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Abstract

Most theories of visual search emphasize issues of limited versus unlimited capacity and serial versus parallel processing. In the
present article, we suggest a broader framework based on two principles, one empirical and one theoretical. The empirical
principle is to focus on conditions at the intersection of visual search and the simple detection and discrimination paradigms of
spatial vision. Such simple search conditions avoid artifacts and phenomena specific to more complex stimuli and tasks. The
theoretical principle is to focus on the distinction between high and low threshold theory. While high threshold theory is largely
discredited for simple detection and discrimination, it persists in the search literature. Furthermore, a low threshold theory such
as signal detection theory can account for some of the phenomena attributed to limited capacity or serial processing. In the body
of this article, we compare the predictions of high threshold theory and three versions of signal detection theory to the observed
effects of manipulating set size, discriminability, number of targets, response bias, external noise, and distractor heterogeneity. For
almost all cases, the results are inconsistent with high threshold theory and are consistent with all three versions of signal detection
theory. In the Discussion, these simple theories are generalized to a larger domain that includes search asymmetry, multidimen-
sional judgements including conjunction search, response time, search with multiple eye fixations and more general stimulus
conditions. We conclude that low threshold theories can account for simple visual search without invoking mechanisms such as
limited capacity or serial processing. © 2000 Elsevier Science Ltd. All rights reserved.
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1. The psychophysics of visual search

Looking for a friend’s face, foraging for food, and
detecting predators are all examples of visual search.
These search behaviors are accomplished by processes
and representations common to nearly any visual task.
These behaviors depend upon the representation of
visual stimuli, the limits of attention, and the integra-
tion of information for decision. Thus, an understand-
ing of representation, attention, and decision goes hand
in hand with an understanding of search. Here, we
develop a theoretical framework for visual search that
encompasses these issues at the heart of vision. We
argue that this framework provides a foundation that is
missing in many current theories of visual search.

Our first guiding principle is to develop a theory of
search based upon the theories of simple detection and
discrimination developed within visual psychophysics.
This choice has a number of advantages. Visual psycho-
physics provides theories of the representation of simple
attributes such as color or orientation, and for the
processes that yield a response in simple detection and
discrimination tasks. Thus it provides hypotheses for
both the stimulus representation and the decision pro-
cess. In addition, psychophysics inspires both the theo-
retical and empirical foci of this article. Theoretically,
we focus on applying signal detection theory to search
(e.g. Shaw, 1980, 1982, 1984) because of the theory’s
success in combining internal processes such as bias
with the representation of the stimulus. Empirically, we
focus on applying the experimental methods of psycho-
physics to search (e.g. Geisler & Chou, 1995) because
these methods are most likely to reveal a common
account of both search and simple detection and dis-
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crimination. In short, we argue for building a theory of
visual search based on earlier work in psychophysics.

Our second guiding principle is to emphasize the
distinction between theories assuming a high versus a
low threshold. This distinction has an important place
in the history of psychophysics and was one of the
motivations for the development of signal detection
theory. In simple detection and discrimination, the
consensus of research supports the need for some kind
of low threshold. For search, the situation is different.
Many search response time theories ignore error, a
move which can be justified only by assuming a high
threshold. As a consequence, these theories must in-
clude additional mechanisms such as serial processes or
limited capacity to account for phenomena that arise
naturally from a low threshold theory. Thus, while the
high threshold theory is largely discredited within the
domain of simple detection and discrimination, it has
survived within the domain of visual search. We extend
the previous analysis of high and low threshold from
simple detection and discrimination to visual search.

Here is a preview of the article. In the remainder of
the introduction, we develop alternative theories of
visual search and specify a simplified domain in which
to compare the theories. The theories are then tested
using six distinct phenomena of visual search. Next is a
discussion of alternative interpretations and of general-
izations from the simplified domain to the larger do-
main of visual search. We conclude that a high
threshold is untenable for search just as it is untenable
for simple detection and discrimination.

2. Theoretical analysis

2.1. High 6ersus low threshold

2.1.1. High threshold
High threshold theories begin from two assumptions

(for reviews see Green & Swets, 1966; Graham, 1989).
First, the relevant representation of a stimulus is dis-
crete. One either detects a target or one does not.
Second, the absence of a target never produces a target-
detect state. This means that distractors can never
produce enough misleading evidence to surmount the
‘high threshold’ and produce a false alarm. False
alarms arise in behavior only as a consequence of
guessing.

Consider the example of searching for a slightly pink
target disk among white distractor disks. Typical dis-
plays contain many distractors and only occasionally
contain one or more targets. The high threshold theory
presumes that the perceptual system never categorizes a
distractor as a target. Thus white distractors are never
seen as pink. Instead, the mistakes in the representation
are always misses: a pinkish target is categorized as a

white distractor. This asymmetry in the representation
presumably arises because of the numerous distractors
relative to the occasional target.

2.1.2. Low threshold
Low threshold theories1 make a wide variety of as-

sumptions about stimulus representation and decision.
They include the well known signal detection theory
(Green & Swets, 1966), and less known alternatives
such as biased-choice theory (Luce, 1959, 1963a;
Macmillan & Creelman, 1991) that are not pursued
here. What they share is the premise that a distractor
can produce the target-detect state. Specifically, in sig-
nal detection theory there is always a chance that a
distractor can yield enough evidence to pass the ‘low
threshold’ criterion. Thus, distractors can produce mis-
leading evidence that results in a false alarm.

Consider again the pinkish target and white distrac-
tor example. Any low threshold theory allows both
kinds of errors in the representation. Now white dis-
tractors can be mistakenly categorized as pinkish
targets and pinkish targets can be mistakenly catego-
rized as white distractors.

2.1.3. Consequences for 6isual search
This distinction has an interesting consequence for

visual search tasks because of the multiple distractors.
If one assumes a high threshold, then additional dis-
tractors remain safely irrelevant to the decision process.
In contrast, if one assumes a low threshold, then each
additional distractor has the possibility of introducing
enough evidence to result in an error. Thus, for low
threshold theory, distractors affect performance even if
processing of each stimulus is completely independent.
This point was perhaps first made by Tanner (1961)
and has been discussed by many authors since (e.g.
Green, 1961; Cohn & Lasley, 1974; Shaw, 1980; Pelli,
1985; Graham, 1989). It holds for response time tasks
as well as accuracy tasks (see Discussion). Because of
this effect of noisy distractors, it is a mistake to infer
limited capacity from a set-size effect.

2.2. A theoretical framework based upon signal
detection theory

There is no single low threshold theory to contrast
with the classic high threshold theory. Instead, we
describe a framework for constructing alternative low
threshold theories based upon signal detection theory
and describe three specific theories based upon the

1 In this article, we use the term low threshold theory to denote the
large class of theories that complements high threshold theory. How-
ever, the term has also been used to denote a specific theory devel-
oped by Luce (1963b) based upon discrete representations. We refer
to Luce’s specific theory as the ‘two-state, low threshold theory’.
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framework (for reviews see Swets, 1984; Sperling &
Dosher, 1986). The framework provides a method for
constructing theories appropriate to specific domains
but it is not a testable theory in itself.

Theories of visual search that are based upon signal
detection theory have several common elements. The
first element is that they all suppose a representation of
the individual stimulus that corresponds to a continu-
ous random variable. Thus, they always assume a noisy
representation which naturally leads to a low threshold.
On the other hand, the framework says nothing about
what aspects of the stimulus are represented. For exam-
ple, one of the specific theories below takes compari-
sons among neighboring stimuli to be the relevant
representation rather than attributes of individual stim-
uli. The specific theories developed in Appendix A are
general for any distribution of distractor and target
representations. However, to make more specific pre-
dictions, we follow two paths. First, we present the
predictions of the usual default assumption of equal
variance, normal distributions. Second, we present
analyses of more general families of distributions. In
particular, these generalizations include a possible non-
linear relation between the stimulus and the representa-
tion and unequal variance between targets and
distractors.

A second element shared by theories of signal detec-
tion is a decision process distinct from initial perception
that incorporates effects of bias in a specific task. In
particular, we concentrate on the yes–no task (and
related rating tasks) in which the decision process is a
comparison between the internal representation of a
test stimulus and an internal representation of a com-
parison standard. This comparison standard can be
either a decision criterion or a random variable repre-
senting a comparison stimulus. The common feature is
that the representation of the comparison standard is a
function of the biases of the observer and the history of
previous decisions and not a function of the test
stimulus.

The third element of these theories is specific to the
search situation with multiple, simultaneous stimuli.
Some assumption must be made about how informa-
tion from individual stimuli is integrated to make a
decision. The specific theories described below explore
three different assumptions about such information inte-
gration. These include the ideal observer that assumes a
very detailed integration rule and the independent deci-
sions model that assumes independent decisions for
each stimulus.

The fourth element is also specific to search. Some
assumption must be made about the effect of attention
on the representation of individual stimuli. For all of
the theories detailed here, we assume independence
among the individual stimuli. This subsumes three dis-
tinct properties: unlimited capacity, parallel processing,

and statistical independence. Unlimited capacity is the
independence of each individual stimulus representation
from the number of other stimuli; parallel processing is
the simultaneous processing of all stimuli; and, statisti-
cal independence is the lack of trial-to-trial correlations
among the representations of multiple stimuli (for more
detail on these properties see Busey & Townsend, in
press; Townsend, 1981; Townsend & Ashby, 1983). Our
intent is to develop elaborations of a simple ‘indepen-
dent channels’ theory (e.g. Graham, 1989) that assumes
all three properties.

In summary, our theoretical framework allows a
variety of choices about representation, decision, infor-
mation integration, and attention. What the theories
share are an independent noisy representations of the
stimuli and a decision making process that integrates
information and incorporates biases.

2.3. Specific theories

We now introduce four specific theories of visual
search. The first is the familiar high threshold theory.
The other three are low threshold theories that are
special cases within the signal detection framework.
These three theories make a range of assumptions
about information integration and the stimulus repre-
sentation. They are presented in order from the theory
that assumes the most knowledge of the stimulus on the
part of the observer to the theory that assumes the least
knowledge.

The theories can be described using the information
flow diagrams of Fig. 1. Each panel depicts a different
theory. These flow diagrams show how information
from a set of stimuli illustrated on the left side is
transformed into a single yes/no response illustrated on
the right side. The boxes indicate the nature of the
initial stimulus representation, the rule used to integrate
information from the multiple stimuli, and the nature
of the decision process. Each theory is briefly described
below and is formally defined in Appendix A.

2.3.1. High threshold theory
The two key assumptions of the high threshold the-

ory have already been introduced. First, the representa-
tion of the stimulus is one of two discrete states,
detecting the target or not detecting the target. Second,
the target-detect state never arises from a distractor.
This theory is represented in the top panel of the figure
with the left box representing the stimulus processing
that produces a discrete representation for each stimu-
lus. Next, in the middle box it is assumed the observers
introduce guessing responses on some proportion of the
trials in which no target is detected. Finally, in the
rightmost box the information from all of the stimuli
and the guessing processes are integrated by a simple
OR rule. If any of the representations indicates a target
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detection or a guess that the target was present, then
the response is ‘yes;’ otherwise, the response is ‘no.’
Thus, guesses are the only way this theory produces a
false alarm. In addition, we follow other recent authors
(e.g. Quick, 1974; Watson, 1979; Graham, 1989) in
combining these assumptions of the classic high
threshold theory with the assumption that the probabil-
ity of the target-detect state is a Weibull function of the
relevant stimulus parameter (e.g. contrast difference
between target and distractor). This formulation has
several unique properties such as a consistent shape of
the psychometric function under probability summation
(Green & Luce, 1975; Watson, 1979) and it has proven
to be quite successful in describing detection threshold
experiments, particularly summation experiments (Gra-
ham, 1989). With this additional assumption, one can
more easily compare the predictions of the high
threshold theory to signal detection theories with spe-
cific distributional assumptions. Some of the tested
predictions require this assumption while others test the
high threshold theory more generally.

2.3.2. Ideal obser6er
The ideal observer theory has been an important

reference point in psychophysical theories of detection
and discrimination (Green & Swets, 1966; Geisler,
1989). As with all of the signal detection theories, the
initial stimulus representation is more general than it is
with the high threshold theory. The representation of

each stimulus is assumed to be continuous and noisy.
The unique feature of the theory lies in the middle
panel that represents how information is integrated
from the different stimuli. It is assumed that informa-
tion from all stimuli is combined optimally to maximize
performance in the particular task. Hence, the ideal
observer theory includes an information integration
rule that is particular to the task and specific to the set
of possible stimuli in the experiment. In Appendix A,
the ideal combination rule is presented for the well
known case of one target among m stimuli and for the
less known case of h targets among m stimuli. As the
last step in the theory, the integrated representation is
compared to a criterion. If the criterion is surpassed,
then the observer responds ‘yes’, otherwise ‘no’.

2.3.3. Maximum of outputs
The third theory is perhaps the most common in

visual psychophysics, the maximum-of-outputs theory
(see Graham, 1989 for more complete references). As
discussed in Appendix A, this theory is equivalent to
the independent decisions model of Shaw (1980, 1982)
and previously has been referred to as the decision
theoretic model (Green & Swets, 1966; Green & Bird-
sall, 1978), the extreme detection model (Swensson &
Judy, 1981), the separable decision model (Smith, 1998)
and perhaps was first introduced by Tanner (1961) in
his descriptions of the effects of uncertainty predicted
by signal detection theory. The sensory representation
is continuous and noisy as with the ideal observer
theory. The difference arises in the middle panel in
which the different sources of information are com-
bined according to a maximum rule: The stimulus with
the maximum amount of evidence favoring a target is
used in a subsequent decision process. The final deci-
sion process is common for all of the versions of signal
detection theory. If the criterion is surpassed, the ob-
server responds ‘yes’.

2.3.4. Relati6e coding: maximum of differences
The last theory is motivated by ideas from robust

statistics (e.g. Hampel, Ronchetti, Rousseeuw & Stahel,
1986). By way of introduction, consider again ideal
observer theory. It requires complete knowledge of the
stimulus including the joint distributions of all possible
stimulus representations. By comparison, the maxi-
mum-of-outputs theory requires knowledge of only the
marginal distributions for each stimulus. It makes no
use of information from the joint distribution. What
decision rules might require even less knowledge of the
underlying distributions? Our candidate is to consider
differences in the attributes of neighboring stimuli
rather than the value of the individual attributes. This
theory is referred to as the maximum-of-differences
theory. To illustrate, consider the problem of compar-
ing the brightness of stimuli in different parts of the

Fig. 1. A schematic illustration of the flow of information in four
theories of visual search. The three arrows on the left represent
information input from three stimuli. The one arrow on the right
represents the information output to determine a single response. At
some point in each model, the multiple sources of information from
the multiple stimuli are reduced to a single representation indicated
by a single arrow.



J. Palmer et al. / Vision Research 40 (2000) 1227–1268 1231

visual field. Suppose this task is complicated by an
inherent variation of brightness with eccentricity: Pe-
ripheral stimuli appear dimmer than central stimuli.
The use of local differences is robust to such eccentric-
ity effects compared to a direct representation of
brightness.

The maximum-of-differences theory is represented in
the bottom panel of Fig. 1. It is similar to the maxi-
mum-of-outputs theory but with the maximum taken of
the differences between neighboring stimuli as is repre-
sented in the second from the left panel of the figure.
This idea is very similar to the feature contrast theory
of Nothdurft (1991, 1992, 1993). He has demonstrated
for certain search tasks that feature differences rather
than feature values determine performance. For exam-
ple, the orientation of lines in a texture pattern may
vary systematically across the scene. Even if all orienta-
tion values are in a scene, one can easily discriminate
an odd line if its orientation differs sharply from its
neighbors.

2.3.5. Summary of theories
The four theories can be thought of as varying in two

ways. The first distinction is between high and low
threshold. The second distinction is among the low
threshold theories that assume different amounts of
knowledge about the stimulus representation. Compari-
sons of the predictions of these three theories to the
high threshold theory are intended to give an indication
of how sensitive different signal detection theories are
to the particular assumptions about the details of the
representation, information integration, and decision
process. To preview the outcome, the predictions for
the three signal detection theories are quite similar and
all are distinct from the predictions of the high
threshold theory.

3. The domain of study

3.1. A simplified domain

The primary principle guiding this article is to inte-
grate a theory of search into the better established
theories of simple detection and discrimination. By
simple detection and discrimination, we are referring to
experiments in spatial vision with one (or two) simple
stimuli and a homogeneous surround. The domain of
possible search experiments overlaps with such simple
detection and discrimination experiments for the case of
a single stimulus (set size 1). We argue that focusing on
the methods of such simple detection and discrimina-
tion experiments is likely to reveal the common mecha-
nisms responsible for both the simple tasks and visual
search (cf. Palmer, 1995; Verghese & Stone, 1995). This
strategy sacrifices the breadth of previous visual search

research in exchange for the more controlled conditions
found in psychophysical studies of spatial vision. If
simple theories are adequate for these restricted condi-
tions, then such theories are a plausible starting point
for generalizing to a broader range of conditions. The
simplified domain is defined by the following four
principles.

3.1.1. Unidimensional judgments
Judgments of differences along a single dimension

such as contrast, hue, size, orientation, etc. are the core
of visual psychophysics. We focus on visual search
experiments that require judgments along a single
dimension.

3.1.2. Accuracy measures
The bulk of visual psychophysics has been conducted

with matches and discrimination thresholds that are
based upon response accuracy rather than response
time. Therefore, we focus on response accuracy
experiments.

3.1.3. Single eye fixation
Most visual psychophysics is conducted under condi-

tions in which the retinal stimulus can be precisely
specified and eye movements are minimized. Similarly,
we focus on experiments that control fixation and use
brief displays to minimize eye movements.

3.1.4. Plausibly distinct and independent stimuli
In typical spatial vision experiments, the relevant

aspects of a stimulus are manipulated in the presence of
as simple a display as possible. For example, the con-
trast of a disk or grating patch is manipulated within an
otherwise homogeneous visual field. Presenting other
stimuli within a field can affect performance for a
variety of reasons. To minimize these extraneous ef-
fects, we emphasize experiments with the following
properties:
1. distinct stimuli that are well above detection

threshold (e.g. pedestal experiments);
2. widely separated stimuli that are arranged to mini-

mize configural cues (e.g. randomly placed);
3. single displays with no masks.

The use of suprathreshold stimuli allows one to focus
on the effects of the number of stimuli rather than
considering both the number and the spatial uncer-
tainty of the stimuli as is necessary for near-threshold
stimuli. The use of widely separated stimuli minimizes
spatial interactions. And, the use of single displays
without masks minimizes the possibility of temporal
interactions.

In summary, our simplified domain excludes many
interesting studies with complex stimuli, multiple eye
fixations, crowded stimuli, etc. No simple theory can
hope to account for all of the phenomena of visual



J. Palmer et al. / Vision Research 40 (2000) 1227–12681232

search. In this article, our goal is to test simple theories
within the simplified domain. To preview the results,
restricting oneself to this simplified domain yields a
much more homogenous set of results than is otherwise
evident. In the discussion, we consider how to elaborate
the simple theories to account for more complicated
phenomena.

3.2. O6er6iew of phenomena

The body of this article is an analysis of six phenom-
ena of visual search. All can be studied under condi-
tions satisfying the simplified domain inspired by simple
detection and discrimination experiments. Three of the
phenomena arise from the multiple stimuli present with
visual search: Set-size effects are the most studied and
measure the possible cost of attending to multiple stim-
uli; multiple target effects reveal the possible benefits of
multiple stimuli; and, distractor heterogeneity effects are
diverse and have received little quantitative analysis.
We also consider three other phenomena common to
search and simple detection and discrimination: target-
distractor discriminability effects are very large and are
sometimes ignored in studies of search; response bias
effects can also be large and vividly show the difference
between high and low threshold theories; and, external
noise effects reveal the characteristics of the internal
noise.

4. Effects of set size

Perhaps the most fundamental phenomenon of
search is the effect of multiple stimuli, referred to as a
set-size effect. The predicted magnitude of a set-size
effect depends critically on whether a theory assumes a
high or a low threshold. The high threshold theory
predicts that variation in set size will have no effect,
while any theory with a low threshold predicts that
variations in set size will matter. Furthermore, the
magnitude of the set-size effect predicted by low
threshold theories depends on the discriminability of
the stimuli. Thus, to meaningfully compare set-size
effects across experiments, one must equate the discrim-
inability of the stimuli used in the different experiments.
This can be accomplished by the common psychophysi-
cal technique of estimating the stimulus difference that
yields a given level of discrimination performance as a
function of the variable of interest (here set size). By
estimating such a difference threshold at each set size,
one can quantify set-size effects at the level of discrim-
inability that defined the threshold measure. While
numerous studies have measured performance as a
function of set size (e.g. Estes & Taylor, 1964; Shaw,
1980, 1984; for reviews see Teichner & Krebs, 1974;
Palmer, 1995; Pashler, 1998), fewer have varied discrim-

inability to estimate a threshold as a function of set size
(Bergen & Julesz, 1983; Nagy & Sanchez, 1990; Poirson
& Wandell, 1990; Palmer, Ames & Lindsey, 1993; Za-
cks & Zacks, 1993; Verghese & Nakayama, 1994).
There have been also a few that measured the related
uncertainty effects in detection (e.g. Cohn & Wardlaw,
1985) and in simulated medical images (e.g. Burgess &
Ghandeharian, 1984). Here, we present details for one
example experiment that measures difference thresholds
as a function of set size.

4.1. An example contrast increment experiment

Palmer (1994, experiment 1), measured the contrast
increment threshold for set sizes 1, 2, 4, and 8. The
stimuli were white, 0.5° diameter disks presented for
100 ms to minimize eye movements. To control sensory
effects such as those of eccentricity and lateral masking,
the disks were arranged randomly with eccentricities
between 5° and 8° and the center-to-center spacing was
at least 3°. A yes-no procedure was used with equal
frequencies of Target Present and Target Absent trials.
All distractors had 20% contrast and the single target
had a contrast increment that ranged from 8 to 24%,
thus the target contrast itself ranged from 28 to 44%. A
psychometric function was fit to each condition for
each observer and the difference threshold was esti-
mated for 75% correct performance.

Fig. 2 shows the estimated thresholds as a function of
set size. Individual observer estimates are indicated by
the light dotted lines; the mean thresholds for each set
size are indicated by the solid points; and, the best
fitting regression line on this log–log plot is shown by
the solid line. Because these threshold 6ersus set size
functions (TvS functions) have logarithmic scales, the
linear regression function on the graph is given by,

log t= log a+bTVS log m (1)

where m is the set size and t is the contrast increment
threshold. This equation is, of course, equivalent to the
threshold being a power function of set size. The
parameter bTVS is the slope on this log–log plot and log
a is the y-intercept. Because the abscissa is logarithmi-
cally scaled, the y-intercept is defined at log m=0
which implies m=1. Thus, the parameter a is the
estimated threshold for set size 1. Because this function
is not meaningful for fractional set sizes, it is intended
as a familiar continuous description of this discrete
effect.

The four observers show similar results with TvS
slopes ranging from 0.27 to 0.40. The mean slope was
0.3090.08. (Throughout this article, standard errors
are the standard error of the mean of a sample from
multiple subjects or replications of a single
subject.) Palmer (1994) contains two additional exper-
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Fig. 2. The contrast increment threshold is plotted as a function of set
size (Palmer, 1994, experiment 1). The dotted lines indicate individual
observer thresholds; the solid points indicate the mean thresholds of
four observers; and, the solid line is the best fitting linear regression
line on this log-log plot. Error bars throughout the article are
standard errors of the mean.

Fig. 3. For each of the four theories, the predicted relative threshold
is plotted as a function of set size. All thresholds are relative to that
predicted for set size 2.

of precision from the expressions given in Appendix
A.2

Fig. 3 shows the predicted relative thresholds as a
function of set size for each of the four theories. The
flat line represents the constant threshold predicted by
the high threshold theory. The ideal observer and
maximum-of-outputs predictions are the two finely
dashed curves and they fall essentially on top of one
another (cf. Nolte & Jaarsma, 1966). For this range
of set sizes, the predicted set-size effect is about 1%
smaller for the ideal observer theory than the maxi-
mum-of-outputs theory. Finally, the maximum-of-dif-
ferences theory predicts slightly smaller effects for set
sizes larger than 2 but makes no prediction for set
size 1. The predictions of the signal detection theories
deviate slightly from linearity on this log–log graph
in the concave downward direction. The small differ-
ences between the predictions can be quantified by
calculating the TvS slope predicted at set size 2. The
ideal observer theory predicts 0.25, the maximum-of-
outputs theory predicts 0.26, and the maximum-of-
differences theory predicts 0.19. In summary, the high
threshold theory predicts a slope of zero and the
three signal detection theories all predict slopes in the
range of 0.19–0.26 at set size 2.

iments measuring the effect of set size on the
contrast increment threshold. The mean TvS slopes
in these experiments for set sizes 2 and 8 are 0.269
0.02 (experiment 2, display set size) and 0.2590.02
(experiment 2, relevant set size). In summary,
these three experiments show average set-size
effects on threshold with TvS slopes in the 0.25–0.30
range.

4.2. Predictions

The predicted effect of set size on the threshold is
defined relative to the threshold predicted for set size
2 because the maximum-of-differences theory makes
no prediction for set size 1. For the high threshold
theory, set size is predicted to have no effect. For
each of the other theories, the relative threshold de-
pends on distributional assumptions. In this section,
the predictions are based on independent, equal-vari-
ance, normal distributions for all distractors and
targets; in following sections, we consider more gen-
eral assumptions. For the maximum-of-outputs the-
ory, one can derive an expression for the relative
threshold as a function of set size with no free
parameters (Palmer, Ames & Lindsey, 1993; for a
more general form see Palmer, 1998). For the ideal
observer and maximum-of-differences theories, no
known expression exists for the predicted thres-
holds, but one can simulate the results to any degree

2 The predictions given here were simulated from 40 000 trials per
condition assuming a rating experiment with three levels of discrim-
inability centered around the threshold value. Thus it used 120 000
trials to estimate one threshold. These simulations followed the design
of the speed discrimination experiment described in Appendix B.
Repeated simulations showed that these conditions resulted in predic-
tions of the relative thresholds that were reliable to at least two
decimal places. Simulations in the remainder of this article also use
these methods.
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4.3. Discussion

The first point to emphasize is the consistency of the
observed set-size effects. Set-size effects with similar
magnitudes have been measured for disk color, disk
size, ellipse orientation (Palmer, 1994), line length, line
orientation, rectangle shape (Palmer et al., 1993), speed
discrimination (Verghese & Stone, 1995), vernier acuity
judgments (Fahle, 1991, experiment 3), detection of
Landolt C’s (Davis & Peterson, 1998), and letter dis-
crimination (Bennett & Jaye, 1995; McLean, Palmer &
Loftus, 1997). Restricting ourselves to the simplified
domain, there are only a few exceptions to these results.
For example, larger set-size effects have been measured
for more complex tasks such as the orientation of pairs
of widely separated objects (Palmer, 1994; Põder, 1999).
Such cases may require some kind of limited capacity
processing specific to the particular complex task (cf.
Broadbent, 1958, 1971; Hoffman, 1979). Such limited
capacity results are also found with tasks that make
explicit memory demands (Palmer, 1988, 1990; Palmer
& Ames, 1992; see also Scott-Brown & Orbach, 1998).
In summary, set-size effects of similar magnitude are
reported by all studies of simple search tasks that
restrict themselves to our simplified domain and mea-
sure set-size effects at threshold. This consistency is in
striking contrast to the variability of results under more
general conditions.

The second point to emphasize is the failure of the
high threshold theory. The results are inconsistent with
the predictions of a high threshold and are consistent
with the predictions of all three versions of low
threshold theory. This failure of the high threshold
theory has lead some to propose additional mechanisms
with limited capacity or serial processing to account for
the set-size effects. Here, we stress that set-size effects
do not imply limited capacity or serial processing.
Indeed, they are predicted by any low threshold theory.

5. Effects of target-distractor discriminability

The manipulation of discriminability has a large ef-
fect on search performance just as it does with other
discrimination tasks (e.g. Neisser, 1973; Pashler, 1987b;
Duncan & Humphreys, 1989). By manipulating the
difference between the target and the distractor, one
can move performance from chance to perfect accu-
racy. This large effect must be accounted for within any
comprehensive theory of search. Moreover, discrim-
inability takes on even more importance because com-
parisons between experiments have often been made
with little or no effort to equate discriminability. For
example, Duncan and Humphreys have criticized the
early evidence supporting feature integration theory
(Treisman & Gelade, 1980) because the feature and

conjunction search conditions were not equated in
terms of discriminability. This is a crucial control be-
cause the magnitude of set-size effects decreases with
increasing discriminability as is documented below.

Psychophysical methods provide a natural method
for controlling discriminability by the use of threshold
estimates as has already been introduced in this article.
In addition, there is a body of work that analyzes
discriminability effects using a psychometric function
that plots the probability of a correct response as a
function of a stimulus manipulation such as contrast
(for an introduction see Gescheider, 1985). Psychomet-
ric functions have been characterized by several ana-
lytic functions such as the cumulative normal
distribution or the Weibull. Such psychometric func-
tions have two parameters: A threshold parameter
specifying the stimulus magnitude necessary to yield a
given performance such as 75% correct, and a steepness
parameter that specifies the shape (or slope) of the
curve (for details see Pelli, 1985, 1987; for examples see
Nachmias, 1981; Maloney, 1990). Of interest here, the
steepness of the psychometric function has been pre-
dicted to increase with increases in uncertainty (Tanner,
1961; Nachmias & Kocher, 1970; Cohn, 1981). This is
an interaction between uncertainty and discriminability
where the uncertainty effect is larger for less discrim-
inable stimuli. Previous work on uncertainty effects in
detection have demonstrated this effect under some
conditions (Cohn, 1981; Cohn & Wardlaw, 1985; Pelli,
1985). Here, we examine whether or not set size
changes the shapes of psychometric functions in search
tasks in a similar fashion. In the process, we also begin
exploring more general distributional assumptions for
the three versions of signal detection theory.

5.1. An example contrast increment experiment

Consider again the experiment from Palmer (1994) in
which contrast increment thresholds were estimated as
a function of set size. These estimates were based on
psychometric functions for each set size and each ob-
server. In particular, this yes/no experiment measured
the probability of a hit and a false alarm for three
contrast increments. The hits and false alarms were
used to calculate d % using the assumptions of equal-vari-
ance normal distributions.

The observed psychometric functions are shown in
Fig. 4 with each panel showing a separate observer and
the two curves representing the extreme set sizes of 1
and 8. The psychometric functions are presented as d %
versus the contrast increment with both logarithmically
scaled. Following Tanner & Swets (1954; see also Nach-
mias & Kocher, 1970; Pelli, 1985, 1987), the psychomet-
ric functions are summarized by linear functions on
log-d % versus log-contrast. In other words, d % is assumed
to be a power function of the contrast. By this d % power
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Fig. 4. Psychometric functions are plotted for two set sizes with
separate observers in each panel. Performance is shown in terms of d %
as a function of the contrast increment with both axes logarithmically
scaled (Palmer, 1994, experiment 1).

The two free parameters of these psychometric func-
tions are the threshold, t, and the psychometric func-
tion slope, bpf.

In analyzing the psychometric function, the d % power
law is similar to, but not identical to the Weibull
function which plays the analogous role in high
threshold theory (see the last section of Appendix A for
a definition of the Weibull function). The Weibull
function also has a threshold parameter, t, and a differ-
ently defined steepness parameter k. Pelli (1987) has
pointed out that these two functions are nearly indistin-
guishable and one can estimate the parameters of one
from the other. Focusing our analyses at threshold
performance, we find that the steepness parameters are
proportional with a coefficient3 of roughly 0.9 (bpf=0.9
k). For consistency in this article, all of the analyses use
the d % power law.

The manipulation of increasing the contrast incre-
ment between targets and distractors increases perfor-
mance from near chance (d %=0) for small increments
to near perfect (d %\3) for large increments. The ob-
served data are reasonably approximated by a line the
log–log graph. But with only three points, this experi-
ment cannot thoroughly address the quality of this
approximation.

Set size has two effects on these functions. First,
increasing the set size increases the threshold as was
described in detail in the section on set-size effects.
Second, increasing set size increases the steepness of the
psychometric function: the less discriminable the stimu-
lus, the larger the effect of set size on d %. This effect is
summarized in Fig. 6 which shows the psychometric
function slope as a function of set size. There is a
consistent increase in the slope of the psychometric
function as set size increases. The slope parameter is
0.5990.03 for set size 1 and is 1.290.1 for set size 8.

5.2. Predictions

5.2.1. Set size and psychometric functions
Fig. 5 shows the predicted psychometric functions for

set sizes 1, 2, and 8. The functions are shown in terms
of d % versus the stimulus difference (e.g. contrast incre-
ment) with each axis logarithmically scaled. The predic-
tions of the four different theories are shown in the four
panels. For the three signal detection theories, we as-
sume equal-variance, normal distributions as before.
For all of the theories, the shape of the psychometric
functions is well approximated by a linear function on
log d % versus log of the stimulus difference.

Fig. 5. Each panel shows the psychometric functions predicted by a
different theory. Performance is shown in terms of d % as a function of
the stimulus difference for several set sizes with both axes logarithmi-
cally scaled.

law, variations in the shape of the psychometric func-
tion are characterized by changes in slope on this
log-log plot. We parameterize the function in terms of
the slope bpf, the threshold t, and the performance
criterion defining threshold d %criterion,

log d %= log d %criterion+bpf log (x/t). (2)

3 This 0.9 estimate is only slightly different than the 0.8 estimated
by Pelli (1987) for his conditions. He used a 2AFC rather than a
Yes/No procedure, and he fit the entire function rather than matching
the functions at threshold. Both estimates are approximate because,
relative to the normal, the Weibull is steeper at low contrasts and
shallower at high contrasts.
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The differences among the theories are made clear by
examining the parameters of predicted psychometric
functions. The section on set-size effects has already
summarized that increases in set size result in increases
in threshold for all of the predictions except that of the
high threshold theory. The other parameter is the slope
of the psychometric function estimated at the 0.75
probability correct point (d %=1.35). In Fig. 7, the
predicted slope of the psychometric function is shown
as a function of set size. The flat solid lines show the
predictions of the high threshold theory for k equal to
1 and 3; the finely dashed curve shows the predictions
of the ideal observer theory; the coarse dashed curve
shows the prediction of the maximum-of-outputs the-
ory; and the coarsest dashed curve shows the prediction
of the maximum-of-differences theory. To summarize
the predictions, the high threshold theory predicts no

effect of set size on the psychometric function slope
while all three low threshold theories do predict an
effect on the slope.

5.2.2. Generalized distributional assumptions
The predictions discussed above are for equal-vari-

ance, normal distributions where the mean representa-
tion is linearly related to the relevant stimulus
parameter (e.g. contrast increment). This is clearly too
restrictive for many cases including the example be-
cause it predicts too stereotyped a psychometric func-
tion. Of particular relevance here is the linearity
between stimulus and representation. This linearity as-
sumption can be generalized by introducing representa-
tions that are a power function of the stimulus. For
instance, Pelli (1985) has considered such an assump-
tion for contrast detection where the psychometric
functions are much steeper than they are for contrast
discrimination (e.g. Leshowitz, Taub & Raab, 1968).
This generalized theory makes the same assumptions
about the internal representations and decision pro-
cesses as conventional signal detection theories. The
only change is to relate the value of the mean internal
representation to the stimulus by a power function
rather than a linear function.

McLean et al. (1997) have applied this generalization
to search experiments. In particular, they combined the
power function and the maximum-of-outputs theory.
The predictions of this combination are illustrated in
Table 1 and Fig. 8. Table 1 lists several predicted values
as a function of the steepness parameter (bpf) in the
leftmost column. The predicted thresholds are given for
set sizes 1 and 8. The thresholds are defined relative to
the assumed unit variance of the distractor distribution.
Together, these two set sizes yield a log–log TvS slope
that is given in the fourth column. The predicted psy-
chometric function slopes are described in the rightmost
three columns. For set size 1, the predicted psychomet-
ric function slope is equal to the steepness parameter;
for set size 8, the predicted psychometric function slope
is proportionally higher than the steepness parameter.
Finally, we also include the mean of the predicted
psychometric function slopes for both set sizes. Such an
aggregate measure has the advantage of being better
estimated in an experiment because one can use all of
the available data to estimate the mean psychometric
function slope. The ultimate prediction is illustrated in
Fig. 8. It shows the TvS slope as a function of the mean
psychometric functions slope. The contour is the pre-
diction of the generalized maximum-of-outputs theory.
As the psychometric function steepens, the predicted
set-size effect decreases. With linear relations (bpf=1),
the mean psychometric function slope is predicted to be
1.3 and the TvS slope is predicted to be about 0.25. For
conditions with an accelerating nonlinearity (bpf=3),
the mean psychometric function slope is predicted to be

Fig. 6. The slope of the psychometric function is plotted as a function
of set size for the contrast increment experiment. Points represent the
mean of all of the observers in each experiment.

Fig. 7. For each theory, the predicted slope of the psychometric
function is plotted as a function of set size.
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Table 1
Predicted effect of set size and the steepness parameter on thresholds and psychometric function slopes

Relative threshold Relative thresholdSteepness TvS slope PF slopea PF slope PF slope mean
(m=1)(m=1) (m=8)parameter (m=8)

7.63 0.6170.4 0.42.11 0.620 0.510
5.08 0.494 0.5 0.775 0.6380.5 1.82
3.88 0.412 0.61.65 0.930.6 0.765

1.530.7 3.19 0.353 0.7 1.09 0.893
2.76 0.309 0.80.8 1.241.45 1.02
2.25 0.247 1.01.35 1.551.0 1.28

1.221.5 1.72 0.165 1.5 2.32 1.91
1.50 0.124 2.02.0 3.11.16 2.55
1.31 0.0826 3.0 4.64 3.821.103.0

1.06 1.18 0.04995.0 5.0 7.69 6.34

a PF slope is short for psychometric function slope.

3.8 and the TvS slope is predicted to be 0.08. More
generally, for these set sizes, the predicted TvS slope is
given by 0.247/bpf. Thus, the predicted set-size effects
are sharply attenuated with steep psychometric func-
tions. By comparison, the high threshold theory pre-
dicts no effect of set size, thus its predictions are off the
bottom of the graph in Fig. 8. The predictions of the
ideal observer and maximum-of-differences theories are
essentially indistinguishable from the predictions of the
maximum-of-outputs theory.

5.3. Discussion

The observed psychometric functions show an effect
of set size on the slope of the psychometric function.
This result is consistent with all of the low threshold
theories based on signal detection theory and is incon-
sistent with the high threshold theory. Looking more
closely at the example, the observed psychometric func-
tions slopes are too low for the standard assumptions.
For set size 1, they predict a slope of 1.0 while 0.6 is
observed. The power function generalization can de-
scribe such low slope values. Furthermore, this general-
ization still predicts an increase in the psychometric
function slopes. Another prediction of this generalized
theory is how the TvS slope depends on the psychomet-
ric function slope. Fig. 8 shows that the observed pair
of values is consistent with the prediction of all three
versions of signal detection theory. A further test this
prediction is found in McLean et al. (1997) that de-
scribes data with steeper psychometric functions and
shallower TvS functions for letter detection tasks. In
summary, the signal detection theories describe well the
effects of set size on the psychometric functions if more
general distributional assumptions are made.

To conclude, discriminability and set size interact.
Here, this interaction is documented in terms of d % but
the same interaction is evident with probability correct.
By either measure, set-size effects are smaller for more
discriminable stimuli. Because of this interaction, one

must question any comparison of set-size effects that
does not equate for the effects of discriminability.

6. Effects of multiple targets

In visual search, the introduction of multiple stimuli
allows for the presence of multiple targets as well as
multiple distractors. The processing of multiple targets
is an instance of the larger topic of integrating informa-
tion from multiple sources. Shaw (1982) has reviewed
information integration theories. She distinguishes be-
tween first-order integration models that integrate infor-
mation about the relevant stimulus attributes and then
make a single decision, and second-order integration
models that make separate decisions for each attribute
and integrate the decisions. In the response time litera-

Fig. 8. This scatterplot illustrates the interaction between the slope of
the psychometric function and set-size effects. The log–log slope of
the TvS function is plotted against the average slope of the psycho-
metric functions. The contour indicates the predicted values for the
maximum-of-outputs theory and the symbol indicates the observed
value in the contrast increment experiment.



J. Palmer et al. / Vision Research 40 (2000) 1227–12681238

ture, the corresponding models have been termed coac-
ti6ation and race models, respectively (e.g. Raab, 1961;
Miller, 1982; Mordkoff & Egeth, 1993). Of the theories
considered here, the ideal observer theory is the best
example of first-order integration whereas the maxi-
mum-of-outputs theory is the best example of second-
order integration. The latter is because the
maximum-of-outputs theory is equivalent to Shaw’s
(1980) independent decisions model which is the proto-
type second-order model (see Appendix A). In sum-
mary, the ideal observer and maximum-of-outputs
(independent decisions) theories span the range of in-
formation integration theories.

Information integration has also been analyzed using
detection experiments in the summation paradigm
(Graham, 1989). In this paradigm, the information is
integrated from separate stimulus attributes rather than
separate stimuli. Examples include summation across
spatial frequencies (e.g. Graham, Robson & Nachmias,
1978), summation across spatial positions (e.g. Robson
& Graham, 1981), and summation across color direc-
tions (e.g. Poirson, Wandell, Varner & Brainard, 1990).
The analysis of the summation paradigm includes de-
tailed predictions for both high and low threshold
theories. In addition, this work includes controls for
discriminability using thresholds as was discussed above
for set-size effects. Surprisingly, there have been almost
no studies that exploit these methods for the effect of
multiple targets in visual search. Fortunately, there is
one example for speed discrimination where thres-
hold was estimated as a function of the number of
targets.

6.1. An example speed discrimination experiment

In Verghese and Stone (1995), speed discrimination
was measured for multiple patches of grating. One,
two, four or six patches were presented moving at an
identical speed. This experiment maximized the effect of
multiple targets by making the number of targets equal
to the number of stimuli. The patches were presented in
two intervals with all of the patches in one interval
moving faster than the other interval. The observer’s
task was to choose the interval with the faster motion.
This was a 2IFC task rather than the Yes/No tasks that
we are focusing on in this paper. The theory relating
2IFC and Yes/No tasks has been extensively developed
and we choose to focus on Yes/No only to simplify the
presentation (Green & Swets, 1966). The relative
threshold predictions for 2IFC have been given in
Verghese and Stone (1995) and for this case are essen-
tially indistinguishable from the predictions for Yes/
No.

In Fig. 9, speed discrimination thresholds are shown
as a function of the number of targets. The dotted lines
indicate the thresholds for each of the four observers,

the bold points indicate the mean threshold, and the
solid line indicates the best fitting linear regression on
this log–log plot.4 A linear function on this plot can be
characterized by Eq. (1) with the number of targets
substituted for the set size. The individuals all show a
similar effect of the number of targets with slopes on
these log–log plots ranging from −0.20 to −0.44. The
mean threshold 6ersus number of targets (TvNT) slope is
−0.3090.05. All four subjects also show signs of the
function asymptoting at four to six targets. We do not
try to account for this effect here.

6.2. Predictions

For the maximum-of-outputs and high threshold the-
ories, analytic expressions are given in Appendix A for
the predicted effect of the number of targets on
threshold. For the ideal observer theory, for this partic-
ular situation, the predictions are the same as the
analytic predictions of the sum-of-outputs theory
(Green & Swets, 1966). For the maximum-of-differ-
ences theory, performance is predicted to be at chance
for the case in which the number of targets equals the
set size because there are no differences between the
stimuli (all targets or all distractors) to yield informa-
tion about the presence or absence of a target. Thus,
this theory is inappropriate for this example. The pre-
dictions for the ideal observer and maximum-of-out-
puts theories depend on the choice of distributions and
their statistical independence. As before, we first
present predictions for independent, equal-variance
normal distributions.

In Fig. 10, the predicted relative thresholds are
shown as a function of the number of targets for each
of the theories. As before, all predictions are scaled
relative to the threshold predicted for set size 2. The
three solid lines represent the predictions of the high
threshold theory for three values of the steepness
parameter, k, of the Weibull psychometric function.
When k is infinite, then the high threshold theory
predicts no summation and there is no effect of multiple
targets. When k is 1, the theory predicts linear summa-
tion and there is a large effect of multiple targets. In
that case, the predicted function on this log–log plot is
linear with a TvNT slope of −1. More generally, the
high threshold theory predicts a linear relation on a
log–log plot with a TvNT slope of −1/k. Thus, when
k=3, the predicted TvNT slope is −1/3 as is shown in
the figure.

4 This presentation of the results differs slightly from that published
in Verghese and Stone (1995). In order to maintain consistency with
the other examples in this paper, we define the threshold at 75%
correct performance instead of 82% and fit the psychometric func-
tions to a d % power law rather than a Weibull.
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Fig. 9. The speed difference threshold is plotted as a function of the
number of targets (Verghese & Stone, 1995, experiment 1). The
dotted lines indicate the individual observer thresholds; the solid
points indicate the mean thresholds of four observers; and, the solid
line is the best fitting linear regression on this log–log plot.

Fig. 10. Predicted relative thresholds are plotted as a function of the
number of targets for several theories. All thresholds are relative to
that predicted for set size 2.

Fig. 11. An illustration of the interaction between the effect of
multiple targets and the slope of the psychometric function. The
absolute value of the log–log slope of the TvNT function is plotted
against the slope of the psychometric function. The contours indicate
the predicted values for each theory and the symbols indicates the
observed value for the no-noise (solid) and noise (open) conditions of
the Verghese and Stone (1995) speed discrimination experiment.

The predictions of the ideal observer theory are
shown by the finely dashed line. It predicts a linear
function on a log–log graph with a TvNT slope of
−0.5. The prediction of the maximum-of-outputs the-
ory are shown by the coarsely dashed line. It predicts a
curve that deviates from a straight line on a log–log
plot. The TvNT slope decreases slightly with an in-
creasing number of targets. For set size 2, the TvNT
slope is −0.25. The specific values given here are for a
yes/no task but the relative threshold predictions for a
2IFC tasks are essentially indistinguishable. For exam-
ple, the predicted slope at set size 2 is −0.28 for 2IFC
and −0.25 for Yes/No.

The predicted combinations of TvNT slope and psy-
chometric function slope are shown in Fig. 11. The
ordinate is the absolute value of the TvNT slope to
avoid negative values and allow logarithmic scaling.
The abscissa is the slope of the psychometric function
in terms of the d % power law. As described before, this
slope is about 0.9 of the Weibull k parameter. For the
high threshold theory, the predicted values fall on a line
with slope of −1 and pass through the point (0.9, 1.0).
The predictions of different versions of signal detection
theory also form lines with slopes of −1, but differ in
their vertical position. For a given psychometric func-
tion, the high threshold theory predicts the largest
multiple target effect, the ideal observer theory predicts
the next largest effect, and the maximum-of-outputs
theory predicts the least effect. In summary, all three
theories when generalized predict a similar relation
between of the effect of multiple targets and the slope
of the psychometric function. However, they differ in
the overall magnitude of the effect.

6.3. Discussion

The results of Verghese and Stone (1995) are shown
as the solid symbol in Fig. 11. The TvNT slope is
−0.3090.05 and the psychometric function slope is
1.590.4. This result falls closest to the prediction of
the ideal observer theory. However, the large variability
in the psychometric function slope makes it hard to
reject the alternative theories. This conclusion differs
from Verghese and Stone (1995) because they only
considered the linear model rather than the power law
generalization. Further evidence using this analysis (the
open symbol) is presented in the section on external
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noise. To foreshadow that result, it also favors the ideal
observer over the other theories. In closing, the evi-
dence from this one experiment on multiple targets
slightly favors the ideal observer over the alternatives.

7. Effects of response bias

Response bias is the tendency to use one response
more than another and it can have a large effect when
uncontrolled. Extreme biases in a yes/no task can push
the probability of responding yes down to 0 or up to 1.
An important success story of psychophysics has been
both the reduction of biases using the forced-choice
procedure and the analysis of bias apart from sensitiv-
ity for the yes/no procedure (Green & Swets, 1966;
Swets, 1986a,b). One can also exploit response bias to
reveal information about how decision processes com-
bine bias and stimulus information. The relevant data
are usually plotted in a recei6er operating characteristic
function (ROC function): the probability of a hit is
plotted against the probability of a false alarm. In
detection, such functions were important in distinguish-
ing high threshold from low threshold theories (Tanner
& Swets, 1954; for reviews see Luce, 1963a; Green &
Swets, 1966; Swets, 1986a,b). The ROC function has
also been used to study the effects of uncertainty in
detection (Nachmias & Kocher, 1970; Graham, 1989)
and the effects of set size in search tasks (Cohn &
Lasley, 1974; Swensson & Judy, 1981; Swensson, 1996).
The last line of work is perhaps the best evidence
against the high threshold theory in visual search. Here
we describe the ROC functions measured for another
example search task.

7.1. An example speed discrimination experiment

In a new experiment, Verghese measured speed dis-
crimination as a function of set size. The experiment
was similar to the search experiment described in Ver-
ghese and Stone (1995, experiment 2) and is described
in Appendix B. The observer’s task was to indicate
whether or not the display contained a single grating
patch that moved faster than the other patches. Stimuli
were briefly presented (195 ms), 20% contrast drifting
grating patches in a stationary Gaussian window. Two
experienced observers participated, BB and PV (an
author). The major difference from Verghese and Stone
(1995) was the use of a rating procedure rather than
2IFC. The observers responded on a 4 point scale: 1
indicated certainty that the target was present and 4
indicated certainty that it was absent. These ratings
were used to construct ROC functions and the d %e was
estimated for each of several speed differences.

The results are shown as ROC functions in Fig. 12:
the upper panels are for set size 2 and the lower panels

are for set size 6. Panels on the left are for Observer
BB; those on the right are for Observer PV. Each panel
plots the ROC using a double probability plot. The
double probability plot is the z-transform of the hit
probability plotted against the z-transform of the false
alarm probability. (The z-transform is the inverse of the
cumulative normal distribution function.) The lines are
the best fitting linear functions on these axes for each
condition (using maximum likelihood, Dorfman & Alf,
1969) and are given by

z (hit)=a+broc z (false alarm) (3)

where a is the y-intercept and broc is the slope in this
double probability plot. This function is more usefully
parameterized in terms of d ’e and the slope

z (hit)=d %e (broc+1)/2+broc z (false alarm). (4)

The value of d %e is equal to d % with equal bias defined as
by where the ROC function intersects the negative
diagonal. Within each ROC plot, functions for three
discriminability values are plotted with the solid lines fit
to the smallest speed difference and the coarsest dashed
lines fit to the largest speed difference. Thus, we esti-
mate both the sensitivity parameter d %e and the ROC
slope parameter broc for each condition.

Consider first the top left graph that shows the set
size 2 condition for Observer BB. The observer has
succeeded in using the rating scale to yield responses
that show very different biases. The central point is
near the negative diagonal which indicates an equal
bias between misses and false alarms. In contrast, the
points to the upper right show higher false alarms
accompanied by fewer misses and the points to the
lower left show lower false alarms accompanied by
more misses. For BB, these effects are well described by
the linear functions on these axes. Such linear functions
are predicted by a signal detection theory which as-
sumes normal distributions and are often found in
detection experiments (Green & Swets, 1966; Nachmias
& Kocher, 1970). The fits are particularly good for the
two lower speed differences but less good for the largest
speed difference. Next consider the rest of the data.
Many of the conditions are better described by a curve
that is concave down. This deviation is minor for
Observer BB but quite consistent for Observer PV.
Examining both set sizes, BB has only one function that
is concave down. In contrast, for PV all six functions
are concave down. The concave downward functions
may be fit by further generalizing the distributional
assumptions. One way is to modify the normal distribu-
tions to have heavier tails (e.g. Kassam, 1988). Another
way is to introduce a small percentage of trials (�5%)
with pure guessing. Because only a single observer
shows this effect, we do not pursue these possibilities
here.



J. Palmer et al. / Vision Research 40 (2000) 1227–1268 1241

Fig. 12. ROC functions are plotted for set size 2 in the top two panels
and for set size 6 in the bottom two panels. Separate observers are
shown in the left and right panels. Within each panel, the trans-
formed probability of a hit is shown as a function of the transformed
probability of a false alarm. Each triplet of points is for a separate
level of discriminability. Each of these discriminability levels is fit by
a separate linear contour on this plot. The positive diagonal repre-
sents chance performance and the negative diagonal represents per-
formance with an equal probability of a ‘yes’ and a ‘no’ response.

Fig. 13. Each panel has the ROC curves predicted by a different
theory. Performance as the transformed probability of a hit is shown
as a function of the transformed probability of a false alarm. Sepa-
rate curves are shown for different set sizes.

The same stimulus is used for the other set sizes to
illustrate the effect of set size at a given level of
discriminability.

The upper left panel contains the predictions for the
high threshold theory. This theory predicts no effect of
set size, so a single ROC function is predicted for all set
sizes. The predicted function is concave upward with
the curve asymptotically approaching a minimum hit
rate. This results in an ROC function that is very
shallow near the equal-bias point described by the
negative diagonal. Such ROC functions are rarely
observed.

Next we turn to the three versions of signal detection
theory. For all three, we show the predictions assuming
equal-variance, normal distributions. The upper right
panel contains the ideal observer predictions and the
lower left panel contains the maximum-of-outputs pre-
dictions. These two theories have nearly identical pre-
dictions. For set size 1, the predictions are identical
straight lines on this plot with a slope of one. For larger
set sizes, performance is reduced but the curves remain
very close to straight lines with the slopes decreasing
slightly with increasing set size. Under these conditions,
the curves are visibly indistinguishable from straight
lines. The bottom right panel contains the predictions
of the maximum-of-differences theory. Again, the pre-
dictions are nearly straight lines but the slopes are
uniformly less than one and are less affected by set size.

We calculated the ROC slope as a function of set size
for each of the theories. The slope is specified at the
negative diagonal (equal bias) for a stimulus with

To quantify the slope of the ROC functions, we focus
on the middle discriminability condition because it is
nearest threshold. For BB, the ROC slope is 0.7490.06
and 0.7790.05 for set sizes 2 and 6, respectively. For
PV, the ROC slope is 0.9490.10 and 0.6990.06 for
set sizes 2 and 6, respectively. The interpretation of
PV’s data is hindered by the poor fit of the linear
functions to her concave down data. In summary, the
ROC curves are well fit by linear functions for one
observer but require a concave down function for the
other. The ROC slopes are in the 0.7–0.8 range and are
little affected by set size.

7.2. Predictions

Fig. 13 shows in separate panels the predictions of
the high threshold, ideal observer, maximum-of-out-
puts, and maximum-of-differences theory. Each panel is
a double probability plot identical to that used to plot
the data. The plots include the positive diagonal which
results from chance responses and the negative diagonal
which indicates an equal bias response. Each plot
shows the predicted ROC functions for several set sizes.
For set size 1, the discriminability is chosen that yields
75% correct at the equal bias point (negative diagonal).
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Fig. 14. An illustration of the interaction between the slope of the
ROC function and set-size effects. The log-log slope of the TvS
function is plotted against the average slope of the ROC functions.
The contours indicate the predicted values for each theory and the
symbols indicate the observed values for the no-noise (solid) and the
noise (open) conditions of the example speed discrimination experi-
ment.

the prediction of the maximum-of-outputs theory. For
ROC slopes greater than 1, the TvS slope increases
from 0.24 to 0.33 and flattens out. For ROC slopes less
than 1, the TvS slope decreases sharply. For example, a
mean ROC slope of 0.5 yields a TvS slope of only 0.11.
Reducing the distractor variability makes this model
more like a high threshold model and thus decreases
the magnitude of the set-size effect. In fact, one can
think of the high threshold model as a limiting case
where the distractor variability is zero.

The other two theories yield similar predictions. The
prediction of the ideal observer theory follows closely
the prediction of the maximum-of-outputs theory over
the middle range of sigma ratios. At extreme sigma
ratios, the theories diverge. The prediction of the maxi-
mum-of-differences theory has the same form as the
maximum-of-outputs theory, but it is shifted to lower
TvS slope values. It also has the special characteristic
that even an extremely high sigma ratio does not result
in a high ROC slope.

7.3. Discussion

First consider the predictions of the high threshold
theory in Fig. 13. It predicts concave upward ROC
functions that differ from the observed linear or con-
cave downward functions and it predicts values of ROC
slope that are near 0.33 while those observed are
around 0.75. Thus, one can reject the high threshold
theory. This reinforces the similar evidence against the
high threshold theory found in the previous search
experiments measuring the ROC function (Cohn &
Lasley, 1974; Swensson & Judy, 1981; Swensson, 1996).

Next consider the predictions of the three signal
detection theories as a group. When assuming equal-
variance, normal distributions, all three predict nearly
linear ROC functions. This is a good approximation for
one observer but not for the other. The theories also
predict ROC slopes that range from 1.00 to 0.85. These
predictions are higher than the observed values of
around 0.75. In sum, with the equal variance assump-
tion, the theories capture most of the qualitative fea-
tures of the data, but not their quantitative details.

The quantitative details are better captured by the
theories with more general distributional assumptions.
Allowing unequal variance allows one to accurately
describe the ROC slopes. The set-size effects and ROC
slopes for the example experiment are shown in Fig. 14.
The solid points indicate the values observed for the
two observers and the open points are similar data
from a second part of this experiment to be discussed in
the section on distractor heterogeneity. For both condi-
tions, the observed results are consistent with the simi-
lar predictions of the three versions of signal detection
theory. In contrast, the prediction of the high threshold
theory is for zero TvS slope which is off the bottom of
this graph.

threshold discriminability. At this point on the ROC
function, the high threshold theory predicts a ROC
slope of 0.33 for all set sizes; the ideal observer and
maximum-of-outputs theories predict a gradual decline
in slope from 1.0 at set size 1 to around 0.9 at set size
8. The maximum-of-differences theory predicts a rela-
tively constant ROC slope of around 0.84. Thus, the
signal detection based theories make a prediction quite
distinct from that of the high threshold theory.

7.2.1. Generalized distributional assumptions
The predictions presented above are for equal-vari-

ance, normal distributions. This is clearly too restrictive
because for set size 1 it predicts an ROC slope of 1 for
any stimulus. Introducing unequal-variance, normal
distributions yields ROC slopes that are equal to the
ratio of the standard deviation of the distractor distri-
bution relative to the standard deviation of the target
distribution (sigma ratio, Swets, Tanner & Birdsall,
1961; Green & Swets, 1966; Nachmias & Kocher,
1970). Thus, this generalization can account for any
‘linear’ ROC function.

One of the predictions of this generalized theory is
illustrated in Fig. 14. The magnitude of the predicted
set-size effect depends on the ROC slope. For set sizes
2 and 6, this Figure shows the TvS slope as a function
of the mean ROC slope for the two set sizes. Both
threshold and ROC slope are estimated for the
threshold level of performance (probability correct=
0.75). The prediction of the maximum-of-outputs the-
ory is shown by the solid curve, the prediction of the
ideal observer theory is shown by the fine dashed curve,
and the prediction of the maximum-of-differences the-
ory is shown by the coarse dashed curve. Consider first
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In summary, the observed ROC functions for search
resemble those found for detection. This is expected if a
common set of mechanisms underlies both tasks. In
addition, multiple lines of evidence reject the high
threshold theory for search and are consistent with
signal detection theory.

8. Effects of external noise

External noise is a useful tool for testing alternative
theories of visual mechanisms. It highlights the limita-
tions of high threshold theory and provides a quantita-
tive approach to the analysis of distractor heterogeneity
as will be discussed in the following section. The analy-
sis of noise in the visual system began with statistical
theories of light detection (e.g. Rose, 1948; Tanner &
Swets, 1954; Barlow, 1956). The manipulation of exter-
nal noise is common in some areas of engineering (e.g.
Mumford & Scheibe, 1968) and was introduced to
contrast detection experiments by Nagaraja (1964). In
this approach, noise is added by perturbing the lumi-
nance of each pixel in a raster display by an amount
determined by a random sample from a normal distri-
bution with a mean of zero and a given variance. The
detection threshold is measured as a function of the
variability of this pixel noise. The effects on contrast
threshold are roughly proportional to the amount of
noise, which results in very large effects for large
amounts of noise. This work has been extended by
many including Burgess, Wagner, Jennings, and Barlow
(1981), Pelli (1981), Legge, Kersten and Burgess (1987)
and Swensson and Judy (1996). The use of external
noise has also been applied to a variety of other dis-
criminations including color discrimination (Gegenfurt-
ner & Kiper, 1992) and dot patterns (Burgess &
Barlow, 1983). For a review see Pelli (1990), Pelli and
Farell (1999); for a more general model see Lu and
Dosher (1998, 1999).

The manipulation of external noise allows one to
determine the characteristics of the internal noise that
limits performance. In the most basic model, one as-
sumes that external and internal noise sources are addi-
tive and independent. Assuming this additive model
and normal distributions for both sources of noise, then
the combined noise is also normal with a variance s t

2

that is the sum of the external noise variance s e
2 and the

internal noise variance s i
2:

s t
2=s e

2+s i
2. (5)

In this formulation, the internal noise is represented by
the equi6alent input noise defined as follows: The si is
the standard deviation of the external noise that pro-
duces the same effect on performance as the internal
noise. This allows the internal noise to be expressed in
the same units as the external noise and the stimulus
(e.g. contrast).

Combining these assumptions with signal detection
theory, several authors have derived the relationship
between threshold performance and the external noise.
Here we follow the notation of Legge et al. (1987); for
a more general formulation, see Lu and Dosher (1998,
1999). The main result is that a linear relation is
predicted between the squared threshold t2 and the
external noise variance s e

2:

t2= (d % 2criterion/e)(s e
2+s i

2) (6)

where d %criterion is the d % value used to define threshold
and e is an efficiency parameter called by a variety of
names by various authors in different contexts. We
follow Pelli and Farell (1999) and use the term high-
noise efficiency for the e parameter. It estimates the
efficiency of the observer relative to the ideal under
conditions of high external noise. This formulation
allows one to test the predicted linearity and estimate
the internal noise from the intercept and the high-noise
efficiency from the slope. When the external noise is
large relative to the internal noise, this relationship
simplifies to the threshold being proportional to the
external noise. Under ideal conditions, the internal
noise is zero and the high-noise efficiency is one. For
contrast detection experiments with pixel noise, the
high-noise efficiency is usually well below one, but does
reach values as high as 0.8 for carefully selected stimuli
(Burgess et al., 1981). An interpretation of high-noise
efficiency can be found in models of multiplicative noise
or gain control (e.g. Sperling, 1989; Lu & Dosher, 1998,
1999). We next consider one of the few studies of
external noise and visual search. This example is from
Verghese and Stone (1995) whose speed discrimination
experiment was described in the section on multiple
targets.

8.1. An example speed discrimination experiment

8.1.1. Method
Verghese and Stone (1995) conducted a control ex-

periment that added external noise to the target and
distractor stimuli. In the no-noise conditions already
described, the distractor patches all moved at the refer-
ence speed of 5.3°/s; in the noise conditions, the speed
of the patches was modified by an amount drawn from
a normal distribution with mean of zero and a standard
deviation of 1.8°/s. The no-noise and noise conditions
were presented in separate blocks of trials. Note that
the noise here was added to the speed of the stimulus
rather than to the luminance of individual pixels. This
kind of noise has been discussed by a number of
researchers but has been used in only a few experiments
(e.g. Ashby & Gott, 1988). Barbara Dosher suggested
to us the name dimensional noise to distinguish it from
pixel noise.
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8.1.2. Results
Fig. 15 shows the mean threshold as a function of set

size for both the noise and the no-noise conditions. The
no-noise data have been shown above and illustrate a
multiple target effect with a TvNT slope of −0.309
0.05. For the noise conditions, the set-size effects are
quite similar with a slope of −0.3590.02. Thus, one
obtains a multiple target effect in a high noise condition
and when measured as a slope on a log–log graph,
there is little sign of an interaction between the level of
the noise and the number of targets. Such an additive
effect on logarithmic coordinates is equivalent to a
multiplicative effect on linear coordinates.

While the emphasis in this experiment is on the effect
of multiple targets, one can also estimate the main
effect of noise. Because the modeling is simplest for set
size 1, we focus on the main effect of noise in that
condition. The mean threshold is 0.8290.07°/s for no
noise and 1.9090.13°/s for the noise condition. This is
an increase of 133%. Fitting the data (only two points)
to the predicted linear function between the squared
threshold and the external noise variance (Eq. (6))
allows one to estimate the internal noise in terms of the
equivalent input noise and the high-noise efficiency.
The mean of the estimated standard deviation of the
internal noise is 0.990.1°/s and the mean of the esti-
mated high-noise efficiency is 1.190.2. Thus, the inter-
nal noise is about half the size of the external noise
used in this experiment and the high-noise efficiency is
essentially perfect at 1. An experiment with multiple
noise levels is needed to elaborate this result and,
specifically, to test its linearity.

8.2. Predictions

The traditionally defined high threshold theory pre-
dicts no effect of noise because distractors always map
into the no-detect state and targets map into the detect
state by a deterministic function. It is possible to more
generously interpret the theory by mapping the noisy
distractors into the detect state according to the proba-
bility assigned to the particular noisy value of a stimu-
lus. This, however, fundamentally changes the theory
into a two-state, low threshold theory. Thus, it is
unclear how, if at all, external noise can be integrated
into high threshold theory.

Next consider the prediction for the three signal
detection theories. Adding noise to both the target and
the distractors simply scales all thresholds proportion-
ally to the standard deviation of the total noise. This is
because performance depends on the signal-to-noise
ratio and the effect of multiple targets is a function of
the total noise rather than the separate components of
the noise. Thus, the interaction between noise and
either multiple targets or set size should be multiplica-
tive or, when on log–log graphs, a vertical displace-
ment. Fig. 16 shows this relationship for the
maximum-of-outputs and ideal observer theories. In
each panel, the predicted threshold is shown as a func-
tion of the number of targets. The curve parameter is
the amount of external noise normalized as a multiple
of the internal noise. For the Verghese and Stone
experiment, the appropriate comparison is to a normal-
ized external noise of 2. The maximum-of-differences
theory predicts chance performance for the case where
the stimuli in the display are either all targets or all
distractors. Thus, it is inappropriate for the case con-
sidered here. Another prediction of these theories was
presented in Fig. 11 with the analysis of multiple target

Fig. 15. The speed difference threshold is plotted as a function of the
number of targets for two levels of noise (Verghese & Stone, 1995,
Figs. 3 and 7a). The lines are the best fitting linear regression on this
log–log plot.

Fig. 16. Each panel shows the predicted effects of noise for a different
theory. The curves indicate the relative threshold as a function of the
number of targets for different levels of external noise. The external
noise magnitude is measured by the standard deviation of the external
noise normalized to the assumed standard deviation of the internal
noise.
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effects. It shows that the predicted multiple target effect
depends on the slope of the psychometric function.

8.3. Discussion

The high threshold theory predicts little or no effect
of noise and extensions to allow it to do so turn it into
a low threshold theory. Thus the high threshold theory
cannot predict the large effects of noise such as ob-
served here and elsewhere. The theories based upon
signal detection theory all predict noise effects and
independence between the noise level and the number
of targets. To make quantitative comparisons, return to
Fig. 11 which showed the predicted multiple target
effect as a function of the slope of the psychometric
function. On this graph, the solid points indicate the
results for the no-noise condition and the open points
indicate the results for the noise condition. Both results
are closest to the predictions of the ideal observer
theory. Taken together, they weigh against both the
high threshold and maximum-of-outputs theory.

Next consider the interaction between external noise
and multiple target effects. Both the ideal observer and
maximum-of-output theories predict a multiplicative
effect of the number of targets and noise. Thus, the
parallel functions on the log–log plot of Fig. 15 are
consistent with both theories. In contrast, such a result
is inconsistent with other theories of set size or multiple
target effects that pose some modification of the inter-
nal noise alone, without also affecting the consequences
of the external noise (see Lu & Dosher, 1998, 1999).

Finally, consider the application of the external noise
model to these search data. The model distinguishes
between internal noise and high-noise efficiency. The
high-noise efficiency estimates are remarkably high,
near the value of 1 expected for an ideal observer. Such
a high value puts a limit on the loss of information
from any decision process such as criterion variability.
This high value is almost certainly due to the use of
dimensional noise in the speed of the stimulus rather
than the pixel noise of previous experiments. Manipu-
lating the variability in the dimension being judged
avoids any inefficiencies in extracting that representa-
tion from a noisy image. For example, a less than
optimal receptive field might include pixel noise from a
larger region of the image than is relevant to a given
task. The same receptive field could be perfectly effi-
cient in conveying the variability among the different
speeds of the stimuli.

The external noise model also allows one to estimate
the internal noise. For this experiment, the internal
noise has an equivalent input noise of about 0.9°/s
which is about half the 1.8°/s external noise used in this
experiment. The 1:2 ratio of standard deviations be-
tween these noise sources becomes a 1:4 ratio of vari-
ances. Thus, the total noise variance is composed of

20% internal noise and 80% external noise. This means
that performance in the noise condition is largely lim-
ited by the external noise that had known independent
distributions for each stimulus compared to the un-
known internal noise distribution. Despite this change,
the effects of the number of targets and of discrim-
inability are very similar for the no noise and noise
conditions. This is consistent with the internal noise
being similar to the external noise in both distribution
and independence.

In summary, the effects of external noise are incon-
sistent with the usual assumptions of high threshold
theory and illustrate its limitations. In contrast, the
signal detection theories do predict an effect of external
noise which is consistent with the observed results.

9. Effects of distractor heterogeneity

Another consequence of introducing multiple distrac-
tors in a search task is the potential for introducing
distractor heterogeneity. Thus, distractor heterogeneity
ranks with set size and multiple targets as a manipula-
tion unique to search. Furthermore, distractor hetero-
geneity often has a major effect on visual search tasks
as demonstrated by Eriksen (1953), Gordon (1968),
Farmer and Taylor (1980). More recently, Duncan and
Humphreys (1989), Duncan (1989) have emphasized the
potential role of distractor heterogeneity and how it
interacts with target-distractor discriminability. They
have suggested that the difference between conjunction
and feature search may be accounted for in part by a
confounding of the conjunction task with an increase in
distractor heterogeneity.

More detailed work on distractor heterogeneity can
be found in the texture, color, and medical imaging
literature. An example of the studies in texture is the
analysis of whether heterogeneity of irrelevant at-
tributes has an effect on performance (e.g. Callaghan,
Lasaga & Garner, 1986). Pashler (1988) has extended
this work arguing that distractor heterogeneity of irrele-
vant dimensions usually has little effect, but there are
exceptions that depend on the task as well as the
stimulus. The color literature also contains several de-
tailed studies (e.g. Bauer, Jolicoeur & Cowan, 1996a,b;
Nagy, 1997). For example, Nagy has shown substantial
effects of distractor heterogeneity unless the heterogene-
ity is specifically along a dimension of color that is both
irrelevant to the task and independently represented
from the dimension being judged. Finally, the medical
imaging literature includes studies that introduce het-
erogeneity into the structured noise backgrounds of
simulated medical images. Again there is often a large
effect of this kind of heterogeneity (e.g. Rolland &
Barrett, 1992; Eckstein, Ahumada & Watson, 1997).
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Fig. 17. The orientation threshold is plotted as a function of set size
for two levels of distractor heterogeneity. The no-noise condition has
homogenous distractors and the noise condition has distractors sam-
pled from a normal distribution with a standard deviation of 4°. The
lines are the best fitting linear regression on this log–log plot.

We now consider the effect of distractor heterogene-
ity using ideas from external noise experiments. This
analysis again shows the limitations of high threshold
theory. Furthermore, it suggests an account of distrac-
tor heterogeneity based upon the variability already
built into signal detection theory without requiring the
introduction of any novel perceptual mechanisms.

9.1. An example orientation discrimination experiment

Pavel (unpublished study related to Pavel,
Econopouli & Landy, 1992) measured the threshold for
orientation discrimination at set sizes 1, 2, 4, 6, and 12.
The stimuli were 1° dark bars on a gray background. A
2IFC procedure was used with a display duration of
150 ms and an interstimulus interval of 750 ms. There
were both a no-noise and a noise condition. The no-
noise condition replicated previous set size experiments
and the noise condition introduced distractor hetero-
geneity. For the no-noise condition, the distractors were
always vertical and the target orientation was varied to
determine a psychometric function and estimate a
threshold. For the noise condition, the distractors were
drawn from a normal distribution with a mean of 0°
(vertical) and a standard deviation of 4°.

Fig. 17 shows the mean orientation threshold for 6
observers as a function of set size for both the no-noise
and noise conditions. There are effects of both set size
and distractor heterogeneity. For the no-noise condi-
tion, the TvS slope is 0.37 which is somewhat higher
than the set-size effects described in the earlier section.
For the noise condition, the TvS slope is 0.40. Thus, the
magnitude of the set-size effect in terms of the log–log
slope is little changed by the addition of distractor
heterogeneity.

The effect of noise for set size 1 is to increase the
threshold from 1.5° to 3.1°. Using the noise model just
defined, this increase is consistent with a high-noise
efficiency of 0.98 and an equivalent input noise of 1.6°.
Thus, the high-noise efficiency is near 1 as with the
previous noise experiment and the external noise stan-
dard deviation of 4° was much larger than the 1.6° that
was estimated for the standard deviation of the internal
noise. In summary, both set size and distractor hetero-
geneity have the expected main effects and these effects
combine approximately multiplicatively resulting in a
simple vertical displacement on the log–log graph.

9.2. An example speed discrimination experiment

The second example is again from our own speed
discrimination and set size experiment (Appendix B). In
addition to the no-noise condition that was described in
the response bias section, there was another condition
that added external noise to the speed of the distrac-
tors. In the no-noise condition, the distractor patches

The existence of distractor heterogeneity effects is
well established. However, previous work has provided
relatively little quantitative analysis of distractor het-
erogeneity effects. To this end, we next describe two
studies that introduce distractor heterogeneity by
adding noise to the distractors but not the targets. Both
studies allow one to quantify the effect of distractor
heterogeneity in a one-dimensional search task.

Adding noise to only the distractors results in a
somewhat different prediction about the effect of noise.
The distractor noise manipulation introduces a marked
shift in the ratio of the variability of the target and
distractor distributions. This should change the slope of
the ROC function. Thus one needs a d % based measure
that is defined over changes in ROC slope. (The usual
d % measure assumes a ROC slope=1.) The best candi-
date appears to be da rather than the d %e measure used
earlier in this article. The da is similar to the others in
measuring the difference between the target and distrac-
tor distributions in terms of the standard deviation of
the distributions (Simpson & Fitter, 1973; Macmillan &
Creelman, 1991). It differs in scaling the difference with
respect to the root mean squared deviation

da=
Dm


(s s
2+sn

2)/2
(7)

rather than assuming equal variance as in the case of d %
or the average of the standard deviations as in the case
of d %e. The nice feature of da is that it allows one to
derive an analog of Eq. (6) for the case of noise added
to distractors only. The prediction is again for the
squared threshold to be linearly related to the external
noise variance, but the parameters have changed:

t2= (d %a−criterion
2 /e) (s e

2/2+s i
2), (8)

In particular, the external noise variance is only half as
effective in increasing the squared threshold.
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all moved at the reference speed of 5.3°/s, while in the
noise condition, the speed of the distractor patches was
drawn from a normal distribution centered about the
reference speed with a standard deviation of 0.89°/s.
For both, the target speed was constant. The no-noise
and noise conditions were presented in separate blocks
of trials.

Fig. 18 shows the threshold as a function of set size
for both the noise and the no-noise conditions. Data
from two observers are plotted in the separate panels.
The no-noise data illustrate the expected set-size effect
with a TvS slope of 0.21 for both BB and PV. For the
noise conditions, the set-size effects are similar with

TvS slopes of 0.18 and 0.21 for BB and PV, respec-
tively. There is no sign of an interaction between the
level of the noise and set size.

To measure the effect of noise, we extrapolate the
thresholds to set size 1 using a power function approx-
imation to the set-size effects. For the no-noise condi-
tion, the extrapolated threshold is 1.34 and 0.92 for BB
and PV, respectively; for the noise condition, the ex-
trapolated threshold is 1.91 and 1.54, for BB and PV,
respectively. From these values, the high-noise effi-
ciency is estimated to be 0.43 and the equivalent input
noise is estimated to be 0.54°/s. Surprisingly, the high-
noise efficiency is about half that observed in the two
external noise and distractor heterogeneity experiments
described above. Task differences probably account for
this difference as will be discussed below.

Distractor heterogeneity also has an effect on the
slope of the ROC function. All of the noise conditions
have ROC functions with higher slopes than the corre-
sponding no-noise conditions. For BB, adding noise
steepens the ROC slope from about 0.7 to 0.9. For PV,
adding noise steepens the ROC slope from about 0.8 to
1.0. Overall, the noise increases the slope by an average
of 40% which is nearly as large as the 50% effect on
threshold. The observed combination of the ROC slope
and the TvS slope is shown by the open symbols of Fig.
14.

In summary, adding variability to the single relevant
attribute of these experiments decreases performance
and raises the difference thresholds. The effect of set
size in terms of log–log slope does not interact with
distractor heterogeneity. On the other hand, the effect
of noise in terms of high-noise efficiency is different for
the orientation and speed experiments. It will be inter-
esting to see how this quantification of heterogeneity
effects extends to other attributes and to attributes
irrelevant to the immediate judgment.

9.3. Predictions

Consider next the predicted effects of manipulating
distractor heterogeneity. As with the external noise
experiments, the high threshold theory makes no pre-
diction. Predictions for the other three theories are
shown in Fig. 19. Each panel shows the predicted
relative threshold as a function of set size. The curve
parameter is the standard deviation of the external
noise normalized to the internal noise. The 0.0 curve
corresponds to the no-noise condition and the 1.0 curve
corresponds to the noise condition in the speed discrim-
ination experiment. For the ideal observer theory, the
set-size effect is larger with more external noise. This
interaction is slightly reduced for the prediction of
maximum-of-outputs theory and reduced further for
the maximum-of-differences theory. One also notices
that all of the predictions are concave down. However,

Fig. 18. The speed difference threshold is plotted as a function of set
size for two levels of distractor heterogeneity. The no-noise condition
has homogenous distractors and the noise condition has distractors
sampled from a normal distribution with a standard deviation of
0.89°/s. The two panels contain data from separate observers.

Fig. 19. Each panel shows the predicted effects of distractor hetero-
geneity for a different theory. The curves indicate the relative
threshold as a function of the set size for different levels of distractor
heterogeneity. The degree of distractor heterogeneity is indicated by
the standard deviation of the external noise added to distractors alone
normalized to the assumed standard deviation of the internal noise.
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Table 2
Coarse summary of results

Phenomena Low threshold theoriesHigh threshold theory

Ideal Max Difference

Set-size effects on the observed threshold Fail Pass Pass Pass
Pass PassDiscriminability effects: interaction with set size PassFail
Pass Pass?Pass? n/aMultiple target effects on the observed threshold
Passa PassaResponse bias effects: shape of the ROC PassaFail
Pass PassFail n/aExternal noise effects: interaction with number of targets

Distractor heterogeneity effects: interaction with set size Fail Pass Pass Pass

a Passes for some observers but not others.

because we only measured performance at two set sizes,
we ignore this aspect of the data and instead focus on
the TvS slopes. To quantify this effect, we calculate the
predicted TvS slope between set sizes 2 and 6 for both
the no-noise (0.0) and noise condition (1.0). This pair of
predicted TvS slopes are 0.23 and 0.34 for the ideal
observer theory, 0.23 and 0.30 for the maximum-of-out-
puts theory, and 0.18 and 0.22 for the maximum-of-dif-
ferences theory. The data are most consistent with the
nearly equal TvS slopes predicted by the last theory but
probably cannot reject any of the three theories. Hence,
we emphasize the similarities rather than the
differences.

9.4. Discussion

The high threshold theory as it exists cannot account
for the effects of distractor heterogeneity. The heart of
the high threshold theory is that distractors never result
in a false alarm. Thus, adding noise to the distractors
cannot affect performance. The three versions of signal
detection theory are more flexible. Consider three
points of comparison.

First, consider the main effect of set size. The analy-
sis of Fig. 14 gives the predicted combinations of ROC
slope and TvS slope. The solid symbols are for the
no-noise condition and the open symbols are for the
noise conditions. All of the points fall near the contour
predicted by the maximum-of-outputs theory. The
other versions of signal detection yield similar
predictions.

Second, consider the interaction between distractor
heterogeneity and set size. On these log–log plots,
set-size effects are similar for the no-noise and noise
conditions in both experiments. This is consistent with
the predictions of all three theories based on signal
detection theory. They all predict an increase in set-size
effects for larger degrees of distractor heterogeneity
with the largest predicted by the ideal observer and the
smallest predicted by the maximum-of-differences
theory.

Third, consider the main effect of distractor hetero-
geneity on thresholds. For both of the experiments, the
modified noise model can be used to fit the parameters
of equivalent input noise and high-noise efficiency.
Surprisingly, the two experiments yield quite different
values of high-noise efficiency. The 2IFC orientation
experiment yields efficiencies near 1 similar to the 2IFC
speed discrimination experiment with noise added to
both targets and distractors. In contrast, the yes–no
speed discrimination experiment with noise added to
just distractors yields lower efficiencies of around 0.5. It
remains to be seen whether or not this difference is
idiosyncratic of these two experiments or if it reflects a
more general phenomenon such as larger criterion vari-
ability in yes–no tasks.

In summary, the effect of distractor heterogeneity is
not consistent with high threshold theory. In contrast,
the examples of low threshold theory are all consistent
with several aspects of the data. This analysis provides
a new quantitative treatment of distractor heterogeneity
that follows naturally from the ideas of signal detection
theory and requires no additional perceptual
mechanisms.

10. General discussion

The discussion begins with a brief summary of the
results for the six phenomena. This is followed by a
discussion of the theoretical implications and a consid-
eration of alternative theories. Then the discussion
turns to generalizing our analysis. We address search
asymmetry, multiple dimensions and conjunction
search, response time paradigms, search with multiple
eye fixations, and more general stimulus conditions.

10.1. Summary of results

The results from all of the reviewed studies are
summarized in Table 2. It specifies a coarse pass–fail
summary of each theory for each of the major results.
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10.1.1. Set size
Many studies have established the occurrence of a

set-size effect of a particular magnitude. All of the
versions of the signal detection theory predict the right
magnitude of the effect. The high threshold theory does
not predict such an effect.

10.1.2. Discriminability
The few available studies demonstrate the steepening

of the psychometric function with increasing set size.
This effect is predicted by all three versions of signal
detection theory and is not predicted by the high
threshold theory.

10.1.3. Multiple targets
The one available study yields modest multiple target

effects. It favors the ideal observer theory over both the
high threshold and the maximum-of-outputs theory.
However, this result is not as conclusive as the others
on this list. So the alternatives are given a marginal
pass in the summary of Table 2.

10.1.4. Response bias
The few available studies show the shape of the ROC

function as linear or concave down. This shape is partly
consistent with the nearly linear predictions of the three
signal detection theories and it is inconsistent with high
threshold theory.

10.1.5. External noise
The one existing study shows that the multiple target

effect interacts multiplicatively with external noise (a
vertical shift on the log–log graphs). Such a relation is
predicted by the ideal observer and maximum-of-out-
put theories. (The maximum-of-difference theory pre-
dicts the effect of external noise but not the effect of
multiple targets in the paradigm reviewed here). Exter-
nal noise effects cannot be accounted for by the high
threshold theory.

10.1.6. Distractor heterogeneity
Two studies show that distractor heterogeneity inter-

acts multiplicatively with set size (a vertical shift on the
log–log graphs). Similar interactions are predicted by
all three signal detection theories. An effect of distrac-
tor heterogeneity cannot be accounted for by the high
threshold theory.

10.2. Theoretical implications

10.2.1. High threshold theory
The high threshold theory fails on almost every test

of its predictions. It can be clearly rejected as a theory
of visual search accuracy as it was as a theory of simple
detection and discrimination. See the section below on
response time for a discussion of the role of a high
threshold in many response time theories of search.

10.2.2. Low threshold theory
The three versions of signal detection theory fail in

only a few comparisons. In particular, the ideal ob-
server theory with generalized distributional assump-
tions passed all of the six tests. The other two signal
detection theories do nearly as well. The maximum-of-
outputs theory may fail in predicting too small an effect
for multiple target experiments. The maximum-of-dif-
ferences theory does not fail but could not be applied to
the multiple target effects as reviewed here. It also
cannot be applied to set size 1. It needs further general-
ization to be as widely applicable as the other theories
considered here. For example, one could combine its
comparison to neighbors with a comparison to a mem-
ory standard using a Bayesian rule for combining dif-
ferent sources of evidence. One could use comparisons
to memory or comparisons to neighboring stimuli de-
pending on which provided the best source of informa-
tion. This is a hybrid of the maximum-of-outputs and
maximum-of-differences theory.

In summary, we emphasize the similarities among the
predictions of the three versions of signal detection
theory. This approach seems to be robust across a
variety of assumptions about the representation and
decision process.

10.2.3. Alternati6e high threshold theories
Thus far in this paper, we have focused on the

traditional high threshold theory without any addi-
tional mechanisms. To better account for some of the
results, one could add mechanisms such as a limited
capacity process (Broadbent, 1958, 1971). An example
of one such limited capacity process is the fixed capac-
ity theory described in Palmer et al. (1993; also known
as the sample size model, Taylor, Lindsay & Forbes,
1967; Lindsay, Taylor & Forbes, 1968; Shaw, 1980). In
this theory, perception is assumed to be the result of a
sampling process in which one can take a fixed number
of samples of the entire visual scene. If only one
attribute of the scene is relevant, then all of the samples
can be concentrated on that attribute to result in a very
precise representation of that attribute. If more at-
tributes are relevant, then the samples are distributed
across the relevant attributes which results in less pre-
cise representations of each attribute. For equally dis-
tributed and independent samples, the result of this
process is that the standard deviation of the representa-
tion is proportional to the square root of the number of
relevant attributes.

If this fixed-capacity sampling perceptual process is
combined with the high threshold theory, the result is a
theory that predicts larger set-size effects and smaller
multiple target effects than the high threshold theory
alone. Both of these changes make the fixed-capacity,
high threshold theory more consistent with the ob-
served results than is the high threshold theory in its
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original form. Indeed, if one adopts a yet more general
limited-capacity, high threshold theory, then one can
adjust the degree of limited capacity to predict any
set-size effect. Such general versions of the high
threshold theory make the magnitude of set-size effects
no longer a test of the theory. Thus, one must focus on
other phenomena to test this generalized theory.
Adding limited-capacity mechanisms does not change
the predicted ROC functions or the steepness of the
psychometric functions. Thus they remain a problem
for this theory. In addition, limited capacity does not
make it any easier to account for the external noise and
distractor heterogeneity effects. Thus, generalizing the
theory to include a limited-capacity process does not
alleviate the limitations of the high threshold theory.

10.2.4. Other low threshold theories
In this article, we focus entirely on signal detection

theory as an instance of a low threshold theory. A more
complete treatment requires consideration of other low
threshold theories (for reviews see Luce, 1963a). These
theories include modifications of the high threshold
theory such as two-state, low threshold theory (e.g.
Luce, 1963b), three-state, low- and high-threshold the-
ory (Krantz, 1969), and various extensions of Luce’s
choice theory (1959). For example, Bundesen (1990)
develops choice theory and applies it to a variety of
attention phenomena particularly those using identifica-
tion paradigms. We do not pursue these alternatives
here and instead focus on signal detection theory as a
familiar and plausible example.

We also focus on the ‘independent channels’ version
of the various signal detection theories. On could cer-
tainly consider limited capacity versions of signal detec-
tion theory. For example, Palmer et al. (1993) described
a combination of the maximum-of-outputs integration
rule and a fixed capacity process that is based on the
sample size model (e.g. Shaw, 1980). They showed that
such a theory can be rejected for simple search because
it predicts set-size effects of much greater magnitude
than observed (TvS slopes of 0.75 instead of 0.25).
Thus, at least this specific combination can be rejected.
More generally, there seems little reason to consider
limited capacity models when an unlimited capacity
model already accounts for the data of simple visual
search.

10.3. Generalizations for search asymmetries

We now turn the discussion to related phenomena in
visual search. Asymmetries in discrimination are inter-
esting because they are not predicted by most simple
theories. Such asymmetries are rarely reported for sim-
ple discrimination tasks but may be more common in
visual search. Treisman and Souther (1985) provided an
early report of search asymmetry. An example of their

task was to discriminate between a circle and a circle
intersected with a small line segment similar to the
letter Q. They measured response time as a function of
set size and found larger set-size effects for discriminat-
ing an O from Qs than for discriminating a Q from Os.
A variety of other stimulus situations have also shown
such asymmetries (e.g. Treisman & Gormican, 1988;
Driver & McLeod, 1992; Ivry & Cohen, 1992; von
Grünau & Dubé, 1994; Carrasco, McLean, Katz &
Frieder, 1998). Here we discuss an empirical example of
an asymmetry and then consider how asymmetry can
be accounted for using the theories developed in this
article. In particular, signal detection theories provide a
natural account of asymmetries due to potentially
asymmetric variances of targets and distractors.

10.3.1. Empirical examples
Perhaps the most detailed study of search asymmetry

is that of Nagy and Cone (1996). They compared a
variety of color pairs in a search task in which one had
to localize a small target disk of one color among 53
small disks of the other color. For each color pair, they
systematically varied the target-distractor discriminabil-
ity and measured response time as a function of the
color difference. They found that search asymmetries
occurred, but only for certain pairs of colors. In partic-
ular, searching for saturated among desaturated colors
resulted in faster performance than searching for desat-
urated among saturated colors. In addition, by measur-
ing response time as a function of the color difference,
Nagy and Cone estimated the difference threshold for a
given response time for each condition. In terms of
these difference thresholds, the asymmetry increased the
threshold by 10–30% depending on the color pair.
Thus, this was a modest but reliable effect.

Palmer and Teller (unpublished) have also demon-
strated asymmetries in search accuracy experiments
modeled after early reports of Nagy and Cone. They
measured color thresholds for a white target and pink
distractors (and vice versa) using methods similar to
Palmer (1994). The chromatic contrast thresholds were
lower for discriminating between a pink target and
white distractors than a white target and pink distrac-
tors. The change in threshold was 1394% of the
smaller threshold. Thus, these asymmetries appear in
accuracy as well as response time paradigms.

10.3.2. Theoretical accounts
Asymmetries raise at least two questions. The first is

why do they occur for some stimuli and not others? The
second is what mechanism accounts for them when they
do occur? We pursue the second of these two questions.

Treisman and Souther (1985; see also Williams &
Julesz, 1992) have suggested that differences in the
representation of different stimuli produced the asym-
metries. In particular, some stimulus characteristics
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might be directly represented in unlimited-capacity fea-
ture maps while others might need to be inferred from
more complete representations only available to a lim-
ited-capacity process. Alternatively, Nagy and Cone
(1996) have suggested that their asymmetries between
saturated and unsaturated colors were linked to pro-
cessing time differences between saturated and unsatu-
rated colors. Similar differences have been observed for
simple discrimination tasks (Nissen, Pokorny & Smith,
1979).

Another possible explanation arises from supposing
differential variability in the representation of different
stimuli (Rubenstein & Sagi, 1990). For example, nearly
all intensive dimensions show decreasing discriminabil-
ity for increasing values (e.g. Weber’s Law). These
effects may be due to increasing noise with increasing
stimulus values (cf. Graham, Kramer & Yager, 1987).
For example, the representation of the length of a long
line is more variable than the representation of the
length of a short line. Combining this idea with signal
detection theory predicts that searching for a long line
among short lines yields different performance than
vice versa. More generally, differences in the variability
of targets and distractors might account for other
asymmetries such as between saturated and unsaturated
colors or between prototypical and non-prototypical
stimuli.

These ideas can be made more specific by combining
them with the theory presented here. The size of the
predicted asymmetry depends on the distributional as-
sumption about the representation of the target and
distractor stimuli. Following the analysis presented in
the response bias section, suppose one assumes un-

equal-variance, normal distributions and the maximum-
of-outputs theory. The relative thresholds for various
conditions depend on the ratio of the standard devia-
tion of the distractor distribution to the standard devia-
tion of the target distribution. This sigma ratio is equal
to the predicted ROC slope for set size 1. Fig. 20 shows
the predicted relative threshold as a function of the
sigma ratio for set sizes 1 and 8. The threshold rises
with increasing sigma ratio and rises yet more quickly
for larger set sizes. Compared to a sigma ratio of 1,
increasing the sigma ratio results in larger set-size ef-
fects and decreasing the sigma ratio results in smaller
set-size effects. To compute the predicted asymmetry,
one can compare the predicted performance for a given
sigma ratio and its inverse which represents reversing
the roles of targets and distractors. Asymmetry effects
of 10% (threshold ratio=1.1) require a sigma ratio of
1.17 and effects of 30% require a sigma ratio of 1.57.
Such ratios are compatible with those observed in the
speed discrimination experiment presented in the re-
sponse bias section. To conclude, the relative variability
of the representations of targets and distractors may
mediate some instances of search asymmetries.

10.4. Generalization to multiple dimensions and
conjunction search

The body of this article focuses on experiments
within a simplified domain chosen at the intersection of
visual search and simple detection and discrimination.
Now we begin to consider how to generalize to a larger
variety of visual search experiments including multiple
dimensions, response time, eye movements, and more
general stimulus conditions.

Our first generalization is to tasks that depend on
multiple dimensions rather than a single dimension. For
example, in conjunction search the target is distin-
guished from the distractors by a conjunction of prop-
erties. No one property is sufficient as is the case with
feature search. We compare two approaches to this
generalization. The first is multidimensional signal de-
tection theory as it has been applied in psychophysics.
The second is feature integration theory (Treisman &
Gelade, 1980) that assumes separate one-dimensional
representations that are often called feature maps. This
alternative theory has been proposed to account for
several phenomena including the relative difficulty of
conjunction and feature search.

10.4.1. Multidimensional signal detection theory
Multidimensional generalizations of signal detection

theory have been used in engineering (e.g. van Trees,
1968; Duda & Hart, 1973) and have found some appli-
cation in psychology and vision. The concepts can be
found in selected chapters of Graham (1989), Macmil-
lan and Creelman (1991), Ashby (1992).

Fig. 20. An illustration of how an unequal variance for targets and
distractors predicts asymmetries in performance. The predicted rela-
tive threshold is plotted as a function of the ratio of target and
distractor standard deviations (sigma ratio). This relation is shown
for two set sizes. The relative magnitude of the set-size effect grows
with larger values of the sigma ratio.
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In brief, there are three parts to such a theory. First,
stimuli are represented in a space of multiple dimen-
sions with the simplest case being a two-dimensional
space defined by orthogonal dimensions. Representa-
tions with more dimensions and nonorthogonal dimen-
sions are possible. Second, the representation is
characterized by a random variable in this space. Typi-
cally this variable is assumed to be multivariate normal
with unit variance in each dimension and no correlation
between the dimensions. Again, other distributions,
variance scales, and correlational assumptions are pos-
sible. Third, the observer’s decision is based on a
criterion contour defined in the space. In two dimen-
sions, the simplest case is a line parallel to one of the
axes which indicates that the value on a single dimen-
sion determines the response. However, information
from multiple dimensions can be used by comparing a
weighted sum of the observed dimensional values to a
criterion. In two dimensions, this is equivalent to divid-
ing the space by a tilted line. Alternatively, independent
criteria can be applied to each dimension resulting in a
decision criterion that is equivalent to an AND or an
OR rule. Or, more complex functions for integrating
information between dimensions result in more com-
plex contours such as the case for the ideal observer
theory (e.g. Green & Birdsall, 1978). Here we consider
only theories with orthogonal dimensions, unit normal
distributions with statistical independence between the
dimensions, and either linear or independent decision
criteria.

To apply this theory to search, one must integrate the
analysis of multiple stimuli with the analysis of multiple
dimensions. Some of the possible integrated theories are
in Eckstein, Thomas, Whiting, Palmer and Shimozaki
(in press). They combine a maximum-of-outputs rule
for combining information across stimuli with either
the optimal linear decision criterion (they refer to as the
max-linear rule) or with an independent decisions rule
(AND) for each dimension (they refer to as the max–
min rule). For these two rules, predictions are calcu-
lated for a variety of tasks including feature search,
conjunction search, triple conjunctions, and disjunction
search. Performance is predicted to vary with the task.
For example, assuming two dimensions, the predicted
d % for a conjunction task is smaller than the corre-
sponding feature tasks by a factor of one over square
root of two (0.71). If one adjusts for this performance
difference by measuring set-size effects at threshold,
then the various tasks are predicted to have similar
set-size effects.

In summary, the simple one-dimensional theories can
be generalized to multiple dimensions and to the variety
of tasks possible with multidimensional stimuli. For the
simplest such generalizations, the choice of task is
predicted to have an effect. However, at least for the
cases discussed, the choice of task has little interaction
with set size if discriminability is controlled.

10.4.2. Feature integration theory
An interesting contrast to multidimensional signal

detection theory is provided by feature integration the-
ory (Treisman & Gelade, 1980; Treisman & Sato, 1990).
It is an instance of a two-stage search theory (Hoffman,
1979). In such theories, the first stage is typically as-
sumed to process all stimuli in a parallel, unlimited-ca-
pacity fashion. The second stage is assumed to process
only a single stimulus (or perceptual object) at a time.
In feature integration theory, the first stage has separate
one dimensional representations (feature maps) rather
than a combined representation. These representations
are separate in the sense that one cannot base a deci-
sion on combinations of dimensions. This is equivalent
to a multidimensional representation with orthogonal
dimensions and decision criteria that must depend on
only a single dimension at a time. Thus, in this respect,
the feature map representation is a special case of the
representations discussed above. The second stage has a
full multidimensional representation of one stimulus at
a time. Thus, it can use decision rules that depend on
more than one dimension but only as part of a serial
comparison process. Feature integration theory makes
several predictions as a result of being able to combine
feature information in only the second stage. Other
things being equal, the theory predicts that conjunction
search must result in qualitatively larger set-size effects
than feature search. This prediction has found mixed
support in a variety of studies (e.g. Treisman & Gelade,
1980; Egeth, Virzi & Garbart, 1984; Nakayama &
Silverman, 1986; Wolfe, Cave & Franzel, 1989; Duncan
& Humphreys, 1989; Mordkoff, Yantis & Egeth, 1990).

In the simple form described thus far, feature integra-
tion theory has a fundamental deficit that was perhaps
most forcefully pointed out by Duncan and Humphreys
(1989). The theory does not explicitly account for the
large effects of target-distractor discriminability and
distractor heterogeneity. Thus, comparisons between
different stimuli and different tasks cannot be critical
tests of the various predictions unless discriminability is
also controlled. This control has been addressed in
more recent studies with mixed results (e.g. Treisman,
1991; Duncan & Humphreys, 1992; and see below). In
short, one cannot know if the poor performance found
for a conjunction search is due to the conjunction per
se or due to the set of stimuli being less discriminable.
This question can be naturally addressed by the psycho-
physical methods described here because they place
discriminability at the heart of the theory and measure
performance at a constant threshold level of
performance.

10.4.3. Rele6ant experiments
A number of experiments have pursued multidimen-

sional search tasks and compared conjunction search to
simpler search tasks (e.g. Cave & Wolfe, 1990; Duncan
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& Humphreys, 1992; Wolfe, 1994), but there have been
only a few that come close to the proposed simplified
domain of accuracy measures, single fixation displays,
and plausibly distinct and independent stimuli.

A small study of Aiken (1992) compared conjunction
and feature search using ellipses of differing contrast
and orientation. The conjunction target was a right-
tilted, dark ellipse among vertical, dark and right-tilted,
medium-gray ellipses. The feature target was a left-
tilted, light ellipse that differed from the distractors in
both orientation and contrast. Thus it can also be
described as a disjunction target. Her experiment had
two novel characteristics. First, she designed her two
tasks so that when the target was absent the displays of
distractors were identical for conjunction and disjunc-
tion conditions. This design provided a complete con-
trol for distractor heterogeneity effects that probably
contribute to differences between feature and conjunc-
tion displays. Second, while she did not measure
thresholds, she did adjust the discriminability of the
two conditions to be roughly similar. Under these
conditions, she found similar effects of set size for
disjunction and conjunction search. These data were
analyzed quantitatively by Eckstein et al. (in press). The
predictions of their multidimensional signal detection
theory were generally consistent with the observed set-
size effects for the disjunction and conjunction tasks. In
sum, these results were inconsistent with a qualitative
difference between the two tasks as predicted by feature
integration theory.

Eckstein (1998) has also conducted a comparison of
feature and conjunction tasks using the discrimination
of contrast and orientation. The displays were crowded
compared to most of the displays reviewed here, but the
effects of crowding were minimized by the use of a
cueing procedure to manipulate set size (cf. Palmer,
1994). As expected, the overall performance was less for
the conjunction condition than for the feature condi-
tions. Measured by the difference in percent correct,
set-size effects were larger for the less discriminable
conjunction conditions. These results were well fit by
the predictions based upon multidimensional signal de-
tection theory. For comparison, a simple serial theory
developed from Bergen and Julesz (1983) was also fit to
the data. This theory predicted set-size effects that were
much larger than those observed. Thus, even for con-
junction search, the set-size effects were consistent with
a theory based upon signal detection with no special
mechanisms such as serial search or limited capacity.

The examples thus far suggest that the predicted
larger set-size effects for conjunction search have not
been found for the simplified domain. However, there is
at least one instance of a task inspired by feature
integration theory that does yield large set-size effects
even under the simplified domain. The instance fol-
lowed a study of O’Connell and Treisman (1990) who

examined search for targets defined by relations be-
tween separate objects. They and several authors (Stein-
man, 1987; Enns & Rensink, 1991; Logan, 1994;
Moore, Marrara & Elsinger, 1998) have suggested that
tasks that depend upon relations among objects may be
processed differently than those that depend on at-
tributes of a single object. The key to such an experi-
ment is to assure that observers cannot recode the
relational information between the objects as an at-
tribute of a composite object. In other words, one must
prevent grouping of the separate objects. One way to
minimize the grouping is to use opposite contrast polar-
ities: a white dot does not easily group with a black dot
when seen on a gray background (Zucker & Davis,
1988). In Palmer (1994), set-size effects were measured
for such pairs of opposite polarity dots. The task was to
detect a tilted pair of dots among distractors of hori-
zontally arranged pairs. Orientation thresholds were
measured as a function of set size and the TvS slope
was found to be twice as large as that for simple
orientation tasks. Thus, this task produces a large
set-size effect even within the simplified domain.

In summary, the methods and theories reviewed here
for one-dimensional tasks can be generalized to multi-
ple dimensions. The experiments reviewed suggest that
this generalization may be adequate for combinations
of simple dimensions such as contrast and orientation
but probably fails for more complex judgments such as
the relative position of distinct objects. This pattern of
results is different from that expected for feature inte-
gration theory but probably does require some kind of
two-stage search theory.

10.5. Generalization to response time

The generalization of our analysis from accuracy to
response time is a serious challenge. The issues go well
beyond visual search to the heart of theories of re-
sponse accuracy and response time (cf. Luce, 1986).
Fortunately, there has been progress developing appro-
priate paradigms and theories. Here we describe
paradigms and theories that extend the analyses of
accuracy paradigms presented in this article.

10.5.1. Empirical issues
To generalize the analysis described here to response

time one needs corresponding paradigms. For an
analog to the psychometric function, one can examine
response time as a function of stimulus intensity or a
similar variable such as contrast.

Response time is a very consistent function of stimu-
lus intensity (see Luce 1986 for a review). Piéron (1914,
1920) was probably the first to suggest that the effect of
stimulus intensity on response time could be character-
ized as a generalized power function,
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y=a xb+ t0 (9)

where y is the response time, x is the stimulus variable,
a and b are the power function parameters, and t0 is an
additive time constant. This equation can be reparame-
terized (Palmer, 1998) as,

y=c (x/d)b+ t0 (10)

where d is the response time threshold and c is the
increase in response time from t0 that defines threshold
performance. Compared to Eq. (9), d is equal to (c/a)(1/b).
This parameterization specifies a threshold parameter d
in the units of the stimulus, an additive response
time parameter t0 in units of time, and a curve shape
parameter b that is dimensionless. This function has
been measured for simple response time of a variety of
attributes (for a review see Luce, 1986). It has also been
applied to choice response time (Schweickert, Dahn &
McGuigan, 1988; Pins & Bonnet, 1996) and to visual
search (Palmer, 1998). Thus, the generalized power
function appears to be a promising candidate for the
analog of the accuracy psychometric function.

The next step is to use the generalized power function
(or similar functions) to estimate thresholds based on
response time. In other words, what stimulus value
results in a given response time. For light detection,
Mansfield (1973) has measured such thresholds to ob-
tain spectral sensitivity functions and measurements of
the effect of eccentricity and flash duration. In visual
search, Nagy and Sanchez (1990) have measured such
thresholds for different color directions to compare
color sensitivity in discrimination and matching experi-
ments. More recently, Palmer (1998) has measured such
thresholds as a function of set size for both response
accuracy and response time. In summary, a few initial
studies have measured the analog of psychometric func-
tions and thresholds based upon response time. Such
paradigms are necessary to address the control of dis-
criminability effects in response time.

10.5.2. Theoretical issues
As with accuracy, the distinction between high and

low threshold is critical for response time theories.
Consider first theories with a high threshold. A high
threshold greatly simplifies a theory of response time
because the ‘yes’ response is only a function of the
target and not the distractors. Thus, if bias, speed/accu-
racy and guessing are constant with set size, increasing
the number of distractors cannot affect ‘yes’ responses.
The predictions for ‘no’ responses depend on the details
of the theory. In typical theories, one assumes a set of
independent processes and a decision rule of responding
‘no’ when all processes indicate a ‘no’ response (e.g.
parallel, unlimited capacity, self-terminating search,
Townsend & Ashby, 1983). This results in a response
time that is the maximum of the component response

times. Thus, an effect of set size is predicted for correct
rejections but not hits. In summary, for the appropriate
conditions, high threshold theories predict no effect of
set size on the ‘yes’ response time as well as no effect on
accuracy.

Many response time theories do not make explicit
whether they assume a high or a low threshold. To
determine if a theory implicitly assumes a low
threshold, one must determine if false alarms can arise
from a distractor. Theories that ignore errors (e.g.
Treisman & Gelade, 1980) or that assume all false
alarms are due to guessing (e.g. Wolfe, 1994)5 must be
assuming a high threshold because any low threshold
theory would predict more errors with larger set sizes.
Such implicit high threshold theories are common. For
example, the theories forming the parallel-serial equiva-
lence relations assume a high threshold (Townsend,
1974; Townsend & Ashby, 1983; Townsend, 1990). One
way to generalize these theories is to develop a separate
model of error that goes along with the theory of
response time (e.g. Schweickert, 1985, 1989). But this
alternative is limited for most cases because it does not
include a mechanism for the speed/accuracy tradeoff.
One needs an integrated theory of accuracy and re-
sponse time.

Now consider low threshold theories. Here the story
is more complex because the response depends on all of
the stimuli. Consequently, the distractors affect the ‘yes’
as well as the ‘no’ response. As the number of stimuli
increases, one of two things must happen. False alarms
may increase due to the additional distractors providing
misleading evidence. Or, the observers may adjust their
bias and speed/accuracy criteria to maintain a constant
error rate, in which case the response time must in-
crease as a function of set size.

This general idea has been pointed out by several
authors (Lappin, 1978; Schweickert, 1985; Broadbent,
1987; Ward & McClelland, 1989; Zenger & Fahle,
1997) and has been illustrated in a specific theory by
Palmer and McLean (1995). The authors applied the
diffusion model (Feller, 1957) to response time as ap-
plied to (memory) search by Ratcliff (1978). The diffu-
sion model is a continuous version of the random walk
(see Luce 1986). In this theory, each stimulus is as-
sumed to be analyzed by an independent and parallel
diffusion process and the rate of accumulating informa-
tion is assumed to be linearly related to the target-dis-
tractor difference. The bias parameters are fixed to
maintain a constant error rate and to accumulate infor-

5 Wolfe’s guided search model is a hybrid with respect to the high
versus low threshold distinction. The first stage of guidance has a low
threshold and is explicitly based on signal detection theory. However,
the second stage of deciding if a particular stimulus is a target is
explicitly a high threshold theory. False alarms arise only from
guessing.
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mation symmetrically for ‘yes’ and ‘no’ responses. The
resulting theory has only two parameters for all set size
and discriminability conditions. One is a sensitivity
parameter and the other is the constant response time
parameter that describes the contribution of the pro-
cessing times that are independent of the target-distrac-
tor difference.

This two-parameter theory captures all of the quali-
tative properties of Palmer’s (1998) search time experi-
ments. For example, this theory predicts a reasonable
value for the curve shape parameter of the RT versus
stimulus difference plot described above. Most impor-
tantly, even though the component processing is inde-
pendent, the theory can predict arbitrarily large set-size
effects on response time. The less discriminable the
stimuli, the larger the predicted set-size effects. Further-
more, the theory predicts a threshold-versus-set-size
function with a TvS slope of 0.26 which is similar to
that observed for the corresponding experiment for
short threshold criteria such as 100 ms. The theory also
has several shortcomings: for example, it always pre-
dicts response time versus set size functions that are
concave downward whereas the observed functions are
often close to linear.

It appears likely that some low threshold theory such
as just described can account for the results found with
typical search response time experiments. Properly con-
structed, these theories can be relatively simple exten-
sions of the signal detection theories of search accuracy.
They stand in contrast to the implicitly high threshold
theories found in much of the search literature. Given
the failure of the high threshold theory for detection
and search accuracy, it seems unlikely that it will be
useful for search response time.

10.6. Generalization to multiple fixations

The studies reviewed thus far have been restricted to
single eye fixations. This is a special case of the larger
search problem in which an observer can move his or
her eyes and perhaps head and body as well (for
reviews see Kowler, 1990; Viviani, 1990). The rationale
for focusing on the single fixation special case is that it
greatly simplifies the stimulus at the eye. To generalize
this analysis, we describe two additional phenomena
and present the visual lobe theories of multiple fixation
visual search. Then we sketch a theory that combines
the maximum-of-outputs and the visual lobe theories.

10.6.1. Two additional phenomena
Search with multiple eye fixations introduces at least

two additional phenomena. The first is variability in
eccentricity of the stimulus. Eccentricity can be con-
trolled with brief displays allowing only a single fixa-
tion display but cannot be as easily controlled with
longer displays allowing multiple fixations. The impact

of eccentricity effects can sometimes be large. The most
detailed work is with simple detection tasks but there
are a few studies using search tasks themselves (e.g.
Carrasco & Frieder, 1997). At one extreme are detec-
tion tasks that usually show large effects of eccentricity.
For example, the acuity threshold for a fine grating can
double with eccentricities of just 1° and increase ten
fold by 10°. Such large effects have been reported for a
variety of tasks (e.g. Yager & Davis, 1987). For such
detection tasks, appropriate eye movements can sharply
improve performance. In contrast, a second group of
tasks is not limited by eccentricity over at least the
central 10° or so. These tasks are typically
suprathreshold discriminations such as the contrast in-
crement discrimination task considered earlier in this
article. This task appears to be limited by contrast
phenomena (i.e. Weber’s law for contrast) rather than
eccentricity (Legge & Kersten, 1987). For such stimuli,
the effects of eccentricities of 10° can be less than a 10%
increase in threshold. In summary, many but not all
tasks are limited by eccentricity effects.

The second phenomenon is the pattern of eye fixa-
tions in search tasks. Unless efforts are taken to prevent
eye movements, they almost always occur in search
tasks. For easy discriminations, the first fixation is
often on the target (Eckstein, Beutter & Stone, submit-
ted; Findlay, 1997). For more difficult discriminations,
individual stimuli are sometimes fixated (e.g. Motter &
Belky, 1998b), but other times groups of relevant stim-
uli are fixated (He & Kowler, 1989, 1991; Zelinsky,
Rao, Hayhoe & Ballard, 1997). Thus, the pattern of eye
fixations shows clear signs of a systematic and purpose-
ful behavior that is likely to contribute to search
performance.

10.6.2. Visual lobe theories
Many theories of multiple fixation search have been

called 6isual lobe theories (for review see Overington
1976; for examples see Engel, 1977; Geisler & Chou,
1995). These theories combine the constraint of eccen-
tricity effects with the freedom to move one’s eyes to
overcome this constraint. They begin with the assump-
tion that the probability of detecting a target depends
largely on the eccentricity of the target. Hence, for each
fixation, there is a region of visual field, called a 6isual
lobe, within which a target is likely to be detected.
Search proceeds by moving one’s eyes to different
locations in the visual field. Detecting the target in any
one fixation is assumed to be independent of prior
fixations and thus depends on only the current fixation.
These theories make several predictions that have had
some support. First, for random search patterns, the
probability of detection as a function of time is 1−e−at

(Koopman, 1956; Williams, 1966b). Second, the size of
the visual lobe measured with a single fixation is nega-
tively correlated with the search time (Engel, 1977;
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Bloomfield, 1979; Geisler & Chou, 1995). The bigger
the visual lobe, the fewer fixations are needed to ‘cover’
the relevant part of the visual field. This theory has
interesting variations such as Motter and Belky’s
(1998a) argument that under their conditions it is the
stimulus density rather than the eccentricity that deter-
mines the size of the visual lobe.

The visual lobe theories become more complex when
more specific information about eye movements is con-
sidered. First, there is good evidence (e.g. Rayner,
McConkie & Ehrlich, 1978; Rayner & Fisher, 1987;
Irwin, 1991) that memory for information from previ-
ous fixations is sharply limited. This is consistent with
the fixation by fixation account of the visual lobe
models. But, it need not mean that the processing of
stimulus information is concurrent with the fixation.
Hooge and Erkelens (1996) make the case that process-
ing continues for some time following the beginning of
the next fixation. Processing may ultimately be inter-
rupted by the new saccade but only after some lag in
time. Second, there is good evidence that peripheral
information can guide eye movements at least when the
stimulus information is very discriminable (Williams,
1966a; Luria & Strauss, 1975; Hooge & Erkelens, 1999).
But there is also evidence that eye movements are
programmed ahead of time (Zingale & Kowler, 1987).
The latter suggests that the pattern of fixations is
constrained over a series of fixations rather than being
decided fixation by fixation as implied by a simple
version of the visual lobe theories. Thus, describing the
accumulation of stimulus information at the molar level
may be different than describing the control of eye
movements at the molecular level.

10.6.3. A sequential independent decisions theory
The ideas from the visual lobe theories can be com-

bined with the signal detection framework given here.
Indeed, Geisler & Chou (1995) explicitly incorporate
many ideas from signal detection theory into their
version of a visual lobe theory. Here, we sketch a
theory that combines the visual lobe concept with the
independent decision variant of the maximum-of-out-
puts theory (Shaw, 1980). The resulting hybrid theory
illustrates how one can generalize the theories presented
here from a single fixation to multiple fixations.

This theory follows closely that of Geisler & Chou
(1995) but applied to discrete, clearly visible stimuli
rather than a target texture patch on a surrounding
texture. The size of the visual lobe is defined in terms of
the number of stimuli that are analyzed in parallel
during each fixation. Each stimulus is assumed to have
an independent perceptual representation that is com-
pared to a criterion for an independent decision. The
quality of the representation depends on all the factors
determining the discriminability of the stimulus includ-
ing eccentricity. If any of the individual decisions are

positive, then the observer responds ‘yes’. The next eye
movement is directed to a new, possibly overlapping
visual lobe. Overlap is allowed so that stimuli can be
processed repeatedly to gain the advantage of ‘multiple
looks’. The choice of the location of the next fixation is
probably a function of the information available in the
periphery and the observer’s strategy. To simplify the
possibilities, we follow Geisler & Chou (1995) among
others in assuming that observers can be instructed to
‘tile’ the display systematically with their visual lobes
until all stimuli are included within a lobe for at least
one fixation. If all of the stimuli have been scanned
without finding a target, then the observer responds
‘no’. For m stimuli, this model can allow either parallel
processing of up to m stimuli or serial processing of up
to m fixations. The size of the visual lobe is used to
compensate for eccentricity effects and the degree of
overlap is used to compensate for overall low discrim-
inability (even in the fovea).

In summary, multiple fixation search highlights the
importance of limited peripheral vision and the sequen-
tial contribution of eye movements. These effects can
be described by combining ideas from signal detection
applied to single fixation search and visual lobe theories
developed for multiple fixation search.

10.7. More general stimulus conditions

The experiments reviewed here are limited to ideal-
ized stimulus conditions typical of simple detection and
discrimination experiments. These conditions include:
distinct stimuli well above detection threshold, widely
separated stimuli, and single displays with no mask.
The intent of this simplified domain is to minimize
stimulus specific phenomena such as crowding that
might be confounded with set size or other manipula-
tions of interest. Consider efforts to generalize this
analysis to situations including each of these conditions.

10.7.1. Indistinct stimuli
Laboratory search experiments typically use stimuli

that are distinct from the surround. This allows one to
manipulate the number of distractors unambiguously.
If the stimuli are indistinct such as they would be if
they were near contrast threshold, then the spatial
uncertainty of the target becomes critical rather than
the number of distractors. In effect, the observer’s task
changes from discriminating targets from distractors to
detecting the target against the background. There is
still uncertainty, but it becomes a function of the possi-
ble target locations rather than the number of distrac-
tors. Such spatial uncertainty has been much studied in
its own right (e.g. Davis, Kramer and Graham, 1983).

How can one generalize the theories considered here
with distinct stimuli to more realistic cases involving
stimuli that may or may not be distinct? Such situations
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occur in naturalistic settings where targets must often
be distinguished from a structured background as well
as from specific distractors. Fortunately, this problem
has been addressed by two recent papers for the case of
discriminating increments (or decrements) in contrast
for simple stimuli such as disks, Gaussian blobs, or
Gabor patches (Solomon, Lavie & Morgan, 1997; Fo-
ley & Schwarz, 1998). For these stimuli, the threshold
contrast increment (or decrement) was measured as a
function of the contrast of the standard stimulus, often
called the pedestal contrast. For zero or near zero
pedestal contrast, the task reduced to simple detection
and for large pedestal contrast, the task was to discrim-
inate changes in a stimulus that is quite distinct from
the surround. In Foley and Schwarz (1998), they ma-
nipulated the pedestal contrast, set size, and spatial
uncertainty in a factorial design. Within this large
experiment, they replicated the expected set-size effects
such as reported here for the high contrast pedestals. In
contrast, set size had no effect for low contrast
pedestals. Similarly, they replicated the expected spatial
uncertainty effect for low contrast pedestals but found
no effect of spatial uncertainty for high contrast
pedestals. Thus, this experiment spanned the range of
conditions that yield set size and spatial uncertainty
effects. Both Foley and Schwarz (1998) and Solomon et
al. (1997) independently constructed a three part theory
to account for these effects. First, they assumed a
particular representation of contrast (nonlinear trans-
duction to account for the dipper effect). Second, they
selected the inputs to the decision process on the basis
of both the uncertainty manipulation and set size. Only
information from relevant locations or clearly visible
stimuli are considered in the decision process. Third,
they chose the maximum-of-outputs rule to determine
the response. This theory accounted well for the effects
of the factorial combination of pedestal contrast, set
size and spatial uncertainty. The key feature was to
select only the appropriate information for the decision
process. This selection predicted the particular interac-
tion between these three effects. In summary, these two
papers successfully generalized the kind of theory de-
scribed here to a case with mixed distinct and indistinct
stimuli.

10.7.2. Crowding effects
Verghese and Nakayama (1994) conducted a detailed

study of visual search manipulating the set size and
discriminability of three attributes: orientation, color
and spatial frequency. Two aspects of their experiments
were different from the simplified domain described
here. They used a mask and the spacing between stimuli
was approximately two times the size of the individual
stimuli rather than five times as typical of the studies
reviewed here. Verghese and Nakayama found that the
effects of set size on threshold were different for the

three different attributes. In terms of difference
thresholds, color showed very small set-size effects,
spatial frequency intermediate effects and orientation
the largest effects. In a threshold-versus-set-size graph,
the three attributes had TvS slopes of 0.1–0.6 depend-
ing on conditions. This is a larger range of effects than
the slopes of 0.2–0.3 typically reported in experiments
within the simplified domain.

Two control experiments in Verghese and Nakayama
(1994) imply that these results may arise from crowd-
ing. For their orientation task, they compared perfor-
mance between the usual conditions in which the
display set size varied and a relevant set size manipula-
tion in which the same number of stimuli were always
displayed but a subset of them were cued as relevant for
each block of trials. The relevant-set-size manipulation
produced smaller set-size effects (TvS slope=0.42)
compared to the display-set-size manipulation (TvS
slope=0.65). In a second control using the color task,
they manipulated the space between stimuli directly as
well as the presence of irrelevant stimuli. For less
discriminable colors they found effects of both decreas-
ing the spacing between the stimuli and adding irrele-
vant distractors. Thus, both control experiments
indicated that the spacing of the stimuli interacts with
set-size effects. It is likely that crowding resulted in
stimulus specific phenomena that are inconsistent with
the simple theories described here.

In the next few paragraphs, we speculate on alterna-
tive accounts of the crowding effects. Perhaps the first
possibility to consider is lateral masking and similar
spatial interactions (e.g. Eriksen, 1980; Breitmeyer,
1984; Chubb, Sperling & Solomon, 1989; Cannon &
Fullenkamp, 1991; Spillmann & Werner, 1996; Zelin-
sky, 1999). While some researchers suggest a relatively
narrow spatial range with these masking effects, there
are a variety of situations where spatial interactions
operate at larger distances, particularly in the periph-
ery. For example, Bouma (1970), Andriessen & Bouma
(1976), Kröse & Burbeck (1989) suggests that to elimi-
nate masking effects, one must have stimulus separa-
tions of approximately half the eccentricity of the
stimulus. To predict the masking due to crowded stim-
uli, one can explicitly model the relevant channels in
early vision (e.g. Verghese, Watamaniuk, McKee &
Grzywacz, 1999).

Another possibility is that perceptual grouping cre-
ates different relevant representations at different set
sizes and stimulus separations. For wide separations,
stimuli may be represented individually; but for small
separations, stimuli may be represented in groups that
integrate information from the individual stimuli. By
this group scanning hypothesis, the number of groups
determines the set-size effect rather than the number of
individual stimuli (Williams, 1966b; Treisman, 1982;
Bundesen & Pedersen, 1983; Egeth et al., 1984; Pashler,
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1987a; Humphreys, Quinlan & Riddoch, 1989; Mac-
quistan, 1994). In the extreme, the entire field may be
represented as a single texture and a target detected as
a deviation in an otherwise homogeneous texture.

Texture may enter into the process in another way as
well. The above hypothesis emphasized the grouping of
similar stimuli into a single texture. Alternatively, dif-
ferences between nearby stimuli might introduce texture
gradients (Nothdurft, 1985, 1991, 1992, 1993; Sagi &
Julesz, 1987). By this hypothesis, it is the contrast
between nearby stimuli that is critical rather than the
stimuli themselves. A simple version of this idea is
embodied in the maximum-of-differences theory. In
summary, there are a number of possible accounts of
crowding effects in visual search.

10.7.3. Masking effects
Morgan, Ward and Castet (1998) investigated the

effect of having a mask in addition to crowding. They
compared a masked, long duration display to a
masked, brief display. With the long duration display
and mask, they found set-size effects of the same mag-
nitude as the studies reviewed here without a mask.
With short duration display and mask, the set-size
effects were several fold larger. This result was also
found for a cueing paradigm in which the relevant set
size was manipulated and the display set size was held
constant. Thus, this study suggested that temporal
masking as well as spatial crowding interacts with
set-size effects.

What kind of mechanism is responsible for these
effects of masking? One possibility is that masking
makes information from individual stimuli unavailable
and instead the observer must depend on information
from perceptual groups. Morgan et al. (1998) went on
to conduct an experiment to test this idea by perturbing
the distractors in the short duration, mask condition.
They showed that nearby distractors affect the percep-
tion of the target as one might expect if the individual
stimuli could not be processed separately. Of course,
there are other possibilities such as the mask interrupt-
ing serial processing. Distinguishing among these possi-
bilities awaits further measurements with and without
masks.

10.7.4. Summary
Relative to the simplified domain of this article, new

phenomena are introduced by indistinct stimuli,
crowded stimuli, or masks. For the case of indistinct
stimuli, one must account for the effects of spatial
uncertainty. Foley and Schwarz (1998) and Solomon et
al. (1997) describe simple extensions of the current
theory that successfully account for these effects and
their interactions. For crowding and masking effects,
the evidence of new phenomena is clear, but there
remain a variety of possible accounts of these effects.

Indeed, generalizing the theory to these cases may
prove difficult if the new phenomena are specific to the
particular stimulus.

11. Conclusions

The departure point for this paper was that it would
be profitable to study visual search using laboratory
idealizations that make visual search as similar as possi-
ble to the simple detection and discrimination tasks
long studied in spatial vision. With this approach, we
reviewed the quantitative results from six visual search
paradigms.

We next compared high threshold theory to low
threshold theories based upon signal detection theory.
In almost all testable cases, the high threshold theory
failed to describe the results observed in the six
paradigms. In contrast, the three versions of low
threshold theory succeeded with few exceptions. It
seems likely that a successful theory of visual search
must be based on a low threshold. This argument is
perhaps even more important for the domain of re-
sponse time search where implicit high threshold theo-
ries are common.

In the discussion, we explored generalizations of the
simple signal detection theories that might account for
a wider range of phenomena such as search asymmetry,
conjunction search, response time measures, multiple
eye fixations, and less ideal stimulus conditions. These
generalizations sketched a comprehensive theory of vi-
sual search that is based on the same psychophysical
concepts that have been used to describe simple detec-
tion and discrimination in spatial vision.

12. Summary of notation

intercept parameter of the linear modelsa
used in data analysis
slope parameter of the linear models used inb
data analysis

c criterion for decision to respond yes
d % discriminability measure defined for equal

variance distributions
discriminability measure defined at equald %e
bias
discriminability measure defined for RMSda

weighting of variance
high-noise efficiency of external noisee
models
probability density functionf
cumulative distribution functionf
cumulative function of the normalFnormal

distribution
joint probability density function for thefU

random variables of U
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guessing parameter used with high thresholdg
theory

G(x) general function used with high threshold
theory

maximum number of stimuli that can be ah
target on a single trial

I index for individual stimuli within a trial
Ih set of indexes specifying which stimuli are

the h targets
j secondary stimulus index

index or miscellaneous constantk
likelihood ratio of an event X for hypothe-L(X)

ses s relative to n
likelihood ratio for the case of exactly hLh(X)

targets
m number of stimuli (targets and distractors)
n noise trial (all stimuli are distractors)

probability of xP(x)
set of probabilities of the number of targetsPh

being exactly 1, 2,…, h
q a priori probability of a target stimulus

set of a priori probabilities of a targetQ
stimulus

R relative coding function
s signal trial (at least one stimulus is a target)

threshold stimulus valuet
u internal representation of a stimulus on a

single trial
vector of random variables corresponding toU

a representation
6 physical stimulus value

vector of physical stimulus valuesV
a value specifying the domain of somex

functions
X a vector specifying the domain of some

functions
y range of some functions

z-transform (inverse of the Normal cumula-z
tive function)

standard deviation of a random variables

mean of a random variablem

Dm difference in the means of two random
variables
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Appendix A

This appendix presents descriptions of the four theo-
ries discussed in the article. First, a detailed notation is
introduced that is sufficient for all four theories. Then
each theory is defined and its predictions derived. Spe-
cifically, ROC curves are derived as a function of set
size and the number of targets. These predictions are
for arbitrary distributions. With more specific assump-
tions of the distribution and the relative variability of
the target and distractor distributions, one can calculate
all of the results discussed in this article.

A.1. Background

A.1.1. Notation
The notation has four parts. The first part defines the

task. A yes–no search task has two kinds of trials.
Signal trials contain at least one target stimulus and are
denoted s. Noise trials contain only distractor stimuli
and are denoted n. On each trial, observers respond
either ‘yes’ or ‘no’ yielding a two-by-two contingency
table (Table 3) of stimulus-response pairings: hit, false
alarm, miss, and correct rejection. In a typical experi-
ment, the specification of signal versus noise is under
experimental control. Thus, the responses can be char-
acterized by two conditional probabilities, one for each
kind of stimulus: the probability of a hit, P(‘yes’�s), and
the probability of a false alarm, P(‘yes’�n).

The second part of the notation defines the stimuli in
more detail. On any trial, m stimuli are presented at
different locations. On a noise trial, all m stimuli are
distractors; on a signal trial, at least one and as many
as h stimuli can be targets with the remaining stimuli
being distractors. The m stimuli presented on a noise
trial are denoted by Vn={6n1, 6n2,…, 6nm} with the ith
stimulus denoted by 6ni. If a signal is included as the ith
stimulus, then the trial is a signal trial and the m stimuli
are denoted by Vs={6n1, 6n2,…, 6si,…, 6nm}. More gen-
erally, h targets can be included among the distractors.
For example, if h=2 and the 1st and the ith stimuli are
targets, they are denoted by Vs={6s1,
6n2,…, 6si,…, 6nm}.

The third part of the notation defines the internal
representations that are assumed to correspond to each
stimulus. Specifically, each stimulus results in an inter-
nal representation that corresponds to a random vari-
able. The random variables corresponding to noise
stimuli Vn, are denoted by Un={un1, un2,…, unm}. The
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Table 3
The two-by-two contingency table for the yes–no task

Stimulus Response

Yes No

HitSignal (s) Miss
False alarmNoise (n) Correct rejection

P(‘yes’�n)=P(un1\c), and P(‘yes’�s)=P(us1\c).
(A1)

By the definition of the cumulative distribution func-
tion, this can be rewritten as:

P(‘yes’�n)=1−Fn1(c), and P(‘yes’�s)=1−Fs1(c).
(A2)

These equations predict how the false alarms and hit
probabilities depend upon the criterion. The resulting
relation between the false alarm and hit probabilities is
known as the Receiver Operating Characteristic (ROC)
function. Eq. (A2) predicts the form of the ROC
function.

A.1.3. Independence properties
The last part of the background is to define the

independence properties that are to be assumed in the
theories presented here. By statistical independence, we
mean that for the representation of either noise or
signal trials, all pairs of distinct random variables are
independent. Thus, for a noise trial, the random vari-
ables uni and unj, i" j, must be independent. Similarly
for the representations of a signal trial. Further discus-
sions of this independence property can be found in
Pelli (1985), Graham (1989), Ashby (1992). Generaliza-
tions described by these authors can be applied to the
theories presented here, but are beyond the scope of
this article. We consider statistical independence
as an idealization appropriate for widely separated
stimuli.

A second kind of independence property is com-
monly referred to as unlimited capacity (Townsend,
1974). By unlimited capacity, we mean that the repre-
sentations are independent of the number of stimuli, m.
Thus, the distribution of uni or usi for all i is unchanged
with a change in the number of stimuli. This property
can be further broken down to distinguish
between unlimited capacity for additional distractors
and for additional targets such as present in multiple
target experiments. Duncan (1980) has suggested that
for some tasks, unlimited capacity may hold for addi-
tional distractors but not for targets. In the develop-
ment here, we assume all of the independence
properties.

A.2. The ideal obser6er theory

The ideal observer theory is next described in several
steps. We begin by stating the general definition
of the ideal observer, its application to a single stimulus
task, and its application to a task with one target
among m stimuli. Then we present generalizations of
this result to a task with exactly h targets among m
stimuli and to a task with h targets or less among m
stimuli.

random variables corresponding to signal stimuli Vs,
with the ith stimulus a target, are denoted Us=
{un1, un2,…, usi,…, unm}. As in the previous example, if
h=2 and the 1st and the ith stimuli are targets, then
the representation is denoted by Us=
{us1, un2,…, usi,…, unm}. When quantitative stimulus at-
tributes are used, 6ni and 6si correspond to specific
physical values (e.g. contrast) while uni and usi corre-
spond to internal representations of those values (e.g.
signal-to-noise ratio or subjective contrast). Sometimes
it is convenient to drop the n and s subscripts for noise
and signal to focus on the observer’s internal represen-
tation U={u1, u2,…, um}. The need for this modified
notation arises because observers in the yes–no task do
not know ahead of time that a given trial is a noise or
a signal trial (even though the experimenter does).
Consequently, to model their decision process, one
must describe a representation that can be from either a
noise or signal trial.

The fourth part of the notation specifies the density
and distribution functions for the random variables
that correspond to the internal representations. For
each random variable uni or usi, the probability density
function is denoted by fni or fsi, respectively, and the
cumulative distribution function is denoted by Fni or
Fsi, respectively. The joint probability density of all m
random variables is denoted by fUn for noise trials and
fUs for signal trials. When all m noise representations,
uni, are identically and independently distributed, then
the density is denoted by fn which is equal to fni for all
i. Similarly, when all h signal stimuli are identically and
independently distributed, then the density of those h
representations is denoted by fs. In the example above
with h=2 and the 1st and the ith stimuli are indepen-
dently and identically distributed targets, then fs1=
fsi= fs.

A.1.2. Signal detection theory for a single stimulus
The next part of the background is a brief description

of how signal detection theory (Green & Swets, 1966)
accounts for performance in the yes–no task for a
single stimulus (m=1). A ‘yes’ response is made
whenever a unidimensional internal representation, us1

or un1, exceeds a decision criterion, c. The probability
of a false alarm and a hit are, respectively,
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A.2.1. General definition
Several authors have shown that the optimal decision

rule depends on the likelihood ratio (Peterson, Birdsall
& Fox, 1954; Green & Swets, 1966). The likelihood
ratio is defined as the ratio of the conditional probabil-
ity of the representation given the signal relative to the
conditional probability of the representation given
noise,

L(X)=
P(U=X �s)
P(U=X �n)

=
fUs(X)
fUn(X)

. (A3)

It has been shown that adopting the likelihood ratio as
the decision variable yields the optimal decisions in
terms of probability correct as well as other criteria.
For a yes–no task, this is done by adapting Eq. (A1) to
use the likelihood ratio rather than the internal repre-
sentation itself. Thus, the probability of a false alarm
and a hit are, respectively,

P(‘yes’�n)=P(L(Un)\c), and

P(‘yes’�s)=P(L(Us)\c). (A4)

In words, the probability of responding ‘yes’ given a
noise trial is equal to the probability that the likelihood
ratio on a noise trial is greater than c. Similarly, the
probability of responding ‘yes’ given a signal trial is
equal to the probability that the likelihood ratio on a
signal trial is greater than c.

A.2.2. Single stimuli
To illustrate the ideal observer theory yet more con-

cretely, consider the case of a single stimulus represen-
tation U={u1}. The likelihood ratio of Eq. (A3)
reduces to:

L(x)=
fs1(x)
fn1(x)

. (A5)

The probability of a false alarm and a hit simplify to,

P(‘yes’�n)=P(L(un1)\c), and

P(‘yes’�s)=P(L(us1)\c). (A6)

Combining Eqs. (A5) and (A6) yields,

(P(’yes’�n)=P
�fs1(un1)

fn1(un1)
\c

�
, and

P(’yes’�s)=P
�fs1(us1)

fn1(us1)
\c

�
. (A7)

Written out in this fashion, one can see that the argu-
ment for each density function is determined by the
trial type, noise or signal. In contrast, the density
functions themselves are determined by the definition of
the likelihood ratio.

A.2.3. Multiple stimuli: 1 of m
Next consider the case in which one target is pre-

sented among m stimuli in a signal trial (Peterson et al.,
1954; Green & Birdsall, 1978). For noise trials, P(U=
X �n) is the joint probability of the values X=
{x1, x2,…, xm},

P(U=X �n)= fUn(x1, x2,…, xm). (A8)

Assuming independence, this joint probability is the
product of the component densities,

P(U=X �n)= 5
m

j= i

fnj(xj). (A9)

For signal trials, P(U=X �s) is also a joint probability
of the values {x1, x2,…, xm},

P(U=X �s)= fUs(x1, x2,…, xm). (A10)

This joint probability can be conditionalized upon the
location of the target and then, assuming independence,
can be written as the product of the component
densities,

P(U=X �s)= 5
m

j= i

qi fsi(xi) 5
m

j" i

fnj(xj), (A11)

where qi is the a priori probability of the ith stimulus
being the target. If all stimuli have equal probability of
being the target, then qi equals 1/m. Combining Eqs
A3, A9, and A11 and simplifying yields,

L(X)= %
m

j= i

qi

fsi(xi)
fni(xi)

. (A12)

In words, the likelihood is the weighted sum of the
local likelihoods for each stimulus. The likelihood can
be used with Eq. (A4) to predict the false alarm and hit
probabilities for this case of 1 target of m independent
stimuli.

A.2.4. Multiple stimuli: exactly h of m
Consider next the case in which exactly h targets are

presented among m stimuli. As before we assume statis-
tical independence. By definition, P(U=X �n) is the
joint probability as before,

P(U=X �n)= fUn(x1, x2,…, xm). (A13)

Assuming independence, this joint probability is the
product of the component densities identical to Eq.
(A9),

P(U=X �n)= 5
m

j= i

fnj(xj). (A14)

By definition, P(U=X �s) is the joint probability of the
values {x1, x2,…, xm},

P(U=X �s)= fUs(x1, x2,…, xm). (A15)

In this case, P(U=X �s) is more complicated because
the h targets can occur at many combinations of loca-
tions. The joint probability is the weighted sum of the
joint probability for each of the possible combinations
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of target locations. These locations can be specified by
Ih={i1, i2,…, ih}. For example, if there were three
targets and the targets were at locations 1, i, and j, then
I3={1, i, j}. All of the possible locations can be spe-
cified by the following nested sum,

P(U=X �s)= %
m

i 1"1

%
m

i 2" i 1

%
m

i 3" i 1i 2

… %
m

ih" i 1i 2...ih−1

qIh
P(U=X ’�s)

(A16)

where the vector X % contains the values xsi as specified
in Ih and xni. The joint probability P(U=X %�s) is the
joint density as usual,

P(U=X %�s, Ih)= fUs(X %). (A17)

Assuming independence, this becomes the product,

P(U=X %�s, Ih)= 5
h

j=1

fsij
(xij

) 5
m

k" i 1i 2…in

fnk(xk). (A18)

Eqs. (A11–A13) can be combined into the likelihood
ratio as defined by Eq. (A3). Simplifying yields the final
result

Lh(X)

= %
m

i 1=1

%
m

i 2" i 1

%
m

i 3" i 1i 2

… %
m

ih" i 1i 2…ih−1

q
Ih

5
h

j=1

fsij(xij)
fnij

(xij
)
. (A19)

As with the 1 of m case, the likelihood ratio simplifies
to be a sum of specific likelihood ratios where ‘specific’
refers to one for each possible combination of h target
locations. This analysis can be easily extended to cases
with mixtures of 1 to h targets in any trial. In summary,
the ideal observer theory depends critically on the exact
set of possible signals.

A.3. The maximum-of-outputs theory

In the maximum-of-outputs theory, the decision is
based on the representation that most favors the target.
A ‘yes’ response is made if the maximum of the compo-
nent representations favors a ‘yes’ response. This theory
has been considered by many investigators in several
closely related forms. We follow Graham (1989) in
using the name, maximum-of-outputs theory. The origin
of the maximum rule is probably in applications to
forced-choice tasks where response is determined by the
representation with the maximum value (e.g. Green &
Swets, 1966). In our treatment of this maximum-of-out-
puts theory, we assume that the sign of all internal
representations is positive with increasing evidence for a
target. A ‘yes’ response is made when the evidence with
the maximum value exceeds a criterion

max(U)=max(u1, u2,…, um). (A20)

From this, the probability of a false alarm and a hit
are, respectively,

P(‘yes’�n)=P(Max(Un)\c), and

P(‘yes’�s)=P(Max(Us)\c). (A21)

Assuming the m random variables are identically dis-
tributed and statistically independent, the probability of
the maximum of m identical random variables not
exceeding u is F(u)m. Thus the probability of a false
alarm can be rewritten as,

P(‘yes’�n)=1−Fn(u)m, (A22)

and by distinguishing between the h target distributions
and the m−h distractor distributions, the probability
of a hit can be written as

P(‘yes’�s)=1−Fs(u)h Fn(u)m−h. (A23)

It is helpful to also describe the independent deci-
sions theory on its own (Shaw, 1980). In the indepen-
dent decisions theory, the decision rule is to respond
‘yes’ if,

u1\c, u2\c,…, or um\c. (A24)

Assuming statistical independence, the probability of a
‘yes’ response is

A(U)=1− 5
m

i=1

[1−P(ui\c)]. (A25)

The probability of a false alarm and a hit are,
respectively,

P(‘yes’�n)=A(Un), and P(‘yes’�s)=A(Us). (A26)

Assuming identical distributions for all stimuli, one can
replace P(uni\c) with 1−Fn(u). Simplifying yields a
false alarm probability of

P(‘yes’�n)=1−Fn(u)m. (A27)

Similarly, considering the h targets separately from the
m−h distractors yields the hit probability of

P(‘yes’�s)=1−Fs(u)h Fn(u)m−h. (A28)

Thus, this version of the maximum-of-outputs theory
makes an identical prediction to the independent deci-
sions theory.

To show that the maximum-of-outputs theory is
equivalent to the independent decisions theory, consider
first a case in which the independent decisions theory
holds. If one of the individual representations exceeds
the threshold c, then the maximum of all must also
exceed c. If none of the individual representations
exceeds c, then the maximum cannot either. Thus, the
performance predicted by the independent decisions
theory is matched by the maximum-of-outputs theory.
Similarly, if one assumes the maximum-of-outputs the-
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ory, one can show that equivalent performance is pre-
dicted by the independent decisions theory. Thus, they
are equivalent under the conditions defined here.

A.4. Relati6e coding models

The third theory to be considered is an instance of a
class of models we refer to as relati6e coding models. In
these models, each stimulus is always coded relative to
its context before contributing to a decision. In general,
this idea can be represented by the function R(ui, U),
which depends on both the ith representation and the
vector of all representations, U. This function is com-
bined with the maximum combination rule of the inde-
pendent decisions theory to yield the decision rule:

Max[R(u1, U), R(u2,U),…, R(um, U)]. (A29)

Here, we develop a special case referred to as the
maximum-of-differences theory. This theory is presented
as an idealization of more complex theories that can
incorporate factors such as the spacing between items
in determining which stimuli contribute to the context.
For the maximum-of-differences theory, each stimulus
is compared to a randomly selected other stimulus. The
functions Rd and AMaxRd are defined as,

Rd(ui, U)=ui−uj, and

AMaxRd(U)=Max[Rd(u1, U), Rd(u2, U),…, Rd(um, U)],
(A30)

where uj is a randomly selected member of the set U
such that j" i. Each stimulus is never compared to
itself. From this definition, the probability of a false
alarm and a hit is, respectively,

P(‘yes’�n)=P [AMaxRd(Un)\c ], and

P(‘yes’�s)=P [AMaxRd(Us)\c ]. (A31)

A.5. High threshold theory

High threshold theory has a long history and has
been described in a number of recent articles (Quick,
1974; Watson, 1979; Pelli, 1985; Graham, 1989). There
are four assumptions to the version of the high
threshold theory presented here. First, in a detection
task, the internal state of the observer is either a
detect-target state or a no-detect state. Second, the
detect state results only on signal trials and never on a
noise trial. This assumption gives the theory its name
because a distractor cannot produce the detect state.
Third, observers adjust their bias by guessing ‘yes’ on
some proportion of trials when they are in the no-detect
state. They never guess when in the detect state because
that would only introduce an error. Fourth, the proba-
bility of the detect state is a monotonic, single-valued
function G(x) of the relevant stimulus attribute x. This

function can be a cumulative distribution function as in
signal detection theory, but it need not be in general.
Here, we differ from most reviews in presenting this
general function in addition to specializing it to the
Weibull function, 1−2− (x/t)k, as is more commonly the
case (Quick, 1974; Graham, 1989). In this form, t is the
threshold parameter (defined at .75 probability correct)
and k is the steepness parameter.

For this general theory, the probability of a false
alarm is

P(FA)=g, (A32)

where g is the probability of guessing ‘yes’ when in a
no-detect state. The probability of a hit is the sum of
the probability of detecting the stimulus and the proba-
bility of guessing ‘yes’ if the signal is not detected,

P(hit)=P(detect)+g [1−P(Detect)]. (A33)

This can be rewritten as,

P(hit)=g+ (1−g) P(Detect). (A34)

For m stimuli and h targets, the probability of a
detection is

P(Detect)=1−5m
i [1−G(xi)]. (A35)

For noise stimuli, G(xi) is zero, so 1−G(xi) is one
and can be dropped from the product. Thus, the
product can be rewritten for only the h signals,

P(Detect)=1−5h
i 1−G(xi). (A36)

Assuming these targets are identical and independent,
this becomes,

P(Detect)=1− [1−G(x)]h. (A37)

Inserting this into Eq. (A34), one has

P(hit)=g+ (1−g) {1− [1−G(x)]h}. (A38)

This general form can also be specialized for the
Weibull function as

P(hit)=g+ (1−g) {1− [1− (1−2 − (x/t)k)]h}, (A39)

which simplifies to

P(hit)=1− (1−g) 2− (hx/t)k. (A40)

Note that performance does not depend on the set size,
m, but does depend on the number of targets, h, and
the target-distractor discriminability, x.

Appendix B

In a new experiment, Verghese measured speed dis-
crimination as a function of set size with and without
noise. The experiment used methods similar to the
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search experiment described in Verghese and Stone
(1995, experiment 2). Because this study is unpublished,
we report here the details of the method. The threshold
results for all conditions were described in the distrac-
tor heterogeneity section and the ROC results for the
no-noise conditions were described in the response bias
section.

B.1. Method

The observer’s task was to indicate whether or not
the display contained a single grating patch that moved
faster than the other patches. Stimuli were drifting
grating patches in a stationary 2-dimensional Gaussian
window, with a horizontal and vertical spatial spread of
0.4° (Gaussian standard deviation). The spatial fre-
quency of the gratings was 1.5 c/°, and the reference
temporal frequency was 8 Hz, yielding a reference speed
of 5.3°/s. The peak contrast of the patches was 20%.
They were randomly placed at an eccentricity of 4.3°,
concentric with the fixation point, with a center-to
center spacing of 2.3°. The stimuli were presented for
195 ms with abrupt onset and offset.

The major difference from Verghese and Stone (1995)
was the use of a rating procedure rather than a 2IFC
judgment. The observers responded on a 4 point scale:
1 indicated certainty that the target was present and 4
indicated certainty that it was absent. These ratings
were used to construct ROC functions and the d %e (or
da) was estimated for each of several speed differences.
The d %e (or da) values were used to construct psychomet-
ric functions that, in turn, were used to estimate
thresholds defined by 75% correct performance.

Set size was manipulated using a cueing procedure
(cf. Palmer, 1994). The stimulus always consisted of six
grating patches, whose locations were cued 500 ms
before stimulus onset. The relevant locations were cued
by black markers while the other stimulus locations
were cued by white markers. For the set size 2 condi-
tion, the target could only occur in the two locations
cued by black markers. For the set size 6 condition, the
target could occur in all six locations and therefore all
locations were cued by black markers. This method
kept the density of the displayed elements constant
despite the increase in relevant set size. In addition, for
the set size 2 condition, the two potential target loca-
tions were chosen to be opposite each other to minimize
eye movements.

The experiment also included a noise condition with
external noise added to the speed of the distractors. In
the no-noise condition, the distractor patches all moved
at the reference speed of 5.3°/s; in the noise condition,
the speed of the distractor patches was drawn from a
normal distribution centered about the reference speed
with a standard deviation of 0.89°/s. For both, the
target speed was constant. The no-noise and noise

conditions were presented in separate blocks of trials.
The data reported below are based on 400–600 trials
per condition per observer. Two experienced observers
participated, BB and PV (one of the authors).
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choice reaction time. Perception & Psychophysics, 44, 383–389.

Scott-Brown, K., & Orbach, H. S. (1998). Contrast discrimination,
non-uniform patterns and change blindness. Proceedings of the
Royal Society, B 265, 2159–2166.

Shaw, M. L. (1980). Identifying attentional and decision-making
components in information processing. In R. S. Nickerson, Atten-
tion and performance VIII (pp. 106–121). Hillsdale, NJ: Erlbaum.

Shaw, M. L. (1982). Attending to multiple sources of information.
Cogniti6e Psychology, 14, 353–409.

Shaw, M. L. (1984). Division of attention among spatial locations: A
fundamental difference between detection of letters and detection
of luminance increments. In H. Bouma, & D. G. Bouwhais,
Attention & performance X. Hillsdale, NJ: Erlbaum.

Simpson, A. J., & Fitter, M. J. (1973). What is the best index of
detectability? Psychological Bulletin, 80, 481–488.

Smith, P. L. (1998). Attention and luminance detection: a quantita-
tive analysis. Journal of Experimental Psychology : Human Percep-
tion and Performance, 24, 105–133.

Solomon, J. A., Lavie, N., & Morgan, M. J. (1997). Contrast
discrimination function: spatial cueing effects. Journal of the
Optical Society of America A, 14, 2443–2448.

Sperling, G. (1989). Three stages and two systems of visual process-
ing. Spatial Vision, 4, 183–207.

Sperling, G., & Dosher, B. A. (1986). Strategy and optimization in
human information processing. In K. R. Boff, L. Kaufman, & J.



J. Palmer et al. / Vision Research 40 (2000) 1227–12681268

P. Thomas, Handbook of perception and human performance (pp.
2.1–2.65). New York: Wiley.

Spillmann, L., & Werner, J. S. (1996). Long-range interactions in
visual perception. Trends in Neural Sciences, 19, 428–434.

Steinman, S. B. (1987). Serial and parallel search in pattern vision?
Perception, 16, 389–398.

Swensson, R. G. (1996). Unified measurement of observer perfor-
mance in detecting and localizing target objects on images. Medi-
cal Physics, 23, 1709–1725.

Swensson, R. G., & Judy, P. F. (1981). Detection of noisy visual
targets: models for the effects of spatial uncertainty and signal-to-
noise ratio. Perception & Psychophysics, 29, 521–534.

Swensson, R. G., & Judy, P. F. (1996). Measuring performance
efficiency and consistency in visual discriminations with noisy
images. Journal of Experimental Psychology : Human Perception
and Performance, 22, 1393–1415.

Swets, J. A. (1984). Mathematical models of attention. In R. Parasur-
aman, & D. R. Davis, Varieties of attention (pp. 183–242). New
York: Academic Press.

Swets, J. A. (1986a). Form of empirical ROCs in discrimination and
diagnostic tasks: implications for theory and measurement of
performance. Psychological Bulletin, 99, 181–198.

Swets, J. A. (1986b). Indices of discrimination or diagnostic accuracy:
their ROCs and implied models. Psychological Bulletin, 99, 100–
117.

Swets, J. A., Tanner, W.P., Jr., & Birdsall, T.G. (1961). Decision
processes in perception. Psychological Re6iew, 68, 301–340.

Tanner, W. P., Jr. (1961). Physiological implications of psychophysi-
cal data. Annals of the New York Academy of Science, 89, 752–
765.

Tanner, W. P., Jr., & Swets, J. A. (1954). A decision-making theory
of visual detection. Psychological Re6iew, 61, 401–409.

Taylor, M. M., Lindsay, P. H., & Forbes, S. M. (1967). Quantifica-
tion of shared capacity processing in auditory and visual discrim-
ination. Acta Psychologica, 27, 223–229.

Teichner, W. H., & Krebs, M. J. (1974). Visual search for simple
targets. Psychological Bulletin, 81, 15–28.

Townsend, J. T. (1974). Issues and models concerning the processing
of a finite number of inputs. In B. H. Kantowitz, Human informa-
tion processing: tutorials in performance and cognition (pp. 133–
185). Hillsdale, NJ: Erlbaum.

Townsend, J. T. (1981). Some characteristics of visual whole report
behavior. Acta Psychologica, 47, 149–173.

Townsend, J. T. (1990). Serial vs. parallel processing: sometimes they
look like Tweedledum and Tweedledee but they can (and should)
be distinguished. Psychological Science, 1, 46–54.

Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of
elementary psychological processes. New York: Cambridge Uni-
versity Press.

Treisman, A. (1982). Perceptual grouping and attention in visual
search for features and for objects. Journal of Experimental Psy-
chology : Human Perception and Performance, 8, 194–214.

Treisman, A. (1991). Search, similarity, and integration of features
between and within dimensions. Journal of Experimental Psychol-
ogy : Human Perception and Performance, 17, 652–676.

Treisman, A., & Gelade, G. (1980). A feature-integration theory of
attention. Cogniti6e Psychology, 12, 97–136.

Treisman, A., & Gormican, S. (1988). Feature analysis in early vision:
evidence from search asymmetries. Psychological Re6iew, 95, 15–
48.

Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal
of Experimental Psychology : Human Perception and Performance,
16, 459–478.

Treisman, A., & Souther, J. (1985). Search asymmetry: a diagnostic
for preattentive processing of separable features. Journal of Ex-
perimental Psychology : General, 114, 285–310.

van Trees, H. L. (1968). Detection, estimation, and modulation theory.
New York: Wiley.

Verghese, P., & Nakayama, K. (1994). Stimulus discriminability in
visual search. Vision Research, 34, 2453–2467.

Verghese, P., & Stone, L. S. (1995). Combining speed information
across space. Vision Research, 35, 2811–2823.

Verghese, P., Watamaniuk, S. N. J., McKee, S. P., & Grzywacz, N.
M. (1999). Local motion detectors cannot account for the de-
tectability of an extended trajectory in noise. Vision Research, 39,
19–30.

Viviani, P. (1990). Eye movements in visual search: cognitive, percep-
tual and motor control aspects. In E. Kowler, Eye mo6ements and
their role in 6isual and cogniti6e processes. New York: Elsevier.
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