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1. INTRODUCTION 

Let us consider the system 

P = A(t) xi, (1) 

where ft = (x1 , x2 , xa) and A(t) is a 3 x 3 matrix given by 

0 [ 01 
1 0 

A(t) = 0 1 1 . (2) B Y 0 (t) 
The coefficients H., /3, y are real valued bounded functions defined on the ray 
[0, co) such that 01 and y are C1 and /3 is continuous. 

System (1) is equivalent to the equation 

Y”=(~+Y)Y’+(~‘+F)Y, (3) 

in the sense that the correspondence y + jt = (y, y’, y” - o~y) establishes an 
isomorphism between the solution space of (3) and that of (1). 

We denote by S the solution space of (1). For each x E S we define 
V,: [O, co) -+ R by 

Vy(t) = $2 - 2X,X, + (y(t) - a(t)) x12. (4) 

We write Z(W) = lim,,, V%(t) when this limit exists. The following sets will be 
important in this work: 

* This work was sponsored by the Consejo de Desarrollo Cientifico y Humanistic0 de 
la Universidad de Los Andes. 

607 
0022-247X/78/0653-0607$02.00/0 

Copyright 0 1978 by Academic Press, Inc. 
AU rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82271858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


608 TINEO, RIVERO, AND MANASEVICH 

so = {X E s j lii 11 X(t)[l = O}, 

s, = {Z E s 1 Vg(t) > 0, Vt 3 O}, 

s- = pi E s 1 v%(t) < 0, Vt > O}, 

s, = (X E s 1 11 x 11 EL2}.1 

In Section 2 we will derive some propositions concerning S, , S’s , S, , S- and 
the asymptotic behavior of the solutions of (1). From these propositions Theo- 
rems 1 and 2 (see Section 2) will be proved. In Section 3 we will apply these 
theorems to the equation 

Y”’ = PY’ + qy, (5) 

to obtain Theorem 3 of this paper. Theorem 3 was motivated by Theorems 2.3 
and 3.3 of [2]. We point out that as a difference with [2] we do not impose any 
sign restriction on p, and the condition q bounded has been weakened (see 
Theorem 3 below). (We note that p and q of (5) are the negatives of those in [2].) 
In Section 4 we derive some oscillatory properties of (5). 

In the sequel we will need the following lemmas which we establish here 
without proof: 

LEMMA 1. In Equation (1) let us assume that OL, /3, y are continuous and bounded 
for t > 0; then if x = (x1 , x2 , x3) E S is such that x,(t) is bounded on [0, co), then 
x2(t) and x3(t) are also bounded on [0, CO). 

LEMMA 2. Under the assumptions of Lemma 1, if now x, E L2 then x2 E L2 and 
x3 E L2. 

LEMMA 3. Let f e Cl[O, CO). If f EL2 and f’ is bounded then f(t) ---f 0 as 
t+ co. 

Lemma 3 is elementary. For a proof of Lemmas 1 and 2 see, for instance, [I]. 

2 

We begin this section with the following: 

PROPOSITION 1. If (01- y)’ + 28 > k > 0 (< - R < 0), R E OX, then V%(t) 
is a strictly decreasing (strictly increasing) function of t E [0, co) for each nontrivial 
x E S. From here Z(x) exists and -CO < Z(x) < + CO (- CO < I(%) < + 00). 

1 In what follows f EG’, p > 1 means f EL’[O, a)), p > I. 
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Proof. It follows from the fact that for each X E S we have 

Jyt) - v#o) = - s; [(a - r>’ + 331 x12. I (6) 

PROPOSITION 2. If (a - y)’ + 2fl > k > 0 (< -k < 0) and ;f x E S is 
such that Z(X) > ---co (< +co), then XE S, . 

Proof, If (a - y)’ + 213 >, k > 0, then from (6) we have 

k s t x12(s) as < V%(O) - v%(t). 
0 

(7) 

Since Z(X) > -03 it follows that x1 E L2. Similarly if (a - y)’ + 2/3 < --K < 0 
from (6) and Z(X) < + 00, it follows that x, E L2. For both cases from Lemma 2 
it follows that X E S, . 1 

PROPOSITION 3. If x E S, then % E So . 

Proof. Assume X = (x1 , x2 , x3) E S, , that is, xi(t) G L2, i = 1,2, 3. From 
(1) it follows that & ELM, and then zc& E L1, i = 1, 2, 3. Next from xi2 1: = 
2 Ji xix: we obtain that xi(t) is bounded on [0, CO), i = 1,2, 3. Again from (1) 
it follows that ~1 is bounded on [0, co), i = 1,2, 3. Finally from Lemma 3 if 
xi E L2 and zi is bounded, then lim t+30 xi(t) = 0, i = 1, 2, 3. Thus X E So . 1 

From Propositions 2 and 3 the following proposition follows immediately. 

PROPOSITION 4. If (a - y)’ + 213 > k > 0 (< -k < 0) then for x E S we 
haveZ(~)>-~(Z(~)<+~)~~~S2~~~So~Z(~)=0. 

PROPOSITION 5. If (CX - 7)’ + 215 > k > 0 (< -k < 0) then So = S+ 
(So = S-j. Then from Proposition 4 it foZZows that S, = S, = S, (So = S, = SJ. 

Proof. We assume X nontrivial. Then if (a - y)’ + 2/3 > k > 0 
(< -k < 0), V%(t) is strictly decreasing (strictly increasing). If now X E So 
then Z(X) = 0, and we must have V%(t) > 0 (F’%(t) < 0) Vt E [0, co). Then 
X E S, (S-). Assume next that X E S, (S-); then Vg(t) 3 0 (VT(t) < 0). Since 
Z(X) exists we must have Z(X) 3 0 (Z(X) < 0). From Proposition 4 we then have 
Z(X) = 0. Thus S, (S-) C So . This finishes the proof. k 

PROPOSITION 6. If (CX - 7)’ + 2/3 > k > 0 and if z E S - So , then there 
exists a to > 0 such that x,(t) f 0 Vt 3 to. If (a - y)’ + 2/3 < -k < 0 and if 
x E So - 0, then xl(t) # 0 Vt E [0, 00). 

Proof. Let (a - y)’ + 2fl > k > 0 and X E S - So = S - S, . Then 
there exists a to > 0 such that Vz(to) < 0. Since V%(t) is strictly decreasing we 
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have that I’%(t) < 0 Vt E [to , co). Then xl(t) # 0 Vt E [to, co), since if 
q(t*) = 0 for some t* E (to, co) we would have 0 ,( x22(t*) = VK(t*) < 0, 
which is a contradiction. Assume now that (a - y)’ + 2/3 < --k < 0 and that 
X E S, - 0 C S- . Thus V%(t) < 0 Vt E [0, co). Then if there exists a t* 
such that xI(t*) = 0, we have Vg(t*) = x2”(t*) > 0. Contradiction, and 

xl(t) # 0 vt E [O, 00). I 

Next we note that for a function $: [0, co) + Rs either lim,,, /I +(t)ll = + co 
or 4 has a limit point, that is, there exists a sequence {tn}, tn + + cc it - co, 
such that lim &+@ X(tn) = p E R3. 

PROPOSITION 7. If (a - y)’ + 2/3 2 k > 0 (< --k < 0), then (i) X E S, 0 X 
is bounded e-z has a Emit point; (ii) X E S - S,, 0 lim,,, I/ X(t)11 = + co. 

Proof. (i) We only prove that if X has a limit point then X E S,, . If X has a 
limit point then Z(X) > - CO (< + CO) and from Proposition 4, X G S, . (ii) It 
follows from (i). 1 

PROPOSITION 8. (i) If (a - r)’ + 2/3 > k > 0 then dim S,, = 2; (ii) If 
(a-~)‘+2/3,(---k<O then dimS,=l. 

Proof. (i) Let X, , X, , X3 be a basis for S such that X3(O) = (0, 0, 1). From 
Vx3(0) = 0 it follows that X3 $ S+ = S, . Thus S - S,, # 4 and dim S, < 2. 
Next we show the existence of two linearly independent elements in S,, . Let 
us denote by H C R3 the hyperplane xi = 0. We note that if X E S is such that 
x(t,,) E H then Vz(t,,) = x2(&,) 3 0. N ow for each integer m 3 1 it is easy to see 
the existence of 01,~ , am3 , &a , prns E [w such that &, + &, = /3Ls + /3s3 = 1 
and such that the elements Z,, , 2,s E S defined by Z,, = ~l,~Xr + 01,sX3 , 
2,s = &,,$a + ,Bm3X, satisfy Zml(m), Z,,(m) E H. Then V:Jrn) 3 0, for 

m = 1, 2,..., and i = 1, 2. Since Vx is strictly decreasing for X nontrivial, it 
follows that Vzmi(t) > 0 for t E [0, m), m = 1, 2,..., i = 1, 2. From a classical 
argument we can assume that Z&t) -+Zj(t)asm--+co,i=1,2, t>O,where 
2, and 2, are two nontrivial elements of S. Then V=,(t) > 0, t > 0, i = 1, 2, and 
since Vz, , Vz, are strictly decreasing, we obtain V=,(t) > 0 for t > 0, i = 1, 2. 
We claim that 2, and 2, are linearly independent. Assume they are not. Then 
2-j = -gi3 , i = 1, 2. This implies Vzi(t) = V&t) = V%,(t) < 0, Vt > 0. 
Contradiction. This finishes the proof of (i). 

(ii) We first prove that dim 5’s < 1. Let us define by P = 
{X E S j ~~(0) = O}; then P is a two-dimensional subspace of S, such that if 

ft = (Xl 9 x2 , x3) E P, then V&O) = ~~~(0) > 0. Since S, = S- we have that 
P n S, = (0). Then dim S, < 1. Next let X1 , X2 , Xs be a basis for S such that 
X2 , X3 are also a basis for P. For each integer m > 1 let c~~r , %I2 t %3 be num- 
bers such that XL, ski = 1 and such that Z,,, = x9=, a,,& E S satisfies 

-G(m) E i(xl , x2 , x3) E R3 / xi = x2 = 0). Then Vzm(m) = 0 and hence 
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Vz,(t) < 0 for t E [0, m). Again from a classical argument we can assume that 
Z*(t) ---f Z(t) as m + 03, t 3 0, where 2 E 5’ and is nontrivial. Then 2 E S- = S,, 
and dim S,, > 1. We conclude dim S, = 1. 1 

The next two theorems follow from the propositions we have proved. 

THEOREM 1. If (LY - y)’ + 2/3 >, k > 0 in Equation (I), then 

(i) S, = S, = S, . 

(ii) 1f X = (xi , xa , x3) E S - S, , then there exists a t, > 0 such that 
x1(t) # 0, vt >, t, . 

(iii) % E S, if and only if xl(t) is bounded, t E [O, co). 

(iv) 1j x $ S,, then lim,,,(xr2 + xa2 + xa2) = fa3. 

(v) dim S,, = 2. 

THEOREM 2. Ij (Q - y)’ + 2/3 < -k < 0 in Equation (l), then 

(i) S, = S, = S- . 

(ii) If X = (xi , x 2 , x3) E So , Fi nontrivial, then xl(t) # 0 Vt E [O, co). 

(iii) 3 E S, ;f and only if xl(t) is bounded, t E [0, co). 

(iv) 1j x $ S, then lim,,,(xr2 + xa2 + xa2) = fco. 

(v) dims,= 1. 

3. APPLICATION TO EQUATION (5) 

In this section we will apply Theorems 1 and 2 to Equation (5). For this 
equation we assume that q is continuous and that p is Cl and bounded on 
LO, a). We denote by T the solution space of (5) and by 

To = {y E T 1 $+iy(i)(t) = 0, i = 0, 1, 2). 

From Theorems 1 and 2 the following theorem can be deduced for Equa- 
tion (5) 

THEOREM 3. Assume there exist bounded functions 01, /3, y: [0, a) --t l%, j3 
continuous, ol and y of class Cl such that OL + y = p, 01’ + /3 = q. Then if 
2q - p’ > k > 0 we have 

(i) dim T,, = 2, 

(ii) ify $ T0 then there exists a t, 2 0 such that y(t) # 0 Vt > t,, . 
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Ifp’-2q>k>Owehave 

(iii) dim T, = 1, 

(iv) if y E T,, , y nontrivial, then y(t) # 0 Vt > 0. 

If now 2q - p’ > k > 0 or p’ - 2q > k > 0 we have 

(v) T,={y~T~y(~)~L.~,i=0,1,2}, 

(vi) y E T,, if and only ify(t) is bounded, t E [O, co), 

(vii) if y $ T, then lim,,,[y2 + Y’~ + (y” - a~)~] = +co. 

Proof. From the hypothesis of the theorem it follows that if 2q - p’ > 
k > 0 (p’ - 2q > k > 0), then (a - y)’ + 26 3 k > 0 (< -k < 0). Then the 
proof follows from the fact that the spaces T and S are isomorphic under the 
transformation y - (y, y’, y” - cry) and from Theorems 1 and 2. 1 

Note 1. We point out that the hypothesis on the functions 01, /3, y of Theo- 
rem 3 are satisfied, for instance, for each of the following (nonidentical) cases: 

(1) q bounded (a = 0, y = p, /3 = q), 

(2) q - p’ bounded (a = p, y = 0, /I = q - p’), 

(3) 2q - p’ bounded (CX = y = p/2, 2/3 = 2q - p’). 

4. APPLICATION TO THE OSCILLATORY BEHAVIOR OF EQUATION (5) 

In this section we study the oscillatory behavior of Equation (5), assuming 
that p, q: [0, a) + R satisfy, p is Cl and bounded, and q is continuous. Together 
with (5) we consider its formal adjoint, 

,$n E p*,$ + q*z, (8) 

where p* = p and q* -= p’ - q. We also assume the hypothesis of Theorem 3, 
that is, there exist bounded functions 01, /3, y: [0, co) + R, B continuous, 01, y of 
class Cl, such that 01-t y = p, 01’ + fi = q is satisfied by Equation (5). We note 
that this is equivalent to saying the hypothesis is satisfied by Equation (8). 
In fact we just take OI* = y, y* = a, and fi* = -/3. 

We define by T* the solution space of (8) and by T$ the subspace, T,* = 
{z E T* 1 limt+, di)(t) = 0, i = 0, 1,2}. Thus T* and Tz play for (8) the same 
role as T and T, do for (5). 

We recall here that f: [a, ok) ---f R, f nontrivial, is said to be oscillatory if 
sup{t > a /f(t) = 0) = + co. We denote by Q (@*) the subset of T (T*) formed 
by all the oscillatory solutions of (5) ((8)). 
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For y E T and w E T* we define 

[y, w] = wy” - w’r’ + (w” - pw) y. (9) 

It is clear that [y, w] is R-bilinear and that [y, w] is constant. 
For each w E T* we consider the linear operator L,: T -+ R defined by 

L,(y) = [y, w], clearly L, # 0 if w is nontrivial. 
For w E T*, nontrivial, we define 

H(w) = Ker L, = {y E T 1 [y, w] = 0). (10) 

Then H(w) is a two-dimensional subspace of T. Also if wr and wa are two non- 
trivial elements of T*, then H(w,) = H(w,) if and only if wa = hw, , where 
h E R. If now w E T* is such that w(t) # 0, Vt > t, , then clearly H(w) coincides 
with the solution space of the following second-order O.D.E., 

Next we will consider separately the two cases: (1) 2q - p’ 2 K > 0 and 
(2) p’ - 2q > K > 0. 

(1) 2q -p’ 3 k > 0 

In this case Equation (5) satisfies (i), (ii), (v), (vi), and (vii) of Theorem 3, 
and Equation (8) satisfies (iii), (iv), (v), (vi) and (vii) of Theorem 3. 

PROPOSITION 9. If 8 f 4 then 6 $- (0) = T, . 

Proof. From Theorem 3(ii) we have 0 C T, . To show that T,, - (0) C 0 
let u0 , ~a be a basis for T0 . Then w,, = u,&, - z&a E T* and satisfies 

limb,, w:‘(t) = 0, i = 0, 1, 2. Thus wa is a basis for T,* and wO(t) f 0 Vt > 0. 
Then since u,, and v,, satisfy [y, w,,] = 0, we have that T, coincides with the 
solution space of (1 1 ), for w = w, and t > 0. Finally since 0 # 4, 0 C T,, , we 
conclude that all the elements of T,, - (0} are oscillatory, that is, T, - (0) C 0. 

I 

Note 2. We note that from the proof of Proposition 9 it follows that T, 
coincides with the solution space of an O.D.E. of second order. 

PROPOSITION 10. If 0 = T,, - (0) then 8* = T* - T,*. 

Proof. Let w E T* - T$. Then H(w) n T, is a line of T (otherwise w E T,*). 
Assume next that w is not oscillatory, that is, w(t) + 0 Vt 3 t, . Then the 
elements of H(w) will satisfy (11) for t > t, . Let u E H(w) n T, , u nontrivial. 
Then u E 19 and hence all the elements of the solution space of (11) are oscillatory. 
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It follows that H(w) C 0 + (0) = r,, . But then H(w) n T,, cannot be a line of T. 
Contradiction. Thus T* - T$ C 8*. On the other hand, from Theorem 3(iv) we 
have 8* C T* - T,*. We conclude that 0* = T* - Tt. 1 

PROPOSITION 11. If 8* f 4 then 0 f 4. 

Proof. Let w E R*; then H(w) n T,, is a line of T. We will show that if 
u E H(w) n (T,, - (0)) then u is oscillatory. Let us define by 

H*(u) = (2 E T* I [u, ~1 = 01, (12) 

then H*(U) is a two-dimensional subspace of T* and w E H*(u). 
Next let w0 E T$ - {0}, then lim,,, w:‘(t) = 0, i = 0, 1, 2 and w,,(t) # 0 

Vt 3 0. Also since u E T,, we have that lim,,, u(i)(t) = 0, i = 0, 1, 2. From here 
and since [u, w,,] = constant, we have [u, we] = 0. Then w0 E H*(u). If we now 
assume that u is not oscillatory, say u(t) # 0 for t 2 t, , t, 3 0, then the elements 
of H*(u) would be solutions of the second-order O.D.E., 

(13) 

for t 3 t, . Since w(t) is an oscillatory solution of (13), for t > t,, then all the 
solutions of (13) should be oscillatory. But this is a contradiction, since w,(t) is 
also a solution of (13), for t > t,, and is not oscillatory. Then u is oscillatory. 
This finishes the proof. [ 

From Propositions 9, 10, 11 we have 

THEOREM 4. Let us consider Equation (5) where p, q: [0, co) + R are such 
that p is Cl and bounded and q is continuous. Assume there exist bounded functions 
a, 8, y: [O, CD) -+ IR, /3 continuous, 01, y of class Cl such that 01 + y = p, 0~’ f p = 4; 
then ;f 2q - p’ > k > 0, the following propositions are equivalent: (a) 0 # 4; 
(b) ,9 + (0) = T,,; (c) B* = T* - T& (d) 0” -/- 4. 

Proof. (a) + (b) by Proposition 9; (b) 3 (c) by Proposition 10; (c) 3 (d) 
trivially since T,* # T*; and (d) 3 (a) by Proposition 11. 1 

(2) p’ - 2q > k > 0 

In this case we have the following: 

THEOREM 5. If in Theorem 4 we have p’ -2q > k > 0 instead of 2q - p’ > 
k > 0, then the following propositions are equivalent: (a) 0 # 4; (b) 0 = T - T,; 
(c) 8’ + (0) = T$; (d) 0” f $. 
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Proof. We have that p’ - 2p 3 k > 0 implies 2q* - p*’ > k > 0. Thus 
Equation (8) satisfies the conditions of Theorem 4 and the proof follows from 
this fact. 1 
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