
Science of Computer Programming 58 (2005) 310–324

www.elsevier.com/locate/scico

Snapshots and software transactional memory✩

Christopher Colea,∗, Maurice Herlihyb

aNorthrop Grumman Mission Systems, 88 Silva Lane, Middletown, RI 02842, United States
bDepartment of Computer Science, Brown University, Providence, RI 02912, United States

Received 1 November 2004; received in revised form 15 January 2005; accepted 1 March 2005
Available online 13 June 2005

Abstract

One way that software transactional memory implementations attempt to reduce synchronization
conflicts among transactions is by supporting different kinds of access modes. One such
implementation, Dynamic Software Transactional Memory (DSTM), supports three kinds of memory
access: WRITE access, which allows an object to be observed and modified, READ access, which
allows an object to be observed but not modified, and RELEASE access, which allows an object to
be observed for a limited duration.

In this paper, we examine the relative performance of these modes for simple benchmarks on a
small-scale multiprocessor. We find that on this platform and for these benchmarks, the READ and
RELEASE access benchmarks do not substantially increase transaction throughput (and sometimes
reduce it). We blame the extra bookkeeping inherent in these access modes.

In response, we propose a new SNAP access mode. This mode provides almost the same behavior
asRELEASE mode, but admits much more efficient implementations.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Synchronization; Transactions; Transactional memory

1. Introduction

Dynamic Software Transactional Memory(DSTM) [7] is an application programming
interface for concurrent computations in which shared data is synchronized without

✩ Supported by NSF grant 0410042, and by grants from Sun Microsystems and Intel Corporation.∗ Corresponding author.
E-mail addresses:chris.cole@ngc.com (C. Cole), herlihy@cs.brown.edu (M. Herlihy).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.03.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82271828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico


C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324 311

using locks. DSTM manages a collection oftransactional objects, which are accessed
by transactions. A transaction is a short-lived, single-threaded computation that either
commitsor aborts. If the transaction commits, then these changes take effect; otherwise,
they are discarded. Atransactional objectis a container for a regular Java object. A
transaction can access the contained object byopeningthe transactional object, and then
reading or modifying the regular object. Transactions arelinearizable[8]: they appear to
take effect in a one-at-a-time order.

If two transactions open the same object at the same time, asynchronization conflict
occurs, and one of the conflicting transactionsmust be aborted. To reduce synchronization
conflicts, an object can be opened in one of severalaccess modes. An object opened in
WRITEmode can be read or modified, while an object opened inREADmode can only
be read. WRITE mode conflicts with both READ and WRITE modes, while READ mode
conflicts only with WRITE.

DSTM also providesRELEASEmode,1 a special kind of read-only mode that indicates
that the transaction mayreleasethe object before it commits. Once such an object has been
released, concurrent accesses of any kind donot cause synchronization conflicts. It is the
programmer’s responsibility to ensure that releasing objects does notviolate transaction
linearizability.

The contribution of this paper is to examine the effectiveness of these access modes
on a small-scale multiprocessor. We find that the overhead associated with READ and
RELEASE modes mostly outweighs any advantage in reducing synchronization conflict.
To address this issue, we introduce a novelSNAP (snapshot) mode, an alternative to
RELEASE mode with much lower overhead. SNAP mode provides almost the same
behavior as RELEASE, but much more efficiently.

2. Related work

Transactional memory was originally proposed as a hardware architecture [6,16], and
continues to be the focus of hardware-oriented research [13]. There have also been
several proposals for software transactional memory and similar constructs [1,2,9,12,15].
Others [10,14] have studied the performance of read/write locks.

An alternative approach to software transactional memory (STM) is due to Harris and
Fraser [5]. Their STM implementation isword-based: the unit of synchronization is a
single word of memory. An uncontended transaction that modifiesN words requires 2N+1
compare-and-swap calls. Fraser [4] has proposed a FSTM implementation that isobject-
based: the unit of synchronization is an object of arbitrary size. Here, an uncontended
transaction that modifiesN objects also requires 2N + 1 compare-and-swap calls. Herlihy
et al. [7] have proposed an object-based DSTM implementation, described below, in which
an uncontended transaction that modifiesN objects requiresN + 1 compare-and-swap
calls, but sometimes requires traversing an additional level of indirection. In both object-
oriented STM implementations, objects must be copied before they can be modified.
Marathe and Scott [11] give a more detailed comparison of these STM implementations.

1 Sometimes called TEMP mode [7].



312 C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324

Fig. 1. A transactional object consists of a start pointer and alocator with pointers to the most recent writer, the
old version, and the new version.

One important difference between FSTM and DSTM is that the former does not
guarantee that an aborted transaction observes a consistent state, a property sometimes
calledstrict isolation. In the absence of strict isolation, any transaction that observes an
inconsistent state will eventually abort, but before it aborts it may perform illegal actions
suchas dividing by zero or indexing off the end of an array. DSTM, by contrast, guarantees
strict isolation when opening a transactional object.

3. DSTM implementation

Here we summarize the relevant aspects of the DSTM implementation (a more complete
description appears elsewhere [7]). In its simplest form, a transactional object has three
fields: (1) thewriter field points to the most recent transaction to open the object in
WRITE mode, (2) theoldVersion field points to the old version of the object, and (3)
the newVersion field points to the new version. The object’s actual value is determined
by the status of thewriter transaction. If it is committed, then the new version is current,
and otherwise the old version is current. If the transaction is active, then the old version
is current, and the new version is thewriter transaction’s tentative version, which will
become current if and only if that transaction commits.

Ideally, when a transaction opens an object for WRITE, we would like to set thewriter
field to point to that transaction, theoldVersion field to point to the current version,
and thenewVersion field to point to a copy of the current version. We cannot make an
atomic change to multiple fields, but we canget the same effect by introducing a level
of indirection: each transactionobject has a single reference fieldstart, whichpoints to
locator structure that contains thewriter, oldVersion, andnewVersion fields (see
Fig. 1). We can change these fields atomically simply by preparing a new locator with the
desired field values, and using compare-and-swap to swing the pointer from the old locator
to the new one.Figs. 2and3 show the process of opening a transactional object in WRITE
mode whose most recent writer either aborted or committed.

It is also possible that a transaction attempting to open an object discovers that the most
recent writer is still active. The opening transaction may decide either to back off and give
the writer a chance tocomplete, or to proceed, forcingthe writer to abort. This policy
decision is handled by a separateContention Managermodule.

Each time a transaction opens an object, in anymode, the transaction checks whether it
has been aborted by a synchronization conflict, a process calledvalidation. This check



C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324 313

Fig. 2. Opening a transactional object when the most recent writer aborted: the old version is the former old
version, and the new version is a copy of the old.

Fig. 3. Opening a transactional object when the most recent writer committed: the old version is the former new
version, and the new version is a copy of the new.

prevents an aborted transaction from wasting resources, and also ensures that each
transaction has a consistent view of the transactional objects.

Opening an object in WRITE mode requires creating a new version (by copying the
old one) and executing a compare-and-swap instruction. When an object is opened in
READ mode, however the transaction simply returns a reference to the most recently
committed version. The transaction records that reference in a privateread table. To
validate, the transaction checks whether each of its version references is still current. This
implementation has the advantage that readingdoes not require an expensive compare-and-
swap instruction. It has two disadvantages: validation takes time linear in the number of
objects read, and the contention manager cannot tell whether an object is open in READ
mode. For this reason, we call this implementation theinvisible read.



314 C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324

Fig. 4. Visible read: in addition to keeping track of the last writer, we also keep track of a linked list of current
readers.

Because of these disadvantages, we devisedan alternative READ mode implementation,
which we call thevisible read. This implementation is similar to WRITE mode, except that
it does not copy the current version, and the object keeps a list of reading transactions (see
Fig. 4). Validating a transaction takes constant time, and reads are visible to the contention
manager. Each read does require a compare-and-swap, and opening an object in WRITE
mode may require traversing a list of prior readers.

Similarly, RELEASE mode also has both visible and invisible implementations.
Releasing an object either causes the version to be discarded (invisible) or the reader
removed from the list (visible).

4. Benchmarks

An IntSet is an ordered linked list of integers providing insert() anddelete()
methods. We created three benchmarks: WRITE, READ, and RELEASE. Each benchmark
runs for twenty seconds randomly inserting or deleting values from the list. The WRITE
benchmark opens each list element in WRITE mode. The READ benchmark opens
each list element in READ mode until it discovers the element to modify, which it
reopens in WRITE mode. The RELEASE benchmark opens each element in RELEASE
mode, releasing each element after openingits successor (similar to lock coupling). Each
benchmark was run using thePolite contention manager which uses exponential back-off
when conflicts arise. For example, when transactionA is about to open an object already
opened by transactionB, thePolite contention manager backs off several times, doubling
each expected duration, to giveB a chance to finish. IfB does not finish in that duration,
thenA abortsB, and proceeds.

The benchmarks were run on a machine with four Intel Xeon processors. Each
processor runs at 2.0 GHz (not hyperthreaded) and has 1 GB of RAM. The machine was
running Debian Linux and each benchmark was run 100 times for twenty seconds each.
The performance data associated with individual method calls was extracted using the
Extensible Java Profiler [3]. Each benchmark was run using 1, 4, 16, 32, and 64 threads.
The single-thread case is interesting becauseit provides insight into the amount of overhead
the benchmark incurred. In the four-thread benchmarks, the number of threads matches the
number of processors, while the benchmarks using 16, 32, and 64 thread show how the
transactionsbehave when they share a processor. To control the list size, the integer values
range only from 0 to 255.



C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324 315

Table 1
Single-thread throughput: the
single-processor throughput (trans-
actions committed per millisecond)
for both the invisible and visible
implementations

Invisible Visible

WRITE (36.6) (22.3)
READ 13.5% 107.3%
RELEASE 54.5% 95.2%

5. Benchmark results

We found that throughput measurements are affected by the cost of maintaining
the read-only table in the invisible implementation and the readers list in the visible
implementation. We start by examining single-thread results to highlight the relative
overheads of the two approaches.

5.1. Single-thread results

Table 1shows the single-processor throughput (transactions committed per millisecond)
for both the invisible and visible implementations. In the single-thread benchmarks, there is
no concurrency, and hence no synchronization conflicts, so the throughput numbers reflect
the modes’ inherent overheads.

To ease comparisons, in this table and in later tables, we give the global transactions-
per-millisecond (TPM) throughput only for the WRITE benchmark. We give the other
benchmarks as relative percentages of thecorresponding WRITE benchmark. For example,
in Table 3, invisible WRITE has throughput 36.6 TPM, and invisible READ is shown as
13.5%, implying a raw throughput of 4.9 TPM.

The invisible WRITE benchmark had better throughput than the visible WRITE
benchmark because the invisible WRITE incursno overhead synchronizing with readers.
The visible WRITE, by contrast, checks whether any transaction has the object open in
READ mode. Even though there are no such transactions (in a single-threaded benchmark),
the check takes time.

The invisible RELEASE benchmark has higher throughput than the READ benchmark
because each object released reduces the number of transactions that must by validated
at each API call. The invisible READ benchmark also suffers because the contention
manager cannot detect when a read is in progress, so any writer will immediately abort
any concurrent readers without giving them the chance to finish.

Both the visible and invisible READ and RELEASE benchmarks perform poorly
compared to the corresponding WRITE benchmarks because of the overhead of
maintaining either the read-only table or the readers list.

We now outline the costs as observed by profiling the benchmarks. (These numbers
are summarized inTable 2.) As the invisible READ benchmark traverses the list, it takes
approximately 280 ns to open each object in read mode. When it finds an object it



316 C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324

Table 2
Common method call timings (nanoseconds)

Invisible Visible

WRITE 180 730
READ & RELEASE 280 135
UPGRADE 250 160
RELEASE 90 40

Table 3
Invisible implementation: the transactions-per-millisecond throughput of the invisible implementation for varying
numbers of threads

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (36.6) (35.7) (32.9) (29.6) (24.7)

READ 13.5% 4.7% 1.7% 1.8% 2.2%
RELEASE 54.5% 23.7% 12.6% 12.8% 15.1%

needs to modify, it takes approximately 250 ns to upgrade to write access. Similarly,
RELEASE takes approximately 370 ns to open each object (280 ns to open the object
and 90 ns to release it). Compare these numbers with the WRITE benchmark, which takes
approximately 180 ns to open each object, and requires no additional work to modify an
object. As the visible READ benchmark traverses the list, it takes approximately 565 ns
to open each object in read mode. When it finds an object it needs to modify it takes at
least 1000 ns to upgrade to write access. The principal cost of upgrading is traversing the
ever-growing readers list to determine which of the readers is still active. This cost grows
as readers accumulate. Similarly, the RELEASE benchmark takes approximately 680 ns
to open each object (500 ns to open the object and 180 ns to release it). When RELEASE
upgrades an object for writing, it too incurs the cost of detecting active transactions in the
readers list. Compare this with the visible WRITE benchmark, which takes approximately
730 ns to open each list element. Although WRITE takes longer to traverse each list
element, no further work is required to modify an object.

When comparing the visible and invisible implementations, bear in mind that the visible
implementation does much of the work necessary to allow concurrent access to objects in
theopen methods, while the invisible implementation requires every API call to verify the
transaction’s state and therefore its entire overhead is not reflected in the open methods
alone.

We now turn our attention from single-thread executions, where overhead dominates, to
multithread executions, where we might expect to see gains for the READ or RELEASE
benchmarks due to reduced synchronization conflicts.

5.2. Multithreading results

Table 3shows the transactions-per-millisecond throughput of the invisible implementa-
tion for varying numbers of threads, andTable 4does the same for the visible implemen-
tation.



C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324 317

Table 4
Visible implementation: the transactions-per-millisecondthroughput of the visible implementation for varying
numbers of threads

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (22.3) (23.1) (21.4) (20.0) (17.6)

READ 52.6% 0.3% 0.2% 0.2% 0.1%
RELEASE 52.6% 0.1% 0.3% 0.4% 0.3%

Table 5
Invisible read transactions/milliseconds with work

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (19.5) (19.1) (17.7) (16.4) (13.6)

READ 16.9% 8.0% 3.5% 3.1% 2.9%
RELEASE 57.0% 28.5% 19.1% 18.8% 21.3%

Table 6
Visible read transactions/milliseconds with work

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (2.6) (2.6) (2.5) (2.4) (2.3)

READ 93.1% 1.0% 0.8% 0.8% 0.5%
RELEASE 91.8% 0.2% 0.3% 0.7% 0.9%

Surprisingly, perhaps, the concurrency allowed in READ and RELEASE did not
overcome the overhead in either implementation (with one minor exception). In the
invisible implementation, a transaction takes an excessive amount of time to traverse the
list because it must validate itsread-only table with each DSTM API call. A transaction
attempting to insert a large integer may never find the integer’s position in the list before
being aborted. In the visible implementation, the single-threaded benchmark has a slight
advantage because it does not need to copy the version being opened. In the multithreaded
benchmarks, however, the visible implementation incurs additional overhead because it
must traverse and prune a non-trivial list of readers.

We wenton to investigate how the benchmarks perform when transactions do some
“work” while holding the objects. We hadeach transaction count to a random number
between 0 and 500,000 before trying to commit the transaction. As illustrated in
Tables 5and6, adding work has a larger negative impact on the visible implementation.
Nevertheless, the throughput of the READ and RELEASE benchmarks continue to trail
the throughput of the WRITE benchmark.

5.3. Optimized visible read

The visible read implementation considered so far allows the list of readers to grow
until the object is opened by a writer. We now investigate an alternative implementation in



318 C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324

Table 7
Optimized visible read transactions/milliseconds

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (22.3) (23.1) (21.4) (20.0) (17.6)

READ 107.3% 0.3% 0.9% 1.1% 1.2%
RELEASE 95.2% 0.1% 0.7% 1.0% 1.6%

which readers “prune” inactive readers from thelist. This reduces the number of readers in
the list at the cost of increasing the cost of traversing those readers.

As shown inTable 7, theoptimized implementation removes much of theoverhead; the
single-thread READ and RELEASE benchmarks produces results similar to the WRITE
benchmark. The optimized READ and RELEASE both improved under contention, but
the throughput is still significantly less than under the WRITE benchmark. The principal
barrier to better throughput is the cost of trimming the readers list. This cost is minimal
in the single-thread case becausethe list has at most one reader, but once contention is
introduced trimming the list can take anywhere from 100 to 500 ns depending on how
many transactions are in the list. If this cost is added to the 565 and 680 ns the READ and
RELEASE benchmarks take to open objects, itis easy to see why these implementations
have less throughput than the WRITE benchmark which takes only 730 ns to open an
object.

The cost of maintaining the read-only and readers lists means that we were unable to
get significant increases in throughput using any of the READ or RELEASE benchmarks.
This observation prompted an investigation into other methods of reducing the overhead.

6. Snapshot mode

In an attempt to find a low-overhead alternative, we devised a newsnapshotmode for
opening an object.

TMObject<T> tmObject;
...
T version = tmObject.openSnap();

In this code fragment, the call toopenSnap() returns a reference to the version that would
have been returned by a call toopenRead(). It does not actually open the object for
reading, and the DSTM does not keep any record of the snapshot. All methods throw
DeniedException if the current transaction has been aborted.

Theversion argument to the next three methods is a version reference returned by a
prior call toopenSnap().

try {
tmObject.snapValidate();
} catch (SnapshotException e) {

...
}



C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324 319

The call returns normally if a call toopenSnap() (or openRead()) would have returned
the same version reference, and otherwise it throwsSnapshotException. Throwing this
exception does not abort the current transaction,allowing the transaction to retry another
snapshot.

tmObject.snapUpgradeRead(version);

If the version argument is still current, this method opens the object for reading, and
otherwise throws (SnapshotException).

T newVersion = tmObject.snapUpgradeWrite(version)

If the version argument is still current, this method returns a version of the object open for
writing, and otherwise throws (SnapshotException).

Objects opened in RELEASE mode are typically used in one of the following three
ways. Most commonly, an object is opened in RELEASE mode and later released. The
transaction will be aborted if the object is modified in the interval between when it is
opened and when it is released, but the transaction will be unaffected by modifications that
occur after the release.

TMObject<Entry> tmObject;
...
Entry entry = tmObject.openRelease();
...
tmObject.release();

The same effect is achieved by the following code fragment:

Entry entry = tmObject.openSnap();
...
tmObject.snapValidate(entry);

The first call returns a reference to the object version that would have been returned by
openRelease() (or openRead()), and the second call checks that the version is still
valid. There is no need for an explicit release because the transaction will be unaffected if
that version is changed (assuming it does not validate again).

Sometimes an object is opened in RELEASE mode and never released (which is
equivalent to opening the object in READ mode). To get the same effect in SNAP mode,
the transaction must apply snapUpgradeRead() to the object, atomically validating the
snapshot and acquiring READ access.

Finally, an object may be opened in RELEASE mode and later upgraded to WRITE
mode. ThesnapUpgradeWrite() method provides the same effect.

To illustrate how one might use SNAP mode,Fig. 5 shows thecode for ainsert()
method based on SNAP mode. It is not necessary to understand this code in detail, but
there are three lines that merit attention. As the transaction traverses the list,prevObject
is a reference to the last transactional object accessed, andlastObject is a reference to
that object’s predecessor in the list. In the line markedA, the method validates for the last
time thatlastObject is still current, effectively releasing it. If the method discovers that



320 C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324

Table 8
SNAP with invisible

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (36.6) (35.7) (32.9) (29.6) (24.7)

READ 13.5% 4.7% 1.7% 1.8% 2.2%
RELEASE 54.5% 23.7% 12.6% 12.8% 15.1%
SNAP 170.7% 46.8% 33.2% 34.6% 39.0%

Table 9
SNAP with visible

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (22.3) (23.1) (21.4) (20.0) (17.6)

READ 107.3% 0.3% 0.9% 1.1% 1.2%
RELEASE 95.2% 0.1% 0.7% 1.0% 1.6%
SNAP 469.9% 269.6% 263.2% 210.7% 214.9%

the value to be inserted is already present, then in the line markedB, it upgrades access
to the predecessor entry to READ, ensuring that no other transaction deletes that value.
Similarly, if the method discovers that the value to be inserted is not present, it upgrades
access to the predecessor entry to WRITE, so it can insert the new entry.

The principal benefit of SNAP mode is thatit can be implemented very efficiently.
This mode is “stateless”, in the sense that the DSTM runtime does not need to keep
track of versions opened in SNAP mode (unlike READ mode). ThesnapValidate(),
snapUpgradeRead() andsnapUpgradeWrite() calls simply compare their arguments
to the object’s current version. Moreover, SNAP mode adds no overhead to transaction
validation.

7. SNAP benchmarks

The results of running the same benchmark in SNAP mode instead of RELEASE
mode are shown inTable 8(invisible) andTable 9(visible). For both visible and invisible
implementations, SNAP mode has substantially higher throughput than both READ and
RELEASE mode. Opening an object in SNAP mode takes about 100 ns, including
validation. It takes about 125 ns to upgrade an object opened in SNAP mode to WRITE
mode.

Even though invisible SNAP mode outperforms invisible READ and RELEASE, it still
has lower throughput than invisible WRITE. We believe this disparity reflects inherent
inefficiencies in the invisible READ implementation. The invisible SNAP implementation
must upgrade to invisible READ mode whenever it observes that a value is absent
(to ensure it is not inserted), but transactions that open objects in invisible READ mode
are often aborted, precisely because theyare invisible to the contention manager.



C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324 321

public boolean insert(int v) {
List newList = new List(v);
TMObject<List> newNode = new TMObject<List>(newList);
TMThread thread = TMThread.currentThread();
while (thread.shouldBegin()) {

thread.beginTransaction();
boolean result = true;
try {

TMObject<List> lastNode = null;
List lastList = null;
TMObject<List> prevNode = this.first;
List prevList = prevNode.openSnap();
TMObject<List> currNode = prevList.next;
List currList = currNode.openSnap();
while (currList.value < v) {

if (lastNode != null)
/*A*/ lastNode.snapValid(lastList);

lastNode = prevNode;
lastList = prevList;
prevNode = currNode;
prevList = currList;
currNode = currList.next;
currList = currNode.openSnap();

}
if (currList.value == v) {

/*B*/ prevNode.snapUpgradeRead(prevList);
result = false;

} else {
result = true;

/*C*/ prevList = prevNode.snapUpgradeWrite(prevList);
newList.next = prevList.next;
prevList.next = newNode;

}
// final validations
if (lastNode != null)

lastNode.snapValid(lastList);
currNode.snapValid(currList);

} catch (SnapshotException s) {
thread.getTransaction().abort();

} catch (DeniedException d) {
}
if (thread.commitTransaction()) {

return result;
}

}
return false;

}

Fig. 5. SNAP-mode insert method.



322 C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324

Table 10
Invisible read transactions/milliseconds with work

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (19.5) (19.1) (17.7) (16.4) (13.6)

READ 16.9% 8.0% 3.5% 3.1% 2.9%
RELEASE 57.0% 28.5% 19.1% 18.8% 21.3%
SNAP 162.7% 51.0% 35.2% 36.5% 41.1%

Table 11
Visible read transactions/milliseconds with work

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (2.6) (2.6) (2.5) (2.4) (2.4)

READ 93.1% 1.0% 0.8% 0.8% 0.5%
RELEASE 91.8% 0.2% 0.3% 0.7% 0.9%
SNAP 133.9% 116.0% 66.4% 68.6% 71.3%

Table 12
Visible with 50% modification

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (22.1) (23.0) (21.4) (19.6) (17.2)

READ 105.6% 0.8% 2.3% 4.8% 6.6%
RELEASE 94.2% 0.4% 2.2% 4.3% 6.3%
SNAP 491.5% 352.1% 337.7% 302.9% 184.0%

Table 13
Visible with 10% modification

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (22.3) (22.9) (20.9) (19.4) (17.2)

READ 106.0% 2.3% 13.4% 20.1% 18.2%
RELEASE 94.7% 1.7% 11.7% 16.7% 17.6%
SNAP 491.6% 379.4% 420.7% 300.7% 115.1%

While the result of combining invisible READ and SNAP modes is disappointing, the
result of combining visible READ and SNAP modes is dramatic: here is the first alternative
mode that outperforms WRITE mode across the board.Tables 10and11show introducing
work does not change the relative performance of these implementations.

To investigate further, we implemented somebenchmarks that mixed “modifying”
method calls with “observer” (read-only) method calls. We introduced acontains()
method that searches the list for a value. We tested benchmarks in which the percentages of
modifying calls (insert() anddelete()) varied were 50% (Table 12), 10% (Table 13),



C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324 323

Table 14
Visible with 1% modification

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (20.9) (20.9) (20.3) (18.0) (15.9)

READ 105.9% 24.4% 56.8% 43.3% 11.8%
RELEASE 99.4% 25.7% 16.9% 16.3% 16.7%
SNAP 501.2% 466.0% 483.4% 348.9% 154.7%

Table 15
Visible with 0% modification

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads

WRITE (11.5) (11.8) (11.0) (10.2) (9.0)

READ 107.7% 76.1% 42.3% 23.6% 6.0%
RELEASE 95.6% 27.5% 21.6% 21.5% 22.4%
SNAP 531.0% 472.4% 555.9% 662.5% 790.0%

1% (Table 14), and 0% (Table 15). Each of the SNAP mode benchmarks had higher
throughput than its WRITE counterpart, and was the only benchmark to do so.

8. Conclusions

Naturally, these results are valid only for the specific implementation and platform
tested here. It may be that platforms with more processors, or a different contention
manager, or different internals would behave differently. Nevertheless, for the time being,
most multiprocessors will be small-scale multiprocessors and our results apply directly to
such platforms.

More research is needed to determine the most effective methods for opening objects
concurrently in software transactional memory. We were surprised by how poorly READ
and RELEASE modes performed on our small-scale benchmarks. While our SNAP
mode implementation substantially outperforms both READ and RELEASE modes, it is
probably appropriate only for advanced programmers. It would be worthwhile investigating
whether or not a contention management scheme could increase the throughput of read
transactions, or if there are more efficient designs for tracking objects open for reading.

As noted above, DSTM guarantees strict isolation, in the sense that every transaction,
even one doomed to abort, sees a consistent set of objects. For the invisible READ, this
guarantee is expensive, because each object read must be revalidated every time a new
object is opened. The visible READ supports strict isolation much more efficiently. An
alternative approach, used in Fraser’s FSTM [4], does not guarantee that transactions see
consistent states, but uses periodic checks and handlers to protect against memory faults
and unbounded looping due to inconsistencies. The relative merits of these approaches
remains open to further research.



324 C. Cole, M. Herlihy / Science of Computer Programming 58 (2005) 310–324

References

[1] Yehuda Afek, Dalia Dauber, Dan Touitou, Wait-free made fast, in: Proceedings of the Twenty-Seventh
Annual ACM Symposium on Theory of Computing, ACM Press, 1995, pp. 538–547.

[2] James H. Anderson, Mark Moir, Universal constructions for large objects, in: WDAG: International
Workshop on Distributed Algorithms, in: LNCS, Springer-Verlag, 1995.

[3] http://ejp.sourceforge.net/.
[4] Keir Fraser, Practical lock-freedom, TechnicalReport UCAM-CL-TR-579, University of Cambridge

Computer Laboratory, February 2004.
[5] Tim Harris, Keir Fraser, Language support for lightweight transactions, in: Proceedings of the 18th ACM

SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and Applications, ACM Press,
2003, pp. 388–402.

[6] Maurice Herlihy, J. Eliot B. Moss, Transactional memory: Architectural support forlock-free data structures,
in: Proceedings of the Twentieth Annual International Symposium on Computer Architecture, 1993.

[7] Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III, Software transactional memory for
dynamic-sized data structures, in: Proceedings of the Twenty-Second Annual Symposium on Principles of
Distributed Computing, ACM Press, 2003, pp. 92–101.

[8] Maurice P. Herlihy, Jeannette M. Wing, Linearizability: a correctness condition for concurrent objects, ACM
Trans. Program. Lang. Syst. 12 (3) (1990) 463–492.

[9] Amos Israeli, Lihu Rappoport, Disjoint-access-parallel implementations of strong shared memory
primitives, in: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, ACM Press, 1994, pp. 151–160.

[10] Theodore Johnson, Approximate analysis of readerand writer access to a shared resource, in: Proceedings
of the 1990 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, ACM
Press, 1990, pp. 106–114.

[11] Virendra J. Marathe, Michael L. Scott, A qualitative survey of modern software transactional memory
systems, Technical Report 839, Department of Computer Science, University of Rochester, June 2004.

[12] Mark Moir, Transparent support for wait-free transactions, in: Proceedings of the 11th International
Workshop on Distributed Algorithms, 1997, pp. 305–319.

[13] Ravi Rajwar, James R. Goodman, Transactional lock-free execution of lock-based programs, in: ASPLOS-
X: Proceedings of the 10th International Conference onArchitectural Support for Programming Languages
and Operating Systems, San Jose, CA, ACM Press, New York, ISBN: 1-58113-574-2, 2002, pp. 5–17.

[14] Martin Reiman, Paul E. Wright, Performance analysis of concurrent-read exclusive-write, in: Proceedings
of the 1991 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, ACM
Press, 1991, pp. 168–177.

[15] Nir Shavit, Dan Touitou, Software transactional memory, in: Symposium on Principles of Distributed
Computing, 1995, pp. 204–213.

[16] Janice M. Stone, Harold S. Stone, Philip Heidelberger, John Turek, Multiple reservations and the Oklahoma
update, IEEE Parallel Distrib. Technol. 1 (4) (1993) 58–71.

http://ejp.sourceforge.net/

	Snapshots and software transactional memory
	Introduction
	Related work
	DSTM implementation
	Benchmarks
	Benchmark results
	Single-thread results
	Multithreading results
	Optimized visible read

	Snapshot mode
	SNAP benchmarks
	Conclusions
	References


