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Modifying the Einstein’s gravity at large distance scales is one of the interesting proposals to explain
the late time acceleration of the universe. In this Letter, we analyse scaling solutions in modified gravity
models where the universe is sourced by a background matter fluid together with a tachyon type scalar
field. We describe a general prescription to calculate the scaling potential in such models. Later on we
consider specific examples of modifications and apply our method to calculate the scaling potential and
the scale factor. Our method can be applied to any modified gravity model, in presence of tachyon field.
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1. Introduction

Accelerated expansion of the universe has always been one of
the most challenging subjects of investigation in cosmology. For
early universe, it plays an important role for solving major prob-
lems in standard cosmology like horizon and flatness problem. It
also provides an effective mechanism for producing a nearly scale-
invariant spectra for quantum fluctuations of the inflaton which
can work as a seed for the structure formations in our universe.
This paradigm which is dubbed as “Inflation” plays a major role
in modern era of cosmology [1]. On the other hand, there are
not many daunting questions in cosmology today than what is the
driving force behind the late time acceleration of the universe [2].
First directly observed by Supernova type Ia measurements by two
independent groups in 1998 [3], today it has also been confirmed
by observations from new Supernova type Ia measurements [4],
Cosmic Microwave Background Radiations (CMBR) [5], and galaxy
clustering by large scale redshift surveys [6].

To discover the nature of driving force behind this late time
acceleration of the universe, also termed in literature as “dark en-
ergy”, is one of the most important tasks in cosmology today. The
first and the most simple choice for dark energy is the vacuum
energy or cosmological constant Λ. However this possibility of Λ

being dominant component of the total energy density of the uni-
verse, has problem that the energy scale involved is lower than
normal energy scale of most particle physics models by a factor of
∼ 10−123.

An optimistic choice for modelling the missing energy of the
universe is in the form of a scalar field with a canonical kinetic
energy, slowly rolling down a considerably flat potential so that
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its slowly varying energy density mimics an effective cosmological
constant. This form of missing energy density is popularly called
“Quintessence” [7]. It is similar to the inflaton field with the differ-
ence that it evolves in a much lower energy scale. Amongst them,
tracker quintessence models have the advantage of allowing the
late time accelerating epoch to be reached from a wide range of
initial conditions. In order to have a viable dark energy model, it is
important that this scalar field remains subdominant during most
of the thermal history of the universe. In this sense, it is neces-
sary that this scalar field mimicks the background energy density
in the early time. This property is called the “scaling or attractor
property”. This property is very important in cosmology as they al-
low us to study the asymptotic behavior of a particular cosmology
and check whether that particular behavior is stable or not. There
have been numerous investigations involving scaling solutions in
cosmology in standard Einstein’s gravity as well as in scalar tensor
gravity [8].

Recently, there are suggestions that the present acceleration
of the universe is not due to any new unknown component in
the cosmic soup, but due to the modifications of the gravitational
physics at large distance scales. In this regard, possible modifica-
tions in the Friedmann’s equation have been proposed. Most of
these modifications have been inspired by the higher-dimensional
brane-world models. A few suggestions are particularly interesting
in this regard. The Dvali–Gabadadze–Poratti (DGP) brane induced
gravity model [10], the Cardassian model proposed by Freese and
Lewis [11], a model by Dvali and Turner [12], by Shtanov and
Sahni [13] and also the modified Chaplygin gas model by Bar-
riero and Sen [14] are some of them. Cosmological solutions with
a canonical scalar field have been studied in the modified gravity
models [9].

Recently, an effective scalar field theory governed by a La-
grangian density with a non-canonical kinetic energy term L =
−V (φ)F (X), where X = −(1/2)∂μφ∂μφ, has attracted consid-
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erable attention in cosmology. Such model can lead to a late-
time acceleration and is called “k-essence” [15]. A scalar field
with a non-canonical kinetic term has also been investigated
for an early universe inflationary scenario and is termed as
“k-inflation” [16]. One example of such Lagrangian density is
Ltach = −V (φ)

√
1 − ∂μφ∂μφ. As discussed by Padmanabhan and

Roy Choudhury [17], this is generalization of the Lagrangian of a
relativistic particle. The Hamiltonian structure of tachyonic matter
given by the above Lagrangian density is very similar to that of
a special relativistic particle governed by L = −m

√
1 − q̇2, where

m and q are the mass and generalized coordinate of the particle
respectively. This tachyon field can naturally arise in open string
theory [18] and can provide a rich gamut of possibilities in cos-
mological context [19]. Padmanabhan and Roy Coudhury [17] also
explored the possibility of this kind field acting both as a clustered
dark matter and smooth dark energy with a scale-dependent equa-
tion of state (see [20] for a different approach for such possibility).

In this Letter we have studied systematically the scaling solu-
tions involving a tachyon field described by the Lagrangian density,
mentioned above, in modified version of Friedman equation. In
Section 2, we describe the equations of motion in the modified
version of gravity in general and define the variables that allow us
to study the scaling solutions. The conditions for scaling behavior
are introduced in Section 3 and we also describe how to calcu-
late the potentials for the tachyon field which describes the scaling
behavior. In Section 4, we apply our method to some particular
examples of the modified gravity e.g. the Cardassian model, the
Shtanov–Sahni model, the Randall–Sundrum model and the DGP
model. We conclude in Section 5.

2. Equation of motion in modified gravity

We consider a spatially flat Friedmann–Robertson–Walker
(FRW) model. In this case the expansion rate of the universe H
(also called the “Hubble parameter”) is defined as

H2 = (8πG/3)ρL2(ρ), (1)

where H ≡ ȧ/a is the Hubble parameter, a is the scale factor, ρ is
the total energy density of the universe. A “dot” denotes derivative
with respect to cosmic time and G is the gravitational constant.
Whatever modification to standard Einstein’s gravity we assume, is
parametrized by the correction term L(ρ) and this is assumed to
be positive definite without any loss of generality. For L(ρ) = 1,
one recovers the standard Einstein’s gravity.

Our aim is to investigate models where the universe is sourced
by the matter component together with a dark energy part. In this
Letter, we assume that this dark energy field has a non-canonical
kinetic energy of Dirac–Born–Infeld form with a Lagrangian density

Ltach = −V (φ)
√

1 − ∂μφ∂μφ, (2)

where V (φ) is the potential for the field φ. To start with, we as-
sume the matter part is described by a barotropic fluid with a
equation of state Pγ = (γ − 1)ργ , γ being a constant. Then the
total energy density of the universe ρ , appearing Eq. (1) is given
by ρ = ργ + ρφ . One can calculate the energy density and pres-
sure for the tachyon field φ from the Lagrangian density given in
Eq. (2) as

ρφ = V (φ)√
1 − φ̇2

,

Pφ = −V (φ)

√
1 − φ̇2. (3)

We also assume that as in standard gravity, the energy momen-
tum tensors of matter and dark energy are covariantly conserved
separately which implies that
ρ̇γ = −3Hγργ ,

φ̈ + 3Hφ̇
(
1 − φ̇2) + V ′

V

(
1 − φ̇2) = 0. (4)

Eqs. (1) and (4) close the system of equations. We now define three
new variables:

X = φ̇,

Y = √
V /ρ,

N = Log[a]. (5)

When we expressed in terms of these new variables, the system of
equations (1) and (4) becomes

X ′ = −(
1 − X2)[3X − √

3Y λ
]
,

Y ′ = Y

2

[
−√

3λXY − 3Y 2(γ − X2)√
1 − X2

+ 3γ

]
,

λ′ = −√
3λ2 XY (Γ − 3/2)

+ 3λ

[
γ − Y 2(γ − X2)√

1 − X2

]
ρ

d Log[L(ρ)]
dρ

, (6)

where “prime” means differentiation with respect to N . The pa-
rameter λ and Γ are defined as

λ = − (dV /dφ)√
8πG L(ρ)V 3/2

,

Γ = V d2 V /dφ2

(dV /dφ)2
. (7)

From the definition of total energy density, one can get the con-
straint equation

Y 2

√
1 − X2

+ ργ

ρ
= 1. (8)

The equation of state for the tachyon field and its density pa-
rameter are given by

γφ = X2,

Ωφ = Y 2

√
1 − X2

. (9)

Then the allowed phase space for X and Y is given by 0 � X2 +
Y 4 � 1 from the requirement 0 � Ωφ � 1. From the expression of
the equation of state γφ , one see that γφ � 0 (Pφ = (γφ − 1)ρφ ).

For the case λ = constant, in standard gravity, the potential
turns out to be V (φ) ∝ φ−2. But due to the presence of the modi-
fied term L(ρ) �= 1, it is not so in our case. But it is interesting to
see that, for λ = constant, the equations in (6) have the identical
form to that of the plane autonomous system of standard relativis-
tic cosmology involving a tachyon field in terms of the parameters

Xs = φ̇,

Ys =
√

8πG V (φ)√
3H

,

λs = − (dV /dφ)√
8πG V 3/2

. (10)

This immediately ensures that our system of equations (6) with
constant λ admits the same set of critical points to that of the
standard cosmology when those solution are expressed in terms
of {X, Y , λ}. Also the stability of these critical points can be di-
rectly obtained from stability analysis of the standard cosmology
scenario. Now there are altogether five fixed points in our system
of equations (6) when {X, Y , λ} = {Xc, Yc, λc} are constants. Three
of these {Xc = 0, Yc = 0}, {Xc = 1, Yc = 0} and {Xc = −1, Yc = 0}
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are unstable as studied by Copeland et al. [21]. The fourth fixed
point is given by

Xc = √
γ ,

Yc = √
3γ /λc . (11)

It is a stable one for 0 � γ � α = λ2
c

18 (
√

λ4
c + 36 − λ2

c ). For this one
can easily show that γφ = γ , hence it represents a scaling solution.
But in this case as Ωφ = 3γ /(λ2

c

√
1 − γ ), γ has to be less than 1.

It restricts this case to be a viable model for dark energy as the
background fluid can never be matter-like. The fifth fixed point is
given by

Xc = λc√
3

(√
λ4

c + 36 − λ2
c

6

)1/2

,

Yc =
(√

λ4
c + 36 − λ2

c

6

)1/2

. (12)

This fixed point is a stable node for γ � α ≡ λ2
c

18 (
√

λ4
c + 36 − λ2

c ).

3. Scaling solutions

As we mentioned in the earlier section, that for a standard cos-
mology, λ = const, corresponds to a potential of inverse power law
form. But with the modification term L(φ) in the expression of λ

in Eq. (6), the form of the potential will change. In this section,
we shall calculate the form of the scaling potential in the mod-
ified gravity scenario. For this purpose, we essentially follow the
method earlier prescribed by Copeland et al. [22] for a standard
canonical scalar field.

One can show that for both the critical points (11) and (12),
X ′ = Y ′ = λ′ = 0, if the condition

Γ = 3

2
+ ρ

d

dρ
Log

[
L(ρ)

]
(13)

is satisfied. Using the relation ρ = V /Y 2
c , the above equation can

be written as

d

dφ

(
Log

[
dρ

dφ

])
− 3

2

d

dφ

[
Log(ρ)

] − d

dφ

(
Log

[
L(ρ)

]) = 0. (14)

This is very similar to the corresponding equation (Eq. (19) in
Ref. [22]) for a canonical scalar field except the factor (3/2) in the
second term in left-hand side of the above equation. The above
equation can be integrated to find ρ(φ) which together with the
expression V = Y 2

c ρ will give the corresponding potential for the
scaling solution for given choice of modification L(ρ). By integrat-
ing the above equation and using Eq. (7) with constant λ, we get∫

dρ

L(ρ)ρ3/2
= −κλc Ycφ, (15)

where κ2 = 8πG . While deriving the above expression, we have
put one integration constant to zero without no loss of generality.
This is equivalent to giving a linear shift to the value of the scalar
field.

It is also interesting to calculate the behavior of the scale factor
for a given scaling solution assuming the scalar field is monotoni-
cally varying function of time (φ̇ �= 1). In general one can express
the scalar field equation (4) in the following manner:

ρ̇φ = V (φ)√
1 − φ̇2

(−3Hφ̇2) = −3Hφ̇2ρφ. (16)

By using the definition of the Hubble parameter H = ȧ/a, one can
write

3H2 = −1

a

da

dφ

dρφ

dφ

1

ρ
. (17)
φ

Substituting the above equation in the Hubble equation (1), one
can write

da

dφ

dρ

dφ
= −κ2aρ2L2(φ), (18)

where ρ is the total energy density of the universe and can be
written as ρ = ρφ/Ωφc . Defining a new variable b(φ) as

b(φ) = exp

[ ρ∫
dρ

1

ρ2L2(ρ)

]
, (19)

one can write Eq. (18) as

da

dφ

db

dφ
= −κ2ab, (20)

which can be subsequently integrated to give the scale factor a:

a = exp

[∫
−κ2

(
db

dφ

)−1

b dφ

]
. (21)

Using Eq. (16), one can also calculate the time dependence of the
scale factor through the following equation:

t = −√
3κ

∫
dφ ρ3/2(φ)L(φ)

(
dρ

dφ

)−1

. (22)

4. Different classes of modified gravity

4.1. Randall–Sundrum model

For Type-II Randall–Sundrum brane-world model where 3
brane with positive tension is embedded in five-dimensional Anti-
de Sitter spacetime, the modification to the standard gravity is
given by

L(ρ) =
√

1 + ρ

2σ
, (23)

σ is the tension of the 3-brane. One can now use Eqs. (5) and (15)
to determine the scaling potential which is given by:

V (φ) = 4σ Y 2
c

σλ2
c Y 2

c κ2φ2 − 2
. (24)

One can also obtain the time dependence of the scale factor a(t)
using Eqs. (21) and (22):

a(t) =
(

κ2λ4
c Y 4

c σ

6
t2 − 1

) 1
λ2

c Y 2
c
. (25)

As explained in Section 2, there are two stable solutions. One
of them cannot produce a viable late time dark energy model, as
the background fluid can never behave like matter. For the other
case, one can have a late time scalar field dominated case (Ωφ = 1)
with accelerated expansion. We have plotted the time evolution for
this case in Fig. 1. We have taken σ/m4

p = 10−20. We have shown
the evolution for different values of λ. We should mention that
evolution of the universe is same as obtained by Copeland et al.
in [22] for a standard canonical scalar field. But the due to the
non-canonical nature of the kinetic term, the required potential
is different. In this case the acceleration occurs for γφ < 2/3 in
the late time when the ρ term in the action dominates whereas
for γφ < 1/3, acceleration occurs in early time when the ρ2 term
dominates. This translates to the constraints on λc as λc < 1.86
and λc < 1.01 respectively.
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Fig. 1. The evolution of the universe for Randall–Sundrum II brane world models.
We have taken σ/m4

p = 10−20 for this figure. λc = 1,1.5,2 from top to bottom.

4.2. Shtanov–Sahni braneworld cosmology

There is another interesting class of models proposed by
Shtanov and Sahni where a 3-brane with negative tension σ is
embedded in a five-dimensional conformally flat space, where the
fifth dimension has time-like signature. In this case the modifica-
tion to standard gravity is described as:

L(ρ) =
√

1 − ρ

2|σ | . (26)

One can calculate the potential which is given by

V (φ) = Y 2
c

1
2|σ | + κ2λ2

c Y 2
c

4 φ2
. (27)

One can also calculate the corresponding scalar factor a(t)

a(t) =
(

κ2λ4
c Y 4

c |σ |t2

6
+ 1

) 1
λ2

c Y 2
c
. (28)

4.3. Cardassian model

All the above modified gravity models modifies the gravity at
small distance scales i.e. it modifies gravity at high energy scales
(early times). But recently SnIa, CMB and LSS measurements have
confirmed the late time accelerated expansion of the universe.
A number of phenomenological models have been proposed to ex-
plain this late time accelerated expansion through modifications of
standard gravity at large distance scales. In one such model, know
as “Cardassian model” originally proposed by Freese and Lewis the
modification is given by

L(ρ) = √
1 + Aρn. (29)

The present acceleration of the universe can be obtained in such
model with n < −1/3 when the universe contains only the mat-
ter. Although the presence of any scalar field was not assumed in
this original model, it is interesting to study the scaling behavior
of the background cosmology in the presence of both matter and
a scalar field, a non-canonical one for our present purpose. To get
the result analytically in closed form we have assumed n = −1/2
in the following calculations. We should mention that taking dif-
ferent values of n is always possible, only problem is that solution
may not be in a closed form. We have used this particular value
of n to present the solution in a closed form. With this choice of
n, one can directly obtain the form of the potential V (φ) and the
corresponding scale factor a(t) as following:
Fig. 2. The evolution of the universe for Cardassian model. We have taken A/m2
p =

10−10 for this figure. λc = 1,1.5,2 from top to bottom.

V (φ) = A2Y 2
c

[ λ2
c κ

2Y 2
c A2φ2

16 − 1]2
, (30)

a(t) =
[

A

(
Y 2

c λ2
c κ

4
√

3

)2

t2 − 1

] 2
Y 2

c λ2
c
. (31)

We have shown the evolution of universe for this in Fig. 2. We
have assumed A/m2

p = 10−10. Acceleration of the universe takes
place in early time for γ < 2/3, which constrains the λc parameter
as λc < 1.86. For late time, universe always accelerates.

4.4. Dvali–Gabadadze–Porrati brane-world gravity model

The Dvali–Gabadadze–Porrati (DGP) model is a brane-world
model (a 3-brane embedded in 5D Anti-de Sitter bulk) with the
incorporation of the scalar curvature term for the 3-brane in the
total action. The bulk is empty and all kind of matter fields are re-
stricted to stay only on the 3-brane. The modified FRW equation
for DGP model is given by

H2 ± H

r0
= 8πG

3
ρ, (32)

where r2
0 = m2

4/2m3
5 with m4 and m5 being the 4D and 5D Planck

mass respectively. The parameter r0 actually determines the scale
at which the switchover from standard gravity to modified one
takes place. The (+) and (−) sign corresponds to different kinds
of embedding the 3-brane in the 5D bulk. The modified equation
now becomes

H = 1

2r0

[∓1 + √
1 + α1ρ

]
(33)

where α1 = 32πr2
0/3m2

4. A direct comparison of the above equa-
tion with Eq. (1), results the correction term in the Friedmann
equation as

L = 1√
α1ρ

[∓1 + √
1 + α1ρ

]
. (34)

Putting this in Eq. (15), one can integrate to get
√

α1

∓1 + √
1 + α1ρ

+ √
α1 Sinh−1

(
1√
α1ρ

)
= κλc Ycφ. (35)

This equation together with Eq. (5) can be used to find the scal-
ing potential V (φ). One can also calculated the corresponding time
dependence. This is given by

3X2
c

2r0
t = Cotanh−1

√
1 + α1ρ + 1√

1 + α1ρ ∓ 1
. (36)
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5. Conclusion

The issue of late time acceleration of the universe has been
one of the most serious challenges in cosmology nowadays. While
including an extra dark energy component with repulsive gravity
in the energy budget of the universe, is one of the most studied
approaches for explaining, modifying Einstein’s gravity at large dis-
tance scales, has also been taken seriously in recent times. While
any modifications to Einstein’s gravity has its own problems, this
idea has been rigorously pursued by various researchers in recent
times. One of the main motivations of such idea is that, modifica-
tions of Einstein’s gravity can arise at different energy scales very
naturally through compactifying higher-dimensional theories.

On the other hand, the concept of scaling solutions in cosmol-
ogy has been taken seriously in recent times, as such solutions are
necessary for solving cosmic coincidence problem in dark energy
models. In this Letter, we have studied in systematic way the scal-
ing solutions in modified gravity models when the universe con-
tains a tachyon type scalar field in addition to the standard matter
field. This is an extension of the earlier work done by Copeland
et al. [22] where the scalar field with a canonical scalar field was
considered.

We first describe the general equations and method of calcu-
lating scaling potential. Later on, we take specific modified gravity
models and apply our method. We take four choices of modifi-
cations, e.g. the Randall–Sundrum II model, Shtanov–Sahni model,
Cardassian model and DGP model. Our method can also be used
to consider any modified gravity to calculate the scaling potential,
while considering the tachyon type scalar field. We should mention
that Tsujikawa and Sami [23] have earlier considered scaling solu-
tions in modified gravity with a tachyon field. But for the modifi-
cation, they have considered the special case when H2 ∝ ρn which
does not include modifications like DGP model. Das et al. [24] have
also considered tracking solutions in modified gravity both with
quintessence and k-essence type fields. Their approach is different
from ours and they have not considered fields like tachyon which
has some specific features.

In future, one can take the general k-essence action for the non-
canonical scalar field, and calculate the scaling potential. This will
be our future goal.
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