Precise asymptotics for the first moment of the error variance estimator in linear models

Ke-Ang Fu*, Wei-Dong Liu, Li-Xin Zhang

Department of Mathematics, Zhejiang University, Hangzhou 310027, China

Received 9 June 2006; received in revised form 16 March 2007; accepted 2 July 2007

Abstract

Let \(\sigma^2 \) be the unknown error variance of a linear model and let \(\hat{\sigma}^2 \) be the estimator of \(\sigma^2 \) based on the residual sum of squares. In this work, we show the precise asymptotics in the law of the logarithm for the first moment of the error variance estimator.© 2007 Elsevier Ltd. All rights reserved.

Keywords: Precise asymptotics; Linear model; Moment convergence; Error variance estimator; The law of the logarithm

1. Introduction and main result

Consider the linear model

\[Y_i = X_i' \beta + e_i, \quad i = 1, 2, \ldots, n, \]

where \(\beta \) is a \(q \)-dimensional unknown parametric vector, and \(\{e_i\} \) is a sequence of i.i.d. trial errors with \(Ee_1 = 0 \) and \(0 < \sigma^2 = Ee_1^2 < \infty \). By ordinary least squares and the characteristic of linear models, the estimator of \(\sigma^2 \) always takes the following form:

\[
\hat{\sigma}^2_n = \frac{1}{n - \gamma} \left\{ \sum_{i=1}^{n} e_i^2 - \sum_{j=1}^{\gamma} \left(\sum_{i=1}^{n} a_{nj} e_i \right)^2 \right\}, \tag{1.1}
\]

where \(\gamma = \gamma_n \) is the rank of the design matrix \(X_n = (X_1, \ldots, X_n) \) satisfying \(\gamma_n \leq q \) and \(\{a_{nl}\} \) is a sequence of real numbers satisfying

\[
\sum_{i=1}^{n} a_{nl} a_{nm} = \begin{cases} 1, & l = m, \\ 0, & l \neq m, \end{cases} \tag{1.2}
\]

and \(X_n' (X_n X_n')^{-1} X_n = (a_{nl})' \left(\begin{smallmatrix} I_{\gamma} \\ 0 \end{smallmatrix} \right) (a_{nl}) \), where \(I_{\gamma} \) is a \(\gamma \times \gamma \) identity matrix. The limit properties of the error variance estimator have been widely discussed, and we refer the reader to the literature [1,2,7,9] and references therein.

* Project supported by the National Natural Science Foundation of China (Nos. 10671176 & 10771192).
* Corresponding author.
E-mail address: fukeang@hotmail.com (K.-A. Fu).

© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2007.07.018
It is well known that, for i.i.d. random variables, Chow [3] discussed the complete moment convergence, and got the following result.

Theorem A. Let \(\{X, X_n, n \geq 1\} \) be a sequence of i.i.d. random variables with \(E X = 0 \), and set \(S_n = \sum_{i=1}^{n} X_i, n \geq 1 \). Assume \(p \geq 1, \alpha > 1/2, p\alpha > 1 \) and \(E(|X|^p) < \infty \). Then for any \(\varepsilon > 0 \),

\[
\sum_{n=1}^{\infty} n^{p\alpha^{-2} - 2} E\{\max_{j \leq n} |S_j| - \varepsilon n^\alpha\} < \infty.
\]

Recently, Jiang and Zhang [5] established the following precise rates in the law of the logarithm for the moment convergence of i.i.d. random variables by using the strong approximation method.

Theorem B. Let \(\{X, X_n, n \geq 1\} \) be a sequence of i.i.d. random variables with \(E X = 0, E X^2 = \sigma^2 < \infty \) and \(E(|X|^2 / (\log |X|)^\gamma) < \infty \). Set \(S_n = \sum_{k=1}^{n} X_k, n \geq 1 \). Then for \(r > 1 \), we have

\[
\lim_{\varepsilon \searrow 0} \frac{1}{\log(\varepsilon^2 + (r - 1))} \sum_{n=1}^{\infty} n^{r - 2 - 1/2} E\{\|S_n\| - \sigma \varepsilon / \sqrt{2n \log n}\} = \frac{\sigma}{(r - 1) \sqrt{2\pi}}.
\]

Inspired by Chow [3] and Jiang and Zhang [5], here we study the precise asymptotics in the law of the logarithm for the first moment of the error variance estimator. Our main result reads as follows.

Theorem 1.1. Suppose \(E\|e_1\| = 0, 0 < \sigma^2 = Ee_1^2 < \infty \) and \(Ee_1^4 < \infty \), and set \(\nu = \text{Var}(e_1^2) \). Then, for \(d > 0 \) and \(1/2 < b + 1/d < 1 \), we have

\[
\lim_{\varepsilon \to 0} \frac{\nu^{2b + (2/d) - 1}}{\nu^{1/2} \nu^{d/2}} E\{\|n^{1/2} \nu^{1/2} \nu^{d/2} - \sigma^2\| - \varepsilon (\log n)^{d/2}\} = \frac{d E\|N\|^{2b+2/d}}{(bd + 1)(2bd + 2 - d)},
\]

where \(N \) is the standard normal random variable.

Remark 1.1. Here we consider the moment convergence rates, which extend the results of Lu and Qiu [7]. Also we consider the general result for the logarithm while in many other references (cf. Jiang and Zhang [5]) they only consider the special case \(d = 1 \).

Remark 1.2. As we know, to obtain such results, one way is using strong approximation (cf. Jiang and Zhang [5]), but this method is not applicable here. Another way is using the Berry–Esseen inequality (cf. Li [6]), and we do not take this approach either.

2. Proof of Theorem 1.1

In this section, for \(M > 4 \) and \(0 < \varepsilon < 1/4 \), we set

\[
c(\varepsilon) = \exp(M / \varepsilon^{2/d}).
\]

Without loss of generality, assume \(\nu = 1 \) and \(a_{ij} = a_{ij} \) for the same \(i \) in the sequel, and in the sequel, let \(C \) denote a positive constant whose value possibly varies from place to place and the notation \([x]\) means the largest integer \(\leq x \). The proof of Theorem 1.1 is based on the following four propositions.

Proposition 2.1. For \(d > 0 \) and \(b + 1/d > 1/2 \), we have

\[
\lim_{\varepsilon \to 0} \frac{\nu^{2b + (2/d) - 1}}{\nu^{1/2} \nu^{d/2}} E\{|N| - \varepsilon (\log n)^{d/2}\} = \frac{d E\|N\|^{2b+2/d}}{(bd + 1)(2bd + 2 - d)},
\]

where \(N \) is defined in Theorem 1.1.

Proof. By applying Theorem A.1 from Appendix, we can get that
\[
\lim_{\varepsilon \searrow 0} \varepsilon^{2b+(2/d)-1} \sum_{n \leq \varepsilon(n)} \frac{(\log n)^{bd-d/2}}{n} \left| E\{ |N| - \varepsilon (\log n)^{d/2} \} \right| = 0. \quad (2.2)
\]

Proof. Set \(\Delta_n = \sup_{x \in \mathbb{R}} |P(|N| \geq x) - P(n^{1/2} |\hat{\sigma}_n^2 - \sigma^2| \geq x)| \). Then, from Theorem A.2, it follows that \(\Delta_n \to 0 \) as \(n \to \infty \). Notice that

\[
\lim_{\varepsilon \searrow 0} \varepsilon^{2b+(2/d)-1} \sum_{n \leq \varepsilon(n)} \frac{(\log n)^{bd-d/2}}{n} \left| E\{ |N| - \varepsilon (\log n)^{d/2} \} \right| = 0. \quad (2.2)
\]

Thus, for \(P_n \), by applying Theorem A.3, we have
\[e^{2b+(2/d)-1} \sum_{n \leq c(\varepsilon)} \frac{(\log n)^{bd}}{n} P_{n1} \leq e^{2b+(2/d)-1} \sum_{n \leq c(\varepsilon)} \frac{(\log n)^{bd}}{n} (\log n)^{-d/2} \Delta_n^{-1/2} \Delta_n \]
\[= e^{2b+(2/d)-1} \sum_{n \leq c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n} \Delta_n^{1/2} \]
\[\leq M^{bd+1-d/2} \left(\frac{1}{(\log(c(\varepsilon)))^{bd+1-d/2}} \sum_{n \leq c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n} \Delta_n^{1/2} \right) \rightarrow 0, \quad \text{as} \quad \varepsilon \searrow 0. \]

For \(P_{n2} \), by Markov’s inequality and Theorem A.3, we have
\[e^{2b+(2/d)-1} \sum_{n \leq c(\varepsilon)} \frac{(\log n)^{bd}}{n} P_{n2} \leq C e^{2b+(2/d)-1} \sum_{n \leq c(\varepsilon)} \frac{(\log n)^{bd}}{n} \int_{(\log n)^{-d/2} \Delta_n^{-1/2}}^{\infty} \frac{1}{(x+\varepsilon)^2(\log n)^d} dx \]
\[\leq e^{2b+(2/d)-1} \sum_{n \leq c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n} \Delta_n^{1/2} \rightarrow 0, \quad \text{as} \quad \varepsilon \searrow 0. \]

Hence (2.2) holds. \(\square \)

Proposition 2.3. For \(d > 0 \) and \(b + 1/d > 1/2 \), we have
\[\lim_{M \to \infty} \lim_{\varepsilon \searrow 0} e^{2b+(2/d)-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n} E[|N| - \varepsilon(\log n)^{d/2}]_+ = 0. \] (2.3)

Proof. Note that
\[e^{2b+(2/d)-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n} E[|N| - \varepsilon(\log n)^{d/2}]_+ \]
\[= e^{2b+(2/d)-1} \int_{c(\varepsilon)}^{\infty} \frac{(\log y)^{bd-d/2}}{y} \int_{(\log y)^{d/2}}^{\infty} P(|N| \geq x) dx dy \]
\[= \int_{M^{d/2}}^{\infty} \int_{c(\varepsilon)}^{\infty} \frac{(\log y)^{bd-d/2}}{y} \int_{(\log y)^{d/2}}^{\infty} P(|N| \geq x) dx dy \]
\[= \int_{M^{d/2}}^{\infty} P(|N| \geq x) \int_{c(\varepsilon)}^{\infty} y^{2b+(2/d)-2} dx dy \]
\[\leq C \int_{M^{d/2}}^{\infty} P(|N| \geq x) x^{2b+(2/d)-1} dx \rightarrow 0, \quad \text{as} \quad M \to \infty. \]

So (2.3) is proved now. \(\square \)

Proposition 2.4. For \(d > 0 \) and \(1/2 < b + 1/d < 1 \), we have
\[\lim_{M \to \infty} \lim_{\varepsilon \searrow 0} e^{2b+(2/d)-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n} E[n^{1/2} |\hat{\sigma}_n^2 - \sigma^2| - \varepsilon(\log n)^{d/2}]_+ = 0. \] (2.4)

Proof. By the representation of \(\hat{\sigma}_n^2 - (1.1) \), we have that
\[n(\hat{\sigma}_n^2 - \sigma^2) = \frac{n}{n-\gamma} \sum_{i=1}^{n} (s_i^2 - \sigma^2) + \frac{n\gamma}{n-\gamma} \sigma^2 - \frac{n}{n-\gamma} \sum_{j=1}^{\gamma} \left(\sum_{i=1}^{n} a_{nj} e_i \right)^2. \]

Note the inequality \(|x + y + z - \varepsilon| \leq |x - (\varepsilon/3)| + |y - (\varepsilon/3)| + |z - (\varepsilon/3)|\), and the equality \(e^{2b+(2/d)-1} = z^{2b+(2/d)-1}(\varepsilon/3)^{2b+(2/d)-1} \), and hence it suffices to show that
\[
\lim_{M \to \infty} \lim_{\varepsilon \searrow 0} \varepsilon^{2b+(2/d)-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n^{3/2}} E \left\{ \left| \sum_{i=1}^{n} (e_i^2 - \sigma^2) \right| - \varepsilon n^{1/2} (\log n)^{d/2} \right\} \geq 0, \tag{2.5}
\]

\[
\lim_{M \to \infty} \lim_{\varepsilon \searrow 0} \varepsilon^{2b+(2/d)-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n^{3/2}} E \{ \gamma^2 - \varepsilon n^{1/2} (\log n)^{d/2} \} = 0 \tag{2.6}
\]

and

\[
\lim_{M \to \infty} \lim_{\varepsilon \searrow 0} \varepsilon^{2b+(2/d)-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n^{3/2}} E \left\{ \left| \sum_{i=1}^{n} a_{ni} e_i \right|^2 - \varepsilon n^{1/2} (\log n)^{d/2} \right\} \geq 0. \tag{2.7}
\]

For (2.5), set \(S_n = \sum_{i=1}^{n} (e_i^2 - \sigma^2) \). Thus \(S_n \) are partial sums of i.i.d. random variables with mean zero and finite variance. Then we have that

\[
\varepsilon^{2b+2/d-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n^{3/2}} E \{ |S_n| - \varepsilon n^{1/2} (\log n)^{d/2} \} \geq 0.
\]

\[
\geq \varepsilon^{2b+2/d-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n^{3/2}} \int_{\varepsilon n^{1/2} (\log n)^{d/2}}^{\infty} P(|S_n| \geq x) \, dx
\]

\[
\leq C \varepsilon^{2b+2/d-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d}}{n^{1/2}} \int_{\varepsilon n^{1/2} (\log n)^{d/2}}^{\infty} x^{-2} \, dx
\]

\[
\leq C \varepsilon^{2b+2/d-2} \frac{(\log \varepsilon)^{bd-d+1}}{n} = CM^{bd-d+1} \to 0, \quad \text{as } M \to \infty.
\]

For (2.6), this is trivially true. Since \(\varepsilon n^{1/2} (\log n)^{d/2} \geq \varepsilon M^{(2s/2)^d} \to \infty \) as \(n > c(\varepsilon) \) and \(\varepsilon \searrow 0 \), and \(\gamma^2 \) is a constant, it is easily seen that \(E \{ \gamma^2 - \varepsilon n^{1/2} (\log n)^{d/2} \} \geq 0 \) as \(\varepsilon \) is small enough, and hence (2.6) follows.

Now we begin to deal with (2.7). Define \(T_n = \sum_{i=1}^{n} a_{ni} e_i \), and then by the Chebyshev’s inequality and the orthogonality in (1.2), we have that

\[
P(|T_n| \geq \sqrt{x}) \leq x^{-2} E T_n^4 \leq C x^{-2} \left((E e_1^4) \sum_{i=1}^{n} a_{ni}^4 + (E e_1^2)^2 \sum_{i \neq j} a_{ni}^2 a_{nj}^2 \right).
\]

Notice that \(\sum_{i=1}^{n} a_{ni}^4 \leq \sum_{i=1}^{n} a_{ni}^2 = 1 \) and \(\sum_{i \neq j} a_{ni}^2 a_{nj}^2 \leq (\sum_{i=1}^{n} a_{ni}^2)^2 = 1 \). Therefore,

\[
\varepsilon^{2b+(2/d)-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n^{3/2}} E \{ |T_n|^2 - \varepsilon n^{1/2} (\log n)^{d/2} \} \geq 0.
\]

\[
\lim_{M \to \infty} \lim_{\varepsilon \searrow 0} \varepsilon^{2b+(2/d)-1} \sum_{n > c(\varepsilon)} \frac{(\log n)^{bd-d/2}}{n^{3/2}} E \{ |T_n|^2 - \varepsilon n^{1/2} (\log n)^{d/2} \} = 0, \quad \text{as } \varepsilon \searrow 0. \quad \Box
\]
Now we turn to the proof of Theorem 1.1:

Proof. From Propositions 2.1–2.4, Theorem 1.1 immediately follows. □

Acknowledgements

The authors thank the referees for pointing out some errors in a previous version, as well as for several comments that have led to improvements in this work.

Appendix

Theorem A.1 (Lemma 2.4 of Huang and Zhang [4]). For \(n \geq 1 \), let \(\alpha_n(\varepsilon) > 0, \beta_n(\varepsilon) > 0 \) and \(f(\varepsilon) > 0 \) satisfy

\[
\alpha_n(\varepsilon) \sim \beta_n(\varepsilon), \quad \text{as } n \to \infty \text{ and } \varepsilon \to \varepsilon_0,
\]

and

\[
f(\varepsilon)\beta_n(\varepsilon) \to 0, \quad \text{as } \varepsilon \to \varepsilon_0, \forall n \geq 1.
\]

Then

\[
\limsup_{\varepsilon \to \varepsilon_0} \liminf_{\varepsilon \to \varepsilon_0} f(\varepsilon) \sum_{n=1}^{\infty} \alpha_n(\varepsilon) = \limsup_{\varepsilon \to \varepsilon_0} \liminf_{\varepsilon \to \varepsilon_0} f(\varepsilon) \sum_{n=1}^{\infty} \beta_n(\varepsilon).
\]

Theorem A.2 (Theorem 1 of Chen [2]). Suppose that \(Ee_1 = 0, 0 < \sigma^2 = Ee_1^2 < \infty \) and \(Ee_1^4 < \infty \), and set \(\nu = \text{Var}(e_1^2) \). Then we have

\[
n^{1/2} \nu^{-1/2} (\hat{\sigma}_n^2 - \sigma^2) \overset{d}{\to} N,
\]

where \(\overset{d}{\to} \) and \(N \) denote convergence in distribution and the standard normal random variable, respectively.

Theorem A.3 (Lemma 3.2.3 of Stout [8, p. 120]). Let \(\{a_{ni}\} \) be a matrix of real numbers and \(\{x_i\} \) a sequence of real numbers. Let \(x_i \to x \) as \(i \to \infty \). Then

\[
\sum_{i=1}^{\infty} |a_{ni}| \leq M < \infty \quad \text{for all } n \geq 1,
\]

\[
\sum_{i=1}^{\infty} a_{ni} \to 1 \quad \text{as } n \to \infty
\]

and

\[
a_{ni} \to 0 \quad \text{as } n \to \infty \text{ for each } i \geq 1
\]

imply that

\[
\sum_{i=1}^{\infty} a_{ni}x_i \to x \quad \text{as } n \to \infty.
\]

References

