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SUMMARY

A multitude of synaptic proteins interact at the active
zones of nerve terminals to achieve the high temporal
precision of neurotransmitter release in synchrony
with action potentials. Though synaptotagmin has
been recognized as the Ca2+ sensor for synchronous
release, it may have additional roles of action. We
address this question at the calyx of Held, a giant
presynaptic terminal, that allows biophysical dissec-
tion of multiple roles of molecules in synaptic trans-
mission. Using high-level expression recombinant
adenoviruses, in conjunction with a stereotactic
surgery in postnatal day 1 rats, we overcame the pre-
vious inability to moleculary perturb the calyx by
overexpression of a mutated synaptotagmin. We
report that this mutation leaves intrinsic Ca2+ sensi-
tivity of vesicles intact while it destabilizes the readily
releasable pool of vesicles and loosens the tight
coupling between Ca2+ influx and release, most likely
by interfering with the correct positioning of vesicles
with respect to Ca2+ channels.

INTRODUCTION

Two requirements have to be fulfilled so that synaptic vesicles

(SVs) can be released synchronously within the short period of

an action potential (AP): (1) they need a calcium sensor that can

rapidly respond to an increase in calcium (Llinas et al., 1992) and

(2) they have to be properly positioned near the Ca2+ channels,

so that they can sense the nano/microdomain calcium signal

(Adler et al., 1991). Synaptotagmins (syts) are a family of multifunc-

tional double C2 membrane proteins (Chapman, 2008), a subset of

which isassociatedwithSVs (Takamorietal., 2006; Xuetal., 2007).

Inparticular, Syt1, Syt2, and Syt9havebeenshown tobecritical for

synchronous release during action-potential-mediated release

(Geppert et al., 1994; Littleton et al., 1993; Stevens and Sullivan,

2003; Xu et al., 2007). Recent studies demonstrated that syt’s

ability to bind calcium is necessary to mediate synchronous

release in response to AP-driven Ca2+ influx (Fernandez-Chacon

et al., 2002; Sun et al., 2007; Yoshihara and Littleton, 2002).

In addition to its calcium-sensing function, syt has been

reported to interact with plasma membrane proteins (Bennett
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et al., 1992; Hata et al., 1993; Leveque et al., 1992) and was

hypothesized to link SVs to the calcium signal that drives

synchronous release (Neher and Penner, 1994). Possible evi-

dence for such a role came from morphological studies from

syt knockout (KO) invertebrate synapses, which showed

a decrease in the number of vesicles closely docked to the

plasma membrane (Jorgensen et al., 1995; Reist et al., 1998).

However, no tethering defects were detected in mammalian

syt KO animals (Geppert et al., 1994). Subsequent work in squid

used a peptide to interfere with the syt/neurexin interaction and

completely blocked evoked release (Fukuda et al., 2000). This

finding also suggested that syt plays a role in linking SV to sites

of Ca2+ influx. However, this motif is also found in other mole-

cules at the active zone (Krasnov and Enikolopov, 2000), so

definitive conclusions could not be drawn.

Based on currently available data, definitive evidence for syt

having a role in linking SV to the site of calcium influx is still lack-

ing. Our aim is to determine if syt does indeed play a role in link-

ing SV to the site of calcium influx. To demonstrate such a role,

a dominant-negative mutant that would perturb release evoked

by AP-like stimulation without interfering with the intrinsic Ca2+

sensitivity of the release apparatus is required. However, a

mutant that might mediate such an effect must fulfill three

requirements. (1) A perturbation should be placed at a site likely

to mediate this role. (2) The mutation should not affect syt’s

ability to bind calcium. (3) It should not affect the proper folding

of syt and its targeting to the synapse. In addition, the intrinsic

calcium sensitivity of release must be measured at the synapse

that overexpresses this dominant-negative mutant, so that any

contributions of such effects to changes in AP-evoked release

can be recognized.

A recent study on syt1 function identified a mutation in the

C terminus of the C2B domain, R398,399Q, which did not affect

calcium binding or the protein’s folding (Arac et al., 2006; Xue

et al., 2008) but was unable to rescue evoked release on a Syt1

null background in autaptic neurons (Xue et al., 2008). Although

this mutation is ideal to determine if syt plays role in addition to

Ca2+ sensing, conclusions about how the mutation affects

synaptic transmission were limited in this study using autaptic

synapses because the intrinsic calcium sensitivity of release

cannot be directly measured in this preparation. Specifically,

defects in vesicle positioning or defects in the intrinsic calcium

sensitivity cannot be dissected from one another. In fact, conclu-

sions regarding the mechanism of the mutation have relied on

conflicting results from liposomal assays, which were interpreted
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either as an effect of syt on lipid mixing (Xue et al., 2008) or as

a defect in syt’s interaction with SNARE complexes (Gaffaney

et al., 2008).

At the calyx of Held synapse, intrinsic Ca2+ sensitivity of the

release apparatus can be determined by flash-photolysis of

caged Ca2+, and so defects in vesicle positioning can be discrim-

inated against those affecting intrinsic calcium sensitivity. It has

been demonstrated that SV positioning, also termed ‘‘positional

priming,’’ is important for synchronous release (Sakaba et al.,

2005; Wadel et al., 2007). However, the calyx of Held preparation

has severe restrictions regarding molecular perturbation studies:

(1) there is no possibility of applying primary cell culture or orga-

notypic slice culture techniques, and (2) typically paired record-

ings are done at postnatal day 8 (P8) and older, thus limiting the

use of knockout mice, since the majority of genes knocked out

for synaptic transmission result in embryonic lethality. This has

limited the preparation’s use so far in generating a more complete

understanding of presynaptic function at the molecular level.

Since the calyx would be the ideal synapse to address a variety

of questions regarding the functional roles of synaptic proteins,

we made a major effort to develop molecular tools for this prepa-

ration. New recombinant Adenoviral (rAd) vectors with high levels

of transgene expression and a novel rat stereotactic surgery at P1

had to be established. Since the calyx of Held expresses syt2

(Pang et al., 2006a), a reciprocal mutation of rat syt1 R398,399Q

was cloned into rat syt2 (syt2). The mutant syt2 R399,400Q was

overexpressed at the rat calyx of Held using these rAd vectors

in conjunction with P1 stereotactic surgery, and its effects on

synaptic transmission were analyzed. Here we show that

synchronous release, triggered by an AP, is sharply reduced,

while the intrinsic Ca2+ sensitivity of vesicles is unchanged. In

addition, the releasable vesicle pool is reduced when overexpres-

sion of the mutant protein is strong. We conclude that syt has an

essential role in positioning vesicles at the active zone in addition

to being the calcium sensor for synchronous release.

RESULTS

Development of Novel Surgery and a Recombinant
Adenoviral Expression System to Analyze the Roles
of Synaptotagmin at the Rat Calyx of Held
Despite its strengths for biophysical studies, the calyx of Held

synapse has significant weaknesses as a target for the applica-

tion of modern molecular biology techniques to perturb the

synapse. This has limited its suitability so far for generating

a more complete understanding of molecular mechanisms under-

lying presynaptic function. Recent attempts to establish these

techniques at the calyx synapse have had limited success. Partic-

ularly, it had been impossible to perturb the synapse’s function

(Wimmer et al., 2004). Thus, a new platform technology to molec-

ularly perturb the calyx had to be developed. In order to do so and

to analyze syt’s various roles in synaptic transmission, two strat-

egies were employed in parallel: (1) creation of a high-level

expression viral vector and (2) development of a novel stereo-

tactic surgery on P1 rat pups to deliver these new viral vectors.

In order to achieve high levels of expression, a cassette for

in vivo expression, called pUNISHER, was created. Figure 1A

shows the final structure of the neurospecific pUNISHER expres-
sion cassette. The rAd vector coexpressed syt2 R399,400Q or

syt2 (Figure 1B) from the pUNISHER cassette and EGFP from

the synapsin promoter independently of each other (Figure 1C).

This allows for identification of all infected calyces by EGFP. To

check for full-length syt2 R399,400Q protein expression, pri-

mary hippocampal neurons were infected with the R399,400Q

virus and subjected to western blot analysis. Figure 1D shows

that full-length syt2 R399,400Q protein was expressed.

Additionally, a novel stereotactic surgery on P1 rat pups was

developed to deliver the rAd vectors at the calyx of Held. To

ensure that the effects of the mutation were not due to nonspe-

cific effects of overexpression, P1 rat pups were also with in-

jected with rAd that overexpressed syt2 from the pUNISHER

cassette. Figure 1E shows EGFP-positive calyces, demon-

strating successful targeting of the cochlear nucleus, where

the globular bushy cells are located that give rise to the calyx

of Held synapse.

Overexpression of syt2 R399,400Q Results
in a Dominant-Negative Phenotype in Response
to AP-like Stimulation
In order to determine the syt2 R399,400Q effects on synchronous

release, calyces expressing the mutant syt2 or syt2 were identi-

fied as being EGFP positive and were subsequently used for

simultaneous presynaptic and postsynaptic patch-clamp re-

cording in the whole cell configuration. Presynaptic and postsyn-

aptic compartments were voltage clamped to �80 mV, short

AP-like depolarizations were applied to the calyx, and the

AMPAR-mediated postsynaptic currents were measured. The

effects of the syt2 R399,400Q mutation on AP-like release were

then quantified (Figures 2A1, 2A2, 2A3, and 2A4). Presynaptic

overexpression of this protein resulted in a severe reduction or

a complete loss of the EPSC, though varying levels of pene-

trance of the syt2 R399,400Q phenotype were found (Table 1,

Figure 2B). The 4-fold reduction of the mean EPSC was not due

to a change in the presynaptic Ca2+ current (Table 1, Figure 2C).

In addition, syt2 overexpression resulted in a 1.8-fold increase of

the mean ESPC that was not due to a change in the presynaptic

Ca2+ current (Table 1, Figure 2C), though the post hoc test was

not sensitive enough to prove a highly significant difference.

These values of the presynaptic Ca2+ current are similar to pre-

vious reports at the calyx of Held (Sakaba, 2006; Sakaba and

Neher, 2001a). In addition to the reduction in synchronous

release, the syt2 R399,400Q mutation also increased the syn-

aptic delay time for evoked release compared to control or syt2

(Table 1, Figure 2D). These results show that syt2 R399,400Q

results in a dominant-negative phenotype, which is similar to

the phenotype of the R398,399Q syt1 mutation on the syt null

background in hippocampal autapses (Xue et al., 2008), and

not due to nonspecific effects of overexpression of syt2. This

result confirms that this region of syt is critical to trigger synchro-

nous release.

Overexpression of syt2 R399,400Q Results
in an Increase in Paired Pulse Facilitation
and Facilitation in Response to 100 Hz Stimulation
Since changes in the paired pulse ratio (PPR) are indirect mea-

sures of initial release probabilities, Xue et al. (2008) measured
Neuron 63, 482–496, August 27, 2009 ª2009 Elsevier Inc. 483
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500 bp Figure 1. Expression of syt2 R399,400Q in

the Rat Calyx of Held

(A) Schematic of the pUNISHER expression

cassette. pUNISHER is 2.184 kb long. Optimized

transcriptional, posttranscriptional, and transla-

tional signals are shown: the human CMV en-

hancer (hCMV), human synapsin promoter, 50

amyloid precursor protein (APP), untranslated

region (UTR), multiple cloning site (MCS), minute

virus of mice (MVM) intron, woodchuck post-

transcriptional regulatory element (WPRE), tau

30UTR, and bovine growth hormone (BGH) polya-

denylation signal (poly A).

(B) Schematic illustration of syt2 with location of

mutated residues in the C terminus of the C2B

domain. Location of HA and HB helices in the

C2B domain are highlighted yellow; location of

the b8 strand is highlighted in light blue. Black

triangles indicate the position of R399,400.

(C) Schematic of the rAd syt2 R399,400Q virus.

The black triangles represent the viral inverted

terminal repeats. The packaging signal J is high-

lighted by the open box.

(D) Expression of syt2 R399,400Q protein from the

pUNISHER rAd vectors. Primary hippocampal

neurons were infected with 1x104, 1x105, or

1x106 particles of syt2 R399,400Q rAd virus.

Lane 1: uninfected neurons. Lane 2: 1x104 parti-

cles. Lane 3: 1x105 particles. Lane 4: 1x106 parti-

cles.

(E) EGFP-positive calyces from P8 Wistar rats in-

jected with syt2 R399,400Q virus at P1 and sacri-

ficed 7 days later. Transverse brainstem slices

containing the MNTB were made. Left panel

shows the transillumination image and the right

panel is the corresponding fluorescence image.

Images were made using a 60x objective

(Olympus).
PPRs in hippocampal autapses. They found an increase in

the PPR and frequency-dependent facilitation with syt1

R398,399Q and concluded that this mutation lowers initial

release probability. It is known that calcium current facilitation

can play a role in facilitation of the EPSC at 100 Hz stimulation

(Borst and Sakmann, 1998; Cuttle et al., 1998; Xu and Wu,

2005). In order to test facilitation of the EPSC independent of

calcium current facilitation, we applied a paired pulse stimulation

protocol (50 Hz stimulation) that was designed to result in similar

calcium charge integrals between the first and second stimula-

tion pulse. Figure 3 shows that on average syt2 R399,400Q

calyces exhibited paired pulse facilitation (PPF), while control

calyces and syt2-overexpressing calyces typically exhibited

slight paired pulse depression (PPD) (Table 1). Increases in the

PPR were seen in the absence of calcium current facilitation or

inactivation (Table 1, Figure 3C). Based on these results, we

conclude that the R399,400Q mutation reduces initial release

probability and results in an increase in PPF, although we cannot

exclude the involvement of mechanisms other than a reduction

of the initial release probability.

In acute slices, the calyx of Held synapse depresses when

stimulated with a 100 Hz pulse train in extracellular solution con-

taining 2 mM Ca2+ and 1 mM Mg2+ (Schneggenburger et al.,
484 Neuron 63, 482–496, August 27, 2009 ª2009 Elsevier Inc.
1999). Thus, to further demonstrate that syt2 R399,400Q lowers

the initial release probability, the calyces were stimulated with

20 AP at 100 Hz. Figures 4A1 and 4A2 show that in control

calyces or calyces overexpressing syt2, the terminal undergoes

frequency-dependent depression, while Figure 4A3 shows

that syt2 R399,400Q calyces undergo pronounced frequency-

dependent facilitation. On average control synapses or syt2

synapses quickly depress, while (on average) R399,400Q

synapses strongly facilitate and stay facilitated throughout the

train (Figure 4C). Based on the results of Figures 3 and 4, it can

be concluded that overexpression of syt2 R399,400Q results in

a lowering of the initial release probability.

Overexpression of syt2 R399,400Q Results
in a Reduction of the Total Readily Releasable Pool
and Slows the Kinetics of the Fast Component
of Release with No Change in mEPSC Frequency
Using sucrose to study the RRP of autaptic hippocampal neu-

rons, it was concluded that the readily releasable pool (RRP)

size was unchanged by expression of the syt1 R398,399Q muta-

tion (Xue et al., 2008). However, it is unclear what the exact

mechanism of sucrose-induced release is and how it relates to

physiological measurements of synaptic release (Moulder and
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Figure 2. Overexpression of syt2 R399,400Q Results in a Reduction of the EPSC with No Change in the Presynaptic Calcium Current, but an

Increase in the Synaptic Delay

(A) Representative traces of EPSC (lower) and presynaptic calcium current (upper) recordings from P8 to P9 rats injected with rAd syt2 R399,400Q virus, rats

injected with rAd syt2 virus, or age-matched control animals not injected with virus. EPSCs and presynaptic calcium currents are compared between control

calyces (A1) and calyces expressing syt2 (A2), syt2 R399,400Q at medium penetrance (A3), or syt2 R399,400Q at strong penetrance (A4). Presynaptic and post-

synaptic compartments were voltage clamped to�80 mV and stimulated with an AP-like short depolarization (1 ms square wave pulse from�80 mV to +40 mV).

(B) Cumulative frequency histograms of EPSC amplitudes from syt2 (green traces), syt2 R399,400Q (red traces), and control animals (black traces). (n = 9 control,

n = 12 syt2, n = 11 syt2 R399,400Q).

(C) Same analysis and display as in (B), but using presynaptic calcium current charge integrals.

(D) Same analysis and display as in (B), but using synaptic delay time. Delay was measured as described in the Experimental Procedures.
Mennerick, 2005). Since the calyx of Held presynapse can be

voltage clamped, one can measure the size of the physiologically

relevant RRP using a long-lasting depolarization, which depletes

the pool completely. Deconvolving the resulting EPSCs and inte-

grating the release rates, one obtains a measure for pool size

(Neher and Sakaba, 2001a; Sakaba and Neher, 2001a).

To analyze how the syt2 R399,400Q mutation affected the

RRP, terminals were stimulated with a 50 ms depolarizing pulse

and ESPC amplitudes and synaptic delays were determined.

Representative traces show clear effects of the syt2 R399,

400Q overexpression on the peak EPSC amplitude and the

kinetics of the responses as compared to those of control

(Figures 5A1, 5A2, and 5A3). The overexpression of R399,400Q

syt2 resulted in a severe reduction of EPSCs, as compared to

control, and syt2 overexpression (Table 1), though varying levels

of penetrance of the syt2 R399,400Q phenotype were found

(Figure 4B). The reduction of the EPSCs was not due to a loss

of presynaptic Ca2+ currents as there was no difference in

presynaptic Ca2+ currents between R399,400Q, control, and

syt2 calyces (Figure 5C, Table 1). Similar to the case of synaptic

delay in response to AP-like stimulation, the syt2 R399,400Q

mutation also increased the synaptic delay time for the long

depolarization (Table 1).
To accurately measure the RRP at the calyx, a deconvolution

routine was employed that accounts for spillover current contri-

butions (Neher and Sakaba, 2001a, 2001b; Sakaba and Neher,

2001b). Also, it has been shown that the RRP can be separated

into two components when 0.5 mM EGTA is included in the

presynaptic patch pipette solution. These are interpreted to

represent a ‘‘fast pool’’ and a ‘‘slow pool’’ of vesicles, which on

average contribute equally to the total RRP (Sakaba and Neher,

2001a). The fast pool was shown to be composed of those

vesicles that are mainly responsible for synchronous release

(Sakaba, 2006). To measure the RRP, traces from Figure 6

were deconvolved and integrated. Figure 6A shows an example

of the deconvolution of postsynaptic traces. Figure 6B shows

that the overexpression of the syt2 R339,400Q mutation drasti-

cally alters peak vesicle release rates compared to those of

control and syt2, and confirms the reduction in the peak EPSC

amplitude shown in Figure 5B. It should be noted that one cell

pair from Figure 5 was not included in the deconvolution anal-

ysis, because its EPSCs were too small to determine adequate

deconvolution parameters. To test how the kinetics of release

were affected, the traces of Figure 6B were normalized with

respect to their peak release rates (Figure 6C). This revealed

a significant increase in the relative amount of asynchronous
Neuron 63, 482–496, August 27, 2009 ª2009 Elsevier Inc. 485
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Table 1. Summary of Synaptic Responses from Control, syt2-Overexpressing, and syt2 R399,400Q-Overexpressing Calyx of Held

Synapses

Parameter Control (n) syt2 (n) syt2 R399,400Q (n) Statistic Test Post Hoc Test

1 ms AP-like ESPC (nA) 3.04 ± 0.489 (9) 5.51 ± 1.37 (12) 0.758 ± 0.276 (11) Kruskal-Wallis,

p < 0.001

Dunn’s test control versus

mutant p < 0.05, mutant

versus syt2 p < 0.001,

control versus syt2 n.s.

1 ms AP-like Ca2+ charge

integral (pC)

1.59 ± 0.132 (9) 1.48 ± 0.0821 (12) 1.49 ± 0.144 (11) one-way ANOVA, n.s.

1 ms AP-like EPSC

synaptic delay (ms)

466 ± 16.2 (9) 581 ± 31.1 (12) 483 ± 20.3 (9) one-way ANOVA,

p < 0.01

Tukey test control versus

mutant p < 0.01, mutant

versus syt2 p < 0.05,

control versus syt2 n.s.

EPSC paired pulse ratio 0.972 ± 0.0481 (9) 0.904 ± 0.0622 (11) 1.35 ± 0.101 (7) one-way ANOVA,

p < 0.001

Tukey test control versus

mutant p < 0.01, mutant

versus syt2 p < 0.001,

control versus syt2 n.s.

Ca2+ charge integral

paired pulse ratio

1.01 ± 0.00620 (9) 1.00 ± 0.00313 (11) 1.00 ± 0.00904 (7) one-way ANOVA, n.s

Long depolarization

EPSC (nA)

20.8 ± 3.49 (8) 24.8 ± 3.51 (9) 8.28 ± 2.68 (8) one-way ANOVA,

p < 0.01

Tukey test control versus

mutant p < 0.05, mutant

versus syt2 p < 0.01,

control versus syt2 n.s.

Long depolarization

Ca2+ charge integral (pC)

69.2 ± 2.92 (8) 69.2 ± 3.94 (9) 71.7 ± 4.93 (8) one-way ANOVA, n.s.

Long depolarization

synaptic delay (ms)

1.86 ± 0.0996 (8) 1.71 ± 0.0928 (9) 3.10 ± 0.515 (8) Kruskal-Wallis,

p < 0.001

Dunn’s test control versus

mutant p < 0.05, mutant

versus syt2 p < 0.001,

control versus syt2 n.s.

RRP size (vesicles) 3454 ± 398.2 (8) 4125 ± 551.3 (9) 2090 ± 619.8 (7) one-way ANOVA,

p < 0.05

Tukey test control versus

mutant n.s., mutant versus

syt2 p < 0.05, control

versus syt2 n.s.

Peak vesicle release rates

(vesicles/ms)

1034 ± 222.7 (8) 1307 ± 231.9 (9) 344 ± 116 (7) one-way ANOVA,

p < 0.02

Tukey test control versus

mutant n.s., mutant versus

syt2 p < 0.05, control

versus syt2 n.s.

mEPSC frequency (Hz) 0.762 ± 0.184 (6) 0.562 ± 0.103 (8) 0.582 ± 0.126 (8) one-way ANOVA, n.s

mEPSC amplitude (pA) 35.3 ± 2.13 (6) 39.5 ± 1.97 (8) 37.7 ± 2.82 (8) one-way ANOVA, n.s

K10 (mM)a 15.8 ± 2.15 19.2 ± 2.36 random permutation test,

p = 0.263868, n.s.

Values are given mean ± SEM. Statistical significance was considered for p < 0.05.
a Mean ± bootstrap estimate of the SEM.
release in those mutant calyces that showed small EPSCs. Inte-

gration of release rates for the duration of the depolarizing pulse

showed that the mutation causes a reduction in the RRP as

compared to that of control (Table 1). However, there was large

variability in the syt2 R399,400Q RRP pool size (Figure 6D), prob-

ably due to varying penetrance of the mutant phenotype. To

determine the effects of the mutation on the kinetics of the fast

component, integrated traces were normalized to their respec-

tive total number of vesicles released during the depolarizing

pulse. Figure 6E shows that some traces from the mutant pheno-

type had a significantly slowed down fast component, while

others were comparable to those of control.

Since other mutations in syt have caused an increase in mini-

ature EPSC (mEPSC) frequency, it was possible that the reduc-
486 Neuron 63, 482–496, August 27, 2009 ª2009 Elsevier Inc.
tion in the RRP might have been due to such an effect. To test

this hypothesis we measured the frequency of mEPSCs at

calyces overexpressing either syt2 or syt2 R399,400Q, or at

the calyces of noninjected animals. Since we had known that

EGFP expression levels correlated with the penentrance of the

mutant phenotype (Figure S1 available online), we only recorded

from principal cells of medial nucleus of the trapezoid body

(MNTB) that were contacted by calyces that had high levels of

EGFP expression. Figure 7A shows example traces from the

mEPSC recordings, while Figure 7B demonstrates that there

was no change in the average miniwaveform between syt2,

syt2 R399,400Q, and control. Average mEPSC frequency was

unchanged between syt2 and syt2 R399,400Q compared to

that of control (Table 1, Figure 7C). Additionally, the amplitude
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Figure 3. Overexpression of syt2 R399,

400Q Results in an Increase in the EPSC

PPR with No Change in the Presynaptic

Calcium Current PPR

(A) Representative traces of EPSC (lower) and

presynaptic calcium current (upper) recordings

from P8 to P9 rats injected with rAd syt2

R399,400Q virus, rats injected with rAd syt2 virus,

or age-matched control animals not injected with

virus. Control calyces (A1), syt2 calyces (A2), or

syt2 R399,400Q calyces (A3) were identified and

the presynaptic and postsynaptic compartments

were voltage clamped to �80 mV. Calyces were

stimulated with two 1 ms depolarizing square

wave pulses from �80 mV to +40 mV at a 20 ms

interstimulus interval.

(B) Cumulative frequency histograms of PPR

values from syt2, syt2 R399,400Q, and control

animals. Control (black traces), syt2 (green traces),

and syt2 R399,400Q (red traces) are shown. (n = 9

control, n = 11 syt2, n = 7 syt2 R399,400Q).

(C) Same as in (B), except that presynaptic cal-

cium current PPR charge integrals of syt2, syt2

R399,400Q, and control animals are shown.
between syt2, syt2 R399,400Q, or control animals (Table 1,

Figure 7D) was unchanged.

Based on the results in Figures 5, 6, and 7, it can be concluded

that overexpression of syt2 R399,400Q results in a reduction of

the RRP with no change in driving Ca2+ current or change in

mEPSC frequency. Synaptic delays were increased and a corre-

sponding slowdown in the fast component of release of the RRP

was observed. The reduction in the RRP size is contrary to what

has been reported regarding the sucrose-sensitive pool in hippo-

campal autapses of this mutation (Xue et al., 2008).

Overexpression of syt2 R399,400Q Does Not Change the
Intrinsic Ca2+ Sensitivity of the Release-Ready Vesicles
Though the syt2 R399,400Q mutation revealed massive changes

in release kinetics upon stimulation by depolarization, these

experiments do not specify how the mutation is interfering with

release. Based on the depolarization data and the finding that

the Ca2+ currents are unchanged, there are two possible mech-

anisms: (1) a change in the (presynaptic release machinery’s)

intrinsic Ca2+ sensitivity of release or (2) a defect in the efficiency

of coupling between Ca2+ influx and vesicle release. The latter

mechanism might reflect a role of syt2 in the proper positioning

of vesicles close to the sites of Ca2+ influx.

Because the calyx of Held synapse is amenable to flash-

photolysis of caged Ca2+ and ratiometric Ca2+ imaging, it allows

one to elevate Ca2+ uniformly in the terminal and to measure the

intrinsic calcium sensitivity of release (Bollmann et al., 2000;

Schneggenburger and Neher, 2000). Therefore we can ask

whether the mutant phenotype results from a change in the

proper positioning of vesicles relative to Ca2+ channels or a

change in the intrinsic Ca2+ sensitivity of release. To test for

the latter, flash-photolysis of caged Ca2+ was carried out on
calyces expressing syt2 R399,400Q. Since overexpression of

syt2 R399,400Q led to varying penetrance of the mutant pheno-

type, it was important to compare only those terminals that

exhibited a strong mutant phenotype when compared to wild-

type terminals. Criteria for inclusion of mutant cell pairs in the

data set were based on their responses to depolarization (See

Experimental Procedures).

In order to measure the remaining RRP, a long depolarizing

pulse (50 ms) was given 50 ms after flash-photolysis of DM-nitro-

phen. Figure 8A shows example traces from a control (Fig-

ure 8A1) and a syt2 R399,400Q-expressing terminal (Figure 8A2)

in which intracellular calcium, [Ca2+]i, was elevated to levels

above 10 mM. In both cases, flashing to the same [Ca2+]i
(�18 mM control,�17 mM mutant) completely depleted all releas-

able vesicles, since subsequent depolarizing stimulation did not

result in any further release in both cases. Sizes of these pools

were determined to be identical to the values measured by

stand-alone 50 ms long depolarizations (control, 0.963 ±

0.0230, n = 8; mutant, 0.996 ± 0.0235, n = 9).

To compare the intrinsic Ca2+ sensitivity of release between

the mutant and control calyces, peak release rates from the de-

convolution analysis were divided by each cell pair’s respective

RRP to give the peak release rate per vesicle. Data were ob-

tained for eight control cell pairs and nine cell pairs expressing

syt2 R399,400Q that fulfilled the criteria described above. Peak

release rates per vesicle were then plotted on a log-log plot as

a function of post-flash [Ca2+]i (Figure 8B). The plotted data

was then fitted with the five-site kinetic release model described

by Schneggenburger and Neher (2000) using the fitting routine of

Wang et al. (2008). Using analysis of the residuals (see Experi-

mental Procedures) (control, �0.008235 ± 0.05914, n = 17;

mutant, �0.0762 ± 0.07545, n = 15), we were able to reject the
Neuron 63, 482–496, August 27, 2009 ª2009 Elsevier Inc. 487
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hypothesis that the two groups were different (t test, two-tailed,

p > 0.47). More specifically we could also reject the hypothesis

that the mutant flash rates were more than 1.63-fold slower

than the control flash rates (one-sample t test, one-tailed, p <

0.05; Figure 7B). The parameters from the model fits were also

used to determine the K10, the Ca2+ concentration at which the

Figure 4. Overexpression of syt2 R399,400Q Results in an Increase

in Facilitation in Response to 100 Hz Stimulation

(A) Representative traces of EPSC (bottom traces) and presynaptic calcium

current recordings (top traces) from P8 to P9 rats that had been injected

with rAd syt2 virus (A2) or rAd syt2 R399,400Q virus (A3), or age-matched

control animals (A1). Calyces were stimulated with twenty 1 ms depolarizing

square wave pulses from �80 mV to +40 mV at 100 Hz.

(B) Relative EPSC peak amplitudes were measured and then normalized to

each individual trace’s first EPSC peak amplitude (see Experimental Proce-

dures) (n = 5 syt2 R399,400Q, n = 5 control, n = 8 syt2). Data presented as

mean ± SEM.
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peak release rate is 10% of the maximal rate (Neher and Sakaba,

2008). The K10 of the mutant terminals, 19.2 ± 2.36 mM, and that

of the control, 15.8 ± 2.15 mM, indicate little difference in the

intrinsic calcium sensitivity of release between the mutant and

control terminals (Table 1).

Comparable peak release rates led to the expectation that the

synaptic delays of the EPSCs from the flash experiments should

also be similar between mutant and control. Synaptic delays in

response to flash-photolysis of caged Ca2+ were therefore

determined for the control and syt2 R399,400Q calyces at

the different [Ca2+]i (see Experimental Procedures). We found

that the delays of mutants were very close to those of control

(grand mean ratio, 1.123 ± 0.1246). This supports the model

fits (of the data) and indicates that the mutation does not cause

any significant change in the intrinsic calcium sensitivity of

release.

These results in combination with a loss of the fast component

of release, as revealed by deconvolution, strongly suggest that

this region of syt2, and syt in general, plays an important role

in positional priming of vesicles at the active zone, in addition

to being the calcium sensor for synchronous release. The

decrease in pool size points to further roles of syt2 that are

addressed in the Discussion.

DISCUSSION

Positional priming, which has been proposed as a process of

alignment of vesicles at sites where Ca2+ channels cluster in

the active zone, is essential for synchronous release (Wadel

et al., 2007). However, the molecules involved in its regulation

have remained elusive. Here, it is shown that overexpression of

the R399,400Q mutation in syt2 at the calyx of Held causes an

increase in the synaptic delay and a slowing of the kinetics of

synchronous release elicited by depolarization (Figures 2, 5,

and 6), while the intrinsic Ca2+ sensitivity of exocytosis, as

measured by flash-photolysis of caged Ca2+, is not changed

(Figure 8). These results, together with the finding that Ca2+

currents are not affected by the mutation, leaves the conclusion

that syt is involved in positional priming of vesicles at the active

zone as the only reasonable explanation. In addition we found

that the perturbation leads to a decrease in the releasable vesicle

pool.

Development of the Technology for Molecular Studies
at the Calyx of Held
For the uncovering of roles of syt in addition to its well-studied

Ca2+ sensor function, new high-level in vivo expression viral

vectors had to be generated and a novel P1 stereotactic rat sur-

gery (Figure 1) had to be developed. The use of the pUNISHER

cassette to express syt2 R399,400Q in second-generation rAd

vectors resulted in a dominant-negative phenotype at the calyx

of Held synapse similar to the phenotype reported for the syt1

R398,399Q mutant on the Syt1 null background in hippocampal

autapses (Xue et al., 2008). The similarity of phenotypes rules

out that the effects seen in our studies are due to either toxicity

of the second-generation rAd vectors or the overexpression of

syt2. The second-generation rAd vectors used here are deleted

for E2a, which removes any potential side effects described for
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Figure 5. Responses to Long-Lasting Depolarizations Are Smaller and Delayed after Overexpression of syt2 R399,400Q

(A) The figure is laid out identically to Figure 2 (A1, control; A2, syt2; A3, weak penetrance; A4, high penetrance). In these traces, calyces were stimulated with

a 2 ms �80 mV to +70 mV pulse followed by a 50 ms square wave pulse to 0 mV.

(B) Cumulative frequency histograms of EPSC amplitudes from syt2 (green traces), syt2 R399,400Q (red traces), and control animals (black traces). (n = 8 control,

n = 9 syt2, n = 8 syt2 R399,400Q).

(C) Same as in (B), except that presynaptic calcium current charge integrals are displayed.

(D) Same analysis and display as in (B), but showing synaptic delay times.
the first-generation rAd vectors (Zhou and Beaudet, 2000).

Finally, overexpression of syt2 itself at the calyx did not cause

a reduction in either the EPSC or presynaptic calcium current

(Figures 2, 3, 4, 5, and 6).

However, overexpression of syt2 R399,400Q displayed some

variability in the penetrance of the mutant phenotype (Figures 2,

3, 4, 5, and 6). This variability was likely due to variability of syt2

R399,400Q protein levels relative to native syt2 levels in calyces.

Variations in expression were suggested by variable EGFP inten-

sities of transduced calyces, and we found a correlation between

EGFP intensity and mutant phenotype. Cell pairs, which had

a higher EGFP intensity-to-background ratio, resulted in stron-

ger mutant phenotypes (Figure S1). Since calyces have a large

variability in vesicle numbers (Schneggenburger and Forsythe,

2006), different levels of syt2 R399,400Q between calyces may

be required to achieve negative dominance.

Though syt2 R399,400Q acts a dominant-negative, we could

not distinguish how it achieves negative dominance. pUNISHER

is an extremely high-level expression cassette and, in combina-

tion with multiple copies of rAd particles per neuron, will result in

high levels of mutant syt2 relative to native syt2. This will be

similar to expression of syt from other viral expression systems

relative to native syt (Han et al., 2004; Stevens and Sullivan,

2003). The increased amount of the mutant syt2 relative to native

syt2 will result in a higher probability that mutant syt2 is incorpo-

rated into SVs on the basis of the law of mass action. Thus, the
mutant syt dominant negative is likely to act by preventing native

syt2’s participation in exocytosis.

Syt2 R399,400Q Results in a Vesicle Positioning Defect
Though syt’s role as a calcium sensor for synchronous release is

well established (Sun et al., 2007), other roles of this molecule in

synaptic transmission have been discussed (Verhage and

Sorensen, 2008). Given the complexity of neurotransmitter

release, it is not surprising that synaptic proteins are multifunc-

tional. Earlier work has shown that interference with synprint

sites on calcium channels may affect vesicle positioning, which

results in a loss of the synchronous component (Mochida

et al., 1996). In addition, previous studies have assigned a role

in positional priming to VAMP/synaptobrevin (Sakaba et al.,

2005; Wadel et al., 2007). In these studies, calyces were infused

with tetanus toxin (Sakaba et al., 2005), a peptide mimicking the

N terminus of VAMP/synaptobrevin, or an antibody raised

against the N terminus (Wadel et al., 2007). The analysis of the

depolarization responses using deconvolution showed a change

in the release kinetics of the fast vesicle pool. Nevertheless,

flash-photolysis of caged calcium showed little difference in

intrinsic calcium sensitivity of release when compared to control

calyces. Based on this phenotype it was concluded that a

perturbation of VAMP/synaptobrevin loosens the tight coupling

between Ca2+ influx and vesicle release. Since this phenotype

of VAMP/synaptobrevin perturbations is identical to the
Neuron 63, 482–496, August 27, 2009 ª2009 Elsevier Inc. 489
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phenotype of R399,400Q mutation, we likewise conclude that

intact syt is necessary for positional priming.

Recent reports characterizing this region of syt using liposomal

fusion assays have reported contradictory results and suggested

competing mechanisms (Arac et al., 2006; Gaffaney et al., 2008;

Xue et al., 2008). One group has reported that this mutation inter-

feres with syt’s ability to bind lipids in the plasma membrane, thus

leading to a fusion defect (Arac et al., 2006; Xue et al., 2008), while

another group has reported that this mutation interferes with syt’s

ability to bind SNARE complexes (Gaffaney et al., 2008). Given

Figure 6. Deconvolution Analysis of De-

pleting Pulses Reveals that syt2 R399,

400Q Causes a Decrease in the Peak

Release Rate and a Slowing of the Release

of the Fast Pool

(A) Representative traces of control (A1), syt2 (A2),

or syt2 R399,400Q (A3) calyces were identified

and the presynaptic and postsynaptic compart-

ments were voltage clamped to �80 mV. Traces

shown from top to bottom are presynaptic calcium

current, EPSC, and deconvolved release rate.

(B) Analyzed traces of release rates of control (B1),

syt2 (B2), or syt2 R399,400Q (B3). (n = 8 control,

n = 9 syt2, n = 7 syt2 R399,400.)

(C) Analyzed traces of normalized peak release

rates of control (C1), syt2 (C2), or syt2 R399,

400Q (C3). (n = 8 control, n = 9 syt2, n = 7 syt2

R399,400.)

(D) Integrated deconvolved release rates during

the depleting pulse (cumulative release). (Control,

black traces, n = 8; syt2, green traces, n = 9;

syt2, R399,400Q, red traces, n = 7).

(E) Normalized cumulative release. Traces in (D)

were normalized with respect to the cumulative

release at the end of the depleting pulse. The

arrow indicates the slowing of the fast component

of release in the syt2 R399,400Q-positive calyces.

some controversies surrounding lipo-

somal fusion assays and their relevance

to synaptic physiology (Holt et al., 2008;

Stein et al., 2007), it is difficult to judge

the merits of the proposed models. Our

results are well compatible with the model

of Gaffaney et al. viewing syt as a mediator

of the interaction between SNARE com-

plexes and special sites at active zones.

We do not see a way in which we can

interpret our results in the context of the

scheme proposed by Arac et al. (2006)

and Xue et al. (2008). Previous reports

have demonstrated the role of the SNARE

complex in vesicle docking (de Wit et al.,

2006; Stanley et al., 2003) and in the posi-

tioning of vesicles close to the release

site (Sakaba et al., 2005; Stanley et al.,

2003). If the R399,400Q mutation in

syt2 blocked the interaction of syt with

SNAREs (Gaffaney et al., 2008), these

vesicles might be mislocalized and destabilized, leading to the

two phenotypes that we identified (reduced positional priming

and reduced pool sizes).

Mechanisms for the Reduction of the RRP by the syt2
R399,400Q Mutation
The reduction of the RRP, which we observed in calyces strongly

expressing syt2 R399,400Q (Figures 5 and 6), may indicate that

this region and syt in general have a role in vesicle priming or in

stabilizing the primed pool. Defects in vesicle priming have been
490 Neuron 63, 482–496, August 27, 2009 ª2009 Elsevier Inc.
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Figure 7. Overexpression of syt2 R399,400Q Does Not Cause a Change in mEPSC Frequency

(A) Representative traces of 3 continuous seconds of mEPSC recordings from P8 to P9 rats from principal neurons of the MNTB contacting control calyces (A1),

syt2-overexpressing calyces (A2), or syt2 R399,400Q-overexpressing calyces (A3).

(B) Average miniwaveform from principal MNTB cells contacting control calyces (B1), syt2-overexpressing calyces (B2), or syt2 R399,400Q-overexpressing

calyces (B3).

(C) Cumulative frequency histograms of average minifrequency values from syt2, syt2 R399,400Q, and control animals. Control (black traces), syt2 (green traces),

and syt2 R399,400Q (red traces) are shown. (n = 6 control, n = 8 syt2, n = 8 syt2 R399,400Q.)

(D) Cumulative frequency histograms of average miniamplitude values from syt2, syt2 R399,400Q, and control animals. Control (black traces), syt2 (green traces),

and syt2 R399,400Q (red traces) are shown.
shown to lead to a loss in the RRP (Brose et al., 2000). However,

the effect of the syt2 R399,400Q mutation is more subtle. Xue

et al. (2008) reported that the sucrose-sensitive RRP was

unchanged between wild-type autaptic neurons and those ex-

pressing the reciprocal mutation in syt1 (R398,399Q), while

Ca2+-triggered release was strongly suppressed. To reconcile

these findings with the results presented here, we have to

assume that there is a pool of primed vesicles that is insensitive

to Ca2+, no matter whether [Ca2+]i is increased via channel-medi-

ated Ca2+ influx or uniformly via calcium uncaging (this work), but

nevertheless is released by high osmolarity via sucrose applica-

tion (Xue et al., 2008).

Unfortunately, the mechanism of sucrose action is not well

understood and the validity of sucrose application as a measure-

ment of the RRP is debated, because it has been reported to

significantly overestimate the RRP size (Moulder and Mennerick,

2005; but see Stevens and Williams, 2007). We did not use

sucrose application at the calyx because it does not allow accu-

rate RRP determinations. Since sucrose responses are slow,

complete pool depletion cannot be achieved, given the rapid
rates of pool refilling measured at this synapse (Hosoi et al.,

2007). However, if vesicles were releasable in the calyx by

sucrose, we would postulate that there are vesicles that, after

strong overexpression of the R399,400Q mutant, have no func-

tioning Ca2+ sensor and an otherwise normal release apparatus.

Thus, these mutant molecules would still be part of the release

machinery, although they would be unable to transmit their

Ca2+ binding status to their interactors, even though is has

been shown that Ca2+ binding is intact (Figure 7; Xue et al.,

2008). This inability to transmit their Ca2+ binding status would

lead to a failure to overcome the energy threshold for vesicle

release, leading to a smaller RRP, while hyperosmostic sucrose

application would lower the energy barrier for vesicle release, so

that syt’s ability to transmit its Ca2+ binding status to its interac-

tors would no longer be needed.

Perturbations of syt and other interactors of the SNARE

complex such as complexin (Brose, 2008) and snapin (Pan

et al., 2009) have resulted in a wide variety of differential effects

on synchronous versus asynchronous versus spontaneous

release. In particular, deletion of predominant syt isoforms has
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Figure 8. Syt2 R399,400Q Does Not Alter the Intracellular Calcium Sensitivity of Release

Flash-photolysis of caged calcium was performed using the calcium cage DM-nitrophen and [Ca2+]i was measured using the ratiometric [Ca2+]i indicator dye fura-

2FF. A UV flash was given followed by a 50 ms depolarization after a 50 ms latency period. Prior to the flash, the pool size was estimated using a 50 ms depola-

rizing pulse as described in Figure 6. Sufficient time was given for recovery before flash-photolysis was performed. The peak release rate during the flash was then

divided by the pool size estimate to determine the peak release rate per vesicle. (A) From top to bottom: presynaptic [Ca2+]i, Ca2+-current, EPSC, and release rate.

(A1), control; (A2), syt2 R399,400Q. (B) Peak release rate per vesicle versus post-flash [Ca2+]i. Control values are shown as black dots, while R399,400Q values are

shown as red dots. n = 9 mutant pairs, n = 8 control pairs. Dotted lines represent 95% confidence intervals. Peak release rates per vesicle were fitted by a five-site

release model with fusion rate g and cooperativity factor b fixed to 6 ms�1 and 0.25, respectively. KD values (koff/kon) for the mutant were 116.3 mM, and for the

control, 137.4 mM.
led to increased spontaneous release in many preparations

(Littleton et al., 1993; Pang et al., 2006b; Sun et al., 2007). Differ-

ential effects have usually been interpreted in terms of different

properties of the release machineries for spontaneous and

evoked release. So far, only in two cases have such differential

effects been substantiated by an experimental demonstration

of a change in the Ca2+ dose-response curve (Lou et al., 2005;

Sun et al., 2007). We present here the first example of a molecular

perturbation (apart from interference with clostridial toxins) that

leads to differential effects on synchronous versus delayed

release, as well as profound changes in short-term plasticity

without a change in the intrinsic Ca2+ sensitivity of the release

apparatus and without a change in the frequency of mEPSCs.

Instead, we postulate that the mutation has an effect on the

coupling between Ca2+ influx and the Ca2+ sensors for Ca2+-

triggered synchronous release.

Rapid neurotransmitter release in synchrony with APs requires

an exquisite ultrastructural organization that allows interactions

between ion channels and release ready vesicles at the shortest

possible distances. It can be anticipated that a variety of molec-

ular perturbations compromise this delicate assembly without

affecting the core of the release machinery. The ability to quan-

titatively analyze synaptic transmission at the calyx of Held, in

conjunction with the new ability to molecularly perturb this nerve

terminal using viral vectors, allowed us to differentiate between

functional steps in synaptic transmission and to uncover a

second function of syt in synaptic transmission. Our new genetic

tools will now allow for a dissection of multiple steps and a more

complete understanding of the molecular mechanisms of

synaptic transmission at mammalian synapses.
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EXPERIMENTAL PROCEDURES

Animal Surgery

P1 Wistar rats were anesthetized with 95% O2 mixed with 5% isoflurane using

the CombiVet base system (Rothacher Medical, Bern, Switzerland) for 5 min.

Afterwards, 50 ml of lidocaine solution was injected under the scalp and

animals were placed into a Kopf stereotactic frame (Model 940 digital) (David

Kopf Instruments, Tujunga, CA). A gas mask (Kopf) was placed over the

animals’ faces and animals were maintained under light anesthesia (0.6% to

0.8% isoflurane) using the CombiVet base system with humidifier (Rothacher).

Animals were maintained at 37�C using an electronic thermometer linked to

a heating pad (Harvard Apparatus, Holliston, MA). Using a scalpel, the scalp

of the animal was opened and lambda relative to bregma was measured using

a 32G blunt needle (Popper and Sons, Inc., New Hyde Park, NY). Typical coor-

dinates for injection were (in mm, lambda relative to bregma) 0.200, A/P 4.9,

L/R 1.7, D/V 6.2. A total of 3 ml rAd syt2 R399,400Q (2 ml of a 1.2 3 1012

particle/ml or rAd syt2 1.0 3 1012 particle/ml stock mixed with 1 ml of 20%

mannitol in storage solution) was injected using a 32G blunt needle for

30 min at a rate of 100 nl/min. Subsequently, the needle was allowed to remain

in place for 5 min, then slowly removed. Afterwards, the scalp was glued using

Histocryl (B. Braun Melsungen AG, Melsungen, Germany) and all traces of

blood were removed. Anesthesia was stopped; animals were removed from

the stereotactic frame and placed on a 37�C warm plate (Labotect GmbH,

Goettingen, Germany). After full recovery, animals were placed back in their

respective cages. Animals were sacrificed 7–8 days later. This procedure

and all surgery experiments were carried out under the strict guidelines of

the laws of Lower Saxony.

Creation of syt2 R399,400Q

Rat syt2 cDNA was codon optimized for expression in rat (Geneart, Regens-

burg, Germany). The codon-optimized syt2 was mutated at amino acid num-

bers 399,400 from arginine to glutamine using the primers 50-GACATGCT

GGCCAACCCCCAGCAGCCCATCGCCCAGTGGCAC- 30 and 50-GTGCCACT

GGGCGATGGGCTGCTGGGGGTTGGCCAGCATGTC-30.
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Mutagenesis was performed using the Quickchange strategy (Stratagene,

La Jolla, CA). The mutations were then sequenced for verification. After crea-

tion of syt2 R399,400Q, it and the syt2 cDNA was cloned into the pUNISHER

cassette described below.

Creation of pUNISHER

To ensure high levels of expression of syt2 R399,400Q, an expression cassette

was made and cloned into the pDC511 plasmid (Microbix, Toronto, Canada).

We call this the pUNISHER plasmid. pUNISHER combines previous optimiza-

tions of the transcriptional (Hioki et al., 2007), translational (Brun et al., 2003),

and posttranscriptional signals (Brun et al., 2003; Wu et al., 2008; Xu et al.,

2002) for transgene expression into one vector.

Construction of Virus

Second-generation Adenoviruses (Ad) containing the E2a deletion (Zhou and

Beaudet, 2000) with slight modifications were made. The E2a deletion (Zhou

et al., 1996) was cloned into the Flp,frt helper plasmid (Microbix). The 470 bp

synapsin promoter (Kugler et al., 2001) driving EGFP expression was cloned

into the E2a deletion region, so that the rAd syt2 R399,400Q virus expressed

neurospecific EGFP independent of syt2 R399,400Q. The genomic helper

plasmid and the pUNISHER plasmid were cotransfected into E2T cells

following the standard protocols for rAd production (Ng and Graham, 2002).

rAd was stored in 10 mM HEPES, 250 mM sucrose, and 1 mM MgCl2 at pH 7.4.

To check for syt2 R399,400Q expression, primary hippocampal cultures

were infected at 17 DIV and neurons were harvested 5 days postinfection.

Approximately 60,000 neurons were loaded onto a 10% SDS PAGE gel and

processed for western blot analysis using a syt2 polyclonal antibody (Synaptic

Systems #105 023, Goettingen, Germany).

Slice Preparation

Acute brainstem slices were made from P8–P9 rats that had been injected with

rAd syt2 R399,400Q or rAd syt2 at P1 or from age-matched control animals not

transduced with virus, as previously described (Borst and Sakmann, 1996;

Forsythe and Barnes-Davies, 1993). Using a Leica VTS 1000 vibratome (Leica,

Wetzlar, Germany), 200 mm slices of the brainstem including the MNTB were

made in ice-cold solution containing, in mM, 125 NaCl, 2.5 KCl, 3 MgCl2,

0.1 CaCl2, 25 glucose, 25 NaHCO3, 1.25 Na2PO4, 0.4 L-ascorbic acid, 3

myo-inositol, and 2 Na-pyruvate (pH 7.3–pH 7.4) at �310 mOsm. Slices

were immediately transferred to a chamber containing a similar solution at

36�C in which the CaCl2 and MgCl2 concentrations were changed to 2 mM

and 1 mM, respectively. All solutions were bubbled continuously with 95%

O2 and 5% CO2. Slices were allowed to recover for 1 hr and were then trans-

ferred to a recording chamber with the same solution at room temperature. For

recordings the extracellular solution was supplemented with 1 mM TTX (Alo-

mone Labs, Jerusalem, IL), 10 mM TEA (Sigma, Steinheim, DE), 50 mM DAP-5

(Tocris Biosciences, Bristol, UK), 100 mM CTZ (Tocris), and 1 mM kynurenic

acid (Kyn) (Tocris) as previously described (Sakaba and Neher, 2001b; Sakaba

et al., 2002). Addition of DAP-5 leads to pharmacological isolation of AMPAR-

mediated current. For flash-photolysis experiments 1 mM or 2 mM g-DGG

(Tocris) was substituted for Kyn, since Kyn absorbs UV light (Lou et al.,

2005; Wadel et al., 2007).

Electrophysiology

For identification of cell pairs, slices were imaged using a CCD camera (Till

Imago VGA, TILL Photonics, Graefelfing, Germany) through a 60x water

immersion objective (Olympus 60x / 0.90W LUMPlanFl) on an upright Zeiss

microscope (Axioskop) (Zeiss, Jena, Germany). To identify calyces transduced

with the rAd syt2 R399,400Q virus, the slice was illuminated at an excitation

wavelength of 480 nm using a Polychrome II Xenon bulb monochromator

(TILL Photonics). The presynaptic and postsynaptic compartments of the

calyx of Held/MNTB synapse were simultaneously voltage clamped to

�80 mV using a HEKA EPC 9/2 amplifier controlled by the Pulse or Patchmas-

ter software (HEKA, Lambrecht, DE). Recordings were low-pass filtered (6 kHz)

and sampled at 50 kHz. Borosilicate patch pipettes (Hilgenberg Malsfeld,

Germany) were pulled on a HEKA PIP-5 (HEKA). The presynaptic series resis-

tance (Rs) was typically between 8–20 MU, and compensated electronically so

that the residual Rs was 8 MU. For initial experiments presynaptic pipettes con-
tained, in mM, 140 Cs-gluconate, 10 HEPES, 20 TEA-Cl, 5 Na2phosphocrea-

tine, 4 Mg-ATP, 0.3 Na2GTP, and 0.5 CsEGTA (final pH 7.3, �340 mOsm). For

flash experiments the presynaptic pipette contained, in mM, 130 Cs-gluco-

nate, 20 HEPES, 5 Na2ATP, 0.3 Na2GTP, 0.5 MgCl2, 20 TEA-Cl, 0.2 fura-

2FF (Teflabs, Austin, TX), 2 DM-nitrophen (Calbiochem, LaJolla, CA), and

1.7 CaCl2, with a final pH of 7.3 and an osmolarity of �340 mOsm. The post-

synaptic patch pipette contained, in mM, 140 Cs-gluconate, 10 HEPES,

20 TEA-Cl, 5 Na2phosphocreatine, 4 Mg-ATP, 0.3 Na2GTP, and 5 CsEGTA

with a final pH of 7.3 and an osmolarity of �320 mOsm. In addition, the extra-

cellular solution for mEPSC omitted CTZ and Kyn, and included 5 mM strychine

(Tocris) and 40 mM bicuculline (Tocris) to block inhibitory inputs. Postsynaptic

Rs was between 4–10 MU and compensated electronically so that only 3 MU

remained. For mEPSC recordings only the principal neurons of the MNTB that

contacted EGFP-positive calyces were patched and the postsynaptic Rs was

not compensated electronically.

For Ca2+ uncaging, a UV flashlamp (Rapp Optoelectronic, Hamburg,

Germany) with a photolysis duration of 1 ms was used to photolyze DM-nitro-

phen in the presynaptic terminal as previously described (Bollmann et al.,

2000; Schneggenburger and Neher, 2000). The intracellular calcium concen-

tration, [Ca2+]i, was monitored by using the ratiometric Ca2+ dye fura-2FF

(Teflabs), excited at 350 nm and 380 nm using a monochromator (Polychrome

II, TILL Photonics). Time series images were analyzed offline using the

TILLvisION software as previously described (Schneggenburger, 2005;

Schneggenburger and Neher, 2000). [Ca2+]i was calculated based on the cali-

bration constants from in vitro measurements (Rmax, Rmin, and Rint) as previ-

ously described (Schneggenburger, 2005). All experiments were carried out

at room temperature.

Analysis

IGOR PRO software (Wavemetrics, Portland, OR) was used for all offline data

analysis. The residual Rs was compensated offline (Neher and Sakaba, 2001a).

Data based on depolarizations (AP-like:�80 mv to +40 mV, 1 ms square wave

pulses; long depolarizations:�80 mV to +70 mV for 2 ms, followed by 50 ms at

0 mV and then back to �80 mV) were plotted as cumulative frequency histo-

grams. The peak amplitudes of the EPSCs were measured as peak minus

baseline. Presynaptic calcium currents were converted to charge integrals.

In the case of AP-like stimulation, the Ca2+ charge integral was calculated

from the onset of the current to the point where 10% of the peak Ca2+ current

remained. In the case of long depolarizations, the presynaptic calcium current

was integrated from its onset (voltage step back to 0 mV) for the whole duration

of the pulse (50 ms). Synaptic delays in response to AP-like stimulation were

defined as the time at which the EPSC was 50% of its maximum minus the

time of the peak of the calcium current. Synaptic delays in response to long

depolarization were defined as the time at which EPSC was 50% of its

maximum minus the time of the onset of the calcium current (the time when

the depolarizing pulse was stepped back to 0 mV). For reporting of the

EPSC amplitudes during paired pulse stimulation or 100 Hz stimulation,

EPSC amplitudes were measured as differences between each peak value

and its respective baseline and were then then normalized to the first EPSC

amplitude of the respective train. PPRs are reported as EPSC2/EPSC1. Simi-

larly, PPR values of the calcium charge integral are reported as Ca2+ charge

integral 2/Ca2+ charge integral 1.

For the analysis of synaptic delays in response to flash, traces were low-

pass filtered offline using a Gauss filter (2 kHz cutoff). Synaptic delay was

defined as the time when the EPSC crossed an absolute threshold of

�100 pA minus the time point at which the flash lamp was triggered. Synaptic

delay times were then plotted against [Ca2+]i and binned into five different

groups of [Ca2+]i (four 5 mM bins starting at 5 mM and one bin from 3 mM to

5 mM). Means for each bin were calculated and a ratio of the mean delays

(mutant/control) was calculated. Individual bin mean ratios were then aver-

aged and reported as a grand mean ± SEM.

For the analysis of mEPSCs, we used a custom-written mEPSC detection

routine (Dr. Holger Taschenberger) based on Clements and Bekkers (1997).

For inclusion of each cell in the data set, a minimum acquisition time of 60 s

and a minimum of 15 recorded events were required. mEPSC frequency and

mEPSC amplitude from each cell was averaged. Subsequently, the average
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mEPSC frequency and mEPSC amplitude from each cell was used for statistical

analysis comparing mEPSCs from control, syt2, and syt2 R399,400Q calyces.

Statistics were carried using Prism (GraphPad, LaJolla, CA). A one-way

ANOVA test was used if the data passed Bartlett’s test of equal variance; if

not, a Kruskal-Wallis test was used. In the case of the one-way ANOVA anal-

ysis, a post hoc Tukey test was used to compare all three groups to one

another. In the case of the Kruskal-Wallis test, a post hoc Dunn’s test was

used to compare all three groups to one another.

Deconvolution Analysis

Deconvolution of the ESPCs from the long depolarization experiments and

those from the flash-photolysis protocol were carried out as previously

described (Lou et al., 2005; Neher and Sakaba, 2001a, 2003; Wadel et al.,

2007). EPSCs were deconvolved with a double exponential mEPSC waveform

(Scheuss et al., 2007), also taking into account the residual glutamate spillover

current. Parameters for the time constants of mEPSCs and residual currents

were empirically determined using the stimulus protocol as described by

Neher and Sakaba (2001b). To determine if maximal flashes completely

depleted the RRP, a long depolarizing pulse was applied 50 ms after flash

onset (Wadel et al., 2007). To determine if there was a difference between

the RRP as measured by the stand-alone 50 ms depolarization and the flash

plus long depolarization, the RRP size of the 50 ms depolarization was divided

by the RRP size measured by the flash plus long depolarization and reported

as a ratio. The total RRP size was used to convert release rates into release

rates per vesicle. These normalized rates were plotted against [Ca2+]i on

a log-log plot. Since there was variable penetrance of the syt2 R399,400Q

phenotype, criteria for inclusion of the data set for the mutant phenotype

were established so that the EGFP-positive calyces with control-like pheno-

types were eliminated. These criteria were that AP-like EPSC responses (1)

must be less than 1 nA and (2) must be facilitated for a minimum of five pulses

during a 20 AP 100 Hz train.

Release Model

The relationship between [Ca2+] and release rates per vesicles was modeled

using a five-site kinetic model as originally described by Schneggenburger

and Neher (2000) with slight modifications as described by Wang et al.

(2008). To test the hypothesis that K10 values derived from the flash data

differed significantly between the control and mutant, we performed a random

permutation test (Wang et al., 2008) using 2000 samples. K10 values are re-

ported as mean ± bootstrap estimate of SEM. To test the hypothesis that there

was no difference between the control and mutant model fits from the flash

data, we formed ratios between peak release rates of mutant flash responses

with respect to the control fit at the respective [Ca2+]i. Using Prism (GraphPad)

software, mean and SEM of the logarithms of these ratios were calculated and

a t test comparing the two groups or a one-sample t test was performed

against hypothetical means of log101 and log101/1.63. We calculated mean

and SEM of the logarithms of these ratios and obtained �0.0762 ± 0.07545

(n = 15). In addition, we also performed a t test comparing the log-ratio values

from control (�0.008235 ± 0.05914; n = 17) to test the hypothesis that the two

groups were different from each other. Gaussian distribution of log-ratio values

was tested via a D’Agostino and Pearson omnibus normality test.

SUPPLEMENTAL DATA

Supplemental data for this article include one figure and can be found at http://

www.cell.com/neuron/supplemental/S0896-6273(09)00583-2.
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