JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 65, 607-615 (1978)

Asymptotic and Oscillatory Behavior of Third-Order Differential Equations of a Certain Type*

ANTONIO R. TINEO, JESUS M. RIVERO, AND RAUL F. MANASEVICH

Universidad de los Andes, Facultad de Ciencias, Departamento de Mathematicas, Merida, Edo. Merida, Venezuela

Submitted by G. Leitmann

1. INTRODUCTION

Let us consider the system

$$\bar{\mathbf{X}}' = A(t)\,\bar{\mathbf{X}},\tag{1}$$

where $\mathbf{\bar{X}} = (x_1, x_2, x_3)$ and A(t) is a 3 \times 3 matrix given by

$$A(t) = \begin{bmatrix} 0 & 1 & 0 \\ \alpha & 0 & 1 \\ \beta & \gamma & 0 \end{bmatrix}_{(t)}.$$
 (2)

The coefficients α , β , γ are real valued bounded functions defined on the ray $[0, \infty)$ such that α and γ are C^1 and β is continuous.

System (1) is equivalent to the equation

$$y''' = (\alpha + \gamma) y' + (\alpha' + \beta) y, \qquad (3)$$

in the sense that the correspondence $y \rightarrow \overline{\mathbf{X}} = (y, y', y'' - \alpha y)$ establishes an isomorphism between the solution space of (3) and that of (1).

We denote by S the solution space of (1). For each $\mathbf{X} \in S$ we define $V_{\mathbf{X}} : [0, \infty) \to \mathbb{R}$ by

$$V_{\overline{\mathbf{X}}}(t) = x_2^2 - 2x_1x_3 + (\gamma(t) - \alpha(t)) x_1^2.$$
(4)

We write $l(\mathbf{\bar{X}}) = \lim_{t\to\infty} V_{\mathbf{\bar{X}}}(t)$ when this limit exists. The following sets will be important in this work:

* This work was sponsored by the Consejo de Desarrollo Científico y Humanístico de la Universidad de Los Andes.

$$\begin{split} S_0 &= \{ \mathbf{X} \in S \mid \lim_{t \to \infty} \| \mathbf{X}(t) \| = 0 \}, \\ S_+ &= \{ \mathbf{\overline{X}} \in S \mid V_{\mathbf{\overline{X}}}(t) \ge 0, \forall t \ge 0 \}, \\ S_- &= \{ \mathbf{\overline{X}} \in S \mid V_{\mathbf{\overline{X}}}(t) \le 0, \forall t \ge 0 \}, \\ S_2 &= \{ \mathbf{\overline{X}} \in S \mid \| \mathbf{\overline{X}} \| \in L^2 \}.^1 \end{split}$$

In Section 2 we will derive some propositions concerning S_0 , S_2 , S_+ , S_- and the asymptotic behavior of the solutions of (1). From these propositions Theorems 1 and 2 (see Section 2) will be proved. In Section 3 we will apply these theorems to the equation

$$y''' = py' + qy, \tag{5}$$

to obtain Theorem 3 of this paper. Theorem 3 was motivated by Theorems 2.3 and 3.3 of [2]. We point out that as a difference with [2] we do not impose any sign restriction on p, and the condition q bounded has been weakened (see Theorem 3 below). (We note that p and q of (5) are the negatives of those in [2].) In Section 4 we derive some oscillatory properties of (5).

In the sequel we will need the following lemmas which we establish here without proof:

LEMMA 1. In Equation (1) let us assume that α , β , γ are continuous and bounded for $t \ge 0$; then if $\overline{\mathbf{X}} = (x_1, x_2, x_3) \in S$ is such that $x_1(t)$ is bounded on $[0, \infty)$, then $x_2(t)$ and $x_3(t)$ are also bounded on $[0, \infty)$.

LEMMA 2. Under the assumptions of Lemma 1, if now $x_1 \in L^2$ then $x_2 \in L^2$ and $x_3 \in L^2$.

LEMMA 3. Let $f \in C^1[0, \infty)$. If $f \in L^2$ and f' is bounded then $f(t) \to 0$ as $t \to \infty$.

Lemma 3 is elementary. For a proof of Lemmas 1 and 2 see, for instance, [1].

2

We begin this section with the following:

PROPOSITION 1. If $(\alpha - \gamma)' + 2\beta \ge k > 0$ ($\leqslant -k < 0$), $k \in \mathbb{R}$, then $V_{\overline{\mathbf{X}}}(t)$ is a strictly decreasing (strictly increasing) function of $t \in [0, \infty)$ for each nontrivial $\overline{\mathbf{X}} \in S$. From here $l(\overline{\mathbf{X}})$ exists and $-\infty \leqslant l(\overline{\mathbf{X}}) < +\infty$ ($-\infty < l(\overline{\mathbf{X}}) \leqslant +\infty$).

¹ In what follows $f \in L^p$, $p \ge 1$ means $f \in L^p[0, \infty)$, $p \ge 1$.

Proof. It follows from the fact that for each $\overline{\mathbf{X}} \in S$ we have

$$V_{\overline{\mathbf{X}}}(t) - V_{\overline{\mathbf{X}}}(t_0) = -\int_{t_0}^t \left[(\alpha - \gamma)' + 2\beta \right] x_1^2. \quad \blacksquare \tag{6}$$

PROPOSITION 2. If $(\alpha - \gamma)' + 2\beta \ge k > 0$ ($\leqslant -k < 0$) and if $\mathbf{\bar{X}} \in S$ is such that $l(\mathbf{\bar{X}}) > -\infty$ ($< +\infty$), then $\mathbf{\bar{X}} \in S_2$.

Proof. If $(\alpha - \gamma)' + 2\beta \geqslant k > 0$, then from (6) we have

$$k\int_0^t x_1^2(s)\,ds \leqslant V_{\overline{\mathbf{X}}}(0) - V_{\overline{\mathbf{X}}}(t). \tag{7}$$

Since $l(\mathbf{\tilde{X}}) > -\infty$ it follows that $x_1 \in L^2$. Similarly if $(\alpha - \gamma)' + 2\beta \leq -k < 0$ from (6) and $l(\mathbf{\tilde{X}}) < +\infty$, it follows that $x_1 \in L^2$. For both cases from Lemma 2 it follows that $\mathbf{\tilde{X}} \in S_2$.

PROPOSITION 3. If $\mathbf{\overline{X}} \in S_2$ then $\mathbf{\overline{X}} \in S_0$.

Proof. Assume $\mathbf{\bar{X}} = (x_1, x_2, x_3) \in S_2$, that is, $x_i(t) \in L^2$, i = 1, 2, 3. From (1) it follows that $x'_i \in L^2$, and then $x_i x'_i \in L^1$, i = 1, 2, 3. Next from $x_i^2 |_0^t = 2 \int_0^t x_i x'_i$ we obtain that $x_i(t)$ is bounded on $[0, \infty)$, i = 1, 2, 3. Again from (1) it follows that x'_i is bounded on $[0, \infty)$, i = 1, 2, 3. Finally from Lemma 3 if $x_i \in L^2$ and x'_i is bounded, then $\lim_{t \to \infty} x_i(t) = 0$, i = 1, 2, 3. Thus $\mathbf{\bar{X}} \in S_0$.

From Propositions 2 and 3 the following proposition follows immediately.

PROPOSITION 4. If $(\alpha - \gamma)' + 2\beta \ge k > 0$ ($\leqslant -k < 0$) then for $\mathbf{\bar{X}} \in S$ we have $l(\mathbf{\bar{X}}) > -\infty$ ($l(\mathbf{\bar{X}}) < +\infty$) $\Leftrightarrow \mathbf{\bar{X}} \in S_2 \Leftrightarrow \mathbf{\bar{X}} \in S_0 \Leftrightarrow l(\mathbf{\bar{X}}) = 0$.

PROPOSITION 5. If $(\alpha - \gamma)' + 2\beta \ge k > 0$ ($\leqslant -k < 0$) then $S_0 = S_+$ ($S_0 = S_-$). Then from Proposition 4 it follows that $S_0 = S_2 = S_+$ ($S_0 = S_2 = S_-$).

Proof. We assume \mathbf{X} nontrivial. Then if $(\alpha - \gamma)' + 2\beta \ge k > 0$ $(\leqslant -k < 0), V_{\mathbf{\bar{X}}}(t)$ is strictly decreasing (strictly increasing). If now $\mathbf{\bar{X}} \in S_0$ then $l(\mathbf{\bar{X}}) = 0$, and we must have $V_{\mathbf{\bar{X}}}(t) > 0$ $(V_{\mathbf{\bar{X}}}(t) < 0) \forall t \in [0, \infty)$. Then $\mathbf{\bar{X}} \in S_+(S_-)$. Assume next that $\mathbf{\bar{X}} \in S_+(S_-)$; then $V_{\mathbf{\bar{X}}}(t) \ge 0$ $(V_{\mathbf{\bar{X}}}(t) \leqslant 0)$. Since $l(\mathbf{X})$ exists we must have $l(\mathbf{\bar{X}}) \ge 0$ $(l(\mathbf{\bar{X}}) \leqslant 0)$. From Proposition 4 we then have $l(\mathbf{\bar{X}}) = 0$. Thus $S_+(S_-) \subset S_0$. This finishes the proof.

PROPOSITION 6. If $(\alpha - \gamma)' + 2\beta \ge k > 0$ and if $\mathbf{\tilde{X}} \in S - S_0$, then there exists a $t_0 \ge 0$ such that $x_1(t) \ne 0 \ \forall t \ge t_0$. If $(\alpha - \gamma)' + 2\beta \le -k < 0$ and if $\mathbf{\tilde{X}} \in S_0 - \mathbf{O}$, then $x_1(t) \ne 0 \ \forall t \in [0, \infty)$.

Proof. Let $(\alpha - \gamma)' + 2\beta \ge k > 0$ and $\overline{\mathbf{X}} \in S - S_0 = S - S_+$. Then there exists a $t_0 \ge 0$ such that $V_{\overline{\mathbf{X}}}(t_0) < 0$. Since $V_{\overline{\mathbf{X}}}(t)$ is strictly decreasing we

have that $V_{\overline{\mathbf{x}}}(t) < 0 \ \forall t \in [t_0, \infty)$. Then $x_1(t) \neq 0 \ \forall t \in [t_0, \infty)$, since if $x_1(t^*) = 0$ for some $t^* \in (t_0, \infty)$ we would have $0 \leq x_2^2(t^*) = V_{\overline{\mathbf{x}}}(t^*) < 0$, which is a contradiction. Assume now that $(\alpha - \gamma)' + 2\beta \leq -k < 0$ and that $\overline{\mathbf{X}} \in S_0 - \mathbf{O} \subset S_-$. Thus $V_{\overline{\mathbf{x}}}(t) < 0 \ \forall t \in [0, \infty)$. Then if there exists a t^* such that $x_1(t^*) = 0$, we have $V_{\overline{\mathbf{x}}}(t^*) = x_2^2(t^*) \geq 0$. Contradiction, and $x_1(t) \neq 0 \ \forall t \in [0, \infty)$.

Next we note that for a function $\phi: [0, \infty) \to \mathbb{R}^3$ either $\lim_{t\to\infty} || \phi(t) || = +\infty$ or ϕ has a limit point, that is, there exists a sequence $\{tn\}$, $tn \to +\infty$ $n \to \infty$, such that $\lim_{t\to\infty} \overline{\mathbf{X}}(tn) = p \in \mathbb{R}^3$.

PROPOSITION 7. If $(\alpha - \gamma)' + 2\beta \ge k > 0$ ($\le -k < 0$), then (i) $\mathbf{\bar{X}} \in S_0 \Leftrightarrow \mathbf{\bar{X}}$ is bounded $\Leftrightarrow \mathbf{\bar{X}}$ has a limit point; (ii) $\mathbf{\bar{X}} \in S - S_0 \Leftrightarrow \lim_{t \to \infty} || \mathbf{\bar{X}}(t)|| = +\infty$.

Proof. (i) We only prove that if $\overline{\mathbf{X}}$ has a limit point then $\overline{\mathbf{X}} \in S_0$. If $\overline{\mathbf{X}}$ has a limit point then $l(\overline{\mathbf{X}}) > -\infty$ ($< +\infty$) and from Proposition 4, $\overline{\mathbf{X}} \in S_0$. (ii) It follows from (i).

PROPOSITION 8. (i) If $(\alpha - \gamma)' + 2\beta \ge k > 0$ then dim $S_0 = 2$; (ii) If $(\alpha - \gamma)' + 2\beta \le -k < 0$ then dim $S_0 = 1$.

Proof. (i) Let $\overline{\mathbf{X}}_1$, $\overline{\mathbf{X}}_2$, $\overline{\mathbf{X}}_3$ be a basis for S such that $\overline{\mathbf{X}}_3(0) = (0, 0, 1)$. From $V_{\overline{\mathbf{X}}_0}(0) = 0$ it follows that $\overline{\mathbf{X}}_3 \notin S_+ = S_0$. Thus $S - S_0 \neq \phi$ and dim $S_0 \leqslant 2$. Next we show the existence of two linearly independent elements in S_0 . Let us denote by $H \subseteq \mathbb{R}^3$ the hyperplane $x_1 = 0$. We note that if $\mathbf{X} \in S$ is such that $\overline{\mathbf{X}}(t_0) \in H$ then $V_{\overline{\mathbf{X}}}(t_0) = x_2^2(t_0) \ge 0$. Now for each integer $m \ge 1$ it is easy to see the existence of α_{m1} , α_{m3} , β_{m2} , $\beta_{m3} \in \mathbb{R}$ such that $\alpha_{m1}^2 + \alpha_{m3}^2 = \beta_{m2}^2 + \beta_{m3}^2 = 1$ and such that the elements Z_{m1} , $Z_{m2} \in S$ defined by $Z_{m1} = \alpha_{m1} \mathbf{X}_1 + \alpha_{m3} \mathbf{\overline{X}}_3$, $Z_{m2} = \beta_{m2} \overline{\mathbf{X}}_2 + \beta_{m3} \overline{\mathbf{X}}_3$ satisfy $Z_{m1}(m)$, $Z_{m2}(m) \in H$. Then $V_{Z_{mi}}(m) \ge 0$, for m = 1, 2, ..., and i = 1, 2. Since $V_{\overline{\mathbf{X}}}$ is strictly decreasing for $\overline{\mathbf{X}}$ nontrivial, it follows that $V_{Z_{mi}}(t) > 0$ for $t \in [0, m)$, m = 1, 2, ..., i = 1, 2. From a classical argument we can assume that $Z_{mi}(t) \rightarrow Z_i(t)$ as $m \rightarrow \infty$, $i = 1, 2, t \ge 0$, where Z_1 and Z_2 are two nontrivial elements of S. Then $V_{Z_i}(t) \ge 0, t \ge 0, i = 1, 2, and$ since V_{Z_1} , V_{Z_2} are strictly decreasing, we obtain $V_{Z_1}(t) > 0$ for $t \ge 0$, i = 1, 2. We claim that Z_1 and Z_2 are linearly independent. Assume they are not. Then $Z_i = \pm \overline{\mathbf{X}}_3$, i = 1, 2. This implies $V_{Z_i}(t) = V_{\pm \overline{\mathbf{X}}_3}(t) = V_{\overline{\mathbf{X}}_3}(t) < 0$, $\forall t \ge 0$. Contradiction. This finishes the proof of (i).

(ii) We first prove that dim $S_0 \leq 1$. Let us define by $P = \{\overline{\mathbf{X}} \in S \mid x_1(0) = 0\}$; then P is a two-dimensional subspace of S, such that if $\overline{\mathbf{X}} = (x_1, x_2, x_3) \in P$, then $V_{\overline{\mathbf{X}}}(0) = x_2^2(0) \ge 0$. Since $S_0 = S_-$ we have that $P \cap S_0 = \{0\}$. Then dim $S_0 \leq 1$. Next let $\overline{\mathbf{X}}_1, \overline{\mathbf{X}}_2, \overline{\mathbf{X}}_3$ be a basis for S such that $\overline{\mathbf{X}}_2, \overline{\mathbf{X}}_3$ are also a basis for P. For each integer $m \ge 1$ let $\alpha_{m1}, \alpha_{m2}, \alpha_{m3}$ be numbers such that $\sum_{i=1}^3 \alpha_{mi}^2 = 1$ and such that $Z_m = \sum_{i=1}^3 \alpha_{mi} \overline{\mathbf{X}}_i \in S$ satisfies $Z_m(m) \in \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 = x_2 = 0\}$. Then $V_{Z_m}(m) = 0$ and hence

 $V_{Z_m}(t) < 0$ for $t \in [0, m)$. Again from a classical argument we can assume that $Z_m(t) \rightarrow Z(t)$ as $m \rightarrow \infty$, $t \ge 0$, where $Z \in S$ and is nontrivial. Then $Z \in S_- = S_0$ and dim $S_0 \ge 1$. We conclude dim $S_0 = 1$.

The next two theorems follow from the propositions we have proved.

- THEOREM 1. If $(\alpha \gamma)' + 2\beta \ge k > 0$ in Equation (1), then
 - (i) $S_2 = S_+ = S_0$.

(ii) If $\overline{\mathbf{X}} = (x_1, x_2, x_3) \in S - S_0$, then there exists a $t_0 \ge 0$ such that $x_1(t) \ne 0, \forall t \ge t_0$.

- (iii) $\tilde{\mathbf{X}} \in S_0$ if and only if $x_1(t)$ is bounded, $t \in [0, \infty)$.
- (iv) If $\bar{\mathbf{X}} \notin S_0$ then $\lim_{t\to\infty} (x_1^2 + x_2^2 + x_3^2) = +\infty$.
- (v) dim $S_0 = 2$.

THEOREM 2. If $(\alpha - \gamma)' + 2\beta \leqslant -k < 0$ in Equation (1), then

(i) S₀ = S₂ = S₋.
(ii) If X = (x₁, x₂, x₃) ∈ S₀, X nontrivial, then x₁(t) ≠ 0 ∀t ∈ [0, ∞).
(iii) X ∈ S₀ if and only if x₁(t) is bounded, t ∈ [0, ∞).
(iv) If X ∉ S₀ then lim_{t→∞}(x₁² + x₂² + x₃²) = +∞.
(v) dim S₀ = 1.

3. Application to Equation (5)

In this section we will apply Theorems 1 and 2 to Equation (5). For this equation we assume that q is continuous and that p is C^1 and bounded on $[0, \infty)$. We denote by T the solution space of (5) and by

$$T_0 = \{ y \in T \mid \lim_{t \to \infty} y^{(i)}(t) = 0, i = 0, 1, 2 \}.$$

From Theorems 1 and 2 the following theorem can be deduced for Equation (5),

THEOREM 3. Assume there exist bounded functions α , β , $\gamma: [0, \infty) \to \mathbb{R}$, β continuous, α and γ of class C^1 such that $\alpha + \gamma = p$, $\alpha' + \beta = q$. Then if $2q - p' \ge k > 0$ we have

- (i) dim $T_0 = 2$,
- (ii) if $y \notin T_0$ then there exists a $t_0 \ge 0$ such that $y(t) \ne 0 \forall t \ge t_0$.

If $p' - 2q \ge k > 0$ we have

- (iii) dim $T_0 = 1$,
- (iv) if $y \in T_0$, y nontrivial, then $y(t) \neq 0 \ \forall t \ge 0$.

If now $2q - p' \geqslant k > 0$ or $p' - 2q \geqslant k > 0$ we have

- (v) $T_0 = \{ y \in T \mid y^{(i)} \in L^2, i = 0, 1, 2 \},\$
- (vi) $y \in T_0$ if and only if y(t) is bounded, $t \in [0, \infty)$,
- (vii) if $y \notin T_0$ then $\lim_{t\to\infty} [y^2 + y'^2 + (y'' \alpha y)^2] = +\infty$.

Proof. From the hypothesis of the theorem it follows that if $2q - p' \ge k > 0$ $(p' - 2q \ge k > 0)$, then $(\alpha - \gamma)' + 2\beta \ge k > 0$ $(\le -k < 0)$. Then the proof follows from the fact that the spaces T and S are isomorphic under the transformation $y \to (y, y', y'' - \alpha y)$ and from Theorems 1 and 2.

Note 1. We point out that the hypothesis on the functions α , β , γ of Theorem 3 are satisfied, for instance, for each of the following (nonidentical) cases:

- (1) q bounded ($\alpha = 0, \gamma = p, \beta = q$),
- (2) q-p' bounded ($\alpha = p, \gamma = 0, \beta = q-p'$),
- (3) 2q p' bounded ($\alpha = \gamma = p/2, 2\beta = 2q p'$).

4. Application to the Oscillatory Behavior of Equation (5)

In this section we study the oscillatory behavior of Equation (5), assuming that $p, q: [0, \infty) \rightarrow \mathbb{R}$ satisfy, p is C^1 and bounded, and q is continuous. Together with (5) we consider its formal adjoint,

$$z''' = p^* z' + q^* z,$$
 (8)

where $p^* = p$ and $q^* = p' - q$. We also assume the hypothesis of Theorem 3, that is, there exist bounded functions α , β , γ : $[0, \infty) \to \mathbb{R}$, β continuous, α , γ of class C^1 , such that $\alpha + \gamma = p$, $\alpha' + \beta = q$ is satisfied by Equation (5). We note that this is equivalent to saying the hypothesis is satisfied by Equation (8). In fact we just take $\alpha^* = \gamma$, $\gamma^* = \alpha$, and $\beta^* = -\beta$.

We define by T^* the solution space of (8) and by T_0^* the subspace, $T_0^* = \{z \in T^* \mid \lim_{t\to\infty} z^{(i)}(t) = 0, i = 0, 1, 2\}$. Thus T^* and T_0^* play for (8) the same role as T and T_0 do for (5).

We recall here that $f:[a, \infty) \to \mathbb{R}$, f nontrivial, is said to be oscillatory if $\sup\{t \ge a \mid f(t) = 0\} = +\infty$. We denote by $\theta(\theta^*)$ the subset of $T(T^*)$ formed by all the oscillatory solutions of (5) ((8)).

For $y \in T$ and $w \in T^*$ we define

$$[y, w] = wy'' - w'y' + (w'' - pw) y.$$
(9)

It is clear that [y, w] is \mathbb{R} -bilinear and that [y, w] is constant.

For each $w \in T^*$ we consider the linear operator $L_w: T \to \mathbb{R}$ defined by $L_w(y) = [y, w]$, clearly $L_w \neq \mathbf{O}$ if w is nontrivial.

For $w \in T^*$, nontrivial, we define

$$H(w) = \operatorname{Ker} L_w = \{ y \in T \mid [y, w] = 0 \}.$$
(10)

Then H(w) is a two-dimensional subspace of T. Also if w_1 and w_2 are two nontrivial elements of T^* , then $H(w_1) = H(w_2)$ if and only if $w_2 = \lambda w_1$, where $\lambda \in \mathbb{R}$. If now $w \in T^*$ is such that $w(t) \neq 0$, $\forall t \ge t_0$, then clearly H(w) coincides with the solution space of the following second-order O.D.E.,

$$y'' - \frac{w'}{w}y' + \frac{(w'' - pw)}{w}y = 0, \quad \forall t \ge t_0.$$
 (11)

Next we will consider separately the two cases: (1) $2q - p' \ge k > 0$ and (2) $p' - 2q \ge k > 0$.

 $(1) \quad 2q - p' \geqslant k > 0$

In this case Equation (5) satisfies (i), (ii), (v), (vi), and (vii) of Theorem 3, and Equation (8) satisfies (iii), (iv), (v), (vi) and (vii) of Theorem 3.

PROPOSITION 9. If $\theta \neq \phi$ then $\theta + \{0\} = T_0$.

Proof. From Theorem 3(ii) we have $\theta \in T_0$. To show that $T_0 - \{0\} \in \theta$ let u_0 , v_0 be a basis for T_0 . Then $w_0 = u_0 v'_0 - u'_0 v_0 \in T^*$ and satisfies $\lim_{t \to \infty} w_0^{(i)}(t) = 0$, i = 0, 1, 2. Thus w_0 is a basis for T_0^* and $w_0(t) \neq 0 \ \forall t \ge 0$. Then since u_0 and v_0 satisfy $[y, w_0] = 0$, we have that T_0 coincides with the solution space of (11), for $w = w_0$ and $t \ge 0$. Finally since $\theta \neq \phi$, $\theta \in T_0$, we conclude that all the elements of $T_0 - \{0\}$ are oscillatory, that is, $T_0 - \{0\} \subset \theta$.

Note 2. We note that from the proof of Proposition 9 it follows that T_0 coincides with the solution space of an O.D.E. of second order.

PROPOSITION 10. If $\theta = T_0 - \{0\}$ then $\theta^* = T^* - T_0^*$.

Proof. Let $w \in T^* - T_0^*$. Then $H(w) \cap T_0$ is a line of T (otherwise $w \in T_0^*$). Assume next that w is not oscillatory, that is, $w(t) \neq 0 \quad \forall t \geq t_0$. Then the elements of H(w) will satisfy (11) for $t \geq t_0$. Let $u \in H(w) \cap T_0$, u nontrivial. Then $u \in \theta$ and hence all the elements of the solution space of (11) are oscillatory. It follows that $H(w) \subset \theta + \{0\} = T_0$. But then $H(w) \cap T_0$ cannot be a line of T. Contradiction. Thus $T^* - T_0^* \subset \theta^*$. On the other hand, from Theorem 3(iv) we have $\theta^* \subset T^* - T_0^*$. We conclude that $\theta^* = T^* - T_0^*$.

PROPOSITION 11. If $\theta^* \neq \phi$ then $\theta \neq \phi$.

Proof. Let $w \in \theta^*$; then $H(w) \cap T_0$ is a line of T. We will show that if $u \in H(w) \cap (T_0 - \{0\})$, then u is oscillatory. Let us define by

$$H^*(u) = \{ z \in T^* \mid [u, z] = 0 \},$$
(12)

then $H^*(u)$ is a two-dimensional subspace of T^* and $w \in H^*(u)$.

Next let $w_0 \in T_0^* - \{0\}$, then $\lim_{t\to\infty} w_0^{(i)}(t) = 0$, i = 0, 1, 2 and $w_0(t) \neq 0$ $\forall t \ge 0$. Also since $u \in T_0$ we have that $\lim_{t\to\infty} u^{(i)}(t) = 0$, i = 0, 1, 2. From here and since $[u, w_0] = \text{constant}$, we have $[u, w_0] = 0$. Then $w_0 \in H^*(u)$. If we now assume that u is not oscillatory, say $u(t) \neq 0$ for $t \ge t_0$, $t_0 \ge 0$, then the elements of $H^*(u)$ would be solutions of the second-order O.D.E.,

$$\frac{1}{u}[u, z] = z'' - \frac{u'}{u}z' + \frac{u'' - pu}{u}z = 0,.$$
(13)

for $t \ge t_0$. Since w(t) is an oscillatory solution of (13), for $t \ge t_0$ then all the solutions of (13) should be oscillatory. But this is a contradiction, since $w_0(t)$ is also a solution of (13), for $t \ge t_0$ and is not oscillatory. Then u is oscillatory. This finishes the proof.

From Propositions 9, 10, 11 we have

THEOREM 4. Let us consider Equation (5) where $p, q: [0, \infty) \to \mathbb{R}$ are such that p is C^1 and bounded and q is continuous. Assume there exist bounded functions $\alpha, \beta, \gamma: [0, \infty) \to \mathbb{R}, \beta$ continuous, α, γ of class C^1 such that $\alpha + \gamma = p, \alpha' + \beta = q$; then if $2q - p' \ge k > 0$, the following propositions are equivalent: (a) $\theta \neq \phi$; (b) $\theta + \{0\} = T_0$; (c) $\theta^* = T^* - T_0^*$; (d) $\theta^* \neq \phi$.

Proof. (a) \Rightarrow (b) by Proposition 9; (b) \Rightarrow (c) by Proposition 10; (c) \Rightarrow (d) trivially since $T_0^* \neq T^*$; and (d) \Rightarrow (a) by Proposition 11.

(2) $p' - 2q \ge k > 0$

In this case we have the following:

THEOREM 5. If in Theorem 4 we have $p' - 2q \ge k > 0$ instead of $2q - p' \ge k > 0$, then the following propositions are equivalent: (a) $\theta \ne \phi$; (b) $\theta = T - T_0$; (c) $\theta^* + \{0\} = T_0^*$; (d) $\theta^* \ne \phi$.

Proof. We have that $p' - 2q \ge k > 0$ implies $2q^* - p^{*'} \ge k > 0$. Thus Equation (8) satisfies the conditions of Theorem 4 and the proof follows from this fact.

References

- 1. I. HALPERIN AND H. R. PITT, Integral inequalities connected with differential operators, Duke Math. J. 4 (1938), 613–625.
- 2. Y. P. SINGH, The asymptotic behavior of solutions of linear third order differential equations, *Proc. Amer. Math. Soc.* 20 (1969), 309-314.