
Journal of Multivariate Analysis 105 (2012) 164–175

Contents lists available at SciVerse ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Difference based ridge and Liu type estimators in semiparametric
regression models✩

Esra Akdeniz Duran a,1, Wolfgang Karl Härdle b, Maria Osipenko c,∗

a Department of Statistics, Gazi University, Turkey
b Center for Applied Statistics & Economics, Humboldt-Universität zu Berlin, Germany
c CASE, School of Business and Economics, Humboldt-Universiät zu Berlin, Unter den Linden 6, 10099, Germany

a r t i c l e i n f o

Article history:
Received 4 March 2011
Available online 7 September 2011

AMS subject classifications:
62G08
62J07

Keywords:
Difference based estimator
Differencing estimator
Differencing matrix
Liu estimator
Liu type estimator
Multicollinearity
Ridge regression estimator
Semiparametric model

a b s t r a c t

We consider a difference based ridge regression estimator and a Liu type estimator of
the regression parameters in the partial linear semiparametric regression model, y =

Xβ+f +ε. Both estimators are analyzed and compared in the sense ofmean-squared error.
We consider the case of independent errors with equal variance and give conditions under
which the proposed estimators are superior to the unbiased difference based estimation
technique. We extend the results to account for heteroscedasticity and autocovariance
in the error terms. Finally, we illustrate the performance of these estimators with an
application to the determinants of electricity consumption in Germany.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametric partial linear models have received considerable attention in statistics and econometrics. They have a
wide range of applications, from biomedical studies to economics. In thesemodels, some explanatory variables have a linear
effect on the response while others are entering nonparametrically. Consider the semiparametric regression model:

yi = x⊤

i β + f (ti) + εi, i = 1, . . . , n (1)

where yi’s are observations at ti, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1 and x⊤

i = (xi1, xi2, . . . , xip) are known p-dimensional vectors
with p ≤ n. In many applications, ti’s are values of an extra univariate ‘‘time’’ variable at which responses yi are observed.
In the case ti ∈ Rk, ti = (t1i, . . . , tki)⊤, the triples (y1, x1, t1), . . . , (yn, xn, tn) should be ordered using one of the algorithms
mentioned in [30], Appendix A, or in [8, Section 2.2].
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In Eq. (1), β = (β1, . . . , βp)
⊤ is an unknown p-dimensional parameter vector, f (·) is an unknown smooth function and

ε’s are independent and identically distributed random errors with E(ε|x, t) = 0 and Var(ε|x, t) = σ 2. We shall call f (t)
the smooth part of the model and assume that it represents a smooth unparameterized functional relationship.

The goal is to estimate the unknown parameter vector β and the nonparametric function f (t) from the data {yi, xi, ti}ni=1.
In vector/matrix notation, (1) is written as

y = Xβ + f + ε (2)

where y = (y1, . . . , yn)⊤, X = (x1, . . . , xn), f = {f (t1), . . . , f (tn)}⊤, ε = (ε1, . . . , εn)
⊤.

Semiparametric models are by design more flexible than standard linear regression models since they combine both
parametric and nonparametric components. There exist various goodness-of-fit tests to identify the nonparametric part in
this kind of models; see [8] and the references therein. Estimation techniques for semiparametric partially linear models
are based on different nonparametric regression procedures. The most important approaches to estimate β and f are given
in [12,4,7,6,5,14,24,15,33].

In practice, researchers often encounter the problem of multicollinearity. In case of multicollinearity, we know that
the (p × p) matrix X⊤X has one or more small eigenvalues; the estimates of the regression coefficients can therefore
have large variances: the least squares estimator performs poorly in this case. Hoerl and Kennard [17] proposed the ridge
regression estimator and it has become themost commonmethod to overcome this particular weakness of the least squares
estimator. For the purpose of this paper, we will employ the biased estimator that was proposed by Liu [20] to combat the
multicollinearity. The Liu estimator combines the Stein [26] estimator with the ridge regression estimator; see also [1,13].

The condition number is a measure of multicollinearity. If X⊤X is ill-conditioned with a large condition number, the
ridge regression estimator or Liu estimator can be used to estimate β , [21]. We consider difference based ridge and Liu
type estimators in comparison to the unbiased difference based approach. We give theoretical conditions that determine
superiority among the estimation techniques in the mean squared error matrix sense.

We use data on monthly electricity consumption and its determinants (income, electricity and gas prices, temperature)
for Germany. The purpose is to understand electricity consumption as a linear function of income and price and a nonlinear
function of temperature: semiparametric approach is therefore necessary here. The data reveal a high condition number
of 20.5; we therefore expect a more precise estimation with Ridge or Liu type estimators. We show how our theoretically
derived conditions can be implemented for a given data set and be used to determine the appropriate biased estimation
technique.

The paper is organized as follows. In Section 2, the model and the differencing estimator is defined. We introduce
difference based ridge and Liu type estimators in Section 3. In Section 4, the differencing estimator proposed by Yatchew [30]
and the difference based Liu type estimator are compared in terms of the mean squared error. In Section 5, both biased
regressionmethodologies in semiparametric regressionmodels are compared in terms of the mean squared error. Section 6
relaxes the assumption of i.i.d. errors and replicates the results of the previous sections in the presence of heteroscedasticity
and autocorrelation. Section 7 gives a real data example to show the performance of the proposed estimators.

2. The model and differencing estimator

In this section, we introduce a difference based technique for the estimation of the linear coefficient vector in a
semiparametric regression. This technique has been used to remove the nonparametric component in the partially linear
model by various authors (e.g. [30,32,19,3]).

Consider the semiparametric regression model (2). Let d = (d0, d1, . . . , dm)⊤ be an m + 1 vector where m is the order
of differencing and d0, d1, . . . , dm are differencing weights that minimize

m
k=1


m−k
j=1

djdk+j

2

,

such that
m
j=0

dj = 0 and
m
j=0

d2j = 1 (3)

are satisfied.
Let us define the (n − m) × n differencing matrix D to have first and last rows (d⊤, 0⊤

n−m−1), (0
⊤

n−m−1, d
⊤) respectively,

with i-th row (0i, d⊤, 0⊤

n−m−i−1), i = 1, . . . , (n − m − 1), where 0r indicates an r-vector of all zero elements

D =


d0 d1 d2 · · · dm 0 · · · · · · 0
0 d0 d1 d2 · · · dm 0 · · · 0
...

...
0 · · · · · · d0 d1 d2 · · · dm 0
0 0 · · · · · · d0 d1 d2 · · · dm

 .
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Applying the differencing matrix to (2) permits direct estimation of the parametric effect. Eubank et al. [6] showed that
the parameter vector in (2) can be estimated with parametric efficiency. If f is an unknown function with bounded first
derivative, then Df is essentially 0, so that applying the differencing matrix we have

Dy = DXβ + Df + Dε ≈ DXβ + Dεy ≈Xβ +ε (4)

wherey = Dy,X = DX andε = Dε. Constraints (3) ensure that the nonparametric effect is removed and Var(ε) = Var(ε) =

σ 2. With (4), a simple differencing estimator of the parameter β in the semiparametric regression model results:β(0) = {(DX)⊤(DX)}−1(DX)⊤Dy

=
X⊤X−1X⊤y. (5)

Thus, differencing allows one to perform inferences on β as if there were no nonparametric component f in model (2), [9].
We will also use the modified estimator of σ 2 proposed by Eubank et al. [7]

σ 2
=

y⊤(I − P⊥)y
tr{D⊤(I − P⊥)D}

(6)

with P⊥
=X(X⊤X)−1X⊤, I (p × p) identity matrix and tr(·) denoting the trace function for a square matrix.

3. Difference based ridge and Liu type estimator

As an alternative toβ(0) in (5), [27] propose:β(1)(k) = (X⊤X + kI)−1X⊤y, k ≥ 0;

here k is the ridge-biasing parameter selected by the researcher.We callβ(1)(k) a difference based ridge regression estimator
of the semiparametric regression model.

From the least squares perspective, the coefficients β are chosen to minimize

(y −Xβ)⊤(y −Xβ). (7)

Adding to the least squares objective (7) a penalizing function of the squared norm ∥ηβ(0) −β∥
2 for the vector of regression

coefficients, yields a conditional objective:

L = (y −Xβ)⊤(y −Xβ) + (ηβ(0) − β)⊤(ηβ(0) − β). (8)

Minimizing (8) with respect to β , we obtain the estimatorβ(2)(η) an alternative toβ(0) in (5):

β(2)(η) = (X⊤X + I)−1(X⊤y + ηβ(0)), (9)

where η, 0 ≤ η ≤ 1, is a biasing parameter and when η = 1,β(2)(η) = β(0). The formal resemblance between (9) and the
Liu estimator motivated [1,18,29] to call it the difference based Liu type estimator of the semiparametric regression model.

4. Mean squared error matrix (MSEM) comparison ofβ(0) withβ(2)(η)

In this section, the objective is to examine the difference of the mean square error matrices ofβ(0) andβ(2)(η). We note
that for any estimatorβ of β , its mean squared error matrix (MSEM) is defined as MSEM(β) = Cov(β) + Bias(β) Bias(β)⊤,
where Cov(β) denotes the variance–covariance matrix and Bias(β) = E(β) − β is the bias vector. The expected value ofβ(2)(η) can be written as

E{β(2)(η)} = β − (1 − η)(X⊤X + I)−1β.

The bias of theβ(2)(η) is given as

Bias{β(2)(η)} = −(1 − η)(X⊤X + I)−1β. (10)

Denoting Fη = (X⊤X + I)−1(X⊤X + ηI) and observing Fη and (X⊤X)−1 are commutative, we may writeβ(2)(η) asβ(2)(η) = Fη
β(0) = Fη(X⊤X)−1X⊤y

= (X⊤X)−1Fη
X⊤y.
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Setting S = (D⊤X)⊤(D⊤X) and U = (X⊤X)−1 we may write Cov{β(2)(η)} as

Cov{β(2)(η)} = σ 2FηUSUF⊤

η , (11)

Cov(β(0)) = σ 2USU . (12)

Using (11) and (12), the difference ∆1 = Cov(β(0)) − Cov{β(2)(η)} can be expressed as

∆1 = σ 2 USU − FηUSUF⊤

η


= σ 2Fη{F−1

η USU(F⊤

η )−1
− USU}F⊤

η

= σ 2(1 − η2)(U−1
+ I)−1


1

1 + η
(US + SU) + USU


(U−1

+ I)−1. (13)

Let τ =
1

1+η
> 0,M = USU,N = US + SU . Since M = L⊤L and rank(L) = p < n − m, then M is a (p × p) positive definite

matrix, where L = D⊤X(X⊤X)−1 and N = US + SU is a symmetric matrix. Thus, we may write (13) as

∆1 = σ 2(1 − η2)H(M + τN)H
= σ 2(1 − η2)H(Q⊤)−1(Q⊤MQ + τQ⊤NQ )Q−1H
= σ 2(1 − η2)H(Q⊤)−1(I + τE)Q−1H,

where I+τE = diag(1+τe11, . . . , 1+τepp) andH = (U−1
+I)−1. SinceM is a positive definite andN is a symmetricmatrix,

a nonsingular matrix Q exists such that Q⊤MQ = I and Q⊤NQ = E; here E is a diagonal matrix and its diagonal elements
are the roots of the polynomial equation |M−1N − eI| = 0 (see [11, pp. 408] and [16, pp. 563]) and since N = US + SU ≠ 0,
there is at least one diagonal element of E that is nonzero. Let eii < 0 for at least one i; then positive definiteness of I + τE
is guaranteed by

0 < τ < min
eii<0

 1eii
 . (14)

Hence 1+τeii > 0 for all i = 1, . . . , p and therefore I+τE is a positive definitematrix. Consequently,∆1 becomes a positive
definite matrix, as well. It is now evident that the estimatorβ(2)(η) has a smaller variance compared with the estimatorβ(0)
if and only if (14) is satisfied.

Next, we give necessary and sufficient conditions for the difference based Liu type estimatorβ(2)(η) to be superior toβ(0)
in the mean squared error matrix (MSEM) sense.

The proof of the next theorem requires the following lemma.

Lemma 4.1 (Farebrother [10]). Let A be a positive definite (p × p) matrix, b a (p × 1) nonzero vector and δ a positive scalar.
Then δA − bb⊤ is non-negative if and only if b⊤A−1b ≤ δ.

Let us compare the performance ofβ(2)(η) with the differencing estimatorβ(0) with respect to the MSEM criterion. In order
to do that, define ∆2 = MSEM(β(0)) − MSEM{β(2)(η)}. Observe that

MSEM(β(0)) = Cov(β(0)) = σ 2USU (15)

and

MSEM{β(2)(η)} = σ 2FηUSUF⊤

η + (1 − η)2(U−1
+ I)−1ββ⊤(U−1

+ I)−1. (16)

Then from (15) and (16) one derives

∆2 = σ 2Fη{F−1
η USU(F⊤

η )−1
− USU}F⊤

η − (1 − η)2(U−1
+ I)−1ββ⊤(U−1

+ I)−1,

= H

σ 2(1 − η2)(M + τN) − (1 − η)2ββ⊤


H,

= (1 − η)2H

σ 2 1 + η

1 − η
(M + τN) − ββ⊤


H.

Applying Lemma 4.1 and assuming condition (14) to be satisfied, we see ∆2 is positive definite if and only if

β⊤(M + τN)−1β ≤ σ 2 1 + η

1 − η
, 0 < η < 1.

Now we may state the following theorem.

Theorem 4.1. Consider the two estimatorsβ(2)(η) andβ(0) of β . Let W =
1+η

1−η
(M + τN) be a positive definite matrix. Then the

biased estimator β(2)(η) is MSEM superior toβ(0) if and only if

β⊤W−1β ≤ σ 2.
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5. MSEM comparison ofβ(1)(k) andβ(2)(η)

Let us now compare the MSEM performance ofβ(1)(k) = (X⊤X + kI)−1X⊤y
= SkX⊤Dy
= A1y (17)

with β(2)(η) = (X⊤X + I)−1(X⊤y + ηβ(0))

= (X⊤X)−1(X⊤X + I)−1(X⊤X + ηI)X⊤y
= UFη

X⊤Dy

= A2y. (18)

The MSEM of the difference based ridge regression estimatorβ(1)(k) is given by

MSEM{β(1)(k)} = Cov{β(1)(k)} + Bias{β(1)(k)} Bias{β(1)(k)}⊤

= Sk(σ 2S + k2ββ⊤)S⊤

k

= σ 2(A1A⊤

1 ) + d1d⊤

1 ,

where Sk = (X⊤X + kI)−1 and d1 = Bias{β(1)(k)} = −kSkβ; see [27]. The MSEM in (16) may be written as

MSEM{β(2)(η)} = σ 2(A2A⊤

2 ) + d2d⊤

2 ,

with d2 = Bias{β(2)(η)} = −(1 − η)(U−1
+ I)−1β .

Define

∆3 = MSEM{β(1)(k)} − MSEM{β(2)(η)} = σ 2(A1A⊤

1 − A2A⊤

2 ) + (d1d⊤

1 − d2d⊤

2 ). (19)

For the following proofs we employ the following lemma.

Lemma 5.1 (Trenkler and Toutenburg [28]). Let β(j) = Ajy, j = 1, 2 be the two linear estimators of β . Suppose the difference
Cov(β(1)) − Cov(β(2)) of the covariance matrices of the estimators β(1) and β(2) is positive definite. Then MSEM(β(1)) −

MSEM(β(2)) is positive definite if and only if d⊤

2 {Cov(β(1)) − Cov(β(2)) + d1d⊤

1 }
−1d2 < 1.

Theorem 5.1. The sampling variance of β(2)(η) is smaller than that of β(1)(k), if and only if λmin(G−1
2 G1) > 1, where λmin is

the minimum eigenvalue of G−1
2 G1 and Gj = σ 2AjA⊤

j , j = 1, 2.

Proof. Consider the difference

∆∗
= Cov{β(1)(k)} − Cov{β(2)(η)}

= σ 2(A1A⊤

1 − A2A⊤

2 ),

= G1 − G2

withG1 = (D⊤XWkU)⊤ = V⊤V ,Wk = I+kU andG2 = (XF⊤
η U)⊤(XF⊤

η U). Since rank(V ) = p < n−m,G1 is a (p×p)positive
definite matrix and G2 is a symmetric matrix. Hence, a nonsingular matrix O exists such that O⊤G1O = I and O⊤G2O = Λ,
with Λ diagonal matrix with diagonal elements roots λ of the polynomial equation |G1 − λG2| = 0 (see [16, p. 563]
or [25, p. 160]). Thus, we may write ∆∗

= (O⊤)−1(O⊤G1O − O⊤G2O)O−1
= (O⊤)−1(Λ − I)O−1 or O⊤∆∗O = Λ − I . If

G1 − G2 is positive definite, then O⊤G1O− O⊤G2O = Ψ − I is positive definite. Hence λi − 1 > 0, i = 1, 2, . . . , p, so we get
λmin(G−1

2 G1) > 1.
Now let λmin(G−1

2 G1) > 1 hold. Furthermore, with G2 positive definite and G1 symmetric, we have λmin <
ν⊤G1ν
ν⊤G2ν

< λmax

for all nonzero (p× 1) vectors ν, so G1 −G2 is positive definite; see [23, p. 74]. It is obvious that Cov{β(2)(η)}− Cov{β(1)(k)}
is positive definite for 0 ≤ η ≤ 1, k ≥ 0 if and only if λmin(G−1

2 G1) > 1. �

Theorem 5.2. Consider β(1)(k) = A1y and β(2)(η) = A2y of β . Suppose that the difference Cov{β(1)(k)} − Cov{β(2)(η)} is
positive definite. Then

∆3 = MSEM{β(1)(k)} − MSEM{β(2)(η)}

is positive definite if and only if

d⊤

2 {σ 2(A1A⊤

1 − A2A⊤

2 ) + d1d⊤

1 }
−1d2 < 1

with A1 = SkX⊤D, A2 = UFη
X⊤D.
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Proof. The difference between the MSEMs ofβ(2)(η) andβ(1)(k) is given by

∆3 = MSEM{β(1)(k)} − MSEM{β(2)(η)}

= σ 2(A1A⊤

1 − A2A⊤

2 ) + (d1d⊤

1 − d2d⊤

2 )

= Cov{β(1)(k)} − Cov{β(2)(η)} + (d1d⊤

1 − d2d⊤

2 ).

Applying Lemma 5.1 yields the desired result. �

It should be noted that all results reported above are based on the assumption that k and η are non-stochastic. The
theoretical results indicate that theβ(2)(η) is not always better than theβ(1)(k), and vice versa. For practical purposes, we
have to replace these unknown parameters by some suitable estimators.

6. The heteroscedasticity and correlated error case

Up to this point, independent errorswith equal variancewere assumed. The error termmight also exhibit autocorrelation.
To account for these effects, we extend the results in this section and consider the more general case of heteroscedasticity
and autocovariance in the error terms.

Consider nowobservations {yt , xt , tt}Tt=1 and the semiparametric partial linearmodel yt = x⊤
t β+f (tt)+εt , t = 1, . . . , T .

Let E(εε⊤
|x, t) = Ω not necessarily diagonal. To keep the structure of the errors for later inference, we define an (n × n)

permutation matrix P as in [32]. Consider a permutation:
1 t(1)
· · · · · ·

i t(i)
· · · · · ·

n t(n)


where i = 1, . . . , n is the index of the ordered nonparametric variable and t(i) = 1, . . . , T corresponding time index of the
observations. Then P is defined for i, j = 1, . . . , n:

Pij =


1, j = t(i)
0, otherwise.

We can now rewrite the model after reordering and differencing:

DPy = DPXβ + DPf (x) + DPε, E(εε⊤
|x, t) = Ω. (20)

Then, withX = DPX andy = DPy from (20),β(0) is given:β(0) = (X⊤X)−1X⊤y (21)

with

Cov(β(0)) = (X⊤X)−1X⊤DPΩD⊤P⊤X(X⊤X)−1

= UX⊤DPΩD⊤P⊤XU . (22)

We will use a heteroscedasticity and autocovariance consistent estimator described in [22] for the interior matrix of (22),
which is in our case:

DPΩD⊤P⊤ = {DPε(DPε)⊤} ⊙


L

ℓ=0


1 −

ℓ

L + 1


Hℓ


(23)

with DPε =y −Xβ(0), ⊙ denoting the elementwise matrix product, L the maximum lag of nonzero autocorrelation in the
errors and H0 the identity matrix. Let Lℓ be a matrix with ones on the ℓth diagonal; then Hℓ, ℓ = 1, . . . L are such that:

Hℓ
ij =


0, if {DP(Lℓ + L⊤

ℓ )D⊤P⊤
}ij = 0,

1, otherwise and i, j = 1, . . . , p.

Plugging (23) in (22), we obtain a consistent estimator for Cov(β(0)); see [31] for details.
DenotingS =X⊤DPΩD⊤P⊤X , we can write down Cov{β(1)(k)} and Cov{β(2)(η)} in model (20).

Cov{β(1)(k)} = SkSSk (24)

Cov{β(2)(η)} = FηUSUFη. (25)
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Using (22) and (25), the difference ∆1 = Cov(β(0)) − Cov{β(2)(η)} can be expressed as

∆1 =

USU − FηUSUF⊤

η


= Fη{F−1

η USU(F⊤

η )−1
− USU}F⊤

η

= (1 − η2)(U−1
+ I)−1


1

1 + η
(US +SU) + USU (U−1

+ I)−1, (26)

with τ =
1

1+η
> 0,M = USU ,N = US +SU . Since M is a (p × p) positive definite matrix andN is a symmetric matrix, a

nonsingular matrix T exists such that T⊤MT = I and T⊤NT =E; hereE is a diagonal matrix and its diagonal elements are
the roots of the polynomial equation |M−1N −eI| = 0 (see [11, pp. 408] and [16, pp. 563]) and we may write (26) as

∆1 = (1 − η2)H(M + τN)H

= (1 − η2)H(T⊤)−1(T⊤MT + τT⊤NT )T−1H

= (1 − η2)H(T⊤)−1(I + τE)T−1H,

where I +τE = diag(1 + τe11, . . . , 1 + τepp) and H = (U−1
+ I)−1. SinceN = US +SU ≠ 0, there is at least one diagonal

element ofE that is nonzero.
Leteii < 0 for at least one i; then positive definiteness of I + τE is guaranteed by

0 < τ < mineii<0

 1eii
 . (27)

Hence 1+τeii > 0 for all i = 1, . . . , p and therefore I+τE is a positive definitematrix. Consequently,∆1 becomes a positive
definite matrix, as well. It is now evident that the estimatorβ(2)(η) has a smaller variance compared with the estimatorβ(0)
if and only if (27) is satisfied.

With

∆′

1 = Cov(β(0)) − Cov{β(1)(k)}

= k2Sk


1
k
(US +SU) + USU Sk

= k2Sk


1
k
N + M Sk

and analogous argumentation as above obtained forβ(1)(k):

0 <
1
k

< mineii<0

 1eii
 . (28)

The next theorem extends the results of Theorem 3.1 in [27] and Theorem 4.1 of Section 4 to the more general case
of (20).

Theorem 6.1. Consider the estimatorsβ(i)(x), i = {1, 2}; x = {k, η} andβ(0) of β . Let W1 = M + τN,W2 =
1+η

1−η
(M + τN)

be positive definite (alternative: assume that (27) and (28) hold). Then the biased estimator β(i)(x) is MSEM superior toβ(0) if
and only if

β⊤W−1
i β ≤ 1.

Proof. Consider the differences

∆2 = MSEM(β(0)) − MSEM{β(2)(η)}

= Cov(β(0)) − Cov{β(2)(η)} − Bias{β(2)(η)} Bias{β(2)(η)}⊤

= Fη{F−1
η USU(F⊤

η )−1
− USU}F⊤

η − (1 − η)2(U−1
+ I)−1ββ⊤(U−1

+ I)−1

= (1 − η)2H

1 + η

1 − η
(M + τN) − ββ⊤


H

= (1 − η)2H

W2 − ββ⊤


H.
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∆′

2 = MSEM(β(0)) − MSEM{β(1)(k)}
= Cov(β(0)) − Cov{β(1)(k)} − Bias{β(1)(k)} Bias{β(1)(k)}⊤

= Sk{k(SU + US) + k2USU − k2ββ⊤
}Sk

= k2Sk


1
k
N + M − ββ⊤


Sk

= k2Sk(W1 − ββ⊤)Sk.

With Lemma 4.1, the assertion follows. �

Theorem 6.1 gives conditions under which the biased estimatorβ(i)(x), i = {1, 2}; x = {k, η} is superior toβ(0) in the
presence of heteroscedasticity and autocorrelation in the data.

Note that for comparison of the biased estimators Theorem 5.1 can be extended straight forwardly to the general case
by exchanging G1 and G2 by G1 =A1ΩA⊤

1 and G2 =A2ΩA⊤

2 correspondingly, withA1 = SkX⊤DP, A2 = UFη
X⊤DP . Hence,

the sampling variance ofβ(2)(η) is always smaller than that ofβ(1)(k), if and only if λmin(G2
−1G1) > 1, where λmin is the

minimum eigenvalue of G2
−1G1.

Now, we give a generalized version of Theorem 5.2.

Theorem 6.2. Consider β(1) =A1y andβ(2) =A2y of β . Suppose that the difference Cov{β(1)} − Cov{β(2)} is positive definite.
Then

∆3 = MSEM(β(1)) − MSEM(β(2))

is positive definite if and only if

d⊤

2 (A1ΩA⊤

1 −A2ΩA⊤

2 + d1d⊤

1 )−1d2 < 1.

Proof. The difference between the MSEMs ofβ(2)(η) andβ(1)(k) is given by

∆3 = MSEM(β(1)) − MSEM(β(2))

= A1ΩA⊤

1 −A2ΩA⊤

2 + d1d⊤

1 − d2d⊤

2

= Cov(β(1)) − Cov(β(2)) + d1d⊤

1 − d2d⊤

2 .

Applying Lemma 5.1 yields the desired result. �

We note that in order to use the criteria above, one has to estimate the parameters. The estimation of Ω is thereby the
most challenging. However, as long as estimator (23) is available, all considered criteria can be evaluated on the real data
and can be used for practical purposes.

7. Determinants of electricity demand

The empirical study example is motivated by the importance of explaining variation in electricity consumption. Since
electricity is a non-storable good, electricity providers are interested in understanding and hedging demand fluctuations.

Electricity consumption is known to be influenced negatively by the price of electricity and positively by the incomeof the
consumers. As electricity is frequently used for heating and cooling, the effect of the air temperature must also be present.
Both heating by low temperatures and cooling by high temperatures result in higher electricity consumption and motivate
the use of a nonparametric specification for the temperature effect. Thus we consider the semiparametric regression model
defined in (1)

y = f (t) + β1x1 + β2x2 + β3x3 + · · · + β13x13 + ε, (29)

where y is the log monthly electricity consumption per person (aggregated electricity consumption was divided by
population interpolated linearly from quarterly data), t is cumulated average temperature index for the corresponding
month taken as average of 20 German cities computed from the data of German weather service (Deutscher Wetterdienst),
x1 is the log GDP per person interpolated linearly from quarterly data, detrended and deseasonalized and x2 is the log rate
of electricity price to the gas price, detrended. The data for 199601-201009 comes from EUROSTAT. Reference prices for
electricity were computed as an average of electricity tariffs for consumer groups IND-Ie and HH-Dc, for gas—IND-I3-2 and
HH-D3with reference period 2005S1. Time series of priceswere obtained by scalingwith electricity price or correspondingly
gas price indices. x3, x4, . . . , x13 are dummy variables for the monthly effects.

The model in (29) includes both parametric effects and a nonparametric effect. The only nonparametric effect is implied
by the temperature variable. From Fig. 1, we can see that the effect of t on y is likely to be nonlinear, while the effects of
other variables are roughly linear. The dummy variables enter into the linear part in the specification of the semiparametric
regression as well.
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Fig. 1. Plots of individual exp. variables vs. dependent variable, linear fit (green), local polynomial fit (red), 95% confidence bands (black). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

We note that the condition number of X⊤X of these explanatory variables is 20.5, which justifies the use ofβ(1)(k) andβ(2)(η); see [2].
Throughout the paper, we use fifth-order differencing (m = 5). Results for other orders of differencing were similar.
The admissible regions for the biasing parameters η and k for MSEM superiority were η ≥ 0.923 and k ≤ 0.0085.

These bounds were determined using the estimated parameters and the inequalities from Theorem 4.1 and Theorem 3.1
in [27], respectively. Under more general assumptions on Ω and resulting heteroscedasticity and autocovariance consistent
Newey–West covariance estimator, defined in (23), the admissible region for η (Theorem 6.1 and restriction (27)) was
shrinked to η ≥ 0.927. Forβ(1)(k), no admissible values of k were found, since admissible k ≥ 1.57 of (28) do not satisfy
the condition of Theorem 6.1 (see Table 2).

Alternatively, we used a scalar mean squared error (SMSE), defined as the trace of the corresponding MSEM, to compare
the estimators. The bounds for k and η can then be calculated only numerically using a grid on [0, 1] for the biasing
parameters and determining the regions where SMSEs of the proposed estimators are lower. SMSE superiority of β(1)(k)
andβ(2)(η) overβ(0) under general Ω is given for k ≤ 0.0267 and η ≥ 0.384 compared to k ≤ 0.0123 and η ≥ 0.708 by
standard assumptions; see Fig. 2 which depicts SMSE of the estimators and the corresponding η and k under standard and
general assumptions. Thus the SMSE superiority intervals for η and k become even larger in the case of the general form
of Ω .

Our computations here are performed with R 2.10.1 and the codes are available on www.quantlet.org.
Results of different estimation procedures can be found in Table 1. We note that regardless of the estimator type, the

effect of income is positive and the effect of relative price is negative as expected from an economic perspective, as in [4].
However, the R2 obtained by difference based methods is higher and SMSE lower for Liu type and ridge difference based
estimator. The values of biasing parameters for which conditions of Theorems 5.1 and 5.2 are satisfied are given in Table 3.
The superiority ofβ(2)(η) overβ(1)(k) is assured for the zone of values marked by plus.

Returning to our semiparametric specification, wemay now remove the estimated parametric effect from the dependent
variable and analyze the nonparametric effect. We use a local linear estimator of f to model the nonparametric effect of
temperature. The resulting plots are presented in Fig. 3wherewe also include the linear effect.Wenotice that all differencing
procedures result in similar estimators of f , regardless of notable differences in the coefficients of the linear part. The
estimator of f is consistent with findings e.g. of [4] for US electricity data.

In both specifications, f is different from the linear effect and therefore including temperature as a linear effect is
misleading.

http://www.quantlet.org
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Fig. 2. SMSE ofβ(2)(η) in dependence of η (left) andβ(1)(k) in dependence of k (right) against that ofβ(0) (dashed) under standard assumptions (black)
and under generalized assumptions (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Results of OLS, difference based and Liu type difference based estimations.βOLS β(0) β(1)(10−3) β(2)(0.95)

x1 0.634 0.578* 0.550* 0.562*

x2 −0.152***
−0.160***

−0.158***
−0.161***

x3 0.030*** 0.030* 0.030* 0.030*

x4 −0.043***
−0.040**

−0.040**
−0.040**

x5 0.011 0.031 0.031 0.031
x6 −0.051**

−0.014 −0.013 −0.014
x7 −0.054*

−0.014 −0.013 −0.014
x8 −0.079**

−0.065 −0.064 −0.065
x9 −0.036 −0.037 −0.036 −0.037
x10 −0.052 −0.044 −0.043 −0.044
x11 −0.049 −0.013 −0.012 −0.013
x12 −0.000 0.040 0.040 0.040
x13 −0.001 0.016 0.016 0.016
t −13 · 10−5*** – – –

R2 0.729 0.749 0.749 0.749
* Indicates significance on 10%.
** Indicates significance on 5%.
*** Indicates significance on 1%.

Table 2
Standard errors of the estimators in comparison to Newey–West standard errors for the effects of x1 (income) and x2 (relative price).Ω β(0) β(1)(10−3) β(2)(0.95)σ 2I ΩNW σ 2I ΩNW σ 2I ΩNW

x1 0.215 0.347 0.209 0.337 0.205 0.215
x2 0.034 0.047 0.034 0.047 0.034 0.034
SMSE 0.058 0.148 0.056 0.141 0.054 0.058

8. Conclusion

Weproposed a difference based Liu type estimator and a difference based ridge regression estimator for the partial linear
semiparametric regression model.

The results show that in case of multicollinearity, the proposed estimator, β(2)(η) is superior to the difference based
estimatorβ(0). We gave bounds on the value of η which ensure the superiority of the proposed estimator. The two biased
estimatorsβ(2)(η) andβ(1)(k) for different values of η and k can be compared in terms of MSEMwith the theoretical results
above.

Finally, an application to electricity consumption has been provided to show properties of the proposed estimator
based on the mean square error criterion. We could estimate the linear effects of the linear determinants as well as the
nonparametric effect f of a cumulated average temperature index.

Thus, the theoretical results obtained allow us to tackle the problem of multicollinearity in real applications of
semiparametric models. Moreover, we are able to get estimators of the linear effects with lower standard errors by tuning
parameters k and η accordingly.
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Table 3
Admissible biasing parameters η and k marked by plus if they satisfy conditions of Theorems 5.1 and 5.2, i.e.β(2)(η) is superior toβ(1)(k).

η · 102 k · 104

1 2 3 4 5 6 7 8 9 10 11 12 13

9.23–9.23 − − − − − − − − − − − − −

9.24–9.24 + − − − − − − − − − − − −

9.25–9.25 + + − − − − − − − − − − −

9.26–9.26 + + + − − − − − − − − − −

9.27–9.27 + + + + − − − − − − − − −

9.28–9.28 + + + + + − − − − − − − −

9.29–9.30 + + + + + + − − − − − − −

9.31–9.31 + + + + + + + − − − − − −

9.32–9.32 + + + + + + + + − − − − −

9.34–9.35 + + + + + + + + + − − − −

9.36–9.37 + + + + + + + + + + − − −

9.38–9.39 + + + + + + + + + + + − −

9.40–9.43 + + + + + + + + + + + + −

9.44–9.56 + + + + + + + + + + + + +

9.57–9.61 + + + + + + + + + + + + −

9.62–9.65 + + + + + + + + + + + − −

9.66–9.69 + + + + + + + + + + − − −

9.70–9.72 + + + + + + + + + − − − −

9.73–9.76 + + + + + + + + − − − − −

9.77–9.79 + + + + + + + − − − − − −

9.80–9.82 + + + + + + − − − − − − −

9.83–9.85 + + + + + − − − − − − − −

9.86–9.88 + + + + − − − − − − − − −

9.89–9.91 + + + − − − − − − − − − −

9.92–9.94 + + − − − − − − − − − − −

9.95–9.97 + − − − − − − − − − − − −

9.98–9.99 − − − − − − − − − − − −

Fig. 3. Estimated f nonlinear effect of t on y via differenced based (left), Liu-type differenced based (right) and difference-based ridge (center) approaches.
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