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In this paper, Hermite interpolation by bivariate algebraic polynomials of total
degree �n is considered. The interpolation parameters are the values of a function
and its partial derivatives up to some order n&&1 at the nodes z&=(x& , y&),
&=1, ..., s, where n& is the multiplicity of z& . The sequence N=[n1 , ..., ns ; n] of
multiplicities associated with the degree of interpolating polynomials is investigated.
Some results of the paper were announced in [GHS93]. � 1996 Academic Press, Inc.

1. Introduction

We define a scheme N=[n1 , ..., ns ; n] as a collection of nonnegative
integers, where n1 , ..., ns are the members, n is the degree and s is the length
of N. By S we denote the set of all schemes.
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For a scheme N=[n1 , ..., ns ; n] # S we accept that

[n1 , ..., ns ; n]=[n1 , ..., ns , 0, ..., 0; n]

with arbitrary (finite) number of zeros. So dealing with finite number of
schemes from S, we may assume that they have the same length or, when
it is necessary, that the length of the given scheme is large enough.

We need some notation. For schemes N=[n1 , ..., ns ; n], M=
[m1 , ..., ms ; m] the inequality

N�M means that n�m, n&�m& , &=1, ..., s and

N+M :=[n1+m1 , ..., ns+ms ; n+m], *N :=[*n1 , ..., *ns ; *n], * # Z+.

We call N # S an interpolation scheme if the following equality holds:

:
s

&=1

n� &=n+1, (1.1)

where m� =0+ } } } +m.
By IS we denote the set of all interpolation schemes.
Interpolation schemes with s=1, i.e., the schemes [n+1; n], are called

Taylor schemes.

Definition 1.1. For the interpolation scheme N=[n1 , ..., ns ; n] # IS
and the node set Z=[zv=(x& , y&)]s

&=1/R2 the (correct) Hermite inter-
polation problem (N, Z) is to find a (unique) polynomial P # ?n(R2)
satisfying conditions

�i+ jP
�xi �y j }z=z&

=*i, j, & , i+j<n& , v=1, ..., s, (1.2)

for given collection of values

4=[*i, j, & , i+j<n& , &=1, ..., s].

In what follows, we briefly express equalities of the form (1.2) by writing:

DNP |Z=4.

Note that the relation (1.1) means that the number of interpolation con-
ditions in (1.2) is equal to the dim ?n(R2). We assume that there is no
interpolation condition at nodes z& with n&=0.

Let us denote by

dN (Z) :=dN(x1 , y1 , ..., xs , ys)
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the determinant of the system of linear equations (1.2) (with respect to
unknown coefficients of P) which consists of the rows:

�i+j

�xi �y j [1, x& , y& , ..., xn
& , xn&1

& y& , ..., yn
&]; i+j<n& , &=1, ..., s.

Remark 1.2. The following statements are equivalent for any N # IS:

(i) (N, Z) is not correct, i.e. dN(Z)=0;

(ii) there exists a polynomial P such that

P # ?n(R2), P{0, DNP |Z=0. (1.3)

Since dN(Z) is a polynomial in variables x1 , y1 , ..., xs , ys , the correctness
of the problem (N, Z) for some Z implies that it is correct for almost all
Z # R2s (with respect to the Lebesgue measure in R2s).

Remark 1.3. The following statements are equivalent for any N=
[n1 , ..., ns ; n] # S:

(i) n&�n for &=1, ..., s;
(ii) there exists a node set Z # R2s and a polynomial P such that (1.3)

holds.

Indeed, if (i) does not hold, i.e. n&0
�n+1 for some &0 then all the partial

derivatives of P up to orde n vanish at the node zv0
and hence (ii) does not

hold either. On the other hand if (i) holds then taking the nodes z1 , ..., zs

on an arbitrary line ax+by+c=0, |a|+|b|>0, we get (1.3) setting
P(x, y)=(ax+by+c)n.

The Remarks 1.2 and 1.3 imply that the Taylor schemes [n+1, n] are the
only interpolation schemes which are correct for arbitrary node set (see
[LL84] and [JS91] for more general results).

Definition 1.4. We say that the interpolation scheme N is

(i) regular if (N, Z) is correct for at least one node set Z,

(ii) singular if (N, Z) is not correct for any node set Z.

The problem of the full description of regular and singular interpolation
schemes still remains open.

Note that in view of Remark 1.2, this problem can be formulated in the
following more general way (which enables us to remove the restriction that
te scheme N is an interpolation scheme):

For the given scheme N # S to determine whether for an arbitrary Z
there is a polynomial satisfying conditions (1.3). In this case N is called
singular. Otherwise it is called regular.
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Geometrically, the singularity of N means that for nay node set Z there
exists an algebraic curve of degree�n, passing through Z with multiplicity
N (i.e. passing through z& with multiplicity n& , &=1, ..., s).

In what follows we will consider mainly this wider problem of singularity
and regularity of general schemes.

Let us consider the following ``less conditions'' class of schemes:

LC :={M=[m1 , ..., ms ; m]/Z+: :
s

&=1

m� &<m+1= .

It is not hard to see that M # LC is singular. Indeed, for any node set Z
finding a polynomial PM satisfying (1.3) for M reduces to solving a system
of �s

&=1 m� & homogeneous linear equations in m+1 unknowns.

Definition 1.5. The scheme N is called a numerical curve if there is a
set M/LC such that

N= :
M # M

M.

We denote the set of numerical curves by NC.
Numerical curves are singular schemes too. Indeed, for any node set Z the

polynomial

P := `
M # M

PM

satisfies the conditions (1.3).

Conjecture 1.6. [GHS90, P92]. Each singular (interpolation) scheme is
a numerical curve.

We have proved in [GHS92] that this conjecture is true under the restric-
tion that there are at most 9 knots with multiplicities�2.

1.a. Quadratic Transformation and Reduction of Schemes; Basic Schemes

Definition 1.7. Let N=[n1 , ..., ns ; n] # S.

(i) If n1+n2�n+1, n1�n, n2�n, then the reduction of N with
respect to the first two members is the scheme

N_=N_
1, 2=[n&n2 , n&n1 , n3 , ..., ns ; 2n&n1&n2].

(ii) If

ni+nj�n, 1�i< j�3, (1.4)
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then the quadratic transformation of the scheme N with respect to the first
three members is the scheme (cf. [W50], chapter 3, Theorem 7.2)

N*=N*1, 2, 3

=[n&n2&n3 , n&n1&n3 , n&n1&n2 , n4 , ..., ns ; 2n&n1&n2&n3].

It is not hard to check that

N_=[n1&r, n2&r, n3 , ..., ns ; n&r].

N*=[n1&t, n2&t, n3&t, n4 , ..., ns ; n&t],

with r=n1+n2&n, t=n1+n2+n3&n.
We define reduction or quadratic transformation with respect to the other

members in the similar way.

Remark 1.8. If the condition (1.4) holds then it holds also for N*, i.e.
ni*+nj*�n*, 1�i<j�3. This means that the same quadratic transforma-
tion can be applied once more. Moreover (N*)*=N.

The following theorem for interpolation schemes was proved in [GHS92].
The proof in the general case essentialy is the same.

Theorem 1.9. Let N=[n1 , ..., ns ; n] # S. Then

(i) if n1+n2=n+r�n+1, n1�n, n2�n, then the schemes N and
N_ are both simultaneously singular or not,

(ii) if ni+nj�n, 1�i< j�3, then the schemes N and N* are both
simultaneously singular or not.

This theorem reduces the investigation of an arbitrary scheme to the
following two cases:

(1) n&0
�n+1 for some &0 ,

(2) ni+nj+nk�n, 1�i<j<k�s.

In the first case the scheme obviously is regular (Remark 1.3).

Definition 1.10. A scheme N=[n1 , ..., ns ; n] # S satisfying the above
condition (2) is called basic.

Let BS be the class of all basic schemes.

Conjecture 1.11. [GHS90]. A basic scheme is singular if and only if it
belongs to LC.
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We have proved in [GHS92] that Conjecture 1.11 is true in the case

:
&: n&>1

n&�3n

and the above two conjectures are equivalent for interpolation schemes. Here
we get, in particular, the equivalence in the general case (see Corollary 5.11).

2. Equivalence of Schemes, Prime Curves

Let us define the intersection product of schemes (numerical curves) as
follows:

(N, M) := :
s

&=1

n&m&&nm,

and set

(N) :=(N, N)= :
s

&=1

n2
&&n2, [N] := :

s

&=1

n&&3n.

Denote by N� the difference of the number of conditions of N and
(dim ?n(R2)&1), i.e.

N� := :
s

&=1

n� &&n+1+1.

Thus we have N� =1 for interpolation schemes and N� �0 is equivalent to
N # LC. Note that

N� =((N)+[N])�2.

It is not hard to check the following properties of quadratic transformation
(see [GHS92b]) and reduction:

Lemma 2.1. Let N, M # S, then

(i) (N*)*=N,

(ii) (N, M)=(N*, M*) ,

(iii) [N]=[N*], (N)=(N*), N� =N� *,

(iv) [N]=[N_]&r, (N)=(N_)+r2, N� =N� _+r&1.

Definition 2.2. (i) The schemes N, M are called (quadratically) equiv-
alent (NtM), if one of them can be obtained from the other by
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means of the following operations: quadratic transformation, rearrangement
of the members, adding zero members.

(ii) We say that the scheme N reduces to the scheme M (N � M),
if M can be obtained from N by means of reduction and (or) above men-
tioned operations of equivalence.

It follows from Theorem 1.9 that

Remark 2.3. If the scheme N reduces to the scheme M, then they are
either simultaneously singular or simultaneously regular.

Now we give the definition of prime numerical curves which play an essen-
tial role in our investigation:

Those schemes which are equivalent to [1, 1; 1] are called prime curves. We
denote the class of prime curves by PC :

PC :=[N # S: Nt[1, 1 : 1]].

Using the Lemma 2.1 we get the following

Corollary 2.4. Let N, M # S.

(ii) If NtM then

[N]=[M], (N)=(M), N� =M� .

(ii) If N � M then

[N]�[M], (N)�(M), N� �M� .

The first two inequalities are strict if a reduction was used to obtain M from
N and the third one is strict if and only if a reduction with r>1 was used.

In particular, for A # PC, we have

[A]=&1, (A)=1, A� =0. (2.1)

Next we are going to develop an essential tool��to prove that a quadratic
transformation can be applied to any three members of a prime curve
different from [1, 1; 1]. This is expressed in the following

Theorem 2.5. Suppose A=[:1 , ..., :s ; :] # PC, A{[1, 1; 1]. Then

max
1�i�j�s

(:i+:j)�:.

In order to prove this we need several lemmas.
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Lemma 2.6 [GHS92b]. If N� �0 and (N)�1 then

max
1�i<j<k�s

(ni+nj+nk)>n. (2.2)

Lemma 2.7. Suppose N=[n1 , n2 , n3 , n4 ; n] with

N� �0, (N)�1, n4=0, 1.

Then

max
1�i<j�4

(ni+nj)>n. (2.3)

Proof. Let N=[n1 , n2 , n3 , 1; n] satisfies the conditions of the Lemma
and (2.3) does not hold. Consider the scheme N*=[n1*, n2*, n3*, 1; n*].
According to Lemma 2.1 iii) both N and N* satisfy the condition of
Lemma 2.6. Therefore we have n1+n2+n3�n and n1*+n2*+n3*�n*
which imply n1+n2+n3=n. This, in view of (2.2) means that one of
the members n1 , n2 , n3 , say n3 , equals to 0 and hence n1+n2=n. Now
excluding the case [n, 0, 0, 1; n], i.e. the case n1n2=0 we have

(N)=n2
1+n2

2+1&(n1+n2)2<0,

which contradicts the assumption. The proof in the case n4=0 is similar
(and simpler).

Lemma 2.8. Let N, M # S, (N)�1, (M)�1 and n&=m&=$�1 for
some &=1, ..., s. Then

(N, M)�1, (2.4)

the equality being possible in the following three cases only:

(a) N=M and (N)=(M)=1,

(b) (N)=(M)=$=1 and

[m1 , ..., m&&1 , m&+1, ..., ms ; m]=*[n1 , ..., n&&1, n&+1, ..., ns ; n], (2.5)

(c) $=1 and one of schemes in (2.5) (without *) identically equals to
zero.

Proof. To prove (2.4) we can assume, without loss of generality, that
(N)=(M)=1, (we can achieve this by adding one or zero members to
the schemes N and M without changing (N, M) ).
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Let &=s. We use the following familiar identity:

:
s

&=1

n2
& :

s

&=1

m2
&=\ :

s

&=1

n& , m&+
2

+ :
1�&<+�s

(n&m+&n+m&)
2.

Retaining the summands with +=s in the last sum, we obtain

(n2+1)(m2+1)�\ :
s

&=1

n&m&+
2

+$2 :
s

&=1

(n&&m&)
2 (2.6)

Since $�1, we get

n2m2�\ :
s

&=1

n&m&&1+
2

.

Therefore

:
s

&=1

n&m&�nm+1.

Now, if equality holds here in the case (N)=(M)=1, then we have
equalities in (2.6) with $ replaced by 1. And this implies either the case (a)
or $=1 and

:
1�&<+<s

(n&m+&n+m&)
2=0,

which completes the proof in this case. Now let us have the equality in the
case (N)�1, (M)�1, with at least one of this inequalities being strict.
Then we get equalities here again by adding one and zero members to N
and M without changing (N, M). Now, as in the previous case, we have
equality (2.5) for the resulting schemes, (the case (a) here is excluded) and
hence * equals to zero.

Lemma 2.9. For N, M # S, suppose that (N)�1, (M)�1,
(N, M)�1, and deg N�deg M. Then

n&>m& for all &=1, ..., s (2.7)

Proof. Assume that (2.7) does not hold for &=1 and let

n1=a, m1=a+b, a�0, b>0.

Consider the schemes

N$=[a+b, n2 , ..., ns ; n],

M$=[a, m2 , ..., ms ; m].
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Then

(N$)�1+M, (M$)�1&M,

with M=2ab+b2�1 and we get

(nm+1)2�\ :
s

&=1

nvmv+
2

=\ :
s

&=1

n$&m$&+
2

�(n2+1+M)(m2+1&M).

Therefore

M(n&m)(n+m)+M 2�(n&m)2,

which obviously is a contradiction.

Now we readily get from Lemmas 2.8 and 2.9

Remark 2.10. Let the conditions of Lemma 2.9 hold. Then equality of
one of the nonzero members in (2.7) implies (2.5) with

(N, M)=1,

and equalities of two of the nonzero members in (2.7), as well as the equality
of degrees, implies N=M.

Proof of Theorem 2.5. Suppose A=[:1 , ..., :s ; :] # PC, A{[1, 1; 1] and

:p+:q�:+1 (2.8)

for some p, q. Denote

E=Ep, q :=[e1 , ..., es ; e],

with ep=eq=e=1 and e&=0 if &{p, q. So we have

(A, E)�1.

Assume that

A=T1 } } } TmF, (2.9)

where F=Ek, l for some k, l and Ti is a quadratic transformation with
respect to some triplet of members.

Suppose that m is the minimal number for which there exists an F(i.e. k, l)
and A{[1, 1; 1] satisfying (2.9) and (2.8) for some p, q.

Denote for i=1, ..., m

Ai :=Ti } } } T1A=Ti+1 } } } TmF, Bi :=Ti } } } T1E, (2.10)
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with A0=A, Am=F, B0=E. Note that Ti } } } T1 is applicable to E because
of the minimality of m and the same is true for the other transformations in
(2.10) in view of Remark 1.8. Of course all of the schemes Ai , Bi belong to
PC. In view of Lemma 2.1(ii) we have

(A, E)=(Ai , Bi)�1, i=1, ..., m. (2.11)

Now, if there are two (nonzero) equal corresponding members of Ai , Bi or
deg Ai=deg Bi , for some i, then Remark 2.10 implies Ai=Bi and we get
from (2.10)

A=T1 } } } TiAi=T1 } } } TiBi=E=[1, 1; 1],

which contradicts the minimality of m. On the other hand, it is easy to
check, that

deg A0>deg B0=1 and 1=deg Am<deg Bm .

Hence there is a &, 0�&�m&1, such that

deg A&>deg B& , deg A&+1<deg B&+1 ,

besides we have

A&+1=T&+1A& , B&+1=T&+1B& .

Assume that T&+1 acts on some triplet. Then in view of (2.1), (2.11),
Lemma 2.9 and Remark 2.10, the prime curves A& , B&(A&{B&) can have at
most one nonzero member positioned outside the triplet. This member
(if there is one) necessarily equals 1 by Lemma 2.8.

Hence A& , B& are of the form of the schemes in Lemma 2.7 and this again
contradicts the minimality of m.

3. The Classes of Schemes BS* and BS_*

Definition 3.1. (i) A scheme which is equivalent to some basic scheme
(see Definition 1.10) is called an e-basic scheme.

(ii) A scheme which can be reduced to some basic scheme is called an
r-basic scheme.

We denote by BS* and BS_* the classes of e-basic and r-basic schemes
respectively. Of course we have

BS/BS*/BS_*.

Note that Theorem 1.9 and Remark 1.3. imply
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Remark 3.2. If N is singular then N # BS_*.

In particular, the following theorem shows, that the quadratic transforma-
tion can be applied to any triplet of members of e-basic scheme (setting
A=Ei, j in (ii) below).

Theorem 3.3. If A, B are prime curves, A{B, N is a basic scheme with
decreasing members and M is e-basic, then

(i) (A, B)�0,

(ii) (A, N)�n1+n2&n,

(iii) (A, M)�0.

Proof. (i) Let A=T1 } } } TmE1, 2 , where Ti is a quadratic transforma-
tion. If Tm } } } T1 is applicable to B, then

(A, B)=(E1, 2 , Tm } } } T1B),

and it remains to apply Theorem 2.5. We will come to the same situation if
some Ti can not be applied to Ti&1 } } } T1B, since then the latter scheme
must be [1, 1; 1] (see Theorem 2.5).

(ii) We use induction on deg A. The case deg A=1 is obvious. We can
assume that the members of both of A and N are in decreasing order, since
(A, N) is maximal in this case. Now we have

(A, N)=(A*, N*) ,

and in view of Lemma 2.6 deg A*<deg A.
If A*=[1, 1; 1] then A=[1, 1, 1, 1, 1, 2] and

(A, N)=n1+n2+n3+n4+n5&2n�n1+n2&n.

Otherwise, let us rearrange the members of A* in decreasing order and
denote it by A0 . Since N* automatically maintains the decreasing order, we
will have

(A*, N*)�(A0 , N*)=(A0*, N) ,

with

deg A0*<deg A0=deg A*.

It remains to use the induction hypothesis.

(iii) Let M=T1 } } } TmN, N # BS. Suppose

(A, M)�1,
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for some A # PC. It is not hard to see that Ti is applicable to the scheme
Ti&1 } } } T1A # PC for each i=1, ..., m. Indeed, if the scheme differs from
[1, 1; 1] then we get this from Theorem 2.5. If the scheme equals some Ek, l

then

(Ek, l , Ti } } } T1M)�1,

and the triplet of Ti cannot include (i, j) (see Remark 1.8), hence again Ti

can be applied. Now Lemma 2.1(ii) implies

(Tm } } } T1A, N)�1,

which contradicts (ii).

The following Theorem gives a characterization of the class BS*

Theorem 3.4. (i) The scheme N is e-basic if and only if

(A, N)�0 for all A # PC (3.1)

(ii) If N& # BS*, &=1, ..., k, then

:
k

&=1

*&N& # BS*,

where *& # Z+.

Proof. Of course (i) implies (ii). In order to prove (i), it is enough to
show that (3.1) implies N # BS* (see Theorem 3.3(iii)). We will prove this
using induction on deg N. The case deg N=0 is obvious, since then (3.1)
implies N=0.

If deg N>0 and N � BS, then there are distinct i, j, k with ni+nj+
nk>n. According to (3.1) the quadratic transformation T with this triplet is
applicable to N, moreover, deg TN<deg N. Let A # PC. If A=El, m with
(l, m) inside the triplet, then Remark 1.8 implies

(A, TN)�0.

Otherwise TA # PC and using again Remark 1.8 and Lemma 2.1(ii), we get

(A, TN)=(TA, N)�0.

Now on the basis of induction hypothesis we conclude that TN and there-
fore N are e-basic schemes.

309BIVARIATE HERMITE INTERPOLATION



File: 640J 295414 . By:CV . Date:18:06:96 . Time:15:50 LOP8M. V8.0. Page 01:01
Codes: 2461 Signs: 1222 . Length: 45 pic 0 pts, 190 mm

4. The Canonical Decomposition of Schemes

Now we are in a position to present the main result of this paper��the
canonical decomposition of r-basic schemes.

Theorem 4.1. Let N # BS_*. Then there exist a finite set of prime curves
PCN , an e-basic scheme Na and natural numbers +A=+A, N , (A # PCN),
such that

N= :
A # PCN

+AA+Na, (4.1)

with the following orthogonality conditions:

(A, B)=0 for all A, B # PCN , A{B,
(4.2)

(A, Na)=0 for all A # PCN .

Moreover, the decomposition (4.1) with conditions (4.2) is unique.

Remark 4.2. Suppose

N0=T1 } } } TmN, (4.3)

where N0 is e-basic and Ti is a quadratic transformation or reduction. Then
Na

tN0 , more pricisely we have

Na=Tik } } } Ti1 N0 , (4.4)

where Ti1 , ..., Tik , i1< } } } <ik , are all the quadratic transformations from
T1 , ..., Tm .

We will prove Theorem 4.1 and Remark 4.2 together.

Proof. First we will prove the Remark and the existence part of the
Theorem. Suppose the scheme N0 is defined as in (4.3). We will use induc-
tion on m. If m=0, i.e. N # BS*, the decomposition is trivial: N=N.
For m>0 the following two cases are possible:

(a) Tm is a quadratic transformation,

(b) Tm is a reduction.

In both cases we apply the induction hypothesis to the scheme

N1=[n1
1 , ..., n1

s ; n1]=TmN.

Since

N0=T1 } } } Tm&1N1 , (4.5)
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we get from (4.4), that Tik=Tm in case (a) and this implies the decom-
position

N1=TmN= :
A # PCN1

+AA+Na
1 , (4.6)

with

Na
1=Tik&1

} } } Ti1 N0.

Now we are going to apply the transformation Tm to the both sides of (4.6),
i.e. to all of the schemes appearing there. Let us justify this application. Of
course Tm is applicable to N1=TmN (see Remark 1.8). Next Tm is
applicable to all A # PCN1

with deg A>1 and to Na
1 # BS* due to

Theorems 2.5 and 3.3(iii) respectively.
If E=Ei, j # PCN1

, then using the orthogonality conditions for (4.6) we
readily get n1

i +n1
j =n1++E . Now the Remark 1.8 implies that the triplet of

the transformation Tm cannot include (i, j). And hence Tm can be applied to
E.

So applying Tm to (4.6) we get

N= :
A # PCN1

+A TmA+Na,

with (4.4).
The orthogonality conditions can be easily checked using the orthogo-

nality of decomposition (4.6) and Lemma 2.1(ii).
Let us consider now the case (b). In this case we have (4.5) and ik�m&1.

Hence, using the induction hypothesis we get the decomposition:

N1=TmN= :
A # PCN1

+AA+Na,

with (4.4). Assume the reduction Tm acts on the pair (i, j). Then

N1=TmN=N&(ni+nj&n)E, (E=Ei, j)

and we get the following canonical decomposition

N=(ni+nj&n)E+ :
A # PCN1

+AA+Na (4.7)

Let us check the orthogonality properties. Taking the product of E with both
sides of (4.7), we obtain

0= :
A # PCN1

+A(E, A)+(E, Na).
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This equality and the orthogonality conditions of the decomposition of N1

imply that E � PCN1
since otherwise we get +E in the right hand side of the

above equality. On the other hand note that according to Theorems 2.5,
3.3(iii) we have

(E, A)�0, for all A # PCN1

and

(E, Na)�0.

And hence all of the above products are equal to zero.
The uniqueness part of Theorem easily follows from the following

Remark 4.3. A prime scheme A belongs to PCN in the canonical decom-
position (4.1) if and only if (A, N)>0, moreover, we have (A, N)=+A

in that case.

This readily follows from the orthogonality conditions, in one direction,
and Theorem 3.3(i), (iii) in the other. The proof of Theorem 4.1 is complete.

Corollary 4.4. For any N # BS_* there are only a finite number
(�deg N) of prime schemes A with (A, N)>0 and any two such schemes
are orthogonal. Moreover we have N�M, where M is the sum of all such
prime schemes.

Corollary 4.5. The following relations hold for the canonical decomposi-
tion (4.1) of any scheme N # BS_*:

(i) [N]=& :
A # PCN

+A+[Na]

(ii) (N)= :
A # PCN

+2
A+(Na),

(iii) N� = :
A # PCN

+A&1+N� a.

Corollary 4.6. (i) Suppose that the scheme N has a decomposition
(4.1) with (4.2). Then N � Na which implies N # BS_*.

(ii) if N � M1 and N � M2 , where M1 , M2 are e-basic schemes, then
M1tM2 .

Proof. (i) We use induction on the number m of prime curves in (4.1).
The cae m=0 is trivial. Consider now the decomposition (4.1). Applying
some quadratic transformations to both sides of (4.1) we can get a canonical
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decomposition of N0=[n0
1 , ..., n0

s ; n0], (NtN0), which involves some Ei, j

as a prime curve. Then the orthogonality conditions imply that

n0
i +n0

j =n0++Ei, j

and we can apply reduction with respect to the members in places i, j to
both sides of canonical decomposition of N0 . We will have (m&1) prime
curves in the resulting decomposition of N1 :=N0&+Ei, j Ei, j . It remains to
use the induction hypothesis and the obvious transitivity of �.

Part (ii) readily follows from Remark 4.2 and the uniqueness of
decomposition (4.1).

The following lemma is needed for the next characterization of r-basic
schemes.

Lemma 4.7. Let N # BS_* and N � M. Then M # BS_*

Proof. Suppose

M=T1 } } } TmN,

where Ti is a quadratic transformation or reduction. Consider the canoni-
cal decomposition of N. It is not hard to see, just as in the proof of
Theorem 4.1, that M has a similar decomposition with

Ma=Tik } } } Ti1N
a,

where Ti1 , ..., Tik , i1< } } } ik , are all the quadratic transformations from
T1 , ..., Tm .

Corollary 4.8. The following conditions are equivalent for any N # S:

(i) N � BS_*,

(ii) There is a scheme M=[m1 , ..., ms ; m], with mi�m+1 for some
1�i�s such that N � M.

Proof. The implication (i) O (ii) is obvious. In order to check (ii) O (i)
suppose M satisfies (ii) while N # BS_*. Then by Lemma 4.7 M # BS_*.
Consider the canonical decomposition of M. We have :i�: for all prime
curves A=[:1 , ..., :s ; :], in this decomposition. Hence ma

i0�ma+1 which
contradicts Theorem 3.3(iii).

5. The Canonical Decomposition of Numerical Curves

As it was mentioned in Remark 3.2, Theorem 1.9 and Remark 1.3 imply that
each singular scheme is r-basic. Here we give a direct proof of the following
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Theorem 5.1. If N is a numerical curve then N # BS_* with

Na # LC, and (Na) �0. (5.1)

First we need some lemmas. The following Lemma readily follows from
Corollary 2.4 and Lemma 2.6.

Lemma 5.2. If N # BS* & LC then (N)�0.

Lemma 5.3. (i) If (N)�0, then N # BS_* with (Na) �0:
(ii) If N # LC, then N # BS_* with Na # LC and (Na)�0.

Proof. If N � BS_* then according to Corollary 4.8 there exists M # S
with N � M and mi�m+1 for some i. This means that M� �1 and
(M) �1. Hence, in view of Corollary 2.4(ii), we have N� �1 and
(N)�1. This ensures that N # BS_* for both cases.

Now recall that N � Na # BS*. To end the proof, it remains to use
Corollary 2.4(ii) and Lemma 5.2.

Theorems 3.3(i) and 3.4.(i) imply

Lemma 5.4.

(i) Let M # BS* and A, B # PC with (A, B)<0. Then M+A+B #
BS*.

(ii) Let M # BS* and A # PC with (A, M) =&+<0. Then
M++A # BS*.

The following lemma follows from Cauchy's inequality and the identities:

(N+M) =(N)+(M)+2(N, M) ,
(5.2)

N+M=N� +M� +(N, M).

Lemma 5.5. (i) Let (N) �0, (M) �0. Then (N, M) �0 and
(N+M) �0.

(ii) Let (N) �1, (M) �1 and (N, M) <0. Then (N+M)�0.

(iii) Let N� �0, M� �0, and (N, M)�0. Then N+M�0.

Proof of Theorem 5.1. Let N # NC and N=M1+ } } } +Mk , with
Mi # LC. According to Lemma 5.3(ii) we have that Mi # BS_* with
Ma

i # BS* & LC, (Ma
i )�0 in the canonical decomposition:

Mi= :
A # Gi

+A A+Ma
i , i=1, ..., k,

where Gi is a finite subset of PC.
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Denoting N$=Ma
1+ } } } Ma

k and using Theorem 3.4(ii) and Lemma 5.5,
we get

N$ # BS*, N� $�0, (N$) �0 (5.3)

and

N= :
A # G

+A A+N$, (5.4)

with G=G1 _ } } } _ Gk .
Our aim is to get a canonical decomposition for N by changing the

representation (5.4) as follows:

(1) If there are B, D # G such that (B, D)<0, (let +B�+D) then

N= :
A # G, A{B, D

+AA+( +D&+B)D+N",

with N"=N$++B(B+D).

(2) If there is B # G such that (B, N$)=&+<0, then

N= :
A # G, A{B

+A A+(+B&+)+ B+N",

with N"=N$+[+B&( +B&+)+]B. In both cases N" satisfies the condi-
tions (5.3) due to Lemmas 5.4 and 5.5. It is not hard to see, that after finite
number of steps (1) and (or) (2) we will get the canonical decomposition
(4.1) for N with Na # LC and (Na) �0. According to Corollary 4.6 this
completes the proof.

Using the same arguments we get part (i) of the following

Theorem 5.6. (i) Suppose that the scheme N has a decomposition (not
necessarily orthogonal)

N= :
A # G

+AA+N$, (5.5)

where G is a finite subset of PC and N$ # BS*. Then N is r-basic and there
are coefficients +$A , 0�+$A�+A , A # G such that the following decomposition
is canonical

N= :
A # G$

+$AA+N",

where G$=[A # G : +$A{0] and N"=N$+�A # G (+A&+$A)A.
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(ii) If N& # BS_*, &=1, ..., k then

:
k

&=1

*&N& # BS_*,

where *& # Z+.

To prove part (ii) it is enough to take the sum of canonical decomposi-
tions of N& , &=1, ... k and make use of Theorem 3.4(ii) in order to have a
representation for N of form the (5.5).

The most interesting corollary of Theorem 5.1 is the following exact
numerical analog of Be� zout's theorem:

Theorem 5.7. Let N, M be numerical curves with (N, M)>0. Then
N and M have a common prime curve in their canonical decompositions, i.e.,
there is A # PC such that (A, N) >0, (A, M)>0.

Proof. Consider the canonical decompositions of N, M and assume
that PCN & PCM is empty. Then Theorem 3.3 implies that (C, D) �0 for
any schemes C, D belonging to decompositions of N, M respectively,
provided that one of them is prime. The same for the remaining couple
(i.e. (Na, Ma) �0) follows from Theorem 5.1 and Lemma 5.5(i). These
inequalities imply (N, M)�0, which contradicts the hypothesis of
Theorem.

The following Corollary follows from Theorem 5.1 and Corollary 4.5.

Corollary 5.8. Let N be a numerical curve. Then

(i) (N) >0 implies PCN is not empty, i.e. there is an A # PC such
that (A, N) �1,

(ii) N � LC implies that PCN contains at least one double prime
curve, i.e. there is A # PC such that (A, N) =+A�2. In addition here we
have deg A�deg N�2.

We get from this, in particular, the following characterization for those
numerical curves which are interpolation schemes.

Corollary 5.9. The interpolation scheme N is a numerical curve if and
only if there is a prime curve A # PC with

(A, N) �2. (5.6)

Proof. It is enough to show that (5.6) implies that N is a numerical
curve. In fact N can be presented as a sum of two schemes from LC one
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of which is a prime curve (cf. [P92]). Namely, we have N=A+(N&A),
since the inequality (5.6) implies that (N&A) # LC. Indeed, according to
(5.2) we have

N&A=A+(N&A)&A� &(A, N&A) =2&(A, N)�0.

Corollary 5.10. An e-Basic scheme is a numerical curve if and only if
it is in the class LC.

Proof. We have from Theorem 3.3 and Remark 4.3 that the canonical
decomposition of an e-basic scheme N cannot contain a prime curve i.e.
it is trivial: N=N. Now, it remains to apply Theorem 5.1.

Corollary 5.11. The Conjectures 1.6 and 1.11 are equivalent, i.e. they
are both simultaneously valid or not

Proof. If Conjecture 1.6 is valid then Corollary 5.10 implies that Con-
jecture 1.11 is valid too. Now let Conjecture 1.11 be true and N be
singular. Then according to Remark 3.2 N is r-basic and we get from
Corollary 4.6, that N � Na # BS*. Making use of Remark 2.3 we obtain
that Na is singular and therefore it belongs to LC by Corollary 2.4(i) and
Conjecture 1.11. Now it follows from the canonical decomposition of N
that it is numerical curve. And hence Conjecture 1.6 is true.

Remark. Some applications of numerical curves in Algebraic Geometry
given in the paper [GHS95].
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