Asymptotic and Oscillatory Behavior of Third-Order Differential Equations of a Certain Type*

Antonio R. Tineo, Jesus M. Rivero, and Raul F. Manasevich
Universidad de los Andes, Facultad de Ciencias, Departamento de Mathematicas, Merida, Edo. Merida, Venezuela
Submitted by G. Leitmann

1. Introduction

Let us consider the system

$$
\begin{equation*}
\overline{\mathbf{X}}^{\prime}=A(t) \overline{\mathbf{X}} \tag{1}
\end{equation*}
$$

where $\overline{\mathbf{X}}=\left(x_{1}, x_{2}, x_{3}\right)$ and $A(t)$ is a 3×3 matrix given by

$$
A(t)=\left[\begin{array}{lll}
0 & 1 & 0 \tag{2}\\
\alpha & 0 & 1 \\
\beta & \gamma & 0
\end{array}\right]_{(t)}
$$

The coefficients α, β, γ are real valued bounded functions defined on the ray $[0, \infty)$ such that α and γ are C^{1} and β is continuous.

System (1) is equivalent to the equation

$$
\begin{equation*}
y^{\prime \prime \prime}=(\alpha+\gamma) y^{\prime}+\left(\alpha^{\prime}+\beta\right) y, \tag{3}
\end{equation*}
$$

in the sense that the correspondence $y \rightarrow \overline{\mathrm{X}}=\left(y, y^{\prime}, y^{\prime \prime}-\alpha y\right)$ establishes an isomorphism between the solution space of (3) and that of (1).

We denote by S the solution space of (1). For each $\ddot{\mathbf{X}} \in S$ we define $V_{\overline{\mathbf{x}}}:[0, \infty) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
V_{\overline{\mathbf{x}}}(t)=x_{2}^{2}-2 x_{1} x_{3}+(\gamma(t)-\alpha(t)) x_{1}^{2} . \tag{4}
\end{equation*}
$$

We write $l(\overline{\mathbf{X}})=\lim _{t \rightarrow \infty} V_{\overline{\mathbf{x}}}(t)$ when this limit exists. The following sets will be important in this work:

[^0]\[

$$
\begin{aligned}
S_{0} & =\left\{\overline{\mathbf{X}} \in S \mid \lim _{t \rightarrow \infty}\|\overline{\mathbf{X}}(t)\|=0\right\}, \\
S_{+} & =\left\{\overline{\mathbf{X}} \in S \mid V_{\overline{\mathbf{x}}}(t) \geqslant 0, \forall t \geqslant 0\right\}, \\
S_{-} & =\left\{\overline{\mathbf{X}} \in S \mid V_{\overline{\mathbf{x}}}(t) \leqslant 0, \forall t \geqslant 0\right\}, \\
S_{\mathbf{2}} & =\left\{\overline{\mathbf{X}} \in S \mid\|\overline{\mathbf{X}}\| \in L^{2}\right\} . .^{1}
\end{aligned}
$$
\]

In Section 2 we will derive some propositions concerning $S_{0}, S_{2}, S_{+}, S_{-}$and the asymptotic behavior of the solutions of (1). From these propositions Theorems 1 and 2 (see Section 2) will be proved. In Section 3 we will apply these theorems to the equation

$$
\begin{equation*}
y^{\prime \prime \prime}=p y^{\prime}+q y, \tag{5}
\end{equation*}
$$

to obtain Theorem 3 of this paper. Theorem 3 was motivated by Theorems 2.3 and 3.3 of [2]. We point out that as a difference with [2] we do not impose any sign restriction on p, and the condition q bounded has been weakened (see Theorem 3 below). (We note that p and q of (5) are the negatives of those in [2].) In Section 4 we derive some oscillatory properties of (5).
In the sequel we will need the following lemmas which we establish here without proof:

Lemma 1. In Equation (1) let us assume that α, β, γ are continuous and bounded for $t \geqslant 0$; then if $\widetilde{\mathbf{X}}=\left(x_{1}, x_{2}, x_{3}\right) \in S$ is such that $x_{1}(t)$ is bounded on $[0, \infty)$, then $x_{2}(t)$ and $x_{3}(t)$ are also bounded on $[0, \infty)$.

Lemma 2. Under the assumptions of Lemma 1, if now $x_{1} \in L^{2}$ then $x_{2} \in L^{2}$ and $x_{3} \in L^{2}$.

Lemma 3. Let $f \in C[0, \infty)$. If $f \in L^{2}$ and f^{\prime} is bounded then $f(t) \rightarrow 0$ as $t \rightarrow \infty$.

Lemma 3 is elementary. For a proof of Lemmas 1 and 2 see, for instance, [1].

2

We begin this section with the following:
Proposition 1. If $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0(\leqslant-k<0), k \in \mathbb{R}$, then $V_{\overline{\mathbf{x}}}(t)$ is a strictly decreasing (strictly increasing) function of $t \in[0, \infty)$ for each nontrivial $\overline{\mathbf{X}} \in S$. From here $l(\mathbf{X})$ exists and $-\infty \leqslant l(\overline{\mathbf{X}})<+\infty(-\infty<l(\overline{\mathbf{X}}) \leqslant+\infty)$.
${ }^{1}$ In what follows $f \in L^{p}, p \geqslant 1$ means $f \in L^{p}[0, \infty), p \geqslant 1$.

Proof. It follows from the fact that for each $\overline{\mathbf{X}} \in S$ we have

$$
\begin{equation*}
V_{\overline{\mathbf{x}}}(t)-V_{\overline{\mathbf{x}}}\left(t_{0}\right)=-\int_{t_{0}}^{t}\left[(\alpha-\gamma)^{\prime}+2 \beta\right] x_{1}^{2} \tag{6}
\end{equation*}
$$

Proposition 2. If $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0(\leqslant-k<0)$ and if $\overline{\mathbf{X}} \in S$ is such that $l(\overline{\mathbf{X}})>-\infty(<+\infty)$, then $\overline{\mathbf{X}} \in S_{2}$.

Proof. If $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0$, then from (6) we have

$$
\begin{equation*}
k \int_{0}^{t} x_{1}^{2}(s) d s \leqslant V_{\overline{\mathbf{x}}}(0)-V_{\overline{\mathbf{x}}}(t) \tag{7}
\end{equation*}
$$

Since $l(\overline{\mathbf{X}})>-\infty$ it follows that $x_{1} \in L^{2}$. Similarly if $(\alpha-\gamma)^{\prime}+2 \beta \leqslant-k<0$ from (6) and $l(\overline{\mathbf{X}})<+\infty$, it follows that $x_{1} \in L^{2}$. For both cases from Lemma 2 it follows that $\overline{\mathbf{X}} \in S_{2}$.

Proposition 3. If $\overline{\mathbf{X}} \in S_{2}$ then $\overline{\mathbf{X}} \in S_{0}$.
Proof. Assume $\overline{\mathbf{X}}=\left(x_{1}, x_{2}, x_{3}\right) \in S_{2}$, that is, $x_{i}(t) \in L^{2}, i=1,2,3$. From (1) it follows that $x_{i}^{\prime} \in I^{2}$, and then $x_{i} x_{i}^{\prime} \in L^{1}, i=1,2,3$. Next from $\left.x_{i}{ }^{2}\right|_{0} ^{t}=$ $2 \int_{0}^{t} x_{i} x_{i}^{\prime}$ we obtain that $x_{i}(t)$ is bounded on $[0, \infty), i=1,2,3$. Again from (1) it follows that x_{i}^{\prime} is bounded on $[0, \infty), i=1,2,3$. Finally from Lemma 3 if $x_{i} \in L^{2}$ and x_{i}^{\prime} is bounded, then $\lim _{t \rightarrow \infty} x_{i}(t)=0, i=1,2,3$. Thus $\overline{\mathbf{X}} \in S_{0}$.

From Propositions 2 and 3 the following proposition follows immediately.
Proposition 4. If $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0(\leqslant-k<0)$ then for $\overline{\mathbf{X}} \in S$ we have $l(\overline{\mathbf{X}})>-\infty(l(\overline{\mathbf{X}})<+\infty) \Leftrightarrow \overline{\mathbf{X}} \in S_{2} \Leftrightarrow \overline{\mathbf{X}} \in S_{0} \Leftrightarrow l(\overline{\mathbf{X}})=0$.

Proposition 5. If $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0 \quad(\leqslant-k<0)$ then $S_{0}=S_{+}$ ($S_{0}=S_{-}$). Then from Proposition 4 it follows that $S_{0}=S_{2}=S_{+}\left(S_{0}=S_{2}=S_{-}\right)$.

Proof. We assume $\overline{\mathbf{X}}$ nontrivial. Then if $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0$ $(\leqslant-k<0), V_{\overline{\mathbf{x}}}(t)$ is strictly decreasing (strictly increasing). If now $\overline{\mathbf{X}} \in S_{\mathbf{0}}$ then $l(\overline{\mathbf{X}})=0$, and we must have $V_{\overline{\mathbf{x}}}(t)>0\left(V_{\overline{\mathbf{x}}}(t)<0\right) \forall t \in[0, \infty)$. Then $\overline{\mathbf{X}} \in S_{+}\left(S_{-}\right)$. Assume next that $\overline{\mathbf{X}} \in S_{+}\left(S_{-}\right)$; then $V_{\overline{\mathbf{x}}}(t) \geqslant 0\left(V_{\overline{\mathbf{x}}}(t) \leqslant 0\right)$. Since $l(\mathbf{X})$ exists we must have $l(\overline{\mathbf{X}}) \geqslant 0(l(\mathbf{X}) \leqslant 0)$. From Proposition 4 we then have $l(\overline{\mathbf{X}})=0$. Thus $S_{+}\left(S_{-}\right) \subset S_{\mathbf{0}}$. This finishes the proof.

Proposition 6. If $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0$ and if $\overline{\mathbf{X}} \in S-S_{0}$, then there exists a $t_{0} \geqslant 0$ such that $x_{1}(t) \neq 0 \forall t \geqslant t_{0}$. If $(\alpha-\gamma)^{\prime}+2 \beta \leqslant-k<0$ and if $\overline{\mathbf{X}} \in S_{\mathbf{0}}-\mathbf{O}$, then $x_{\mathbf{1}}(t) \neq 0 \forall t \in[0, \infty)$.

Proof. Let $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0$ and $\overline{\mathbf{X}} \in S-S_{0}=S-S_{+}$. Then there exists a $t_{0} \geqslant 0$ such that $V_{\overline{\mathbf{X}}}\left(t_{0}\right)<0$. Since $V_{\overline{\mathbf{x}}}(t)$ is strictly decreasing we
have that $V_{\overline{\mathbf{x}}}(t)<0 \forall t \in\left[t_{0}, \infty\right)$. Then $x_{1}(t) \neq 0 \forall t \in\left[t_{0}, \infty\right)$, since if $x_{1}\left(t^{*}\right)=0$ for some $t^{*} \in\left(t_{0}, \infty\right)$ we would have $0 \leqslant x_{2}^{2}\left(t^{*}\right)=V_{\overline{\mathbf{x}}}\left(t^{*}\right)<0$, which is a contradiction. Assume now that $(\alpha-\gamma)^{\prime}+2 \beta \leqslant-k<0$ and that $\overline{\mathbf{X}} \in S_{\mathbf{0}}-\mathbf{O} \subset S_{\ldots}$. Thus $V_{\overline{\mathbf{x}}}(t)<0 \forall t \in[0, \infty)$. Then if there exists a t^{*} such that $x_{1}\left(t^{*}\right)=0$, we have $V_{\overline{\mathbf{x}}}\left(t^{*}\right)=x_{2}{ }^{2}\left(t^{*}\right) \geqslant 0$. Contradiction, and $x_{1}(t) \neq 0 \forall t \in[0, \infty)$.

Next we note that for a function $\phi:[0, \infty) \rightarrow \mathbb{R}^{3}$ either $\lim _{t \rightarrow \infty}\|\phi(t)\|=+\infty$ or ϕ has a limit point, that is, there exists a sequence $\{t n\}, t n \rightarrow+\infty n \rightarrow \infty$, such that $\lim _{t \rightarrow \infty} \widetilde{\mathbf{X}}(t n)=p \in \mathbb{R}^{3}$.

Proposition 7. If $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0(\leqslant-k<0)$, then (i) $\mathbf{X} \in S_{0} \Leftrightarrow \overline{\mathbf{X}}$ is bounded $\Leftrightarrow \overline{\mathbf{X}}$ has a limit point; (ii) $\overline{\mathbf{X}} \in S-S_{0} \Leftrightarrow \lim _{t \rightarrow \infty}\|\overline{\mathbf{X}}(t)\|=+\infty$.

Proof. (i) We only prove that if $\overline{\mathbf{X}}$ has a limit point then $\overline{\mathbf{X}} \in S_{0}$. If $\overline{\mathbf{X}}$ has a limit point then $l(\overline{\mathbf{X}})>-\infty(<+\infty)$ and from Proposition $4, \overline{\mathbf{X}} \in S_{0}$. (ii) It follows from (i).

Proposition 8. (i) If $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0$ then $\operatorname{dim} S_{0}=2$; (ii) If $(\alpha-\gamma)^{\prime}+2 \beta \leqslant-k<0$ then $\operatorname{dim} S_{0}=1$.

Proof. (i) Let $\overline{\mathbf{X}}_{1}, \overline{\mathbf{X}}_{2}, \overline{\mathbf{X}}_{3}$ be a basis for S such that $\overline{\mathbf{X}}_{3}(0)=(0,0,1)$. From $V_{\overline{\mathbf{x}}_{3}}(0)=0$ it follows that $\overline{\mathbf{X}}_{3} \notin S_{+}=S_{0}$. Thus $S-S_{0} \neq \phi$ and $\operatorname{dim} S_{0} \leqslant 2$. Next we show the existence of two linearly independent elements in S_{0}. Let us denote by $H \subset \mathbb{R}^{3}$ the hyperplane $x_{1}=0$. We note that if $\overline{\mathbf{X}} \in S$ is such that $\overline{\mathbf{X}}\left(t_{0}\right) \in H$ then $V_{\overline{\mathbf{x}}}\left(t_{0}\right)=x_{2}^{2}\left(t_{0}\right) \geqslant 0$. Now for each integer $m \geqslant 1$ it is easy to see the existence of $\alpha_{m 1}, \alpha_{m 3}, \beta_{m 2}, \beta_{m 3} \subset \mathbb{R}$ such that $\alpha_{m 1}^{2} \dashv \alpha_{m 3}^{2}=\beta_{m 2}^{2}+\beta_{m 3}^{2}=1$ and such that the elements $Z_{m 1}, Z_{m 2} \in S$ defined by $Z_{m 1}=\alpha_{m 1} \mathbf{X}_{1}+\alpha_{m 3} \overline{\mathbf{X}}_{3}$, $Z_{m 2}=\beta_{m 2} \overleftarrow{\mathbf{X}}_{2}+\beta_{m 3} \overline{\mathbf{X}}_{3}$ satisfy $Z_{m 1}(m), Z_{m 2}(m) \in H$. Then $V_{Z_{m i}}(m) \geqslant 0$, for $m=1,2, \ldots$, and $i=1,2$. Since $V_{\overline{\mathbf{X}}}$ is strictly decreasing for $\overline{\mathbf{X}}$ nontrivial, it follows that $V_{Z_{m i}}(t)>0$ for $t \in[0, m), m=1,2, \ldots, i=1,2$. From a classical argument we can assume that $Z_{m i}(t) \rightarrow Z_{i}(t)$ as $m \rightarrow \infty, i=1,2, t \geqslant 0$, where Z_{1} and Z_{2} are two nontrivial elements of S. Then $V_{Z_{i}}(t) \geqslant 0, t \geqslant 0, i=1,2$, and since $V_{Z_{1}}, V_{Z_{2}}$ are strictly decreasing, we obtain $V_{Z_{i}}(t)>0$ for $t \geqslant 0, i=1,2$. We claim that Z_{1} and Z_{2} are linearly independent. Assume they are not. Then $Z_{i}= \pm \overline{\mathbf{X}}_{3}, i=1,2$. This implies $V_{Z_{i}}(t)=V_{ \pm \overline{\mathbf{x}}_{3}}(t)=V_{\overline{\mathbf{x}}_{3}}(t)<0, \forall t \geqslant 0$. Contradiction. This finishes the proof of (i).
(ii) Wc first prove that $\operatorname{dim} S_{0} \leqslant 1$. Let us define by $P=$ $\left\{\overline{\mathbf{X}} \in S \mid x_{\mathbf{1}}(0)=0\right\}$; then P is a two-dimensional subspace of S, such that if $\overline{\mathbf{X}}=\left(x_{1}, x_{2}, x_{3}\right) \in P$, then $V_{\overline{\mathbf{x}}}(0)=x_{2}{ }^{2}(0) \geqslant 0$. Since $S_{0}=S_{-}$we have that $P \cap S_{0}=\{0\}$. Then $\operatorname{dim} S_{0} \leqslant 1$. Next let $\overline{\mathbf{X}}_{1}, \overline{\mathbf{X}}_{2}, \overline{\mathbf{X}}_{3}$ be a basis for S such that $\overline{\mathbf{X}}_{2}, \overline{\mathbf{X}}_{3}$ are also a basis for P. For each integer $m \geqslant 1$ let $\alpha_{m 1}, \alpha_{m 2}, \alpha_{m 3}$ be numbers such that $\sum_{i=1}^{3} \alpha_{m i}^{2}=1$ and such that $Z_{m}=\sum_{i=1}^{3} \alpha_{m i} \mathbf{X}_{i} \in S$ satisfies $Z_{m}(m) \in\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=x_{2}=0\right\}$. Then $V_{Z_{m}}(m)=0$ and hence
$V_{Z_{m}}(t)<0$ for $t \in[0, m)$. Again from a classical argument we can assume that $Z_{m}(t) \rightarrow Z(t)$ as $m \rightarrow \infty, t \geqslant 0$, where $Z \in S$ and is nontrivial. Then $Z \in S_{-}=S_{0}$ and $\operatorname{dim} S_{0} \geqslant 1$. We conclude $\operatorname{dim} S_{0}=1$.

The next two theorems follow from the propositions we have proved.
Theorem 1. If $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0$ in Equation (1), then
(i) $S_{2}=S_{+}=S_{0}$.
(ii) If $\overline{\mathbf{X}}=\left(x_{1}, x_{2}, x_{3}\right) \in S-S_{0}$, then there exists a $t_{0} \geqslant 0$ such that $x_{1}(t) \neq 0, \forall t \geqslant t_{0}$.
(iii) $\overline{\mathbf{X}} \in S_{0}$ if and only if $x_{1}(t)$ is bounded, $t \in[0, \infty)$.
(iv) If $\overline{\mathbf{X}} \notin S_{0}$ then $\lim _{t \rightarrow \infty}\left(x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}\right)=+\infty$.
(v) $\operatorname{dim} S_{0}=2$.

Theorem 2. If $(\alpha-\gamma)^{\prime}+2 \beta \leqslant-k<0$ in Equation (1), then
(i) $S_{0}=S_{2}=S_{-}$.
(ii) If $\overline{\mathbf{X}}=\left(x_{1}, x_{2}, x_{3}\right) \in S_{0}, \overline{\mathbf{X}}$ nontrivial, then $x_{1}(t) \neq 0 \forall t \in[0, \infty)$.
(iii) $\overline{\mathbf{X}} \in S_{0}$ if and only if $x_{1}(t)$ is bounded, $t \in[0, \infty)$.
(iv) If $\overline{\mathbf{X}} \notin S_{0}$ then $\lim _{t \rightarrow \infty}\left(x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}\right)=+\infty$.
(v) $\operatorname{dim} S_{0}=1$.

3. Application to Equation (5)

In this section we will apply Theorems 1 and 2 to Equation (5). For this equation we assume that q is continuous and that p is $C^{\mathbf{1}}$ and bounded on $[0, \infty)$. We denote by T the solution space of (5) and by

$$
T_{0}=\left\{y \in T \mid \lim _{t \rightarrow \infty} y^{(i)}(t)=0, i=0,1,2\right\}
$$

From Theorems 1 and 2 the following theorem can be deduced for Equation (5),
'Theorem 3. Assume there exist bounded functions $\alpha, \beta, \gamma:[0, \infty) \rightarrow \mathbb{R}, \beta$ continuous, α and γ of class C^{1} such that $\alpha+\gamma=p, \alpha^{\prime}+\beta=q$. Then if $2 q-p^{\prime} \geqslant k>0$ we have
(i) $\operatorname{dim} T_{0}=2$,
(ii) if $y \notin T_{0}$ then there exists $a t_{0} \geqslant 0$ such that $y(t) \neq 0 \forall t \geqslant t_{0}$.

If $p^{\prime}-2 q \geqslant k>0$ we have
(iii) $\operatorname{dim} T_{0}=1$,
(iv) if $y \in T_{0}, y$ nontrivial, then $y(t) \neq 0 \forall t \geqslant 0$.

If now $2 q \quad p^{\prime} \geqslant k>0$ or $p^{\prime}-2 q \geqslant k>0$ we have
(v) $T_{0}=\left\{y \in T \mid y^{(i)} \in L^{2}, i=0,1,2\right\}$,
(vi) $y \in T_{0}$ if and only if $y(t)$ is bounded, $t \in[0, \infty)$,
(vii) if $y \notin T_{0}$ then $\lim _{t \rightarrow \infty}\left[y^{2}+y^{\prime 2}+\left(y^{\prime \prime}-\alpha y\right)^{2}\right]=+\infty$.

Proof. From the hypothesis of the theorem it follows that if $2 q-p^{\prime} \geqslant$ $k>0\left(p^{\prime}-2 q \geqslant k>0\right)$, then $(\alpha-\gamma)^{\prime}+2 \beta \geqslant k>0(\leqslant-k<0)$. Then the proof follows from the fact that the spaces T and S are isomorphic under the transformation $y \rightarrow\left(y, y^{\prime}, y^{\prime \prime}-\alpha y\right)$ and from Theorems 1 and 2.

Note 1. We point out that the hypothesis on the functions α, β, γ of Theorem 3 are satisfied, for instance, for each of the following (nonidentical) cases:
(1) q bounded $(\alpha=0, \gamma=p, \beta=q)$,
(2) $q-p^{\prime}$ bounded ($\alpha=p, \gamma=0, \beta-q-p^{\prime}$),
(3) $2 q-p^{\prime}$ bounded $\left(\alpha=\gamma=p / 2,2 \beta=2 q-p^{\prime}\right)$.

4. Application to the Oscillatory Behavior of Equation (5)

In this section we study the oscillatory behavior of Equation (5), assuming that $p, q:[0, \infty) \rightarrow \mathbb{R}$ satisfy, p is C^{1} and bounded, and q is continuous. Together with (5) we consider its formal adjoint,

$$
\begin{equation*}
z^{\prime \prime \prime}-p^{*} z^{\prime}+q^{*} z, \tag{8}
\end{equation*}
$$

where $p^{*}=p$ and $q^{*}==p^{\prime}-q$. We also assume the hypothesis of Theorem 3, that is, there exist bounded functions $\alpha, \beta, \gamma:[0, \infty) \rightarrow \mathbb{R}, \beta$ continuous, α, γ of class C^{1}, such that $\alpha+\gamma=p, \alpha^{\prime}+\beta=q$ is satisfied by Equation (5). We note that this is equivalent to saying the hypothesis is satisfied by Equation (8). In fact we just take $\alpha^{*}=\gamma, \gamma^{*}=\alpha$, and $\beta^{*}=-\beta$.

We define by T^{*} the solution space of (8) and by T_{0}^{*} the subspace, $T_{0}^{*}=$ $\left\{z \in T^{*} \mid \lim _{t \rightarrow \infty} z^{(i)}(t)=0, i=0,1,2\right\}$. Thus T^{*} and T_{0}^{*} play for (8) the same role as T and T_{0} do for (5).

We recall here that $f:[a, \infty) \rightarrow \mathbb{R}, f$ nontrivial, is said to be oscillatory if $\sup \{t \geqslant a \mid f(t)=0\}=+\infty$. We denote by $\theta\left(\theta^{*}\right)$ the subset of $T\left(T^{*}\right)$ formed by all the oscillatory solutions of (5) ((8)).

For $y \in T$ and $w \in T^{*}$ we define

$$
\begin{equation*}
[y, w]=w y^{\prime \prime}-w^{\prime} y^{\prime}+\left(w^{\prime \prime}-p w\right) y . \tag{9}
\end{equation*}
$$

It is clear that $[y, w]$ is \mathbb{R}-bilinear and that $[y, w]$ is constant.
For each $w \in T^{*}$ we consider the linear operator $L_{w}: T \rightarrow \mathbb{R}$ defined by $L_{w}(y)=[y, w]$, clearly $L_{w} \neq \mathbf{O}$ if w is nontrivial.

For $w \in T^{*}$, nontrivial, we define

$$
\begin{equation*}
H(w)=\operatorname{Ker} L_{w}=\{y \in T \mid[y, w]=0\} \tag{10}
\end{equation*}
$$

Then $H(w)$ is a two-dimensional subspace of T. Also if w_{1} and w_{2} are two nontrivial elements of T^{*}, then $H\left(w_{1}\right)=H\left(w_{2}\right)$ if and only if $w_{2}=\lambda w_{1}$, where $\lambda \in \mathbb{R}$. If now $w \in T^{*}$ is such that $w(t) \neq 0, \forall t \geqslant t_{0}$, then clearly $H(w)$ coincides with the solution space of the following sccond-order O.D.E.,

$$
\begin{equation*}
y^{\prime \prime}-\frac{w^{\prime}}{w^{\prime}} y^{\prime}+\frac{\left(w^{\prime \prime}-p w\right)}{w} y=0, \quad \forall t \geqslant t_{0} \tag{11}
\end{equation*}
$$

Next we will consider separately the two cases: (1) $2 q-p^{\prime} \geqslant k>0$ and (2) $p^{\prime}-2 q \geqslant k>0$.
(1) $2 q-p^{\prime} \geqslant k>0$

In this case Equation (5) satisfies (i), (ii), (v), (vi), and (vii) of Theorem 3, and Equation (8) satisfies (iii), (iv), (v), (vi) and (vii) of Theorem 3.

Proposition 9. If $\theta \neq \phi$ then $\theta+\{0\}=T_{0}$.
Proof. From Theorem 3(ii) we have $\theta \subset T_{0}$. To show that $T_{0}-\{0\} \subset \theta$ let u_{0}, v_{0} be a basis for T_{0}. Then $w_{0}=u_{0} v_{0}^{\prime}-u_{0}^{\prime} v_{0} \in T^{*}$ and satisfies $\lim _{t \rightarrow \infty} w_{0}^{(i)}(t)=0, i=0,1,2$. Thus w_{0} is a basis for T_{0}^{*} and $w_{0}(t) \neq 0 \forall t \geqslant 0$. Then since u_{0} and v_{v} satisfy $\left[y, w_{v}\right]-0$, we have that T_{0} coincides with the solution space of (11), for $w=w_{0}$ and $t \geqslant 0$. Finally since $\theta \neq \phi, \theta \subset T_{0}$, we conclude that all the elements of $T_{0}-\{0\}$ are oscillatory, that is, $T_{0}-\{0\} \subset \theta$.

Note 2. We note that from the proof of Proposition 9 it follows that T_{0} coincides with the solution space of an O.D.E. of second order.

Proposition 10. If $\theta=T_{0}-\{0\}$ then $\theta^{*}=T^{*}-T_{0}^{*}$.
Proof. Let $w \in T^{*}-T_{0}^{*}$. Then $H(w) \cap T_{0}$ is a line of T (otherwise $w \in T_{0}^{*}$). Assume next that w is not oscillatory, that is, $w(t) \neq 0 \forall t \geqslant t_{0}$. Then the elements of $H(w)$ will satisfy (11) for $t \geqslant t_{0}$. Let $u \in H(w) \cap T_{0}$, u nontrivial. Then $u \in \theta$ and hence all the elements of the solution space of (11) are oscillatory.

It follows that $H(w) \subset \theta+\{0\}=T_{0}$. But then $H(w) \cap T_{0}$ cannot be a line of T. Contradiction. Thus $T^{*}-T_{0}^{*} \subset \theta^{*}$. On the other hand, from Theorem 3(iv) we have $\theta^{*} \subset T^{*}-T_{0}^{*}$. We conclude that $\theta^{*}=I^{*}-T_{0}^{*}$.

Proposition 11. If $\theta^{*} \neq \phi$ then $\theta \neq \phi$.
Proof. Let $w \in \theta^{*}$; then $H(w) \cap T_{0}$ is a line of T. We will show that if $u \in H(w) \cap\left(T_{0}-\{0\}\right)$, then u is oscillatory. Let us define by

$$
\begin{equation*}
H^{*}(u)=\left\{z \in T^{*} \mid[u, z]=0\right\} \tag{12}
\end{equation*}
$$

then $H^{*}(u)$ is a two-dimensional subspace of T^{*} and $w \in H^{*}(u)$.
Next let $w_{0} \in T_{0}^{*}-\{0\}$, then $\lim _{t \rightarrow \infty} w_{0}^{(i)}(t)=0, i=0,1,2$ and $w_{0}(t) \neq 0$ $\forall t \geqslant 0$. Also since $u \in T_{0}$ we have that $\lim _{t \rightarrow \infty} u^{(i)}(t)=0, i=0,1,2$. From here and since $\left[u, w_{0}\right]=$ constant, we have $\left[u, w_{0}\right]=0$. Then $w_{0} \in H^{*}(u)$. If we now assume that u is not oscillatory, say $u(t) \neq 0$ for $t \geqslant t_{0}, t_{0} \geqslant 0$, then the elements of $H^{*}(u)$ would be solutions of the second-order O.D.E.,

$$
\begin{equation*}
\frac{1}{u}[u, z]=z^{\prime \prime}-\frac{u^{\prime}}{u} z^{\prime}+\frac{u^{\prime \prime}-p u}{u} z=0, \tag{13}
\end{equation*}
$$

for $t \geqslant t_{0}$. Since $w(t)$ is an oscillatory solution of (13), for $t \geqslant t_{0}$ then all the solutions of (13) should be oscillatory. But this is a contradiction, since $w_{0}(t)$ is also a solution of (13), for $t \geqslant t_{0}$ and is not oscillatory. Then u is oscillatory. This finishes the proof.

From Propositions 9, 10, 11 we have

Theorem 4. Let us consider Equation (5) where $p, q:[0, \infty) \rightarrow \mathbb{R}$ are such that p is C^{1} and bounded and q is continuous. Assume there exist bounded functions $\alpha, \beta, \gamma:[0, \infty) \rightarrow \mathbb{R}, \beta$ continuous, α, γ of class C^{1} such that $\alpha+\gamma=p, \alpha^{\prime}+\beta=q ;$ then if $2 q-p^{\prime} \geqslant k>0$, the following propositions are equivalent: (a) $\theta \neq \phi$; (b) $\theta+\{0\}=T_{0}$; (c) $\theta^{*}=T^{*}-T_{0}^{*}$; (d) $\theta^{*} \neq \phi$.

Proof. (a) \Rightarrow (b) by Proposition 9; (b) \Rightarrow (c) by Proposition 10; (c) \Rightarrow (d) trivially since $T_{0}^{*} \neq T^{*}$; and (d) \Rightarrow (a) by Proposition 11.

$$
\begin{equation*}
p^{\prime}-2 q \geqslant k>0 \tag{2}
\end{equation*}
$$

In this case we have the following:

Theorem 5. If in Theorem 4 we have $p^{\prime}-2 q \geqslant k>0$ instead of $2 q-p^{\prime} \geqslant$ $k>0$, then the following propositions are equivalent: (a) $\theta \neq \phi$; (b) $\theta=T-T_{0}$; (c) $\theta^{*}+\{0\}=T_{0}^{*}$; (d) $\theta^{*} \neq \phi$.

Proof. We have that $p^{\prime}-2 q \geqslant k>0$ implies $2 q^{*}-p^{*^{\prime}} \geqslant k>0$. Thus Equation (8) satisfies the conditions of Theorem 4 and the proof follows from this fact.

References

1. I. Halperin and H. R. Pitt, Integral inequalities connected with differential operators, Duke Math. J. 4 (1938), 613-625.
2. Y. P. Singh, 'lhe asymptotic behavior of solutions of linear third order differential equations, Proc. Amer. Math. Soc. 20 (1969), 309-314.

[^0]: * This work was sponsored by the Consejo de Desarrollo Cientifico y Humanistico de la Universidad de Los Andes.

