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1. Introduction

Semiparametric partial linear models have received considerable attention in statistics and econometrics. They have a
wide range of applications, from biomedical studies to economics. In these models, some explanatory variables have a linear
effect on the response while others are entering nonparametrically. Consider the semiparametric regression model:

yi=x B+ft)+e&, i=1,...,n (1)

where y;'s are observations at t;, 0 < t; <t; <--- <t, < 1land xiT = (Xi1, X2, . . ., Xjp) are known p-dimensional vectors
with p < n. In many applications, t;’s are values of an extra univariate “time” variable at which responses y; are observed.
Inthe caset; € R¥, t; = (ty;, ..., t) ', the triples (y1, X1, t1), . . ., (Vn, Xn, tn) should be ordered using one of the algorithms
mentioned in [30], Appendix A, or in [8, Section 2.2].
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InEq.(1),8=(B1,---, ﬂp)T is an unknown p-dimensional parameter vector, f () is an unknown smooth function and
¢’s are independent and identically distributed random errors with E(g|x, t) = 0 and Var(e|x, t) = o2. We shall call f(t)
the smooth part of the model and assume that it represents a smooth unparameterized functional relationship.

The goal is to estimate the unknown parameter vector § and the nonparametric function f (t) from the data {y;, x;, t;}I_;.
In vector/matrix notation, (1) is written as

y=XB+f+e (2)

wherey = (1, ..., V) X = X1, ..., %), f = {f(t1), ..., ft)} T, e =(e1,..., )T

Semiparametric models are by design more flexible than standard linear regression models since they combine both
parametric and nonparametric components. There exist various goodness-of-fit tests to identify the nonparametric part in
this kind of models; see [8] and the references therein. Estimation techniques for semiparametric partially linear models
are based on different nonparametric regression procedures. The most important approaches to estimate 8 and f are given
in[12,4,7,6,5,14,24,15,33].

In practice, researchers often encounter the problem of multicollinearity. In case of multicollinearity, we know that
the (p x p) matrix XX has one or more small eigenvalues; the estimates of the regression coefficients can therefore
have large variances: the least squares estimator performs poorly in this case. Hoerl and Kennard [17] proposed the ridge
regression estimator and it has become the most common method to overcome this particular weakness of the least squares
estimator. For the purpose of this paper, we will employ the biased estimator that was proposed by Liu [20] to combat the
multicollinearity. The Liu estimator combines the Stein [26] estimator with the ridge regression estimator; see also [1,13].

The condition number is a measure of multicollinearity. If XX is ill-conditioned with a large condition number, the
ridge regression estimator or Liu estimator can be used to estimate 3, [21]. We consider difference based ridge and Liu
type estimators in comparison to the unbiased difference based approach. We give theoretical conditions that determine
superiority among the estimation techniques in the mean squared error matrix sense.

We use data on monthly electricity consumption and its determinants (income, electricity and gas prices, temperature)
for Germany. The purpose is to understand electricity consumption as a linear function of income and price and a nonlinear
function of temperature: semiparametric approach is therefore necessary here. The data reveal a high condition number
of 20.5; we therefore expect a more precise estimation with Ridge or Liu type estimators. We show how our theoretically
derived conditions can be implemented for a given data set and be used to determine the appropriate biased estimation
technique.

The paper is organized as follows. In Section 2, the model and the differencing estimator is defined. We introduce
difference based ridge and Liu type estimators in Section 3. In Section 4, the differencing estimator proposed by Yatchew [30]
and the difference based Liu type estimator are compared in terms of the mean squared error. In Section 5, both biased
regression methodologies in semiparametric regression models are compared in terms of the mean squared error. Section 6
relaxes the assumption of i.i.d. errors and replicates the results of the previous sections in the presence of heteroscedasticity
and autocorrelation. Section 7 gives a real data example to show the performance of the proposed estimators.

2. The model and differencing estimator

In this section, we introduce a difference based technique for the estimation of the linear coefficient vector in a
semiparametric regression. This technique has been used to remove the nonparametric component in the partially linear
model by various authors (e.g. [30,32,19,3]).

Consider the semiparametric regression model (2). Let d = (do, d1, ..., dy) " be an m 4+ 1 vector where m is the order
of differencing and do, d1, . . ., dj, are differencing weights that minimize
m m—k 2
Do ki)
k=1 \j=1
such that

Xm:djzo and Zm:djz:] (3)
j=0 j=0

are satisfied.

Let us define the (n — m) x n differencing matrix D to have first and last rows (d ", OnT_m_l), or

d") respectively,

with i-th row (0, d T, OnT_m_,-_l), i=1,...,(n—m— 1), where 0, indicates an r-vector of all zeronelrenan:ents
d dy dy -+ dy 0O o ... 0
0 d d d -~ dyn 0 --- 0
p=1: .
d d d --- dnp O

0 - .-
0 0 - - dy dy dy - dy
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Applying the differencing matrix to (2) permits direct estimation of the parametric effect. Eubank et al. [6] showed that
the parameter vector in (2) can be estimated with parametric efficiency. If f is an unknown function with bounded first
derivative, then Df is essentially 0, so that applying the differencing matrix we have

Dy = DX + Df + De ~ DX + De
YA~XB+7E (4)

wherey = Dy, X = DX and ¥ = De. Constraints (3) ensure that the nonparametric effect is removed and Var(€) = Var(¢) =
o2. With (4), a simple differencing estimator of the parameter f in the semiparametric regression model results:

Bioy = {(DX)T(DX)}~"(DX) "Dy
= (X"X)"'XT¥. (5)
Thus, differencing allows one to perform inferences on § as if there were no nonparametric component f in model (2), [9].
We will also use the modified estimator of o2 proposed by Eubank et al. [7]

5 Y a—=PhHy

" tr{DT(I — PL)D) (6)

with PL = X(XX)~'X T, I (p x p) identity matrix and tr(-) denoting the trace function for a square matrix.

3. Difference based ridge and Liu type estimator

As an alternative to E(o) in (5), [27] propose:
By = X'X+kD7'XTy, k=>o0;

here k is the ridge-biasing parameter selected by the researcher. We call E(l) (k) a difference based ridge regression estimator
of the semiparametric regression model.
From the least squares perspective, the coefficients 8 are chosen to minimize

G-XB)' G —XB). (7)

Adding to the least squares objective (7) a penalizing function of the squared norm || 773(0) — B||? for the vector of regression
coefficients, yields a conditional objective:

L=G—=XB) G—XB)+ (1Bo)— B (nBio) — B). (8)
Minimizing (8) with respect to 8, we obtain the estimator E(z) (n) an alternative to ,’3(0) in(5):

By = XX +D7' X'V +nB)), (9)
where 1,0 < n < 1, is a biasing parameter and whenn = 1, E(z)(n) = E(O). The formal resemblance between (9) and the

Liu estimator motivated [1,18,29] to call it the difference based Liu type estimator of the semiparametric regression model.

4. Mean squared error matrix (MSEM) comparison of /Ew) with ’E(z) ()

In this section, the objective is to examine the difference of the mean square error matrices of ﬂ(o) and ﬂ(z)(n) We note

that for any estimator /3 of B, its mean squared error matrix (MSEM) is defined as MSEM(;‘}) = Cov(ﬂ) + Blas(ﬂ) Blas(/ﬂ’)T
where Cov(8) denotes the variance-covariance matrix and Bias(8) = E(ﬁ) B is the bias vector. The expected value of
B (1) can be written as

EBom)=B-(1-nX'X+D'p.
The bias of the 3(2) (n) is given as

Bias{B) ()} = —(1 = )X X +1)7'B. (10)
Denoting F, = (XTX +1)"1(X"X + nl) and observing F, and (XTX)~! are commutative, we may write B(z)(’?) as

E(z)('l) = FnB(O) = Fn()?T)N()_l)N(Ti
=X X)'FXTY.
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Setting S = (D'X)T(D'X) and U = (X "X)~! we may write COV{B(Z)(n)} as

Cov{B (1)} = o*F,USUF, , (11)
Cov(B(o)) = 2USU. (12)

Using (11) and (12), the difference A = Cov(ﬁ(o)) — COV{B(Z)(n)} can be expressed as
2 T
Ay = o (USU — F,USUF,)
o’Fy{F, 'USU(F, )" — USU}F,

a?A—-HUut+n! {ﬁ(us +SU) + USU} u't+nn (13)

Lett = ﬁ > 0,M = USU,N = US + SU.Since M = L"L and rank(L) = p < n — m, then M is a (p x p) positive definite
matrix, where L = DTX(X"X)~! and N = US + SU is a symmetric matrix. Thus, we may write (13) as
Ay = o*(1—n*)H(M + TtN)H
o?(1-nHHQH™'(Q'MQ +7Q"NQ)Q'H
= o’(1-n)H@Q") '+ tE)QH,

where I+7E = diag(1+47eyq, ..., 1+71ep)andH = (U~'4-1)~1.Since M is a positive definite and N is a symmetric matrix,
a nonsingular matrix Q exists such that Q TMQ = I and Q TNQ = E; here E is a diagonal matrix and its diagonal elements
are the roots of the polynomial equation [M~'N — el| = 0 (see [11, pp. 408] and [16, pp. 563]) and since N = US + SU # 0,

there is at least one diagonal element of E that is nonzero. Let e; < O for at least one i; then positive definiteness of I + tE
is guaranteed by

1
0 < 7 < min|— (14)
eji<0 €;i
Hence 1+7e; > Oforalli =1, ..., pand therefore I+ tE is a positive definite matrix. Consequently, A, becomes a positive

definite matrix, as well. It is now evident that the estimator ) (1) has a smaller variance compared with the estimator Sq,
if and only if (14) is satisfied.

Next, we give necessary and sufficient conditions for the difference based Liu type estimator ﬂ(z) (n) to be superior to ﬂ(o)
in the mean squared error matrix (MSEM) sense.

The proof of the next theorem requires the following lemma.

Lemma 4.1 (Farebrother [10]). Let A be a positive definite (p x p) matrix, b a (p x 1) nonzero vector and § a positive scalar.
Then 8A — bb" is non-negative if and only if bTA='b < §.

Let us compare the performance of ,8(2) n) Wlth the differencing estimator ﬁ(o) with respect to the MSEM criterion. In order
to do that, define A, = MSEM(,B(O)) — MSEM{,B(Z)(n)} Observe that

MSEM(Bo)) = Cov(Bo)) = o2USU (15)
and
MSEM{Be) ()} = o2F,USUF, + (1 = m*W~" +D~'gpT (U + 17" (16)

Then from (15) and (16) one derives
Ay = 0?F){F,'USU(F))™" — USUJF, — (1 —n)*W ' +D7'BB (U + D71,
=H{o’(1 = )M +N) — (1 —n)*BB | H

= (1-1n)*H {0211—3(1\/1 +1N) — ﬂﬂT} H

Applying Lemma 4.1 and assuming condition (14) to be satisfied, we see A, is positive definite if and only if

1
ﬂT(M—I—TN)_]ﬁ < ozl‘l‘J, O<n<l.
—n

Now we may state the following theorem.

Theorem 4.1. Consider the two estimators B(z)(n) and E(o) of B.Let W = E—Z(M + tN) be a positive definite matrix. Then the
biased estimator E(z) (n) is MSEM superior to E(o) if and only if

IBwalﬁ < 0.2.
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5. MSEM comparison of ﬁ(l) (k) and ﬁ(z) n)

Let us now compare the MSEM performance of
B = XX +kD7Xy
= Sk)N(TDy
= Ay (17)
with
By = XX +D'XTy +nBo)
=X X)'XX+D'X'X+nDXTy
= UF,X "Dy
= Ayy. R (18)
The MSEM of the difference based ridge regression estimator 1) (k) is given by
MSEM{B1) (k)} = Cov{B(K)} + Bias{Br) (k) Bias{Br) (k) "
Sk(@*S + K2 BBT)S,
= o*(MA]) + did],
where S, = ()?T)? +kh~'andd; = Bias{ﬁ(l)(k)} = —kSiB; see [27]. The MSEM in (16) may be written as
MSEM{B2) ()} = 02 (AA]) + dad] ,

with d; = Bias{B) (1)} = —(1 — U~ + D'
Define

= MSEM{B1) ()} — MSEM{B) ()} = 02(A1A] — ArA}) + (did] — dady). (19)
For the following proofs we employ the following lemma.

Lemma 5.1 (Trenkler and Toutenburg [28]). Let /3(,) =Ay,j=12 be the two llnear estimators of B. Suppose the dlfference
Cov(,3(1)) — Cov(ﬂ@)) of the covariance matrices of the estlmators /3<1) and ,B(z) is positive definite. Then MSEM(ﬁ(1)) —
MSEM(,B(Z)) is positive definite if and only if dT{Cov(ﬂm) — Cov(ﬂ@)) + d1d 7 ldy < 1.

Theorem 5.1. The sampling variance of ﬁ(z)(n) is smaller than that of ,B(U(k), if and only if }\min(G;Gl) > 1, where Apip iS
the minimum eigenvalue of G, G, and G=o Aj ,j=1,2.

Proof. Consider the difference

A" = Cov{B)(k)} — Cov{Br(m}

= 02(AA] — AA;)),

=G —G
withG; = (DTXW,U)T = VTV, W, = [+kU and G, = (XFTU)T(XFTU) Sincerank(V) = p < n—m, G;isa (pxp) positive
definite matrix and G, is a symmetric matrix. Hence, a nonsingular matrix O exists such that 0" G;0 = and 07 G,0 = A
with A diagonal matrix with diagonal elements roots A of the polynomial equation |G; — AG,| = 0 (see [16, p. 563]
or [25, p. 160]). Thus, we may write A* = (07)"1(07G;0 — 07G,0)0™' = (0T) ' (A —=DO'or0TA*0 = A - L If
G; — G, is positive definite, then 0T G;0 — 0T G,0 = ¥ — [ is positive definite. Hence A; — 1 > 0,i= 1,2, ..., p, so we get
)\min(Gz_lGl) > 1.

Now let Anin (G5 'G;) > 1 hold. Furthermore, with G, positive definite and G; symmetric, we have Ay, <

UTG]\)
e v Gy R
for all nonzero (p x 1) vectors v, so G; — G; is positive definite; see [23, p. 74]. It is obvious that Cov{f2 (1)} — Cov{B)(k)}
is positive definite for 0 < n < 1, k > 0 if and only ifkmin(Gz_lGl) >1 0O

< Amax

Theorem 5.2. Consider Bm(k) = Ay and B(z)(’l) = A,y of B. Suppose that the difference Cov{Bm(k)} - COV{E@)(n)} is
positive definite. Then

As = MSEM{B1)(k)} — MSEM{B 2, (1))}
is positive definite if and only if

dy (02 (A1A] — AA)) +did{ ) dy < 1
with Ay = SX'D, Ay = UF,XTD.
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Proof. The difference between the MSEMs of E(Z) (n) and E(l) (k) is given by
MSEM{B1) (k)} — MSEM{Ba) (1)}

o2(AMA] — AA)) + (dyd] — dod))

Cov{B)(k)} — Cov{By (M)} + (did] — dad;).

Applying Lemma 5.1 yields the desired result. O

As

It should be noted that all results reported above are based on the assumption that k and » are non-stochastic. The
theoretical results indicate that the B (n) is not always better than the By (k), and vice versa. For practical purposes, we
have to replace these unknown parameters by some suitable estimators.

6. The heteroscedasticity and correlated error case

Up to this point, independent errors with equal variance were assumed. The error term might also exhibit autocorrelation.
To account for these effects, we extend the results in this section and consider the more general case of heteroscedasticity
and autocovariance in the error terms.

Consider now observations {y;, x, tt}tT:1 and the semiparametric partial linear model y, = xtT,B +f(t)+e, t=1,...,T.
Let E(ee |x, t) = £2 not necessarily diagonal. To keep the structure of the errors for later inference, we define an (n x n)
permutation matrix P as in [32]. Consider a permutation:

1 t(‘])

n tmy
wherei =1, ..., nis the index of the ordered nonparametric variable and t;) = 1, ..., T corresponding time index of the
observations. Then P is defined fori,j =1, ..., n:

p.— 1L J=to
Y710, otherwise.

We can now rewrite the model after reordering and differencing:
DPy = DPXf + DPf(x) + DPe,  E(se'|x, t) = £2. (20)
Then, with X = DPX and y = DPy from (20), E(o) is given:
Bo=XX"X'y (21)
with
Cov(Boy) = X X)X DP2D PTX(XTX) !
= UX"DP2DTPTXU. (22)

We will use a heteroscedasticity and autocovariance consistent estimator described in [22] for the interior matrix of (22),
which is in our case:

_ . £ ¢
DPQDTPT = {DPe(DPe)'} © { (1 — —) H‘] (23)
; L+1

with DPe = y— )N(B(o), ©® denoting the elementwise matrix product, £ the maximum lag of nonzero autocorrelation in the
errors and H° the identity matrix. Let L, be a matrix with ones on the ¢th diagonal; then H!, ¢ = 1, ... .£ are such that:

gt — [0, if {DP(Le + L)D'PTY; =0,
i~ 11, otherwiseandi,j=1,...,p.

Plugging (23) in (22) we obtain a consistent estimator for Cov(ﬂ(o)) see [31] for details.
Denoting S = X DP2D' PTX, we can write down Cov{B,(k)} and Cov{B 2 ()} in model (20).

Cov{B (K)} = SiSSk (24)
Cov{B)(n)} = F,USUF,. (25)
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Using (22) and (25), the difference A; = COV(E(O)) - COV{BQ)(n)} can be expressed as
~ ~
Ay = (USU — F,USUF,)

= F,{F, 'USU(F,)~" — USU}F,

=(A-nHU '+ {1_:_’](U§ +SU) + UEU} wl+n, (26)

1
T+n " o - -
nonsingular matrix T exists such that lTMI =T and T'NT = E; here E is a diagonal matrix and its diagonal elements are
the roots of the polynomial equation |M !N —¢I| = 0 (see [11, pp. 408] and [ 16, pp. 563]) and we may write (26) as

with 7 = > 0, M= UEU, N = US + SU. Since M is a (p x p) positive definite matrix and Nisa symmetric matrix, a

Ay = (1—n)HM + tN)H
= (1= )HT) " NT'MT +tT'NT)T 'H
=1 —)HT) ' +E)TH,
where [ + ZE = diag(1+ €11, ..., 1+ Teyp) and H = (U™ + 1)~ Since N = US +SU # 0, there is at least one diagonal

element of E that is nonzero. -
Let®; < O for at least one i; then positive definiteness of I 4+ TE is guaranteed by

1
0 <7 <min|= (27)
€ii<0 | €jj
Hence 1+7¢; > Oforalli = 1, ..., p and therefore | + tEis s a positive definite matrix. Consequently, A becomes a positive

definite matrix, as well. It is now evident that the estimator B, (1) has a smaller variance compared with the estimator S,
if and only if (27) is satisfied.
With
A = Cov(Bo)) — Cov{B (k)

1 ~ ~ ~
= kS, {k(us + SU) + USU} Sk
2 I~ ~
= k°S TN—FM Sk
k
and analogous argumentation as above obtained for E(l) (k):

1

€ij

1
0 < — < min . (28)

eji<0

The next theorem extends the results of Theorem 3.1 in [27] and Theorem 4.1 of Section 4 to the more general case
of (20).

Theorem 6.1. Consider the estimators E(i) ), i={1,2}; x ={k, n} and B(o) of B.Let Wy = M + rﬁ, W, = }%Z(IVI + rﬁ)
be positive definite (alternative: assume that (27) and (28) hold). Then the biased estimator Ei) (x) is MSEM superior to E@) if
and only if

BW B <1

Proof. Consider the differences

A, = MSEM(Bio) — MSEM{Boy ()} R

Cov(Bio)) — Cov{Bz)(m)} — Bias{Bz () Bias(B2) (M)}
Fy{F,'USU(F,)™ = USUJF, — (1 =n)*W ' +D7 g W + D!
(1—n)*H {14_”;(1\71 +tN) — ﬁﬁT] H

(1—n)°H (W, — BBT) H.



E. Akdeniz Duran et al. / Journal of Multivariate Analysis 105 (2012) 164-175 171

A, = MSEM(Bg)) — MSEM{B1(k)}

Cov(Boy) — Cov{Bn (K)} — Bias{Br) (k) Bias{ B (k)} "
Si{k(SU + US) + K*USU — K*88T}Sk

1~ ~

K2S (TN +M - ﬂﬁT) Sk
K

= kS (W1 — BBT)Sk.

With Lemma 4.1, the assertion follows. O

Theorem 6.1 gives conditions under which the biased estimator E(i) x), i = {1, 2}; x = {k, nn} is superior to :5(0) in the
presence of heteroscedasticity and autocorrelation in the data.

Note that for comparison of the biased estimators Theorem 5.1 can be extended straight forwardly to the general case
by exchanging G; and G, by G; = A1QA] and G, = A,QA] correspondingly, with A; = S,X DP A, = UF,X ' DP. Hence,

the sampling variance of /3(2>(7)) is always smaller than that of ,B(l)(k), if and only if Amin(Gz Gl) > 1, where A, is the

.. . ~ 1
minimum eigenvalue of G, G;.
Now, we give a generalized version of Theorem 5.2.

Theorem 6.2. Consider B(U = Zl y and E(z) = Zzy of B. Suppose that the difference Cov{ﬁm} — Cov{ﬁ(z)} is positive definite.
Then

= MSEM(B1)) — MSEM(B(2))
is positive definite if and only if
dJ (A1 QA] — A, QA +did]) 'dy < 1.

Proof. The difference between the MSEMs of E(z) (n) and E(l) (k) is given by
As = MSEM(B(1)) — MSEM(B(2))
= AQA] —AQA] +dyd] — doyd)
= Cov(B)) — Cov(Ba)) + drd] — dod] .
Applying Lemma 5.1 yields the desired result. O

We note that in order to use the criteria above, one has to estimate the parameters. The estimation of §2 is thereby the
most challenging. However, as long as estimator (23) is available, all considered criteria can be evaluated on the real data
and can be used for practical purposes.

7. Determinants of electricity demand

The empirical study example is motivated by the importance of explaining variation in electricity consumption. Since
electricity is a non-storable good, electricity providers are interested in understanding and hedging demand fluctuations.

Electricity consumption is known to be influenced negatively by the price of electricity and positively by the income of the
consumers. As electricity is frequently used for heating and cooling, the effect of the air temperature must also be present.
Both heating by low temperatures and cooling by high temperatures result in higher electricity consumption and motivate
the use of a nonparametric specification for the temperature effect. Thus we consider the semiparametric regression model
defined in (1)

Yy =f(t) + Bix1 + Baxa + Baxs + - - - + BisXi3 + &, (29)

where y is the log monthly electricity consumption per person (aggregated electricity consumption was divided by
population interpolated linearly from quarterly data), t is cumulated average temperature index for the corresponding
month taken as average of 20 German cities computed from the data of German weather service (Deutscher Wetterdienst),
X1 is the log GDP per person interpolated linearly from quarterly data, detrended and deseasonalized and x; is the log rate
of electricity price to the gas price, detrended. The data for 199601-201009 comes from EUROSTAT. Reference prices for
electricity were computed as an average of electricity tariffs for consumer groups IND-Ie and HH-Dc, for gas—IND-I3-2 and
HH-D3 with reference period 20055 1. Time series of prices were obtained by scaling with electricity price or correspondingly
gas price indices. X3, X4, . . ., X13 are dummy variables for the monthly effects.

The model in (29) includes both parametric effects and a nonparametric effect. The only nonparametric effect is implied
by the temperature variable. From Fig. 1, we can see that the effect of t on y is likely to be nonlinear, while the effects of
other variables are roughly linear. The dummy variables enter into the linear part in the specification of the semiparametric
regression as well.
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Fig. 1. Plots of individual exp. variables vs. dependent variable, linear fit (green), local polynomial fit (red), 95% confidence bands (black). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

R We note that the condition number of X T X of these explanatory variables is 20.5, which justifies the use of E(l)(k) and
By (m); see [2].

Throughout the paper, we use fifth-order differencing (m = 5). Results for other orders of differencing were similar.

The admissible regions for the biasing parameters 1 and k for MSEM superiority were n > 0.923 and k < 0.0085.
These bounds were determined using the estimated parameters and the inequalities from Theorem 4.1 and Theorem 3.1
in [27], respectively. Under more general assumptions on £2 and resulting heteroscedasticity and autocovariance consistent
Newey-West covariance estimator, defined in (23), the admissible region for n (Theorem 6.1 and restriction (27)) was
shrinked to n > 0.927. For B(y)(k), no admissible values of k were found, since admissible k > 1.57 of (28) do not satisfy
the condition of Theorem 6.1 (see Table 2).

Alternatively, we used a scalar mean squared error (SMSE), defined as the trace of the corresponding MSEM, to compare
the estimators. The bounds for k and » can then be calculated only numerically using a grid on [0, 1] for the biasing
parameters and clgtermining the regions where SMSEs of the proposed estimators are lower. SMSE superiority of B (k)
and B (n) over B(o) under general §2 is given for k < 0.0267 and n > 0.384 compared to k < 0.0123 and n > 0.708 by
standard assumptions; see Fig. 2 which depicts SMSE of the estimators and the corresponding 7 and k under standard and
general assumptions. Thus the SMSE superiority intervals for n and k become even larger in the case of the general form
of 2.

Our computations here are performed with R 2.10.1 and the codes are available on www.quantlet.org.

Results of different estimation procedures can be found in Table 1. We note that regardless of the estimator type, the
effect of income is positive and the effect of relative price is negative as expected from an economic perspective, as in [4].
However, the R? obtained by difference based methods is higher and SMSE lower for Liu type and ridge difference based
estimator. The values of biasing parameters for which conditions of Theorems 5.1 and 5.2 are satisfied are given in Table 3.
The superiority of B(3) (1) over B (k) is assured for the zone of values marked by plus.

Returning to our semiparametric specification, we may now remove the estimated parametric effect from the dependent
variable and analyze the nonparametric effect. We use a local linear estimator of f to model the nonparametric effect of
temperature. The resulting plots are presented in Fig. 3 where we also include the linear effect. We notice that all differencing
procedures result in similar estimators of f, regardless of notable differences in the coefficients of the linear part. The
estimator of f is consistent with findings e.g. of [4] for US electricity data.

In both specifications, f is different from the linear effect and therefore including temperature as a linear effect is
misleading.
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Fig. 2. SMSE offi\(z) (n) in dependence of n (left) and E(l) (k) in dependence of k (right) against that of;f;(o) (dashed) under standard assumptions (black)
and under generalized assumptions (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Results of OLS, difference based and Liu type difference based estimations.
Bors B By (1073) B2(0.95)

X1 0.634 0.578" 0.550" 0.562"
Xa —0.152"" —0.160"" —0.158"" —0.161""
X3 0.030™" 0.030° 0.030° 0.030°
X4 —0.043" —0.040" —0.040" —0.040"
X5 0.011 0.031 0.031 0.031
Xs —0.051" —0.014 —0.013 —0.014
X7 —0.054" —0.014 —0.013 —0.014
X3 —0.079" —0.065 —0.064 —0.065
Xg —0.036 —0.037 —0.036 —0.037
X10 —0.052 —0.044 —0.043 —0.044
X11 —0.049 —0.013 —0.012 —0.013
X12 —0.000 0.040 0.040 0.040
X13 —0.001 0.016 0.016 0.016
t —13-10757 - - -
R? 0.729 0.749 0.749 0.749

" Indicates significance on 10%.
Indicates significance on 5%.
Indicates significance on 1%.

Table 2
Standard errors of the estimators in comparison to Newey-West standard errors for the effects of x; (income) and x, (relative price).
2 Bo Bay(10~) B2 (0.95)
32 Cnw 521 2w 2 2nw
X1 0.215 0.347 0.209 0.337 0.205 0215
X2 0.034 0.047 0.034 0.047 0.034 0.034
SMSE 0.058 0.148 0.056 0.141 0.054 0.058

8. Conclusion

We proposed a difference based Liu type estimator and a difference based ridge regression estimator for the partial linear
semiparametric regression model. R

The results show that in case of multicollinearity, the proposed estimator, B (1) is superior to the difference based
estimator B(o)- We gave bounds on the value of  which ensure the superiority of the proposed estimator. The two biased
estimators E(z) (n) and 3(1) (k) for different values of  and k can be compared in terms of MSEM with the theoretical results
above.

Finally, an application to electricity consumption has been provided to show properties of the proposed estimator
based on the mean square error criterion. We could estimate the linear effects of the linear determinants as well as the
nonparametric effect f of a cumulated average temperature index.

Thus, the theoretical results obtained allow us to tackle the problem of multicollinearity in real applications of
semiparametric models. Moreover, we are able to get estimators of the linear effects with lower standard errors by tuning
parameters k and n accordingly.
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Table 3
Admissible biasing parameters 1 and k marked by plus if they satisfy conditions of Theorems 5.1 and 5.2, i.e. E(z) (n) is superior to E“)(k).

n - 10? k- 104
1 2

w
N
w
[
~
[
©

10 11 12 13

9.23-9.23
9.24-9.24
9.25-9.25
9.26-9.26
9.27-9.27
9.28-9.28
9.29-9.30
9.31-9.31
9.32-9.32
9.34-9.35
9.36-9.37
9.38-9.39
9.40-9.43
9.44-9.56
9.57-9.61
9.62-9.65
9.66-9.69
9.70-9.72
9.73-9.76
9.77-9.79
9.80-9.82
9.83-9.85
9.86-9.88
9.89-9.91
9.92-9.94
9.95-9.97
9.98-9.99
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Fig. 3. Estimated f nonlinear effect of t on y via differenced based (left), Liu-type differenced based (right) and difference-based ridge (center) approaches.
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