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a b s t r a c t

Let (X, C) denote a twofold k-cycle systemwith an even number of cycles. If these k-cycles
can be paired together so that: (i) each pair contains a common edge; (ii) removal of the
repeated common edge from each pair leaves a (2k − 2)-cycle; (iii) all the repeated edges,
once removed, can be rearranged exactly into a collection of further (2k − 2)-cycles; then
this is ametamorphosis of a twofold k-cycle system into a twofold (2k−2)-cycle system. The
existence of such metamorphoses has been dealt with for the case of 3-cycles (Gionfriddo
and Lindner, 2003) [3] and 4-cycles (Yazıcı, 2005) [7].

If a twofold k-cycle system (X, C) of order n exists, which has not just one but has k
differentmetamorphoses, from k different pairings of its cycles, into twofold (2k−2)-cycle
systems, such that the collection of all removed double edges from all k metamorphoses
precisely covers 2Kn, we call this a complete set of twofold paired k-cycle metamorphoses
into twofold (2k − 2)-cycle systems.

In this paper, we show that there exists a twofold 4-cycle system (X, C) of order nwith
a complete set ofmetamorphoses into twofold 6-cycle systems if and only if n ≡ 0, 1, 9, 16
(mod 24), n ≠ 9.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let X be the vertex set of a complete graph Kn. A k-cycle is a graph with k vertices, x1, x2, . . . , xk, having k edges, {x1, xk}
and {xi, xi+1} for 1 6 i 6 k − 1. A k-cycle system (X, C) of order n is a collection C of k-cycles which partitions the edge-set
of Kn.

If the edges of λKn (this n-vertex graph has λ edges between each pair of distinct vertices) are partitioned into a collection
C of k-cycles, then (X, C) is a λ-fold k-cycle system of order n.

Let (X, C) be a twofold k-cycle system of order nwith an even number of cycles. If these k-cycles can be paired together
so that:

(i) each pair of cycles contains a common edge;
(ii) removal of these common (double) edges leaves a (2k − 2)-cycle;
(iii) the collection of removed double edges can be rearranged into further (2k − 2)-cycles;

then we refer to this as ametamorphosis of a paired twofold k-cycle system into a twofold (2k − 2)-cycle system.
Clearly, for such a metamorphosis of this kind to exist, some necessary requirements are that:
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Fig. 1. Illustrating the case k = 4; 4-cycle pairs to 6-cycles.

Fig. 2. Illustrating the general k-cycle case; pairs of k-cycles to (2k − 2)-cycles.

(a) the pairs of k-cycles with a common edge contain altogether 2k − 2 distinct vertices, so only the end points of the
common edge lie in both cycles, and all other vertices are distinct;

(b) the number of k-cycles, besides being even for the pairing of cycles, must be 0 (mod (2k−2)), in order that the repeated
edges, upon removal, can be formed into further 2k − 2-cycles (see Figs. 1 and 2).

We use the notation PkM2k−2(n) to denote such a metamorphosis. Despite the fact that the subscript 2k−2 is somewhat
redundant, it is included here as a reminder.

Considerable work has been done on other so-called metamorphosis problems in the context of graph decompositions.
The first paper in this area was by Lindner and Street [5] in 2000, and to date at least 22 papers have now appeared on the
topic. A formal definition of a metamorphosis for an arbitrary G-design appears in [2].

For k = 3, such a P3M4(n) metamorphosis was given by Gionfriddo and Lindner [3] (for appropriate orders n), and for
k = 4, a P4M6(n) metamorphosis was given by Yazıcı [7].

Henceforth,we restrict our attention to the case k = 4, although other values of k could be treated similarly. The following
treatment for the case k = 3 is to appear in [4].

The expected spectrum or set of orders n for which a P4M6(n) could exist is 0, 1, 9 or 16 (mod 24). This follows easily
because the number of 4-cycles must be even (to form pairs) and must be 0 (mod 3) (so that the number of removed double
edges is 0 (mod 6)); thus n(n − 1)/24 must be an integer.

In any one P4M6(n), the number of doubled edges removed and formed into 6-cycles is n(n−1)/8 =
1
4

 n
2


. So our aim in

this paper is to construct, for each admissible order n, one twofold 4-cycle system of order nwhere n ≡ 0, 1, 9, 16 (mod 24),
and perform four different metamorphoses, into twofold 6-cycle systems, on its pairs of 4-cycles sharing a common edge, so
that the collection of all four lots of double edges precisely covers 2Kn. So in the complete set of four metamorphoses, their
sets of double edges must be disjoint and each will cover one quarter of the edges of 2Kn.

For this to be possible, it is straightforward to see that the twofold 4-cycle system must be super-simple, that is, every
pair of cycles has at most two vertices in common. This is because every edge is paired in one of the four metamorphoses,
and if two 4-cycles shared three vertices, then they would share (at least) one edge, so pairing these 4-cycles at the common
edge would not result in a 6-cycle with 6 distinct vertices upon removal of the double edge.

We shall call such a set of four metamorphoses a complete set of twofold paired 4-cycle metamorphoses into 6-cycles,
or CP4M6. Any such system of order n will be denoted CP4M6(n), while such a system on a different (non-complete) graph
such as K6,8 will be denoted by CP4M6(K6,8). We also warn the reader that in [6] the term ‘‘complete’’ has been used with a
different meaning from our use here of ‘‘complete set’’.

We also remark that the most difficult part of this problem is finding the so-called ‘‘small’’ cases for the recursive
construction in Section 3 to work. Also we note that the same problem for a CPkM(2k−2) involves k sets of metamorphoses.

The following example illustrates the case of order 25.

Example 1.1. A CP4M6(25).

With vertex set Z25, we use the twofold 4-cycle system given by the following six starter cycles, modulo 25. (The cycle
(a1, a2, a3, a4) is said to be a starter cycle in Zn if all the cycles {(a1 + i, a2 + i, a3 + i, a4 + i) | i ∈ Zn}, addition modulo n,
are taken. The differences are then said to be min{|aj − aj+1|, |aj+1 − aj|}, j ∈ {1, 2, 3, 4}, j + 1 = 1 if j = 4.)

(0, 1, 3, 7), (0, 1, 19, 23),
(0, 3, 23, 9), (0, 3, 19, 5),
(0, 6, 21, 8), (0, 6, 23, 10).
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Fig. 3. Case (A), order 25; all modulo 25.

Note that these starter cycles use the differences, respectively:

1, 2, 4, 7; 1, 2, 4, 7;
3, 5, 9, 11; 3, 5, 9, 11;
6, 8, 10, 12; 6, 8, 10, 12.

There are four different ways to pair cycles giving a metamorphosis into a twofold 6-cycle system each time. We list these
four ways as (A), (B), (C) and (D), and illustrate (A) pictorially in Fig. 3.

(A) Pair the 4-cycles as follows:

(0, 1, 3, 7) and (0, 1, 19, 23);
(0, 3, 23, 9) and (0, 3, 19, 5);
(0, 6, 21, 8) and (0, 6, 23, 10) (all mod 25).

Then the doubled edges (which use differences 1, 3, 6) form a starter 6-cycle (0, 1, 4, 10, 7, 6) (mod 25), and the
remaining 6-cycles from the paired 4-cycles are (0, 7, 3, 1, 19, 23), (0, 9, 23, 3, 19, 5), (0, 8, 21, 6, 23, 10) (mod 25).

(B) This time we use differences 2, 5, 8 for the double edge, so we pair as follows (mod 25):

(0, 2, 6, 24), (0, 2, 3, 21); (0, 5, 2, 11), (0, 5, 19, 3); (0, 8, 21, 6), (0, 8, 2, 12).

Removal of the double edges gives the starter 6-cycle (0, 2, 7, 15, 10, 8) (mod 25).
(C) Using the differences 4, 9, 10 for the doubled edges, we pair as follows (mod 25):

(0, 4, 22, 23), (0, 4, 6, 7); (0, 9, 23, 3), (0, 9, 6, 11); (0, 10, 4, 12), (0, 10, 23, 6).

The starter 6-cycle from the removed double edges is (0, 4, 13, 23, 14, 10) (mod 25).
(D) Using the differences 7, 11, 12 for the doubled edges, we pair as follows (mod 25):

(0, 7, 3, 1), (0, 7, 6, 4); (0, 11, 2, 5), (0, 11, 6, 9); (0, 12, 4, 10), (0, 12, 2, 8).

The starter 6-cycle from the removed double edges is (0, 7, 18, 5, 19, 12).

It is clear that the doubled edges, from (A), (B), (C) and (D) above, precisely cover 2K25 because they involved the differences
1, 3, 6; 2, 5, 8; 4, 9, 10; 7, 11, 12; each twice. So this is an example of a complete set of twofold paired 4-cyclemetamorphoses
into 6-cycles, of order 25. �

2. Some necessary examples

We begin this section with two examples of complete sets of twofold paired 4-cycle metamorphoses into 6-cycles, for
two bipartite graphs. These examples use small latin squares in their construction.
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Example 2.1. A CP4M6(K6,6).

Let the vertex set of K6,6 be {0a, 1a, 2a, 0c, 1c, 2c}∪ {0b, 1b, 2b, 0d, 1d, 2d}, and take any 3×3 latin square on the symbols
{0, 1, 2}. For each symbol s in cell (x, y) of the latin square, we take the 4-cycles

(xa, yb, xc, sd), (xa, yb, (x + 1)c, (s + 2)d),

where x + 1 and s + 2 are calculated modulo 3. This gives two 4-cycles for each of the 9 symbols in the latin square; so as
required, the total number of 4-cycles is 18. Now the four different pairings for the four metamorphoses are as follows.

(A) Take the pairs to be edges between vertices {0a, 1a, 2a} and {0b, 1b, 2b}; in other words all edges between points with
subscripts a and b. It is immediate from the form of the 4-cycles that this covers all 9 edges between these points.
Moreover, this graph of the repeated edges is 2K3,3, which has an easy decomposition into 6-cycles, thus providing a
metamorphosis in this case (A).

(B) This time the 4-cycles are paired with all edges between points with subscripts a and d. Again the repeated edges
precisely cover 2K3,3, yielding 6-cycles from the repeated edges.

(C) This time the 4-cycles are paired with all edges between points with subscripts c and b; the rest follows as above.
(D) This time the 4-cycles are paired with all edges between points with subscripts c and d; the rest follows as above.

The result is a CP4M6(K6,6). �

Example 2.2. A CP4M6(K6,8).

In this case, we take the vertex set {0a, 1a, 2a, 0c, 1c, 2c} ∪ {0b, 1b, 2b, 3b, 0d, 1d, 2d, 3d}. We take a partial latin square
such as the following.

∗ 2 1 0
0 ∗ 2 1
1 0 ∗ 2
2 1 0 ∗

Now for each symbol s in an occupied cell (x, y) of this partial latin square, we take the 4-cycles

(sa, xb, sc, yd), (sa, xb, (s + 1)c, (y + 1)d),

where the addition s + 1 is taken mod 3, while y + 1 is taken mod 4.
As in the previous example, the four different edge-pairings, giving four different metamorphoses, are as follows:

(A) Pair edges sa, xb for all 0 6 s 6 2 and 0 6 x 6 3; this gives 12 double edges. These form a copy of 2K3,4; its 24 edges
easily decompose into four 6-cycles.

(B) Pair edges with end points a and d.
(C) Pair edges with end points c and b.
(D) Pair edges with end points c and d.

The result is a CP4M6(K6,8). �

Example 2.3. A CP4M6(16).

Let the vertex set of K16 be {ij | i = 0, 1, 2, 3, 4, j = 1, 2, 3}∪{∞}. Weworkmodulo 5, and take the following 12 starters
modulo 5 (with subscripts and ∞ fixed).

(01, 11, 02, ∞), (02, 21, 03, ∞), (03, 11, 31, ∞), (01, 11, 31, 22),
(01, 02, 31, 03), (01, 02, 41, 13), (01, 32, 12, 03), (01, 43, 12, 13),
(02, 12, 32, 33), (02, 12, 23, 41), (02, 23, 33, 13), (12, 33, 13, 03).

The four pairings to give metamorphoses into 6-cycle systems are as follows.
(A) Take the first edge in each of the above 4-cycles, and pair according to this edge. This may require cycling modulo 5 to
find the pair; for instance the second listed cycle is (02, 21, 03, ∞), and this pairs with the cycle (21, 02, 32, 23), obtained
(mod 5) from (01, 32, 12, 03) (which is the seventh cycle listed above).

When paired according to the first listed edges in the cycles, these doubled edges decompose to give the following ten
6-cycles:

(11, 01, 02, 42, 13, 21), (01, 32, 42, 41, 22, 43), (11, 12, 02, 21, 13, 42),
(11, 12, 02, 42, 32, 03), (01, 41, 31, 21, 22, 43), (11, 03, 32, 22, 41, 42),
(22, 21, 02, 23, 31, 12), (01, 11, 21, 31, 23, 02), (01, 41, 33, 12, 31, 32),
(31, 32, 22, 12, 33, 41).
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(B) This time the edges taken in the above 12 starter cycles, as repeated edges for this second pairing, are, respectively:

02∞, 02∞, 1131, 1131,
3103, 4113, 1203, 1243,
0233, 1223, 0213, 1203.

These repeated edges decompose to give the following ten 6-cycles:

(01, 21, 41, 13, 32, 23), (12, 23, 42, 03, 22, ∞), (11, 41, 21, 43, 02, 33),
(01, 31, 11, 33, 42, 23), (22, 13, 41, 11, 31, 03), (02, 13, 22, 33, 42, ∞),
(03, 31, 01, 21, 43, 12), (02, 13, 32, ∞, 22, 33), (02, ∞, 12, 23, 32, 43),
(12, 43, 32, ∞, 42, 03).

(C) This time the repeated edges taken in the above 12 starter cycles are, respectively:

01∞, 2103, 31∞, 0122,
3102, 0113, 1232, 0113,
1232, 4123, 2333, 0313.

These repeated edges decompose to give the following ten 6-cycles:

(01, 13, 23, 11, 43, 33), (∞, 31, 02, 22, 42, 21), (21, 03, 13, 31, 43, 33),
(11, 23, 33, 21, 03, 43), (11, 32, 12, 42, 21, ∞), (11, ∞, 01, 22, 02, 32),
(01, 22, 42, 12, 41, ∞), (01, 33, 23, 41, 03, 13), (31, 13, 23, 41, 03, 43),
(02, 31, ∞, 41, 12, 32).

(D) Finally the repeated edges in the above 12 starter cycles are, respectively:

1102, 03∞, 03∞, 3122,
0103, 4102, 0103, 1213,
3233, 4102, 1333, 1333.

These repeated edges decompose to give the following ten 6-cycles:

(01, 12, 21, 32, 33, 03), (01, 42, 31, 33, ∞, 03), (01, 12, 13, ∞, 43, 42),
(21, 12, 13, 33, 03, 23), (31, 22, 23, 43, 13, 33), (11, 13, 43, 42, 31, 22),
(11, 02, 41, 43, ∞, 13), (11, 02, 03, ∞, 23, 22), (21, 23, 03, 02, 41, 32),
(41, 32, 33, ∞, 23, 43).

This completes the decomposition. �

Example 2.4. A CP4M6(24).

Let the vertex set ofK24 be {ij | i ∈ Z3, 1 6 j 6 8}. The twofold 4-cycle systemweuse has 46 startersmodulo 3 (subscripts
are fixed).

(04, 25, 05, 08), (07, 13, 16, 18), (03, 18, 05, 28), (01, 22, 02, 18),
(04, 14, 06, 27), (03, 08, 25, 24), (03, 13, 11, 25), (15, 21, 16, 27),
(07, 27, 28, 11), (02, 21, 16, 05), (17, 27, 22, 05), (02, 13, 06, 27),
(01, 22, 15, 17), (02, 14, 26, 27), (03, 08, 16, 17), (25, 23, 05, 27),
(01, 11, 16, 27), (06, 21, 18, 16), (24, 22, 23, 07), (12, 23, 04, 06),
(05, 26, 21, 27), (13, 23, 16, 14), (01, 23, 06, 05), (04, 24, 18, 11),
(08, 28, 07, 04), (23, 25, 02, 15), (23, 27, 28, 02), (06, 02, 08, 12),
(02, 06, 14, 17), (24, 05, 23, 11), (01, 11, 14, 15), (02, 14, 03, 24),
(11, 26, 23, 18), (15, 06, 28, 16), (01, 02, 08, 05), (04, 25, 15, 12),
(08, 23, 06, 22), (01, 02, 07, 24), (15, 21, 24, 08), (25, 14, 26, 06),
(03, 27, 18, 04), (17, 13, 11, 24), (01, 23, 22, 13), (02, 04, 28, 16),
(01, 12, 02, 17), (18, 28, 01, 07).

The above starter cycles are ordered so that the first edge in each cycle is repeated and used in metamorphosis (A), and the
second edge in (B) (see Example 2.2 for instance). But the repeated edges for (C) and (D) aremixed, so we explicitly list these
below.
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The doubled edges in each case (A), (B), (C) and (D) can be rearranged into 23 6-cycles (not cycled), as follows:

6-cycles from(A) : 6-cycles from(B) :

(01, 02, 04, 14, 25, 16), (01, 03, 16, 08, 14, 06),
(11, 21, 22, 03, 05, 26), (24, 21, 23, 22, 28, 06),
(21, 13, 02, 14, 04, 15), (14, 11, 13, 24, 06, 03),
(24, 22, 11, 02, 13, 15), (14, 26, 13, 12, 17, 08),
(04, 15, 06, 02, 01, 22), (15, 05, 12, 02, 07, 28),
(03, 27, 23, 17, 07, 13), (11, 06, 13, 24, 21, 16),
(13, 07, 27, 17, 23, 28), (24, 16, 03, 02, 12, 18),
(13, 23, 12, 21, 06, 15), (05, 23, 06, 03, 02, 25),
(12, 24, 05, 14, 25, 16), (14, 11, 08, 25, 15, 03),
(04, 25, 01, 12, 14, 24), (01, 26, 18, 12, 22, 28),
(14, 12, 24, 22, 11, 05), (01, 04, 23, 22, 15, 28),
(03, 07, 27, 23, 08, 18), (05, 15, 03, 26, 21, 18),
(21, 12, 23, 28, 18, 13), (11, 13, 12, 22, 02, 08),
(03, 27, 17, 13, 18, 08), (25, 02, 07, 08, 16, 13),
(03, 07, 17, 13, 28, 08), (21, 23, 05, 12, 17, 18),
(01, 21, 02, 11, 12, 16), (22, 15, 25, 05, 18, 27),
(14, 02, 06, 21, 15, 24), (25, 13, 26, 18, 17, 08),
(04, 22, 01, 11, 05, 24), (01, 03, 26, 04, 28, 06),
(23, 03, 11, 12, 01, 25), (02, 08, 07, 28, 27, 22),
(01, 21, 02, 04, 25, 23), (04, 16, 24, 18, 27, 28),
(03, 13, 23, 08, 28, 18), (11, 06, 14, 26, 23, 16),
(23, 01, 11, 26, 22, 03), (01, 04, 23, 16, 21, 26),
(26, 22, 21, 11, 03, 05), (13, 16, 04, 26, 23, 06).

The edges for the metamorphosis and pairing for (C) are (mod 3):

0408, 1618, 0328, 0218, 0427, 2524, 0325, 1527,
0711, 1605, 1705, 0227, 1517, 0227, 0317, 2527,
0127, 1816, 2307, 0406, 2127, 1614, 0105, 0411,
0804, 2315, 2802, 0812, 0217, 2311, 1415, 0224,
2318, 2816, 0105, 0412, 0822, 0124, 2408, 2506,
1804, 1724, 0113, 2816, 0217, 0107.

The edges for the metamorphosis and pairing for (D) are (mod 3):

0805, 1807, 2805, 1801, 2706, 2403, 2511, 2716,
1128, 0502, 0522, 2706, 1701, 2726, 1716, 2705,
2716, 1606, 0724, 0612, 2705, 1413, 0506, 1118,
0407, 1502, 0223, 1206, 1714, 1124, 1501, 2403,
1811, 1615, 0508, 1215, 2206, 2407, 0815, 0626,
0403, 2411, 1322, 1602, 1701, 0718.

6-cycles from(C) : 6-cycles from(D) :

(11, 23, 07, 22, 18, 04), (21, 05, 22, 06, 07, 04),
(14, 18, 23, 07, 12, 28), (23, 02, 05, 28, 11, 24),
(04, 08, 24, 25, 27, 12), (27, 14, 13, 22, 06, 05),
(11, 23, 15, 26, 24, 17), (17, 04, 13, 22, 25, 28),
(22, 14, 18, 16, 05, 17), (01, 15, 12, 06, 05, 08),
(12, 28, 03, 25, 06, 08), (04, 03, 24, 27, 26, 07),
(13, 05, 16, 18, 04, 08), (22, 05, 08, 15, 02, 16),
(04, 11, 15, 23, 18, 06), (21, 08, 27, 26, 25, 28),
(14, 28, 02, 24, 17, 15), (15, 07, 21, 28, 11, 18),
(05, 01, 27, 12, 08, 13), (11, 27, 16, 26, 25, 18),
(01, 24, 28, 16, 14, 07), (01, 14, 23, 24, 07, 18),
(14, 07, 11, 15, 17, 21), (12, 03, 24, 27, 16, 26),
(21, 14, 15, 27, 02, 17), (11, 25, 17, 26, 06, 27),
(25, 21, 27, 01, 05, 07), (15, 01, 17, 26, 06, 16),
(13, 27, 04, 05, 07, 01), (12, 03, 04, 17, 16, 15),
(21, 03, 28, 24, 02, 27), (07, 16, 17, 25, 18, 15),
(07, 11, 17, 03, 21, 25), (01, 17, 06, 16, 07, 18),
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(22, 07, 12, 04, 05, 17), (11, 24, 07, 06, 12, 25),
(25, 06, 18, 02, 17, 03), (01, 14, 17, 06, 27, 08),
(04, 27, 25, 24, 08, 06), (02, 16, 22, 25, 12, 26),
(13, 27, 15, 26, 24, 01), (15, 02, 26, 07, 21, 08),
(14, 22, 08, 26, 28, 16), (21, 04, 13, 14, 27, 05),
(08, 22, 18, 02, 28, 26), (02, 05, 28, 17, 14, 23). �

Example 2.5. A CP4M6(33).

Let the vertex set of K33 be {ij | i ∈ Z11, j = 1, 2, 3}. The following 24 starter cycles, modulo 11, will be our twofold
4-cycle system.

(01, 11, 83, 53), (01, 33, 13, 03), (11, 51, 12, 42), (11, 93, 43, 33),
(21, 01, 52, 102), (21, 41, 83, 71), (21, 03, 23, 12), (21, 13, 32, 12),
(31, 12, 02, 33), (31, 21, 92, 62), (51, 52, 42, 01), (61, 101, 33, 82),
(81, 01, 62, 103), (81, 63, 42, 92), (91, 63, 42, 62), (101, 71, 23, 12),
(02, 01, 52, 03), (02, 21, 82, 03), (02, 53, 03, 101), (03, 11, 73, 32),
(03, 62, 102, 61), (03, 81, 43, 73), (13, 22, 03, 42), (23, 32, 102, 63).

For each starter cycle above, say written in the order (1, 2, 3, 4), the edges {1, 2} are paired for the metamorphosis (A); the
edges {2, 3} are paired for the metamorphosis (B); the edges {3, 4} are paired for the metamorphosis (C); and the edges
{4, 1} are paired for the metamorphosis (D). This is possible because each difference, whether pure or mixed, appears either
twice or not at all in each of these four positions.

The extra 6-cycles in each case, from the repeated edges, are as follows (mod 11, with subscripts fixed):

(A)
(01, 11, 31, 61, 21, 02), (01, 11, 31, 61, 21, 02),
(01, 33, 41, 23, 32, 83), (01, 33, 41, 23, 32, 83).

(B) (01, 52, 91, 42, 82, 63), (01, 52, 91, 23, 03, 63),
(01, 62, 72, 02, 23, 73), (01, 43, 23, 42, 52, 73).

(C) (01, 42, 12, 32, 82, 13), (01, 42, 12, 32, 82, 13),
(02, 13, 52, 83, 53, 63), (02, 13, 52, 83, 53, 63).

(D)
(01, 51, 22, 11, 02, 03), (01, 32, 11, 61, 52, 23),
(01, 12, 41, 62, 31, 53), (02, 03, 01, 53, 13, 83). �

3. The construction

3.1. The case of order 0 (mod 24)

Let the vertex set of K24x be {(i, j) | 1 6 i 6 4x, 1 6 j 6 6}. (The reader may wish to visualise these 24x points as six
layers with 4x points per layer.) On each set {(i, j) | 4a − 3 6 i 6 4a, 1 6 j 6 6}, for a = 1, . . . , x, place a CP4M6(24); see
Example 2.4.

Then on each set of vertices {(i1, j) | 1 6 j 6 6} ∪ {(i2, j) | 1 6 j 6 6}, for all integers i1 and i2 satisfying
1 6


i1
4


<


i2
4


6 x, place a CP4M6(K6,6); see Example 2.1. In other words, i1 and i2 belong to different sets of

{1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {4x − 3, 4x − 2, 4x − 1, 4x}.

3.2. The case of order 1 (mod 24)

Let the vertex set of K24x+1 be {(i, j) | 1 6 i 6 4x, 1 6 j 6 6} ∪ {∞}. On each set of vertices {(i, j) | 4a − 3 6 i 6 4a, 1 6
j 6 6} ∪ {∞}, for a = 1, . . . , x, place a CP4M6(25); see Example 1.1. Then (as in the case 0 (mod 24)) on each set of vertices
{(i1, j) | 1 6 j 6 6} ∪ {(i2, j) | 1 6 j 6 6}, for all integers i1 and i2 satisfying 1 6


i1
4


<


i2
4


6 x, place a CP4M6(K6,6); see

Example 2.1.

3.3. The case of order 9 (mod 24)

A computer search has shown that no complete twofold paired 4-cycle metamorphosis into 6-cycles of order 9 exists. So
the smallest case in this congruence class is order 33.
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We take the vertex set of K24x+9 to be

{∞} ∪ {ai | 1 6 i 6 32} ∪ {(i, j) | 1 6 i 6 24, 1 6 j 6 x − 1}.

On the 33 vertices {ai | 1 6 i 6 32} ∪ {∞}, place a copy of Example 2.5. On the 25 vertices {(i, j) | 1 6 i 6 24} ∪ {∞}, for
each j = 1, 2, . . . , x − 1, place a CP4M6(25); see Example 1.1.

Then we use CP4M6(K6,6) and CP4M6(K6,8); see Examples 2.1 and 2.2. We can partition {ai | 1 6 i 6 32} into four parts
of size 8, and each set {(i, j) | 1 6 i 6 24}, for j = 1, 2, . . . , x − 1, into four parts of size 6. So we use 16(x − 1) copies of a
CP4M6(K6,8) (Example 2.2) and 16


x−1
2


copies of a CP4M6(K6,6) (Example 2.1).

3.4. The case of order 16 (mod 24)

Let the vertex set of K24x+16 be {ai | 1 6 i 6 16} ∪ {(i, j) | 1 6 i 6 24, 1 6 j 6 x}.
Then we use a CP4M6(16) (Example 2.3) on the vertex set {ai | 1 6 i 6 16}, and x copies of a CP4M6(24) (Example 2.4)

on the vertex sets {(i, j) | 1 6 i 6 24} for j = 1, 2, . . . , x.
Then, partitioning the vertex set {ai | 1 6 i 6 16} into two sets of eight, and each vertex set {(i, j) | 1 6 i 6 24}, for

j = 1, 2, . . . , x, into four, we use copies of a CP4M6(K6,8) (Example 2.2) and a CP4M6(K6,6) (Example 2.1); 8x copies of the
former and 16

 x
2


of the latter.

4. Concluding comments

We have now shown the following.

Theorem 4.1. For all orders n ≡ 0, 1, 9, 16 (modulo 24), apart from order 9 , there exists a twofold 4-cycle decomposition of
2Kn which has four separate pairings to give metamorphoses into 6-cycle systems, such that the collection of 6-cycles formed from
the repeated edges in the pairs of 4-cycles in all four metamorphoses themselves form a decomposition of 2Kn.

In terms of our notation above, this theorem states that for all n ≡ 0, 1, 9, 16 (modulo 24), n ≠ 9, there exists a CP4M6(n).
As remarked above in the introduction, the twofold 4-cycle system used each time must be super-simple in order that

there can exist four different pairings of the 4-cycles (each of which yields 6-cycles upon removal of the paired (double)
edge). The expected spectrum of super-simple twofold 4-cycle systems is 0 or 1 (mod 4), and necessarily orders 4 and 5
are impossible. Our search for order 9 above also showed that there is no super-simple twofold 4-cycle system of order 9.
However, there is one of order 8, and we have found super-simple twofold 4-cycle systems of all other admissible orders; a
note regarding this has recently appeared [1].

If we require the double edges in the above four pairings to exactly cover 2Kn but if we drop the requirement that these
double edges can be formed into 6-cycles, then the expected spectrum increases to 0 or 1 (mod 8). This is because in this
casewe no longer require the number of double edges removed to be amultiple of 3; we only require the number of 4-cycles
to be even. This presents another open problem of interest.
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