tl/2Wi+l,j+112 i%1/2,j+1/2 

, ,~. M(o,+1)(o,+1) 
-b L i+ l / 2 , j + lW i+ l / 2 j+1  i + 1 / 2 j + I / 2  

. ~ M(-1,o)(o,+1) 
"~- L i , j+ l / 2~ i j+ l /2  i-bl/2,j+l/2 ' 

L,+ 1/2, j~,+ 1 / 2, j M [ °' i/~,~+11'/°~ 

L. . (7. M (+1'°)(-1'°) -~- *+1,2+1/2 *+l,j+I/2 i-bi/2,]+I/2 

(A.2) 
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L ~ ~(0,+i)( - i ,0)  
~- i+l/2, j+l~i÷l/2, j+liV.~i+i/2, j+l/2 

, ~. ~(-~,0)(-1,o) (A.2)(cont.) 
"~ ui, j+l/2~i, j+l/2~.Wi+l/2,j+l/2 • 

These equations are normalized so that  the inhomogeneous terms are differences of the scalar field 
so that  it is easy to eliminate the edge scalar fields from the global equations. This formulation 
naturally simplifies to the standard discretization on orthogonal grids. 

A . 2 .  F o r m u l a s  for M a t r i x  A 

We derive a system of equations for the gradient on the interior of the domain and then work 
on the boundaries. To eliminate the edge values of the scalar field, we need to combine two of 
the above equations to eliminate the scalar edge values. In fact, there are only two cases that  
need to be considered and they are illustrated in Figure 4. For the horizontal arrangement, we 
translate the second equation in (A.2) to the cell with center (i - 1 /2 , j  + 1/2) by replacing i by 
i - l ,  

(o,-1)(÷1.o) 

+Li :-I'2{~i . . . .  M ( + I ' ° ) ( + I ' ° )  
, j - r  / jd-i /2 i--1/2,j+1/2 

L ~ ~.$(0,+1)(+1,0) 
i--1/2,j+1Y~--l/2,j+l~VX~--l/2,j+l/2 

Dr"L n ~ ]1"(-- 1,0) ( +1,0 ) 
i-- 1,~+1/2~'~-- 1 , j+ l /2 - tv~ ' i_ i /2 , j+ i /2 ,  

where 1 < i < I ,  0 < j <_ ] - 1. If we add this equation to the fourth equation in (A.2) and take 
into account that  

M(+i,°)(-1,°) _~ M(-1,°)(+I, 0) 
i+1/2j+i/2 ~-1/2j+i/2 = 0, (A.3) 

then we get 

= - - M (+i'°)(+1'°)~ Lij+l/2~i,j+l/2 

+ M I ~  +/1) (~_11'?~ Lc+ 1 / 2 j + 1 gi+ U2 j + 1 

M(O,-i)(+l,0)L n 
i--1/2,j+1/2 i-1/2,j~i--1/2,j  

where 1 < i < I - 1, 0 _< j < J - 1. These equations can be written in the form (3.33) where 

~,3+~12 -- L~j+II2 ~-112,j+i12) 

L 2 

= Li,j+i/2 i R A ~  + 8A(+I,-I) 
\~''C+1/2,j-{-1/2 i-}-l/2,j+ 1/2 

L~-II2j  L~-I/2,j+I ) 
RA(-1,(+I) ~ RA(+I,+I) 
~"i-i12j+112 ~"i-I/2,j+i12 

Li+i/2,j Li+i/2,j+l - + 
( (  1. 1) ~ -  - 4sin((?(+l ' - l )  "~ 4sin 

Li- l l2J  Li-ll2,j+i 
(~(-1,+1) ~ (8(+1,+~) ~ ' 4sin \ i-1/2,j+1/2) 4sin \ ~-1/2,j+1/2] 
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and 
A(+I ,+I)  ! ~.~(0,+1)(--1,0) . T i + l / 2 , j + l  ' T i , j+ l /2  

~,~.+~/~ = :~+~/~j+~,,,~+~/~,3+~/~ = ~+~/~,y+~ ~ _ 2 5 y - - -  
i+1/2,~+~/2 

(~(+~,-~) I i_~+i/~,y+~ cos k-~+~/2,j+~/~) 

T~+~/ej • T~j+I/~ 
A(+I'-1)i,j+I/2 ---- L'+1/26M}~z-)~),~+l,'~ = L'+~/ao" 

, s , o  ' 

A(-1,+1) = k ~(0,+1)(+1,0) ~ Ti-1/2,j+1 • ~ , j+1/2  
i , j + i / 2  i--1/2, j+l"VJ' i-- i /2, jH-I/2 = t'i--1/2,J+1 ~ l . ' ~  

"~-z/2,j+i/2 
(0(+~,-~) I ki_l/2,j+ 1 COS \ i--1/2,j+1/2) 

(0(+1,-~) ~ , 4sin \ i - i /2 , j+1/2)  

~-w2,j" :~,j+l/~ - - L I ~ R ( O ' - - I ) ( + I ' O )  
A},j~'I/1) ----- i - I / 2 , j z v . t i _ l / 2 , j+ l /2  -~- L,-I/2j  SALI? LI,  

(A.4) 

(A.5) 

(A.6) 

(A.7) (a(-1,+l) 
Li-112,j c o s  kV i_ll2,j.F ll2 ) 

(0(-1,+1) 4sin \ i-1/~,j+1/2) 

Next, we consider the vertical arrangement illustrated in Figure 4 and translate the third 
equation in (A.2) to the cell with center (i + 1 / 2 , j  - 1/2) by replacing j by j - 1, 

I /~ M(O,-1)(o,+ 1) 
?Ai+l/2,J -- U i+ l /2 , j -1 /2  = Li+l/2 , j - l~Ci+l/2 ,J  - 1  i+1 /2 , j -1 /2  

+k i  . . . . . .  (; M (+1'°)(°'+1) t.t,3--11:z, i + l , j - 1 / 2  i+1/2 , j -1 /2  

k m. M(O,+l)(o,+ 1) 
i+112,j~i+112,j i+1/2,j--1/2 

+ L,,i- 1/2G,j- 1/2MI+ I72,~'+)~- 

If we add this equation to the first equation in (A.2) and take into account (A.3), then we get 

[NI(0,-I-1)(0,÷ 1) ~_ 1~/[(0,-1)(0,-1)~ 
Ui+l l2 , j+ l l  2 --?Ai 'bl l2 , j -1/2 : ~J"~i--kll2,j-1/2 . . . .  i+112,j+112] k i + l l 2 , j ~ i + l l 2 , j  

+ M  (+1'°)(°'+1) L " 
i+1/2,j--1/2 i+l , j -- l l2h]i+l, j --1/2 

+MI+ I'/°),(~:+I)~Li,j-1/2~,j-I/2 
+M(+1 '° ) ( ° ' -Z)L i +1 /2 , j+ i /2  i+1,j+l/2 i+l,jq-i/2 

where 1 < i < I - 1, 0 _< j < J - 1. These equations can be written in the form (3.34), where 

(-~,r(o,+1)(o,+1) -~,¢-(o,-1)(o,-1)" / 
= + 

L~ j_ I I  2 L~+I,j-112 
= Li+l/2,j /8A(+I,_I) -b 8A(+1,+1 ) 

\ i-k112,j--l12 i+I12, j -112 

(A.8) 
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and 

L2,j+1/2 Li~+ 1,.~ + 1/__..___._~ 

L i d - l / 2  L i + l , j - l l 2  

= 4s in  0 } ~ ' 7 , 7  1 2 -{- (O (+1'+1) '~ ( , - , )  
k i j + l / 2  L i + l , j + l / 2  

d- (0(_1,_1) , + ( o ( _ l , + i )  ~ , 
4s in  \ ~ i + i / 2 , j + i / 2 ]  4sin  I~ i+I12, j+I /2)  

(A.8) (cont.) 

AI+~)+I/= L,~I ~ ± l ' " M  (+l '°)(° ' - l )  Ti+ll~,j" Ti+l,j+ll2 
' .  ,~T ,~ ,+1t2 j+, /2 = L,+l,y+l/2 8Al+~)+~)_l_l/2 

(0(-1,+1) "~ Li+l , j+l /2  cos / i + l / 2 j + l / ~ )  

(8(-i,  +i) ~ ' 4 sin \ i+i /2j+i /2/  

A(+I , -1)  = Li_l . . . .  M(+I,O)(O,+I) ~+1 /2 , j  " ~--I-l,j--1/2 
i+l /2 , j  ..t- j - - t l Z  i+1/2 , j -1 /2  = L i+ l , j - 1 /2  8A(+l,+l)  

i+1/2 , j -1 /2  

/0(+l,+l) L i + l , j _ l / 2  cos \ i+112,j--112) 

(0(+~,+1) ~ ' 4sin \ ~+~/2,j-1/27 

A ( - 1 , + l ) _  Li,j+l/2Ml+l~),~;1/~. ~ , Ti+ll2j" Ti,j+li2 
i+I/2, j  i+1/2,j+1/2 

- = ~ , ~ + ~ / ~  ~ . _ ~ - y - - -  

4 sin (0}+1);,']+,/2) ' 

< + ~ ; , 7  " ,~(-,,o)(o,+,)_ 
- =. Li , j_l l2~.vJ. i+lt2, j_l l  2 -- L i , j _ l l  2 

(0(+1,-1) L i , j _ l l  2 cos ~, i-t-112,j-112) 

(0(+1,-1) 4sin k i+112J-112) 

~/~+1/2,j " r i , j - l / 2  
8A(+l,-1) i+112,j-112 

(A.9) 

(A.10) 

(A.U) 

(A.~2) 

The equations on the boundary will retain the scalar values on the boundary 

/ m ~A'(0,--1)(--1, 0) 
Ul l2 , j+ l l  2 -- UO,j+ll 2 = Lll2, j~l l2, j~.VXll2, j+ll  2 

L m ~(o,+1)(-1,o) 
~- 1/2,j+l~Cl/2,j-FlZVa.1/2,j+l/2 

+ Lo,j+l126o,j+l12M~l~,'°)+(l112'°), 

+ Ls ~-1"2~/ " 1 M (+1'°)(+1'°) ,J~- z ,3+/2 I -1 /2 j+W2 
.~_! ~ u(O,+l)(+l, O) 

Lf-i/2,j+l~f-i/2,J+ 1 f-I/2,j+I/2' 

~,+~/~,~/~- ~,+~/~,o = L ,+~/%o~,+, /~ ,oMI~:C~ ' ;  ~ 

L~ 1 1~',{;i~, , ' "M(+1 '° ) (° ' -1)  -}- + . . . . . . .  /,~ /+1/2,1/2 

+ L , , ,~ , , ,~MI_;~ ; , °~ ,E -'~ , 
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L M (+1'°)(° +~) Ui+l /2 ,J  - -Ui+l l2 ,J - -1 /2  = i+ l , J -1 /2~ i+ l , J - -1 /2  i+112,J'--1/2 

. ~ 'a.,r(O,-Hl) (0,+i) 
"~- LiT1/2, j~iiT1/2,J±VXiT1/2,J_ l /2  

L ~" "~ At(-- 1'0) (0 '+1)  
Jr i , j_ l /2~ i , J_ l /2 . t . v . t iT1 /2 ,J_ l /2  . 

These boundary equations can be written in the form (3.35) where the off-diagonal values of A 
are the same as above, while the diagonal values are "half" of the values given above, 

A~°}~l/2 L- M (+1'°)(+1'°) = ~,j+1/2 I--1/2,j+1/2 -~- 

A(O,O) , l~ .,Ir(O,+ 1) (0,+ 1) 
i + 1 / 2 , , /  = ' - i + l / 2 , j t v Z i + l / 2 , , l - 1 / 2  = 

LU2,j Ll/2,j+1 + 
_ _  ( 0 ( + 1 , - 1 )  ~ '  4sin (0~/~,}+1~/2) 4 s i n \  1/2,j+1/2) 

LI-II2j L I -1 /2 , j+1  
(n(--1, ~-1) ~ -~- (0(+1,.¥1) ~' 

4sin \~I-1/2j+1/2] 4sin \ I-1/2j+1/2) 

L~,I12 Li+1,l12 + 
[n(-1,-1) "~ {e(-1,+1) "~ ' 4sin \vi+1/2,1/2] 4sin \ i+1/2,1/2] 

Li,J-ll2 L i + l , J - l l 2  

4sin [•(+1,-1) ~ + (0(+1,+1) ~" \-i+W2,J-1/2] 4sin \ ~+1/~,J-1/2] 

A.2.1. Diagona l  d o m i n a n c e  of  m a t r i x  A 

The diagonal dominance of the matrix A is measured by 

A(O,O) _ A(+1,+1) _ A(+I,-1) _ A(-1,+1) _ A(-1,-1) 
R = A(O,o) (A.14) 

In the interior of the domain, the numerator of R can be broken into four terms, while on the 
boundary the expression can be decomposed into two terms, where we can estimate a typical 
term using the results used to prove (2.52), 

Li+1/2, j ( 1 -  COS (0}~'1")~),~_~11~)) ~ ~[-min 
(A.15) 

4 sin ( 0}~,1/~.~ 11~0~ ) -- 8 

So in the interior, 

A(0, 0) _ A(+I,+ 1) _ A(+I, -1) _ A(-1,+I) _ A(-1,-1) > - -  ~Lmin (A.16) 
2 

and 
A(°'°) _~ [-max, (A.17) 

SO 

The same estimate holds on the boundary. 

n > --. ~ (A.18) 
- 2p 

A . 3 .  F o r m u l a s  f o r  M a t r i x  S 

The formulas for the matrix S for the S operator given in (4.22) can be computed in the same 
way as the formulas for the the matrix A computed above. The diagonal elements of S in the 
interior are given by 

_ _ B ( + 1 , 0 ) ( + 1 , 0 )  S~?;°),/2 = B~+~f),~+11'?~ + ,-1/2,j+,/2, 

= B ( 0 , + l ) ( 0 , +  1) , -  _ 

1 < i < I - - 1 ,  0 _ ~ j _ ~ J - - 1 ,  

0 < i < I - - 1 ,  l < j < Y - 1 ,  
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and on the boundary,  the diagonal elements of S are given by 

S~0~I/2 -- B(+1,0)(+1,°) 
-- I-1/2,j+1/2~ 

_ B ( ° , + I ) ( 0 , + 1 )  
S ~ 2 , J  -- i+1/2,J--1/2' 

The off-diagonal terms of S are given by 

O < _ j < _ J - 1 ,  

O < j < J - 1 ,  

0 < i < I - 1 ,  

0 < i < I - 1 .  

and 

S(+i,+I) _ B(O,+1)(-Lo) 
i,j+i/2 - -  i+1/2,j+1/2' 

S(+I ' - I )  = i,j+1/2 B I ~'1)12),~;11'~, 

8(-1,+1) = R(0,+1)(+1,0) 
i,j+l/2 ~i-1/2, j+1/2,  

S(-1,-1) = B(0,-1)(+1,0) 
i,j+l/2 i-1/2,j÷1/2, 

0 < i < I - 1 ,  O < j < _ J - 1 ,  

0 < i < I - 1 ,  0 < _ _ j _ < J - 1 ,  

1 < i < I ,  O < j < _ J - 1 ,  

1 < i < I ,  O < _ j < _ J - 1 ,  

S(+1,+ 1) = B(+l,0)(o, -1) 
i+l/2,j i+1/2,j+1/2, 

S(+1, -1) = B(+l,°)(°, +11 
i+l/2,j i+1/2,j--1/2' 

s ( - 1 + 1 )  : 
i+l/2,j 

s ;l> 2 : B i+1/2,j--1/2' 

0 < i < I - - 1 ,  0 < j < J - 1 ,  

0 < i < I - 1 ,  l < j _  J, 

0 < i < I - 1 ,  O < _ j E J - 1 ,  

0 < i < I - 1 ,  l < j < _ J .  
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