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Abstract

In this paper we develop a Morsi�cation Theory for holomorphic functions de�ning a singularity of �-
nite codimension with respect to an ideal, which recovers most previously known morsi�cation results for
non-isolated singularities and generalise them to a much wider context. We also show that deforming functions
of �nite codimension with respect to an ideal within the same ideal respects the Milnor �bration. Furthermore
we present some applications of the theory: we introduce new numerical invariants for non-isolated singulari-
ties, which explain various aspects of the deformation of functions within an ideal; we de�ne generalisations
of the bifurcation variety in the versal unfolding of isolated singularities; applications of the theory to the
topological study of the Milnor �bration of non-isolated singularities are presented. Using intersection theory
in a generalised jet-space we show how to interpret the newly de�ned invariants as certain intersection multi-
plicities; �nally, we characterise which invariants can be interpreted as intersection multiplicities in the above
mentioned generalised jet space.
? 2003 Elsevier Ltd. All rights reserved.
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0. Introduction

Let OCn;O be the ring of germs of holomorphic functions at the origin O of Cn. Two germs f
and g are R-equivalent (right-equivalent) if there exists a germ of biholomorphism � : (Cn; O) →
(Cn; O) such that f ◦ � = g. One of the main aims of singularity theory is the classi�cation of
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germs of holomorphic functions up to R-equivalence; this includes giving normal forms for each of
the equivalence classes and invariants to decide whether two functions belong to the same class,
but also studying the adjacencies (hierarchy) between equivalence classes (a class C is adjacent
to a class C ′ if every function of C ′ can be deformed into a function of C by arbitrarily small
deformation). When Arnold worked out the beginning of the classi�cation of isolated singularities
he observed that in�nite series of classes of singularities occur (like Ak or Dk), it appeared clear
that the series where associated with non-isolated singularities, and that the hierarchy of the series
reDects the hierarchy of non-isolated singularities; therefore the study of classi�cation and hierarchy
of non-isolated singularities is interesting not just by itself, but also in connection with the study of
series of isolated singularities.

Many useful invariants for the classi�cation and adjacency problems stem from the study of
the Milnor �bration associated to a holomorphic function (vanishing (co)-homology, monodromy,
intersection form, spectrum, homotopy type of the Milnor �bre, etc). This is quite well understood in
case that the function has an isolated singularity, but when non-isolated singularities are present our
knowledge is still very limited. See [23] for a recent survey of known results and open questions.

A fruitful way of studying isolated singularities is the so called morsi�cation method: Denote
by Bj the closed ball of radius j centered at the origin of Cn; denote by D� the closed disk of
radius � centered at 0 in C. Given a holomorphic germ f∈OCn;O with an isolated singularity, let
j, � be a pair of radii for which the Milnor �bration of f is de�ned; then, any (small enough)
generic perturbation g, has, as critical locus inside Bj, as many Morse-type singularities as its Milnor
number; moreover the Milnor �bration of f is preserved by the perturbation in the following sense:
the restriction

g :Bj ∩ g−1(@D�) → @D�

is C∞-equivalent to the Milnor �bration of f. This gives a powerful method to study the Milnor
�bration: for example it allows to compute the homotopy type of the Milnor �bre, and to relate the
monodromy with the intersection form via Picard-Lefschetz theory.

The goal of this paper is to generalise this method to a wide class of non-isolated singularities.
However, an arbitrary small perturbation of a function f with non-isolated singularities does not
preserve the Milnor �bration in the sense explained above; therefore, we need to restrict the type of
deformations that we will allow. The main idea is allow only deformations of f within a suitable
ideal I of OCn;O (which in some cases is the ideal of functions that are singular where f is singu-
lar, with the same generic transversal type). This point of view has been used in [10,16–21,26] to
prove generalised morsi�cation theorems and study the Milnor �bration of functions with smooth
1-dimensional critical locus and simple transversal type, or with an i.c.i.s. (isolated complete in-
tersection singularity) of dimension at most 2 as critical locus and transversal type A1. Recently
the morsi�cation theorem has been generalised in [3] for critical locus an i.c.i.s. of any dimension
with transversal type A1. In all these works the morsi�cation theorem and the preservation of the
Milnor �bration are proved exploiting special properties of the ideal considered (low dimensionality
of its zero set or de�ning a complete intersection), which do not generalise easily. In all the cases
the functions that can be morsi�ed are precisely the functions of �nite extended codimension with
respect to the ideal I in the sense of [18] (see Section 1 for a de�nition). Using a new concep-
tual approach, in this paper we generalise the morsi�cation and preservation of Milnor �bration for
functions of �nite extended codimension with respect to any ideal of OCn;O. Moreover we introduce
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and study new numerical invariants for non-isolated singularities. Below we summarise informally
the main results of the paper.

In Section 2 we establish the preservation of the Milnor �bration: given any ideal I of OCn;O

and a function f of �nite extended codimension with respect to I , we prove that any small enough
perturbation of f within the ideal preserves the Milnor �bration (see Theorem 2.2).

The main and most diKcult result of this paper is a relative morsi�cation theorem (see Theorem
8.6) that roughly states the following: given any function f of �nite extended codimension with
respect to an ideal I , a generic small perturbation g of f within the ideal only has singularities
that are simplest with respect to I in a certain natural sense. Moreover, in a small neighbourhood
of the origin there are �nitely many points in which g has positive extended codimension, with the
property that the germ of g at any of them is unsplittable, in the sense that it cannot be split into
several points of positive codimension by further perturbation. Furthermore, the points of positive
extended codimension that are outside V (I) are always Morse points of g. The proof uses the theory
developed in Sections 1 and 3–8. We now summarise the content of these sections. Fix an ideal I .
Section 1 is preliminary. Some known de�nitions and results are recalled. Among them is the

concept of extended codimension of a function of I with respect to I . This is an invariant that
generalises the Milnor number to our setting. Indeed, the functions of �nite extended codimension
with respect to I will be those that can be studied via the relative morsi�cation theorem (as isolated
singularities are the functions whose properties can be studied via the usual morsi�cation theory). In
particular, by a theorem of Pellikaan (see Theorem 1.12), any function of �nite extended codimension
has an unfolding which is versal within I . On the other hand the extended codimension does not
have all the good properties that the Milnor number has. The Milnor number is conservative in the
following sense: let f be a function with �nite Milnor number at O; there is a small neighbourhood
U of the origin such that, given any deformation f+ tg, if t is small enough, the sum of the Milnor
numbers of f + tg at the points of U equals the Milnor number of f at the origin. We show with
an example that the extended codimension with respect to an ideal is not conservative in general.

Consider a coherent ideal sheaf Ĩ de�ned in a neighbourhood U of the origin such that Ĩ O = I ,
de�ne

J∞(U; Ĩ) :=
∐
x∈U

Ĩ x: (1)

In Section 3 we give a in�nite-dimensional analytic structure to J∞(U; Ĩ), viewing it as a generalised
∞-jet space associated to Ĩ . For this we view J∞(U; Ĩ) as a the projective limit of

Jm(U; Ĩ) :=
∐
x∈U

Ĩ x=(mm+1 ∩ Ĩ x);

when m¿ 0, and give a certain �nite-dimensional generalised analytic structure to each Jm(U; Ĩ). In
particular we endow J∞(U; Ĩ) with a topology and de�ne such concepts as �nite-determined set (the
�nite determinacy of a set implies that it can be understood as a subset of a �nite-dimensional analytic
space), analytic set, irreducibility, smoothness and codimension in J∞(U; Ĩ) of a closed analytic
subset. We prove the existence of decompositions of analytic subsets in irreducible components.

In Section 4 we consider the �ltration of J∞(U; Ĩ) by sets consisting of germs of given extended
codimension. We prove that the levels of the �ltration are �nitely-determined closed analytic subsets
of J∞(U; Ĩ). Although this is more or less clear from the intuitive point of view, the proof gets
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rather technical. We also give a lower bound for the codimension in J∞(U; Ĩ) of the set of germs
of given �nite extended codimension.

In Section 5 we stratify the space J∞(U; Ĩ) in locally closed analytic strata containing germs of
the same topological type. This is done by combining the results of [4] with the theory developed
in Section 3.

In Section 6 the concept of Whitney regularity is de�ned for strati�cations of J∞(U; Ĩ). Given any
locally �nite partition of J∞(U; Ĩ) by locally closed analytic subsets, the existence of a canonical
Whitney strati�cation re�ning it is proved.

In Section 7 we de�ne analytic mappings from an analytic set to J∞(U; Ĩ). The concept of
transversality of a mapping to a submanifold of J∞(U; Ĩ) is introduced. The parametric transversality
theorem is extended to our setting. It is shown that versality implies transversality in the following
sense: let f∈ I be a function of �nite extended codimension and F : (Cn; O) × (Cr ; O) → C be a
versal unfolding of f within I , then mapping

�F : (Cn; O) × (Cr ; O) → J∞(U; Ĩ)

assigning to (x; s) the germ of F|Cn×{s} at x is analytic and transversal to any submanifold of J∞(U; Ĩ)
which is invariant by the natural action of holomorphic diMeomorphims preserving Ĩ .

Finally, in Section 8 the relative morsi�cation theorem (see Theorem 8.6) is stated. A certain
Whitney strati�cation of J∞(U; Ĩ) (which is built up from the �ltration by ascending extended
codimension and the strati�cation considered in Section 5 using the geometric tools developed in
Sections 3 and 6) is needed. The proof is a transversality argument using the results developed in
Section 7. As a by-product of our method we introduce generalisations of the bifurcation variety
in the base of a versal unfolding.

The rest of the paper presents applications of our theory and several examples.
In Section 9 we present two immediate applications of the morsi�cation theorem. In the �rst

application we de�ne new numerical invariants for functions of �nite codimension with respect to
an ideal, namely the splitting function, the corrected extended codimension and the Morse number.
All of them are conservative in the sense explained above. The corrected extended codimension
is close to the extended codimension, and could be thought as a conservative version of it. The
splitting function is a �ner invariant. A consequence of the relative morsi�cation theorem is that
the singularities outside V (I) of a generic deformation within I of a function of �nite extended
codimension form a �nite set of Morse points; the Morse number is the cardinality of this set. The
second application, based also on the results of Section 2, shows how to study the topology of a
function of �nite extended codimension using a morsi�cation. In particular, homology splitting and
bouquet decomposition theorems are presented (see Theorem 9.3).

In Section 10 we study further numerical invariants. Given any f∈ I we have a jet-extension
mapping �f : (Cn; O) → J∞(U; Ĩ). We develop a bit of intersection theory on the generalised jet space
J∞(U; Ĩ) so that the intersection number at the origin of the mapping �f with any n-codimensional
subvariety of J∞(U; Ĩ) is well de�ned and has some natural properties. This will enable us to
interpret the numerical invariants introduced above as intersection numbers, and give a formula of
them in terms of dimensions of certain complex vector spaces (this becomes more explicit in the case
of the Morse number). Using intersection theory we are able to prove that any numerical invariant
which is conservative and satis�es two other natural properties is actually a linear combination of
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intersection multiplicities with n-codimensional subvarieties of J∞(U; Ĩ) which are invariant by the
natural action of holomorphic diMeomorphims preserving Ĩ (see Theorem 10.13). A classi�cation of
such subvarieties yields in many examples in Section 11 an expression of any conservative invariant
as a linear combination of well known invariants (for example in terms of the Morse number and
number of D∞-points in the case of isolated-line singularities; see [20]).
In Section 11 we analyse several applications and examples. In particular we point out previous

morsi�cation theorems that are now consequences of this theory. Among them is the morsi�cation
theorem for singularities whose critical locus is an i.c.i.s. and have generic transversal type A1; we
show how to extend this theorem to the case in which the critical locus is not necessarily a complete
intersection (see Proposition 11.3).

1. Functions of �nite codimension with respect to an ideal

Let m be the maximal ideal of OCn;O, let x1; : : : ; xn be coordinate functions for Cn
O. The module

of germs of vector �elds at the origin O of Cn will be denoted by �; then m� are the vector
�elds vanishing at the origin. Denote by D the group of germs of holomorphic diMeomorphims of
Cn �xing the origin, and by De the set of germs of holomorphic diMeomorphims at the origin that
not necessarily �x it (we have no group structure because composition need not be de�ned). Let
I ⊂ OCn;O be an ideal; given U , a small enough neighbourhood of the origin, there is a coherent
sheaf of ideals Ĩ whose stalk at O is I . Following [18] we de�ne DI and DI; e to be, respectively,
the subgroup of D and the subset of De of elements preserving the ideal:

De�nition 1.1. De�ne DI; e as the set of all �∈De that have a representative � :V → W , with V
and W open subsets in U and O ∈V , such that

�∗(�(W; Ĩ)) = �(V; Ĩ):

De�ne DI =DI; e ∩ D.

Clearly, the action of D on OCn;O by composition on the right restricts to an action �I : I×DI → I .
Given f∈ I we denote by Orb(f) its orbit by �I .

Let �t be a 1-parameter family of holomorphic diMeomorphims of De smoothly depending on t,
such that �0 = IdCn ; let �1; t ; : : : ; �n; t be its components; consider f∈OCn;O. The chain rule gives:

df ◦ �t

dt

∣∣∣∣
t=0

=
n∑

i=1

@f
@xi

d�i; t

dt

∣∣∣∣∣
t=0

= X (f); (2)

where X is the holomorphic vector �eld given by X=
∑n

i=1 d�i; t=dt|t=0@=@xi. If �t ∈D for any t, then
X ∈m∩�. If �t ∈DI; e for any t, then X (I) ⊂ I . De�ne �I;e by the formula �I;e := {X ∈� :X (I) ⊂
I}. If �t ∈DI for any t then X ∈m ∩ �I;e; de�ne �I := m ∩ �I;e.

Conversely, integration associates to any X ∈� a 1-parameter Dow �t of holomorphic diMeomor-
phims of De, with �0 = IdCn , such that if X ∈�I;e then �t ∈DI; e, and if X ∈�I then �t ∈DI .
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Given a family �t ⊂ DI as above, and f∈ I , we may regard the family of functions f ◦ �t as a
smooth path in Orb(f). This motivates the following:

De�nition 1.2. Consider f∈ I , de�ne the tangent space and the extended tangent space at f to its
orbit respectively by

"I (f) := �I (f) "I;e := �I;e(f):

Moreover we de�ne the (possibly in�nite) I -codimension and extended I -codimension respectively
by

cI (f) := dimC
I

"I (f)
cI;e(f) := dimC

I
"I; e(f)

:

Notice that both "I (f) and "I;e(f) are ideals of OCn;O. It is easy to see (cf. [18]) that the
I -codimension is �nite if and only if the extended I -codimension is so.

Our setting is more general that the one studied by Pellikaan in [17,18]. There the ideal I is asked
to be the primitive of another ideal I ′ ⊂ OCn;O: consider an ideal I ′ ⊂ OCn;O, we de�ne

∫
I ′, the

primitive ideal of I ′, as∫
I ′ := {f∈OCn;O : (f) + Jf ⊂ I ′};

where Jf := {@f=@x1; : : : ; @f=@xn} is the Jacobian ideal of f. Heuristically
∫
I ′ is the ideal of

functions that vanish and “are singular at” the analytic space de�ned by I ′. For many applications
it is suKcient to work with the class of primitive ideals: for example in the study of non-isolated
singularities with generic transversal type A1. However the ideals considered by de Jong in [10] for
the cases of line singularities with transversal types A3, E7, and E6 (this last case for ambient space
of dimension at least 4) are not primitives of any other ideals.

Observe that, when I=
∫
I ′, there are two possibly diMerent de�nitions of (extended) I -codimension:

we can consider diMeomorphims that preserve I ′ (as Pellikaan does) instead of diMeomorphisms that
preserve

∫
I ′; hence we use the modules �I ′ ; e and �I ′ instead of �∫

I ′ ; e and �∫
I ′ . It is easy to see

that �I ′ ; e ⊂ �∫
I ′ ; e, but the equality is not known in general, to the author’s knowledge. This give

rise to two, a priori diMerent, morsi�cation theories for the ideal
∫
I . The constructions and results

of this paper are valid for either of them. Anyhow, the equality �I ′ ; e = �∫
I ′ ; e holds when I ′ is a

radical ideal (it is easy to prove that any X ∈�∫
I ′ ; e must be tangent to the analytic space V (I ′)

de�ned by I ′ at each of its smooth points; this implies that X ∈�I ′ ; e), and in all the examples that
we have considered.

Notation 1.3. Let F be a coherent sheaf on U . Denote by Fx its stalk at x; given any section
’∈�(F; U ) denote by ’x its germ at x.

Let �̃ be the free OU -module of vector �elds over U , and �Ĩ;e the coherent OU -module of vector
�elds preserving Ĩ . The stalk of �Ĩ;e at any x∈U is the OU;x-module �Ĩx;e. Therefore, for any f
holomorphic in U , we have that �Ĩ;e(f) is a coherent sheaf of ideals whose stalk at any x∈U is
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"Ix;e(fx). De�ne the coherent OU -module

F :=
Ĩ

�Ĩ ; e(f)
: (3)

Standard properties of coherent sheaves imply that cI;e(f)¡∞ if and only if F is concentrated at
the origin, i.e. Fx = 0 for x 
= O.

Notation 1.4. Let ' :Cn × Cr → Cr be the projection to the second factor; take any s∈Cr . If G is
a coherent analytic sheaf on Cn × Cr we denote by G|s the pullback of G to '−1(s).
If F is an analytic function on Cn ×Cr we denote by F|s the restriction of F to '−1(s). Therefore,

F|s; x denotes the germ at x of the restriction of F to '−1(s). If X is an analytic subset of Cn × Cr

we denote by Xs the �bre of X over s.

De�nition 1.5. For f∈ I , an r-parametric I -unfolding of f is a holomorphic germ F : (Cn × Cr ;
(O;O)) → C such that F|O;O = f and F|s;O belongs to I for any s∈Cr . We denote by I(r) the
module formed by all the r-parametric I -unfoldings. De�ne �I;e(r) := '∗�I;e = OCn×Cr�I;e.

Lemma 1.6. The following equalities hold: I(r) = '∗I = IOCn×Cr ; (O;O).

Proof. The only non-trivial statement is that I(r) ⊂ '∗I . Consider the coordinates x1; : : : ; xn for
Cn and �x coordinates s1; : : : ; sr for Cr . Let f1; : : : ; fk be a set of generators for I . Take F ∈ I(r);
we have to �nd G1; : : : ; Gk , convergent power series in x1; : : : ; xr; s1; : : : ; sr , such that

F =
k∑

i=1

Gifi: (4)

By Artin’s approximation theorem it is enough to �nd formal power series Gi satisfying the last
equation.

Express each Gi as Gi =
∑

gi
i1 ;:::;inx

i1
1 : : : xinn and F as F =

∑
Aj1 ;:::;jnx

j1
1 : : : xjnn where each gi

j1 ;:::;jn and
each Aj1 ;:::;jn is a power series in s1; : : : ; sk ; express each fi as fi=

∑
ai
j1 ;:::;jnx

j1
1 · · · xjnn where each ai

j1 ;:::;jn
is a complex number. For any positive integer N the truncation of Equality (4) to its N -jet with
respect of x1; : : : ; xn may be seen as a linear system whose variables are {gi

j1 ;:::;jn : j1 + · · ·+ jn6N},
whose coeKcients are {ai

j1 ;:::;jn : j1 + · · ·+ jn6N} (complex numbers), and whose independent terms
are {Aj1 ;:::;jn : j1 + · · ·+ jn6N} (holomorphic functions in s1; : : : ; sr). The fact that F is a I -unfolding
implies that for any value of s1; : : : ; sr close enough to the origin the system has a solution; using
this and the fact that the rank of the fundamental matrix of the system does not depend on s1; : : : ; sr
(the ai

j1 ;:::;jn’s are complex numbers), we deduce that there exists a solution of the system depending
holomorphically on s1; : : : sr in a neighbourhood of the origin of Cr . This provides a solution for
the truncation of Equality (4) to its N -jet. Applying Krull’s intersection theorem we deduce the
existence of formal solutions.

Remark 1.7. In the last lemma we have shown the following statement: consider f1; : : : ; fk ;
F ∈OCn×Cr ; (O;O) such that f1; : : : ; fk are independent of s1; : : : ; sr; if for any s∈Cr close enough
to the origin F|s ∈ (f1|s; : : : ; fk|s) then F ∈ (f1; : : : ; fk). The independence of the fi’s on s1; : : : ; sr is
needed, as the following example shows: f(x; s) = xs2, F(x; s) = xs.
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Given U and V , neighbourhoods of the origin of Cn and Cr respectively, we de�ne the coherent
OU×V -modules Ĩ(r) and �Ĩ;e(r) as Ĩ(r) := ĨOCn×Cr and �Ĩ;eOCn×Cr .

Lemma 1.8. Consider a representative F :U × V → C of a r-parametric I -unfolding of a germ
f∈ ∫ I . De9ne a coherent OU×V -module by the formula

G :=
Ĩ(r)

(�Ĩ;e(r))(F)
: (5)

Then,

(1) We have G(x; s) = 0 if and only if cĨx;e(F|s; x) = 0.
(2) If cI;e(f)=0 then U and V can be shrunk enough so that cĨx;e(F|s; x)=0 for any (x; s)∈U ×V .
(3) Let Z ⊂ U ×V be the support of G; let p :U ×V → V be the projection to the second factor;

de9ne ’ := p|Z . If cI;e(f)¡∞ then we can shrink U and V so that ’ is 9nite and p∗G is a
coherent OV module.

Proof. Denote by ms the maximal ideal of OCr ; s. A standard commutative algebra argument shows

G(x; s)

msG(x; s)

∼= Ĩ x
"Ĩ x ;e(F|s; x)

: (6)

Therefore G(x; s) = 0 implies cĨx;e(F|s; x) = 0; conversely, if cĨx;e(F|s; x) = 0 then G(x; s) = msG(x; s), and
hence G(x; s) = 0 by Nakayama’s Lemma. We have shown the �rst assertion.

Suppose that cI;e(f)= 0; then, as f=F|O;O we have that G(O;O) = 0; as the support of a coherent
OU×V -module is closed, the second assertion follows.

Suppose cI;e(f)¡∞. Shrinking U we can assume that F is concentrated at the origin of Cn.
Therefore, by the previous assertions, we have that G(x;O) = 0 for any x∈U\{O}. By the projection
lemma of [8, p. 62], we can shrink U and V so that the third assertion follows.

A corollary of Lemma 1.8 is the upper semicontinuity of extended codimension:

Corollary 1.9. Let f∈ I with cI;e(f)¡∞; consider F :U×V → C a representative of a I -unfolding
of f such that the second statement of Lemma 1.8 holds. Let ’ be the mapping introduced in the
last lemma. Then for s close enough to the origin,∑

x∈’−1(s)

cĨx;e(Fs;x)6 cI;e(f): (7)

Proof. After Lemma 1.8 we are reduced to proving that, for s close enough to the origin,
dimC(’∗G) ⊗ (OV;O=mO)¿ dimC(’∗G) ⊗ (OV;s=ms), which is standard since ’∗G is coherent.

When I = OCn;O then the extended codimension is equal to the Milnor number, in this case the
inequality (7) becomes an equality. Although this happens in many other cases such as isolated line
singularities (see [20,19]) and most of the examples that we have computed, the following example
shows that the equality does not hold in general.
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Example 1.10. Let I =(x2; y) ⊂ OC2 ;O (ideal of curves tangent to the x-axis); then �I;e is generated
by x@=@x; y@=@x; x2@=@y; y@=@y. Consider

f(x; y) = y2 + x3;

then "I;e(f) = (x3; x2y; y2) and cI;e(f) = 3. Any unfolding F : C2 × C → C of f such that
for any s the curve F|s = 0 is tangent to the x-axis at the origin is a I -unfolding. Choose an
I -unfolding such that F|s = 0 is smooth at the origin; then one checks easily that cI;e(F|s) = 0.
Therefore the only terms that can contribute to the left hand side of Inequality (7) are the extended
codimensions of F|s at points x outside the support of I . As Ix = OC2 ; x at these points, the ex-
tended codimension coincides with the Milnor number. As /(f) = 2, Inequality (7) is strict in this
case.

Let F ∈ I(r), G ∈ I(q) be I -unfoldings of f∈ I . A morphism 1 :F → G of I -unfoldings is a pair
(2; 3) consisting of holomorphic germs 3 : (Cr ; O) → (Cq; O) and 2 : (Cn × Cr ; (O;O)) → Cn with
the following properties:

(1) 2|Cn×{s} ∈DI; e for any s,
(2) 2|Cn×{O} = IdCn , and
(3) G(2(x; s); 3(s)) = F .

De�nition 1.11. Let f∈ I and F an I -unfolding of it. We say that F is versal if for any other
I -unfolding G of f there exists a morphism of I -unfoldings from G to F .

The following theorem was proved by Pellikaan in [18] as an application of the general results
of Damon in [2]; although Pellikaan proves it for primitive ideals, his arguments extend without
change to our setting.

Theorem 1.12 (Unfolding theorem). Let F :Cn × Cr → C be an I -unfolding of a function f∈ I .
Let s1; : : : ; sr be the coordinates of the base space Cr . The following statements are equivalent

(1) "I;e(f) + C(@F=@s1)|s=0 + · · · + C(@F=@sr)|s=0 = I .
(2) F is a versal I -unfolding of f.

A corollary of this is that f∈ I has a versal unfolding if and only if cI;e(f) is �nite. Versality is
open in the following sense:

Proposition 1.13. Let F be a versal I -unfolding of a function f∈ I ; let F :U × V → C be a
representative of the germ F . Then U and V can be shrunk to smaller neighbourhoods of O so
that F is a versal Ĩ x-unfolding of F|s; x for any (x; s)∈U × V .

Proof. Let F and G be the sheaves associated to f and F by the formulae (3) and (5), respectively.
As f has a versal unfolding then cI;e(f)¡∞. Hence, by the second assertion of Lemma 1.8, we
can shrink U and V so that ’ is �nite and p∗G= ’∗G is a coherent OV -module.
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Let s1; : : : ; sr the coordinates of Cr and (s) the ideal they generated. The functions @F=@s1; : : : ;
@F=@sr , de�ned on the whole U × V , can be seen as sections of p∗Ĩ(r) over V ; denote by @iF the
image of @F=@si by the natural homomorphism p∗Ĩ(r) → p∗G. De�ne M ⊂ p∗G to be the coherent
OV -module generated by @1F; : : : ; @rF . We claim that M=p∗G if we shrink V enough. To prove the
claim we only need to show that MO =(p∗G)O. By Nakayama, this reduces to proving the equality
p∗GO =MO +(s)p∗GO. As ’−1(O)={(O;O)}, then (p∗G)O =G(O;O); therefore (p∗G)O=(s)(p∗G)O
is equal to G(O;O)=(s)G(O;O), which, by formula (6), is isomorphic to I="I; e(f). We have constructed
an isomorphism  : (p∗G)O=(s)(p∗G)O → I="I; e(f). It is easy to see that the image of @iF by  is
the class of (@F=@si)|O in I="I; e(f). As F is a versal I -unfolding of f, by Theorem 1.12 we conclude
that the restriction of  to (MO + (s)(p∗G)O)=(s)(p∗G)O is surjective. This shows the claim.

Consider (x; s)∈U × V , if G(x; s) = 0 then, by Lemma 1.8, we have the equality "Ĩx;e(F|s; x) = Ĩ x;
hence, by Theorem 1.12 F is a versal Ĩ x-unfolding of F|s; x. Suppose that (x; s)∈Supp(G). Let ms

be the maximal ideal of OCr ; s. By the �niteness of ’ we have an equality (p∗G)s =⊕y∈’−1(s) G(y;s).
Using formula (6) we obtain an isomorphism

 s : (p∗G)s=ms(p∗G)s =
⊕

y∈’−1(s)

G(y;s)=msG(y;s)
∼=

⊕
y∈’−1(s)

Ĩ y="Ĩy;e(F|s;y):

Using that M = p∗G, noting that the image of @iF by  s has (@F=@xi)|s;y as component in
Ĩ y="Ĩy;e(F|s;y), and taking into account that x∈’−1(s) we obtain that Ĩ x = "Ĩx;e(Fs;x)+C(@F=@x1)|s; x +
· · · + C(@F=@xr)|s; x. Then, by Theorem 1.12 the mapping F is a versal unfolding of F|s; x.

2. Topology of unfoldings of functions of �nite I -codimension

Denote by Ḋ� the punctured disk of radius � centered at the origin and by Bj, TBj and Sj the
open ball, closed ball and sphere of radius j centered at the origin of Cn; let f∈OCn;O. Lê proved
in [12] that if j¿ 0 is small enough and j��¿ 0 then

f| TBj∩f−1(Ḋ�) : TBj ∩ f−1(Ḋ�) → Ḋ� (8)

is a locally trivial �bration, and, moreover, if (j′; �′) is another pair with j′6 j and such that
f| TBj′∩f−1(Ḋ�′ ) is also a locally trivial �bration, then both �brations are equivalent. Moreover, in view
of Hironaka [9, Section 5], if we consider in C the strati�cation {C\{0}; {0}}, then there exist an
analytic Whitney strati�cation of a neighbourhood U of the origin of Cn containing TBj such that
U ∩ f−1(C\{0}) is a stratum, the mapping f :U → C satis�es the Thom Af-condition respect to
this strati�cation and, for each stratum X ⊂ U and each point x∈X ∩ Sj, we have TxX ; Sj.

De�nition 2.1. A pair (j; �) with all the properties above is called a good system of radii for f.
The �bration

f| TBj∩f−1(@D�) : TBj ∩ f−1(@D�) → @D� (9)

is called the Milnor 9bration of f.

The main result of this section is the preservation of transversality with the Milnor sphere for
unfoldings of functions of �nite codimension:
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Theorem 2.2. Let f∈ I such that cI;e(f)¡∞; consider a 1-parametric I -unfolding F of f; let
(j; �) be a good system of radii for f. Given a value s of the parameter consider the restriction

F|s :XD�;s := F−1
|s (D�) ∩ TBj → D�: (10)

Then 8 can be chosen small enough so that, given s; s′ ∈D8,

(1) If t ∈ Ḋ�\{0} then F−1
|s (t); Sj.

(2) The locally trivial 9brations that F|s and F|s′ induce over @D� are equivalent.
(3) XD�;s and XD�;s′ (where XD�;s := F−1

|s (D�) ∩ TBj) are homeomorphic.

This result is a generalisation of analogous statements in [20,21,10,26], and [3]; in those papers
the result is proved in the case in which the dimension of V (I) is at most 2, and/or I is of a rather
particular type, in all the cases the idea is to use the special properties of I to control explicitly the
geometry of F at Sj. Next we show how to control the geometry of F in a neighbourhood of Sj
for any I , without making use of any geometric property of I .

Lemma 2.3. Let F :Cn×C → C be a 1-parametric I -unfolding, consider a smooth path 9 : (−:; :) →
C such that 9(0) = 0. There exist a positive number /¡:, a neighbourhood V0 of Sj in Cn,
a neighbourhood W of Sj × (−/; /) in Cn × (−/; /), and a C∞-di?eomorphism

; :V0 × (−/; /) → W (11)

of the form ;(x; t) = ( t(x); t) (i.e. a C∞-family ; of di?eomorphisms  t depending on t),
such that  0 = IdCn and F|9(t) ◦  t = f|V0

for any t ∈ (−/; /).

Proof. As cI;e(f)¡∞, the sheaf F de�ned in Eq. (3) is concentrated at the origin of Cn. This
implies that, if j is small enough, for any x∈ Sj, we have Fx = 0 and hence cĨx;e(fx) = 0. As
fx = F|0; x, we have cĨx;e(F|0; x) = 0, which by Lemma 1.8, implies G(x;0) = 0 for any x∈ Sj. By
coherence, there is an open neighbourhood U of Sj × {0} in Cn × C such that G|U = 0.

Let s be a coordinate for the base space of the unfolding F ; as the ideal sheaf Ĩ(1) is closed
under diMerentiation respect to s we have @F=@s∈ Ĩ(1). As G|U =0, for any x∈U there exist an open
neighbourhood Ux of x in U and a vector �eld X x ∈�(Ux;�Ĩ;e(1)) such that X x(F|Ux) = @F=@s|Ux .
Choose a �nite collection U 1; : : : ; U k of the above open subsets such that

⋃k
i=1 U

i ⊃ Sj × {0}.
Let X i be the vector �eld associated to Ui. Rede�ne U to be the union of the chosen subsets.
Consider a C∞ partition of unity {�1; : : : ; �k} subordinated to the cover {U 1; : : : ; U k} and de�ne
X :=

∑k
i=1 �

iX i. The vector �eld X is of the form X =
∑n

i=1 <i@=@xi where <i are C∞ functions
over U , and satis�es X (F|U ) =

∑k
i=1 �

iX i(F|Ui) = @F=@s|U .
Choose 0¡/¡: and a neighbourhood V0 of Sj in Cn such that V0 × 9(−/; /) is contained in

U . Consider the C∞ vector �eld tangent to V0 and smoothly depending on t de�ned by Y (x; t) :=
−(d9=dt)X (x; 9(t)). Express Y as Y =

∑n
i=1 >i@=@xi, then >i(x; t)=−(d9=dt)<i(x; 9(t)). Integrating Y

(and perhaps shrinking V0 and /) we obtain a C∞-family of diMeomorphisms  :V0 × (−/; /) → U
such that  0 = IdCn ; de�ne ;(x; t) := ( (x; t); t) and W := ;(V0 × (−/; /)). We need to check that
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F|9(t) ◦  t =f|V0
for any t ∈ (−/; /). This is obvious for t =0. Hence if G(x; t) := F( (x; t); 9(t)), it

suKces to show that @G=@t = 0. By the chain rule,

@G
@t

(x; t) =
n∑

i=1

@F
@xi

( (x; t); 9(t))>i( (x; t); t) +
@F
@s

( (x; t); 9(t))
d9
dt

(t)

=
n∑

i=1

@F
@xi

( (x; t); 9(t))
(

−d9
dt

(t)
)

<i( (x; t); 9(t)) +
@F
@s

( (x; t); 9(t))
d9
dt

(t)

=
d9
dt

(t)
[(

−X (F) +
@F
@s

)
( (x; t); 9(t))

]
= 0:

Proof of Theorem 2.2. We �rst show than (2) and (3) follow from (1). The pair (j; �) is chosen so
that Sing(f)∩ TBj ⊂ f−1(0), therefore, 8 can be chosen small enough so that Fs has no critical points
at F−1

|s (@D�)∩ TBj. De�ne TF :Cn ×C → C×C by TF(x; s) := (F(x; s); s). Assertion (2) follows from

(1) by applying Ehresmann’s �bration theorem to TF | TF−1(@D�×D8). De�ne XD� := TF−1(D�×D8)∩( TBj×
D8) and consider p :XD� → D8, the restriction to XD� of the projection to the second factor; then
p−1(s)=XD�;s for any s∈D8. Using (1), it is easy to show that XD� is a manifold with corners and
that p is a proper diMerentiable map, whose restriction to the boundary and corners is submersive;
using a version of the Ehresmann �bration theorem for manifolds with corners (3) follows.

De�ne Y ⊂ Sj × D8 to be the set of pairs (x; s) such that F|s(x) 
= 0 and either F|s is critical
at x or F−1

|s (F|s(x)) is not transversal to Sj at x. Identifying Cn × C with R2n+2 it is easy to see

that the closure TY of Y is a real analytic subset. The following claim implies assertion (1) (perhaps
shrinking �): the intersection TY ∩ F−1(0; 0) is empty.

Let us prove the claim. Suppose the contrary: let (x; 0)∈ TY ∩ F−1(0; 0); by the curve selection
lemma (see [15, Section 3]) there is an analytic path < : (−:; :) → TY such that <(−:; :) ⊂ Y and
<(0) = (x; 0). De�ne 9 : (−:; :) → C to be the second component of the composition TF ◦ <, and
choose /¡: so that the statement of Lemma 2.3 holds; let ; be the family of diMeomorphisms
predicted by Lemma 2.3. Consider a sequence {tn} ⊂ (/; /) convergent to 0; de�ne xn to be the �rst
component of <(tn) in Cn ×C (by the formula (xn; 9(tn)) = <(tn)), and yn :=  −1

tn (xn). As {xn} and
{ tn} converge to x and IdCn , respectively, we deduce that {yn} converges to x. If F|9(tn) is singular
at xn then f= F|9(tn) ◦  tn is singular at yn; then f(yn) = F|9(tn)(xn) = 0, which is not true; therefore
F|9(tn) is not singular at xn. Then F−1

|9(tn)(F|9(tn)(xn)) is not transversal to Sj at xn, which means

that TxnF
−1
|9(tn)(F|9(tn)(xn)) ⊂ TxnSj; this implies that Tynf

−1(f(yn)) ⊂ d −1
tn (xn)(TxnSj). Taking a

subsequence we can assume that the sequence Tynf
−1(f(yn)) converges to a linear subspace T ⊂

TxSj. On the other hand we have �xed Whitney strati�cations of C and of an open neighbourhood U
of the origin of Cn (containing U\f−1(0) as a stratum) such that f satis�es the Thom Af-condition
respect to them and that X ; Sj for any stratum X of U . Let X be the stratum containing x, as
f(x)=0 and U\f−1(0) is a stratum we have that X ⊂ f−1(0); hence ker(df|X (x))=TxX . By Thom
Af-condition TxX ⊂ limTynf

−1(f(yn))=T ; as T is included in TxSj, we contradict the transversality
X ; Sj. This proves the claim.
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3. Generalised jet-spaces

The morsi�cation theorem for isolated singularities can be proved in the following way (which is
not the easiest but has the virtue of generalising to our setting): the subset Z1 ⊂ J 2(Cn;C) consisting
of singular 2-jets (jets whose linear parts vanish) is a closed analytic subset of codimension n; the
subset Z2 ⊂ Z1 of singular 2-jets germs with degenerate Hessian is closed analytic of codimension
bigger than n. On the other hand any germ f∈OCn;O can be approximated by germs g such that
the 2-jet extension j2g :Cn → J 2(Cn;C) is transversal to Z1 and Z2 in a neighbourhood of the
origin; therefore the singularities that an approximation g can have close to the origin should have
non-degenerate Hessian (which means being of Morse type).

Consider an ideal I ⊂ OCn;O. When trying to generalise the classical morsi�cation method to func-
tions of �nite codimension with respect to I we meet (among others) the following new diKculties:
consider f∈ I such that cI;e(f)=∞; it is not clear a priori which singularities a generic deformation
within the ideal may have. On the other hand, due to the presence of non-isolated singularities, if
we work with ordinary m-jet spaces the spaces parametrising singularity types (analogous to Z1 and
Z2) will be of arbitrarily large codimension as m increases, which would make the above method
collapse. The idea to overcome these problems will be to use a presentation of the ideal I by gen-
erators and relations to de�ne a sort of generalised m-jet spaces, in which the codimensions the
varieties parametrising the relevant singularity types remain stable as m increases.

We need to introduce the concept of ∞-jet spaces and give it an in�nite dimensional analytic
structure.

Let U ∈Cn be an open subset. For any m¡∞ the mth jet-space Jm(U;Cr) is a vector bundle
over U with projection mapping prm : Jm(U;Cr) → U . There is a natural analytic vector bundle
epimorphism prml : Jm(U;Cr) → J l(U;Cr) for any m¿ l. The set J∞(U;Cr) :=

∐
x∈U Or

U;x is
clearly the projective limit of the system formed by the Jm(U;Cr)’s and the 'm

l ’s. For any m there
is a projection mapping '∞

m : J∞(U;Cr) → Jm(U;Cr).
Fix a coordinate system {x1; : : : ; xn} in Cn; denote by C{x} the ring of convergent power series

in {x1; : : : ; xn}. There is a bijection

"∞ :U × C{x}r → J∞(U;Cr)

which assigns to (x; (f1; : : : ; fr)) the unique r-tuple of germs (g1; : : : ; gr)∈Or
Cn; x such that the Taylor

expansion of gi at x is fi. Passing to m-jets this de�nes an analytic vector bundle trivialisation

"m :U × (C{x}=mm+1)r → Jm(U;Cr) (12)

for any m¡∞.
A subset C ⊂ J∞(U;Cr) is said k-determined if it satis�es ('∞

k )−1('∞
k (C))=C; the subset C is

said to be a k-determined closed analytic subset of J∞(U;Cr) if it is k-determined and '∞
k (Y ) is a

closed analytic subset of J k(U;Cr). Any k-determined (closed analytic) subset is also m-determined
(closed analytic) for any m¿ k. A k-determined locally closed analytic subset is the diMerence
between two k-determined closed analytic subsets.
Consider in each Jm(U;Cr) the transcendental topology; we endow J∞(U;Cr) with the initial

topology for the family of projections '∞
m . A family {Cj}j∈J of subsets of J∞(U;Cr) is lo-

cally �nite if for any x∈ J∞(U;Cr) there exists a positive integer m and a neighbourhood U of
'∞
m (x) in Jm(U;Cr) such that ('∞

m )−1(U ) only meets �nitely many Cj’s. Therefore if each Cj is
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�nite-determined, choosing m high enough, the union
⋃

j∈J Cj is locally a m-determined subset. This
motivates the following de�nition: a closed analytic subset of J∞(U;Cr) is any union of a locally
�nite collection of �nite-determined closed analytic subsets of X∞; a locally closed analytic subset
of X∞ is the diMerence between two closed analytic subsets.

Let Ĩ be an ideal sheaf de�ned on a neighbourhood U of the origin, having I as stalk at the origin.
The natural candidates to substitute for the ordinary jet-spaces considered in the isolated-singularity
case are the following: de�ne the sets

J∞(U; Ĩ) :=
∐
x∈U

Ĩ x Jm(U; Ĩ) :=
∐
x∈U

Ĩ x=mm+1
x ∩ Ĩ x

for any positive integer m. For any ∞¿m¿ k¿ 0 consider the projection mapping 'm
k : Jm(U; Ĩ) →

J k(U; Ĩ). The set of spaces {Jm(U; Ĩ)}m¡∞ together with the mappings {prmk }k¡m¡∞) form a projec-
tive system of sets whose limit is J∞(U; Ĩ). There are natural projection mappings '∞

m : J∞(U; Ĩ) →
Jm(U; Ĩ) satisfying '∞

l ='m
l ◦'∞

m . The concept of k-determined subset of J∞(U; Ĩ) is de�ned analo-
gously to the case of systems of analytic varieties. For any m6∞ we consider the natural projection
prm : Jm(U; Ĩ) → U ; its �bre over x∈U is the vector space Ĩ x=Ĩ x ∩mm+1

x .
For any x∈U we de�ne the function /x :Z¿0 → Z by the formula

/x(m) := dimC(Ĩ x=Ĩ x ∩mm+1
x ): (13)

The function /x is Zariski-lower semicontinuous in U (see [4]). There exists a strati�cation of
U (which is called the Zariski–Samuel strati9cation with respect to Ĩ) by Zariski locally closed
analytic subsets, which is the minimal partition such that /x = /y for any x; y in the same stratum.
We will refer to the strata as the Ĩ -strata of U , and we will denote them by @0; : : : ; @s, where @s

is the stratum containing the origin, the stratum @0 is the complement of the zero set of Ĩ , and if
@i ⊂ T@j then i¿ j.

Notation 3.1. Consider an analytic function f :V → C, with V an open subset of Cn. Given any
m6∞ there is an associated jet extension jmf : Jm(V;C) assigning to x∈V the class of fx in
OCn; x=mm+1

x (we adopt the convention m∞
x = (0)).

We de�ne a certain kind of analytic atlas on Jm(U; Ĩ) in the following way:

Consider an open subset V of U and a set H={h1; : : : ; hs} ⊂ �(U; Ĩ) which generate Ĩ |V . De�ne

’H :Os
V → O|V (14)

by the formula ’H(f1; : : : ; fs) :=
∑s

i=1 fihi. For any m6∞, taking m-jets we obtain a mapping

jm’H : Jm(V;Cs) → Jm(V;C): (15)

where jm’H(jmf1(x); : : : ; jmfs(x)) :=
∑s

i=1 j
m(fihi)(x) for any (f1; : : : ; fs)∈ (OV;x)s and x∈V .

The mapping jm’ has Jm(V; Ĩ) as image, and it is a homomorphism of analytic vector bundles if
m¡∞.

De�nition 3.2. For any m6∞, a chart of Jm(U; Ĩ) is a surjective mapping of the form

jm’H : Jm(V;Cs) → Jm(V; Ĩ): (16)
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for a certain open subset V (which will be called the base subset of the chart) and a set H of
holomorphic functions on V generating H of Ĩ |V . The canonical analytic atlas of Jm(U; Ĩ) is the
collection of all the charts of Jm(U; Ĩ).

Given another open subset V ′ and a set of generators H′ = {h′
1; : : : ; h

′
s′} of Ĩ |V ′ , there exists

an open covering {V ′′
l }l∈L of V ∩ V ′ such that, given any l∈L for any i6 s′, we have analytic

functions Ci;1; : : : ; Ci; s de�ned on V ′′
l such that h′

i :=
∑s

j=1 Ci; jhj. De�ne the OV ′′
l
-module homomor-

phism C :Os′
V ′′
l

→ Os
V ′′
l
by the formula C(f1; : : : ; fs′)= (f1; : : : ; fs′)MC where MC is the matrix whose

(i; j)-entry is Ci; j. For any m6∞ let

jmC : Jm(V ′′
l ;Cs′

) → Jm(V ′′
l ;Cs) (17)

be the associated mapping of jet-spaces, which is analytic for m¡∞. We have clearly the compat-
ibility relation

jm’H′ = jm’H ◦ jmC: (18)

The mapping (17) is called a transition function between the charts jm’H and jm’H′ . Notice that
in contrast with the case of manifolds, transition functions between charts are not globally de�ned
on the intersection of the two charts and need not be unique.

As we work locally around the origin of Cn we can take U small enough so that there is a set
G={g1; : : : ; gr} of analytic functions de�ned on U which generate Ĩ x for any x∈U . We will denote
the homomorphism ’G simply by

’ :Or
U → OU ; (19)

and, for any m6∞, the mapping jm’G by

Jm(U;Cr)
j m’−→Jm(U;C): (20)

Notation 3.3. Let X ⊂ U be any subset. For any m6∞, we will denote by Jm(X; Ĩ) or Jm(U; Ĩ)|X
the inverse image of X under prm : Jm(U; Ĩ) → U . An analogous notation works for the jet space
Jm(U;Cr).

Remark 3.4. For m¡∞ and any Ĩ -stratum, the restriction jm’|Jm(@i;Cr) is a constant rank homo-
morphism of trivial analytic vector bundles over @i, whose image is Jm(@i; Ĩ). This gives a natural
structure of trivial analytic vector bundle to Jm(@i; Ĩ), for m¡∞ (see [4] for an application).

For our purposes it is convenient to consider subsets of J∞(U; Ĩ) parametrising germs with certain
geometric properties, just as the subset Z1 ⊂ J 2(U;C) considered at the beginning of the section
parametrises Morse singularities. To have a geometric understanding of these subsets we will look
at their inverse image by the charts of the canonical analytic atlas of Jm(U; Ĩ).

For any m¡∞ we give to Jm(U; Ĩ) the �nal topology for the set of all charts of the canonical
analytic atlas. As the transition functions are continuous the topology on Jm(U; Ĩ) is just the �nal
topology for the mapping jm’ : Jm(U;Cr) → Jm(U; Ĩ). We give to J∞(U; Ĩ) the topology obtained
viewing it as projective limits of the systems of topological spaces {Jm(U; Ĩ)}m∈N. It is easy to
check that the charts for m= ∞ are continuous.
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Remark 3.5. As jm’|Jm(@i;Cr) is a submersion for any m¡∞ and any Ĩ -stratum, the restriction of
the topology of Jm(U; Ĩ) to Jm(@i; Ĩ) coincides with the restriction of the topology of Jm(@i;C) to
Jm(@i; Ĩ). Therefore the topology considered in [4] for Jm(@i; Ĩ) is the restriction of the topology
considered here for Jm(U; Ĩ).

De�nition 3.6. Consider 0¡k6m6∞. A k-determined subset C ⊂ Jm(U; Ĩ) is closed analytic if
for any chart ’H with base subset V , the set (j k’H)−1('m

k (C)) is an m-determined closed analytic
subset of J k(V;Cm). A locally closed k-determined analytic subset of Jm(U; Ĩ) is the diMerence
between two k-determined closed analytic subsets. A closed analytic subset of J∞(U; Ĩ) is a locally
�nite union of �nitely determined closed analytic subsets of J∞(U; Ĩ). A locally closed analytic
subset of J∞(U; Ĩ) is the diMerence between two closed analytic subsets.

Consider a k-determined subset of Jm(U; Ĩ). Given any k6 k ′6m it is easy to check that it is a
k-determined (locally) closed analytic subset if and only if it is a k ′-determined (locally) closed ana-
lytic subset. Let Z be a closed m-determined subset of Jm(U; Ĩ), and let jm’H : Jm(V;Cs) → Jm(U; Ĩ)
and jm’H′ : Jm(V ′;Cs′

) → Jm(U; Ĩ) be two charts. By the compatibility (18), if (j k’H)−1(Z) is a
closed analytic subset, then (j k’H′)−1(Z|V ′′

l
) is closed analytic in Jm(V ′′

l ;Cs′
). Therefore to prove

the analyticity of a m-determined subset it is enough to check the condition for a set of charts whose
base subsets cover U . In particular it is enough to check that (jm’)−1(Z) is analytic.

De�nition 3.7. A subset Y ⊂ Jm(U;Cr) satisfying (jm’)−1(jm’(Y )) = Y is called jm’-saturated.

Closed analytic subsets of Jm(U; Ĩ) are in a bijective correspondence with jm’-saturated closed
analytic subsets of Jm(U;Cr).

De�nition 3.8. A closed analytic subset of J∞(U; Ĩ) is irreducible if it cannot be expressed as the
union of two closed analytic subsets of J∞(U; Ĩ) not containing it.

It follows that any irreducible closed analytic subset is �nite-determined.
We shrink U so that its closure is compact and contained in an open subset where Ĩ is de�ned.

Then the following uniform Artin–Rees theorem holds (see [1] for a proof): there exists 3∈Z¿0

such that

Ĩ x ∩mm+3
x ⊂ mm

x Ĩ x (21)

for any x∈U and any m. The minimal 3 so that the last inclusion holds is called the uniform
Artin–Rees constant.

Lemma 3.9. Let C ⊂ J∞(U; Ĩ) be a k-determined closed analytic subset. For any irreducible
component K of (j k’)−1('∞

k (C)), the preimage ('3+k
k )−1(K) is j k+3’-saturated.

Proof. Set m= k + 3 and

A := ('m
k )

−1((j k’)−1('∞
k (C))):
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Let K ′ := ('m
k )

−1(K). Clearly A is closed analytic and K ′ is one of its irreducible components. We
have to show that

K ′
x + ker(jm’x) ⊂ K ′

x (22)

for any x∈U (where K ′
x=K ′∩pr−1

m (x), and jm’x is the restriction of jm’ to Jm(U;Cr)x). An element
of ker jm’x is the class in Jm(U;Cr)x of a r-tuple (f1; : : : ; fr)∈Or

U;x such that ’x(f1; : : : ; fr) belongs
to Ĩx ∩ mm+1

x . It follows from uniform Artin-Rees that ’x(f1; : : : ; fr) belongs to mk+1
x Ĩ x. Therefore

there exists (h1; : : : ; hr)∈mk+1
x Or

Ux
so that ’x(h1; : : : ; hr)=’x(f1; : : : ; fr). We deduce that (f1; : : : ; fr)

belongs to mk+1
x Or

U;x + ker(’x). Hence

ker(jm’x) ⊂ mk+1
x Or

U;x=m
m+1
x Or

U;x + '∞
m (ker(’x)): (23)

As ’−1(C) is k-determined we have

Ax +mk+1
x Or

U;x=m
m+1
x Or

U;x ⊂ Ax (24)

for any x∈U . The set E :=
∐

x∈U m
k+1
x Or

U;x=m
m+1
x Or

U;x is a trivial vector sub-bundle of Jm(U;Cr).
Let r1 be the rank of E. Consider an analytic trivialisation "1 :G1 × U → E, where G1

∼= Cr1 . View
G1 as an additive analytic group. We have an analytic action

G1 × Jm(U;Cr) �1−→Jm(U;Cr)

de�ned by �1(g; f) := "1(g) + f. By (24) the subset A is left invariant by the action.
Since Ĩ is coherent we can take U small enough so that we have an exact sequence as follows

Os
U

 −→Or
U

’−→Ĩ → 0: (25)

Taking m-jets we obtain a homomorphism jm : Jm(U;Cs) → Jm(U;Cr) of trivial analytic vector
bundles. The exactness of (25) implies

'∞
m (ker ’x) = '∞

m (im  x) = im jm x (26)

for any x∈U . This, together with the jm’-saturation of A implies

Ax + im(jm x) ⊂ Ax: (27)

Let r2 be the rank of the vector bundle Jm(U;Cs). Consider an analytic trivialisation "2 :G2 × U →
Jm(U;Cs), where G1

∼= Cr2 . View G2 as an additive analytic group. We have an analytic action

G2 × Jm(U;Cr) �2→Jm(U;Cr)

de�ned by �2(g; f) := jm ◦ "2(g) + f. By (27) the subset A is left invariant by the action.
De�ne the additive analytic group G := G1 ⊕ G2 and the action

� :G × Jm(U;Cr) → Jm(U;Cr) (28)

by � := �1 ⊕ �2. The subset A is invariant by the action �. As G is irreducible we conclude that
each of the irreducible components of A are also invariant by the action. This, together with (23)
and (26) imply (22).
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Proposition 3.10. Let C ⊂ J∞(U; Ĩ) be a k-determined closed analytic subset. The following are
equivalent:

(1) The set C is irreducible.
(2) The set C is 9nite determined and (jm’)−1('∞

m (C)) is irreducible for a certain m¿ k.
(3) The set C is 9nite determined and (jm’)−1('∞

m (C)) is irreducible for any m¿ k.

Moreover, for any closed analytic subset C of J∞(U; Ĩ) there exists a unique irredundant locally
9nite decomposition of C in irreducible closed analytic subsets. If C is k-determined, then each of
its irreducible components is k + 3-determined.

Proof. For any m¿ k the morphism 'm
k : Jm(U;Cr) → J k(U;Cr) is a vector bundle epimor-

phism. As (jm’)−1('∞
m (C))= ('m

k )
−1((j k’)−1('∞

k (C))), the irreducibility of (jm’)−1('∞
m (C)) and

(j k’)−1('∞
k (C)) are equivalent. This shows (2) ⇔ (3).

Let us prove (3) ⇒ (1). Let C satisfy the property (3). Suppose C = C1 ∪ C2, where C1 and
C2 are closed analytic. Let C be k-determined. Using the ideas of Lemma 3.9 and the fact that
C1 and C2 are locally �nite-determined closed analytic sets, it is easy to show that C1 and C2 are
(k + 3)-determined. From here proving (1) is straightforward.
Suppose C is k-determined. Let {Kj}j∈J be the decomposition in irreducible components of

(j k’)−1('∞
k (C)). For any j ∈ J the set K ′

j := ('k+3
k )−1(Kj) is a irreducible component of

(j k+3’)−1('∞
k+3(C)). By Lemma 3.9 the set K ′

j is j k+3’-saturated. Therefore each Cj := ('∞
k+3)

−1j k+3

’(K ′) is a (k+3)-determined closed subset of J∞(U; Ĩ) and
⋃

j∈J Cj=C. As we have already shown
(2) ⇒ (1) we know that each Cj is irreducible. This shows the existence of a unique irredundant
decomposition in irreducible components for �nite-determined subsets, and also proves (1) ⇒ (2).

The existence and unicity of irredundant decompositions in irreducible components for non-
necessarily �nite-determined closed analytic subsets is easily deduced from the same property in
the special case of �nite-determined subsets.

Let C be a k-determined closed analytic subset of J∞(U; Ĩ). The irreducible components of C are
not k-determined in general. This can be seen already in the simplest examples:

Example 3.11. Consider I ⊂ C{z} generated by z2. Let ’ :OC → OC be de�ned by ’(f) := z2f.
The set

∐
x∈Cmx is a 1-determined closed subset of J∞(C; Ĩ). It has two irreducible components

C1 = J (C; Ĩ)0 and C2 =m3
0 ∪∐x �=0mx. Clearly C2 is 2-determined, but not 1-determined.

De�nition 3.12. The codimension codim(C) of a k-determined irreducible locally closed subset of
J∞(U; Ĩ) is the codimension of (j k’)−1(pr∞

k (C)) in J k(U;Cr).

In the situation of the last de�nition, if m¿ k, then clearly codim(C) equals the codimension
of (jm’)−1(pr∞

m (C)) in Jm(U;Cr). It is also clear that if C ⊂ C ′ are closed analytic subsets of
J∞(U; Ĩ), and C ′ is irreducible, then either C = C ′ or codim(Ci)¿ codim(C ′) for any irreducible
component Ci of C.

We now show that the codimension of C does not depend on the chosen chart:
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Lemma 3.13. Let C be a k-determined irreducible locally closed subset of J∞(U; Ĩ). Given any open
subset V ⊂ U and any system of s generators H of Ĩ |V , the codimension of (j k’H)−1(pr∞

k (C))
in J k(V;Cr) equals codim(C).

Proof. Consider another set of generators H′ = {h′
1; : : : ; h

′
s′} of Ĩ |V ′ . If H′ contains H, in order to

provide transition functions between the charts associated to H and H′, the functions Ci; j can be
chosen to be Ci; j = 0 if j 
= i and Ci; i = 1 for i6 s. Note that the Ci; j’s are de�ned in the whole
V ∩ V ′ (the set where both H and H′ are de�ned). In this case the transition function j kC is a
submersion for any k ¡∞. Therefore, as (j k’H′)−1('∞

k (C)) = (j kC)−1((j k’H)−1('∞
k (C))), the

codimension of (j k’H′)−1('∞
k (C)) in J k(V;Cs′

) equals the codimension of (j k’H)−1('∞
k (C)) in

J k(V;Cs).
Given any two sets of generators of Ĩ |V ′ their union gives a set of generators containing both

of them. Therefore the codimension does not depend on the set of generators giving rise to the
chart.

The following natural fact is easily deduced as a consequence of the existence of decomposition
in irreducible components:

Lemma 3.14. The topological closure of a locally closed analytic subset of J∞(U; Ĩ) is closed
analytic.

Proof. Let C be a locally closed analytic subset of J∞(U; Ĩ). We have C=A\B, with A and B closed
analytic subsets of J∞(U; Ĩ). Let A=

⋃
j∈J Aj be a decomposition of A in irreducible components.

Let J ′ ⊂ J be the subset consisting of the indices j such that Aj is not included in B. By the local
�niteness of the decomposition in irreducible components we have TC=

⋃
j∈J ′ Aj\B. Therefore we are

reduced to the case in which A is irreducible. We can cover J∞(U; Ĩ) by open subsets {Ul}l∈L such
that A, Ul and B∩Ul are ml-determined for a certain integer ml. This means that for any l∈L there
exists an open subset Vl ⊂ U , a jml’-saturated open subset Wl ⊂ Jml(Vl;Cr) and jml’-saturated
closed analytic subsets Al and Bl of Jml(Vl;Cr) such that

('∞
ml
)−1(jml’(Wl)) = Ul;

('∞
ml
)−1(jml’(Al)) = A ∩ Ul;

('∞
ml
)−1(jml’(Bl)) = B ∩ Ul:

As A is irreducible, any irreducible component of B ∩ A has strictly bigger codimension. Therefore
Al\Bl = Al, and consequently (by the de�nition of the topology in J∞(U; Ĩ)) the set A ∩ Ul equals
TC ∩ Ul. It follows that A= TC.

After this lemma it makes sense to de�ne:

De�nition 3.15. A locally closed analytic subset is irreducible if its closure is irreducible.
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Lemma 3.16. Let C be a k-determined irreducible locally closed analytic subset of J∞(U; Ĩ).
Given any open subset V ⊂ U and any system of generators H of Ĩ |V we consider A :=
(j k+3’H)−1('∞

k+3(C)). Then the set Sing(A) is j k+3’H-saturated.

Proof. In the proof of Lemma 3.9 we have shown that A is invariant by the group action � :G ×
J k+3(V;Cs) → J k+3(V;Cs) (where s is the number of generators of H). Therefore for any g∈G we
have �(g;Sing(A)) = Sing(A). This, together with (23) and (26) implies

Sing(A) + ker(j k+3’H; x) ⊂ Sing(A) (29)

for any x∈V .

De�nition 3.17. Let C be locally closed analytic in J∞(U; Ĩ) and f∈C. We say that C is irreducible
at f if there is only one irreducible component of C containing f. We say that C is smooth at f
if

(1) It is irreducible at f.
(2) Let C ′ be the unique irreducible component of C containing f; let C ′ be k-determined. For any

open subset V ⊂ U containing pr∞(f), any system of generators H of Ĩ |V and any m¿ k + 3
the locally closed analytic (jm’H)−1('∞

m (C ′)) is smooth at any h such that jm(h) = '∞
m (f).

Using an argument similar to the proof of Lemma 3.13 it is easy to check that it is enough to
check smoothness at a single chart.

Remark 3.18. Taking into account Lemma 3.16 it is easy to check that it is enough to check the
second condition for smoothness for a particular m¿ k+3 and a particular h such that jm(h)='∞

m (f).
Moreover, for any locally closed analytic subset C the set Sing(C) of singular points is closed
analytic in C, and it is (k + 3)-determined if C is k-determined.

4. The �ltration by extended codimension

The natural generalisation of the subvariety of Z1 ⊂ J 2(U;C) parametrising Morse singularities
is the set of germs in Jm(U; Ĩ) parametrising singularities of extended codimension equal to 1, this
motivates the following:

De�nition 4.1. Suppose that m is either a non-negative integer or ∞; de�ne

Cm := {f∈ J∞(U; Ĩ): cĨ'∞(f) ;e(f)¿m};
Ċm := {f∈ J∞(U; Ĩ): cĨ'∞(f) ;e(f) = m};
Km := (j∞’)−1(Cm) K̇m := (j∞’)−1(Ċm):

Clearly C∞ = Ċ∞ =
⋂

m∈N Cm and K∞ = K̇∞ =
⋂

m∈N Km.

Lemma 4.2. For any x∈U and any f∈ Ĩ x such that cĨx;e(f) = m we have mm
x Ĩ x ⊂ �Ĩx;e(f).
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Proof. The ith graded piece of Ĩ x=�Ĩx;e(f) by the mx-adic �ltration is the module

Mi :=
mi

x Ĩ x +�Ĩx;e(f)

mi+1
x Ĩ x +�Ĩx;e(f)

:

As m= cĨx;e(f) = dimC(Ĩ x=�Ĩx;e(f)) =
∑∞

i=0 dimC(Mi) we deduce that there exists l6m such that
Ml = 0, which is the same that ml

xĨ x ⊂ �Ĩx;e(f) + ml+1
x Ĩ x. Applying Nakayama’s Lemma to the

module ml
xĨ x +�Ĩx;e(f)=�Ĩx;e(f) we conclude ml

xĨ x ⊂ �Ĩx;e(f).

Lemma 4.3. For any x∈U the subset

Am := {f∈ Ĩ x :mm
x Ĩ x ⊂ �Ĩx;e(f)}

satis9es Am +mm+2
x Ĩ x = Am.

Proof. Consider f∈Am and g∈mm+2
x Ĩ x. Clearly

�Ĩx;e(f) ≡ �Ĩx;e(f + g) (modmm+1
x Ĩ x):

Then, as mm
x Ĩ x ⊂ �Ĩx;e(f), we have that mm

x Ĩ x ⊂ �Ĩx;e(f+ g)+mm+1
x Ĩ x; by Nakayama’s Lemma we

have mm
x Ĩ x ⊂ �Ĩ;e(f + g), and hence f + g∈Am.

Lemma 4.4. The subsets Cm and Km are (3 + m)-determined; the subsets Ċm and K̇m are
(3+ m+ 1)-determined, where 3 is the uniform Artin-Rees constant.

Proof. Obviously it is enough to prove the lemma for Cm and Ċm. To prove that Ċm is
(3 + m + 1)-determined we have to check the following claim: consider f∈ Ċm, let pr∞(f) = x,
consider g∈m3+m+2

x ∩ Ĩ x, then f+ g∈ Ċm. By the uniform Artin-Rees theorem g∈mm+2
x Ĩ x; Lemma

4.2 implies �Ĩx;e(f) ⊃ mm
x Ĩ x; then, by Lemma 4.3, we have �Ĩx;e(f + g) ⊃ mm

x Ĩ x, and hence

Ĩ x
�Ĩx;e(f + g)

=
Ĩ x=mm

x Ĩ x
�Ĩx;e(f + g)=mm

x Ĩ x
:

On the other hand, as g∈mm+2
x Ĩ x we have X (g)∈mm+1

x Ĩ x for any X ∈�Ĩx;e. Therefore �Ĩx;e(f +
g)=mm

x Ĩ x = �Ĩx;e(f)=m
m
x Ĩ x, and hence cĨx;e(f + g) = cĨx;e(f) = m; this shows the claim. As Cm =

I\⋃i¡m Ċi, and each Ċi is (3+ i+1)-determined, we conclude that Cm is (3+m)-determined.

Proposition 4.5. (1) The subsets Cm and Km are (3 + m)-determined closed analytic subsets of
J∞(U; Ĩ) and J∞(U;Cr), respectively.
(2) The subset Ċm and K̇m are (3 + m + 1)-determined open subsets in the analytic Zariski

topology of Cm and Km, respectively.

Proof. It is enough to prove the statements for Km and K̇m. The determinacy statements are proved
in Lemma 4.4; for the rest we work by induction on m. We take as initial step m = −1, in this
case everything is trivial. Assume that the proposition is true for any k ¡m. Then Km−1 is closed
analytic in J∞(U;Cr) and K̇m−1 ⊂ Km−1 is an open inclusion in the analytic Zariski topology of
Km−1; as Km := Km−1\K̇m−1 the subset Km is closed analytic in Km−1, and hence in J∞(U;Cr). This
shows the �rst assertion.
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Let {11; : : : ; 1k} be a system of generators of �I;e as a OCn;O-module; we can assume (perhaps
shrinking U ) that each 1i is de�ned on U and that the germs {11; x; : : : ; 1k;x} generate �Ĩx;e for
any x∈U . Let h1; : : : ; hl ∈OCn;O be the set of monomials in x1; : : : ; xn of degree lower or equal
than 3 + m + 2; then J 3+m+1(U;C)x is generated by {j3+m+1h1(x); : : : ; j3+m+1hs(x)} for any x∈U .
Therefore, de�ning {C1; : : : ; Cd} := {hi1j : 16 i6 l; 16 j6 k}, the set {C1; x; : : : ; Cs;x} generates
�Ĩx;e=m

3+m+2
x �Ĩx;e as a complex vector space for any x∈U ; hence it also generates �Ĩx;e=m

3+m+2
x ∩

�Ĩx;e.
Recall that we have �xed a set of functions g1; : : : ; gr generating Ĩ in U . For any k6d de�ne

an analytic vector bundle homomorphism

<k : J 3+m+2(U;Cr) → J 3+m+1(U;C)

by the formula

<k(j3+m+2f1(x); : : : ; j3+m+2fr(x))

:=
r∑

i=1

j3+m+1fi(x)j3+m+1Ck(gi)(x) + j3+m+1Ck(fi)(x)j3+m+1gi(x);

where x∈U , f1; : : : ; fr ∈OCn; x. The mapping <k is de�ned so that

j3+m+1Ck(’(f1; : : : ; fr))(x) = <k(j3+m+2f1(x); : : : ; j3+m+2fr(x)): (30)

Given any f∈ J 3+m+2(U;Cr) such that pr3+m+2(f) = x, denote by S(f) the subspace of J 3+m+1

(U;C)x spanned by {<k(f) : 16 k6d}. For any f∈ J 3+m+2(U;Cr) de�ne rk(f) := dimC(S(f)).
We can consider J 3+m+1(U; Ĩ)x as a subspace of J 3+m+1(U;C)x via the canonical isomorphism
Ĩ x=m3+m+2

x ∩ Ĩ x ∼= Ĩ x + m3+m+2
x =m3+m+2

x . Then clearly S(f) ⊂ J 3+m+1(U; Ĩ)x. Taking into account
(30) we deduce easily

J 3+m+1(U; Ĩ)x=S(f) = Ĩ x=(�Ĩx;e(’x(h)) +m3+m+2
x ∩ Ĩ x) (31)

for any h∈Or
Cn; x such that '∞

3+m+2(h) = f.
Let @i be an Ĩ -stratum; consider the positive integer Ni := /x(3+m+1), where x is any point in @i

and /x is the function de�ned in Formula 13. De�ne the closed analytic subset Ti ⊂ J 3+m+2(U;Cr)
as follows:

Ti := {f∈ J 3+m+2( T@i;Cr) : rk(f)¡Ni − m}:
Suppose that h∈ K̇m, consider the Ĩ -stratum @i such that x := pr∞(h)∈@i. Lemma 4.2 implies that
�Ĩx;e(’(h)x) contains mm

x Ĩ x, which, by uniform Artin-Rees, contains m3+m+2
x ∩ Ĩ x. This, together with

equality (31), implies that

Ni − rk(j3+m+2h(x)) = cĨx;e(’(h)x) = m: (32)

Therefore

K̇m|@i
⊂ Km\('∞

3+m+2)
−1(Ti): (33)
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The union

M :=
∐
x∈U

(mm
x =m

3+m+2
x )r

is clearly an analytic sub-bundle of J 3+m+1(U;Cr). Consider the vector bundle homomorphism
j3+m+1’: J 3+m+1(U;Cr) → J 3+m+1(U;C). The image of j3+m+1’|M is the union

L :=
∐
x∈U

Lx;

where Lx := mm
x Ĩ x + m3+m+2

x =m3+m+2
x . We consider the strati�cation of U in locally closed analytic

subsets @i;j de�ned to be the minimal common re�nement of the Hilbert-Samuel strati�cation with
respect to Ĩ , and the minimal strati�cation such that the rank of j3+m+1’|M restricted to each stratum
is constant. Given any @i;j, the restriction L|@i; j

is an analytic vector bundle over it.
Consider any stratum @i;j. Let Y be an irreducible component of the locally closed (3 +

m+ 2)-determined subset Km|@i; j
\('∞

3+m+2)
−1(Ti).

Claim 1. If Y and K̇m have non-empty intersection then Y ⊂ K̇m.

Let us prove the claim: as rk(f)¿Ni−m for any f∈ J 3+m+2(@i;Cr)\Ti, the 3+m+2 determined
set

Y ′ := {f∈Y : rk('∞
3+m+2(f)) = Ni − m}

is closed analytic in Y (it is the locus where rk(pr∞
3+m+2(f)) is minimal in Y ). By (32) we have

K̇m ∩ Y ⊂ Y ′.
By Lemma 4.2, if f∈ K̇m and x = pr3+m+2(f) then S('∞

3+m+2(f)) contains the linear subspace
Lx. Conversely, suppose that f∈Y ′ satis�es

S('∞
3+m+2(f)) ⊃ Lx:

Using equality (31), we deduce

�Ĩx;e(’(f)x) +m3+m+2
x ∩ Ĩ x ⊃ mm

x Ĩ x:

By uniform Artin-Rees m3+m+2
x ∩ Ĩ x ⊂ mm+2

x Ĩ x, and therefore

mm
x Ĩ x ⊂ �Ĩx;e(’(f)x) +mm+2

x Ĩ x:

Using Nakayama’s lemma we conclude that �Ĩx;e(’(f)x) contains mm
x Ĩ x, which in turn contains

m3+m+2
x ∩ Ĩ x. Therefore

cĨx;e(’(f)x) = dimC

(
Ĩ x

�Ĩx;e(’(f)x) +m3+m+2
x ∩ Ĩ x

)
;

which, by the equality (31) is equal to Ni − rk(f) = Ni − (Ni − m) = m; consequently f∈ K̇m. We
have shown

K̇m ∩ Y = {f∈Y ′: S('∞
3+m+2(f)) ⊃ Lx}:
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We consider the restriction pr3+m+2 : '∞
3+m+2(Y

′
|@i; j

) → @i;j, the pullback vector bundle

pr∗
3+m+2(J

3+m+1(U;C)|@i; j
), and the sub-bundle pr∗

3+m+2(L|@i; j
). Taking into account that S(f) has

constant dimension when f ranges in Y ′ it is easy to check that the union

S :=
∐

f∈'∞
3+m+2(Y

′
|@i; j

)

S(f)

is an analytic vector sub-bundle of pr∗
3+m+2(J

3+m+1(U;C)|@i; j
). Let Y ′′ be the closed analytic subset

of Y ′ formed by points f such that the �bre S'∞
3+m+2(f) contains the �bre (pr∗

3+m+2L|@i; j
)'∞

3+m+2(f). As
K̇m ∩ Y is the subset of Y ′ formed by germs such that S('∞

3+m+2(f)) contains Lx, we deduce that
K̇m|@i; j

= Y ′′. We have shown that K̇m ∩ Y is a closed analytic subset of Y ′, and hence of Y .
Since Y is included in Km, if we have f∈Y\K̇m and x := pr∞(f) then cĨx;e(’(f)x)¿m. If

Y 
⊂ K̇m then K̇m ∩ Y is a (3+ m+ 2)-determined proper analytic subset of the irreducible analytic
subset Y . Then it is possible to �nd an analytic path 9 :D → '∞

3+m+2(Y ), from a small disk D to Y
such that 9−1('∞

3+m+2(K̇m)) = {0}.
Consider the analytic trivialisation

"3+m+2 :U × (C{x}=m3+m+3)r → J 3+m+2(U;Cr)

de�ned in (12). There exist an analytic path 1 :D → U and polynomials h1; t ; : : : ; hr; t of degree 3+m+
2 in x1; : : : ; xn, with coeKcients depending analytically on t such that 9(t)="3+m+2(1(t); (h1; t ; : : : ; hr; t))
for any t ∈D. For any t; i let h̃i; r be the unique function in OCn;O whose Taylor expansion at 1(t)
equals hi; t; clearly h̃i; t is a polynomial whose the coeKcients depend analytically on t. The I -unfolding

F :Cn × D → C

de�ned by F(x; t) := ’(h̃1; t ; : : : ; h̃r; t)(x) satis�es

cĨ1(O) ;e(F|0; 1(O)) = m and cĨ1(t) ;e(F|0;1(t))¿m;

which contradicts the upper-semicontinuity of the extended codimension (see Corollary 1.9). This
establishes Claim 1.

Decompose each Km ∩ ('∞
3+m+2)

−1(Ti) (for 16 i6 s) in irreducible components; we say that an
irreducible component Z is relevant if pr3+m+2(Z)∩@i 
= ∅. For any stratum @i;j, decompose Km| T@i; j

in irreducible components, and say that an irreducible component is excessive if it is contained in
Km+1. De�ne the closed analytic subset of T ⊂ Km to be the union of all the excessive components
of each of the Km| T@i; j’s and all the relevant components of each of the Km ∩ ('∞

3+m+2)
−1(Ti)’s.

Claim 2. T = Km+1.

If the claim is true the induction step is complete, and hence the proposition is proved.
To prove the claim consider f∈Km\T , and let @i;j be the stratum such that x = pr∞(f)∈@i;j.

As f does not belong to T , it cannot be in ('∞
3+m+2)

−1(Ti). Let Y be the irreducible component
of Km| T@i; j

to which f belongs. As f 
∈ T , the component Y cannot be excessive, and therefore
Y ∩ K̇m is non-empty. If Y|@i; j

∩ K̇m 
= ∅ then, by Claim 1 we have Y|@i; j
⊂ K̇m; therefore f∈ K̇m.

If Y|@i; j
∩ K̇m = ∅ then Y|@i; j

⊂ Km+1. Hence Y ∩ K̇m is included in the proper analytic subset Y|@@i; j
,
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where @@i; j is the diMerence T@i;j\@i;j. As Y|@i; j
⊂ Km+1 is Zariski open in the �nitely-determined

irreducible closed analytic subset Y , it is possible to �nd an analytic path 9 :D → '∞
3+m+2(Y ), from

a disk to Y such that 9−1(K̇m) = {0}. As we have seen previously this leads to a contradiction; we
conclude Y|@i; j

∩ K̇m 
= ∅, and hence f∈ K̇m. This shows Km+1 ⊂ T .
Suppose f∈T . If f is in a excessive component of Km| T@i; j for some i; j then f∈Km+1. Otherwise

'∞
3+m+2(f) is in a relevant component Y of Km ∩ ('∞

3+m+2)
−1(Ti) for some i. By (33) we have

Km ∩ ('∞
3+m+2)

−1(Ti|@i
) ⊂ Km+1; therefore Y ∩ K̇m is contained in the proper analytic subset Y|@@i

. As
Y is irreducible we conclude as before that Y ⊂ Km+1. This completes the proof of the claim.

The next proposition gives a codimension bound for the irreducible components of K1 or C1 that
will be interesting for us (those corresponding to functions of �nite extended codimension).

Proposition 4.6. If Y is an irreducible component of K1 (resp. C1) of codimension strictly smaller
than n, then Y is included in K∞ (resp. C∞).

Proof. It is enough to work with components of K1. Let Y ⊂ K1 be such a component. Suppose that
Y 
⊂ K∞; then there is h∈Y such that cĨx;e(j

∞’(h)(x)) is �nite, where x = pr∞(h). The element
h is the germ at x of an analytic function from a neighbourhood W of x to Cr , with components
h1; : : : ; hr; the function g := ’(h) is a section of Ĩ over W , whose germ gx at x equals j∞’(h).
Consider the analytic mapping j∞h :W → J∞(W;Cr); the locus (j∞h)−1(Y ) consists of points in
which g has positive extended codimension. As cĨx;e(gx) is �nite, the associated sheaf F, de�ned in
formula (3), is skyscraper at x, and hence dimx((j∞h)−1(Y )) = 0. On the other hand, the following
easy statement implies that the last dimension is positive, giving a contradiction.

(†) Let � : (X; x) → (Z; z) be an analytic morphism of germs of complex spaces, with (Z; z)
smooth. Consider an analytic subgerm (Y; z) of (Z; z) such that codimz(Y; Z)¡ dimx(X ),
then dimx(�−1(Y ))¿ 0.

If dimx(�−1(z))¿ 0 we are done. Assume dimx(�−1(z)) = 0; by the Proposition on p. 63 of [8],
shrinking X and Z we can assume that � is �nite, and therefore (�(X ); z) is a closed analytic
subspace of dimension equal to dimx(X ). As (Z; z) is smooth, dimz(Y ∩ �(X ))¿ dimz(�(X )) −
codimz(Y; Z)¿ 0. Then dimx(�−1(Y ))¿ 0.

5. The topological partition

Functions of the same extended codimension do not need to have the same topological type, even
if they lie in a connected family. For example, when I de�nes a smooth subvariety of dimension
d, all the singularity types D(d; k) de�ned in [18] have zero extended codimension with respect to
I 2 and pairwise diMerent topological types. We need to subdivide the subvarieties K̇m so that the
functions on the (relevant) resulting pieces have constant topological type. As we will show there
is a canonical way to do it.

Any representative � :V → U of a germ �∈DĨ x ;e induces by push-forward a bijection

j∞�∗: J∞(V; Ĩ) → J∞(�(V ); Ĩ); (34)
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de�ned by j∞�∗(fy) := (fy ◦�−1)�(y) for any y∈V and fy ∈ Ĩ y. As the my-adic �ltration is trans-
formed by push-forward into the m�(y)-adic �ltration, for any m¡∞, the mapping j∞�∗ descends
to a bijection

jm�∗ : Jm(V; Ĩ) → Jm(�(V ); Ĩ): (35)

The functions g1 ◦ �−1; : : : ; gr ◦ �−1 are sections of Ĩ de�ned over �(V ) (where g1; : : : ; gr is the
�xed set of generators for Ĩ at U ). As Ĩ is generated over U by g1; : : : ; gr , if we shrink V enough
we can assume that for any i6 r we have an expression of the form

gi ◦ �−1 =
r∑

j=1

hi; jgj;

where each hi; j is an analytic function de�ned on �(V ). Consequently, if f∈�(V; Ĩ) is of the form
f =

∑r
i=1 figi, then

f ◦ �−1 =
r∑

i=1

(fi ◦ �−1)gi ◦ �−1 =
r∑

i=1


 r∑

j=1

fj ◦ �−1hj; i


 gi: (36)

For any m6∞ the mapping

jm�̃∗ : J k(V; Ĩ) → Jm(�(V ); Ĩ); (37)

de�ned by the formula

jm�̃∗(jmf1(x); : : : ; jmfr(x)) :=


: : : ; jm


 r∑

j=1

fj ◦ �−1hj; i


 (�(x)); : : :




de�nes a mapping which is analytic for m¡∞, and, by Eq. (36), satis�es jm’ ◦ jm�̃∗ = jm�∗jm’.
Therefore we say that jm�̃∗ is an analytic local lifting of jm�∗.

De�nition 5.1. Let T ⊂ J∞(U; Ĩ) be a (locally) closed analytic subset. We say that T is DĨ e-invariant
if for any analytic diMeomorphism � :V → U preserving Ĩ and any x∈V , we have �t∗(Tx)= T�t(x).

Clearly the set Cm is DĨ ; e-invariant for any m6∞.
Now we recall brieDy the results of [4]:

De�nition 5.2. Two germs f : (Cn; x) → C and g : (Cn; y) → C are called topologically equivalent
if there exit germs of homeomorphisms � : (Cn; x) → (Cn; y) and < : (C; f(x)) → (C; g(x)) such that
< ◦ f = g ◦ �.

A closed subset A ⊂ J∞(U; Ĩ) is called residual if for any positive integer c there is a closed
analytic subset T ′ containing A, and such that all its irreducible components are of codimension at
least c.
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Let T be an irreducible locally closed subset of J∞(U; Ĩ), by [4, Proposition 10], there exists a
unique closed subset � ⊂ T with the following properties:

(i) We have a decomposition �=�(a) ∪�(r) where �(a) is a closed analytic subset of T , and �(r)

is a residual closed subset.
(ii) Any f; g∈T in the same path-connected component of T\� are topologically equivalent.
(iii) The subset � is minimal among the subsets of T satisfying Properties (i) and (ii).

The subset � is called the topological discriminant of T . The decomposition � = �(a) ∪ �(r) is
unique provided that � is chosen to be minimal; we say that �(a) and �(r) are respectively the
analytic and residual parts of �.
In [4] it was proved that if V is an open subset of U then �|V is the topological discriminant

of T|V .

Lemma 5.3. If T is DĨ ; e-invariant then � is also DĨ ; e-invariant.

Proof. Let � :V → �(V ) be an analytic diMeomorphism preserving Ĩ . It is enough to show

�∗(�|V ) ⊃ �|�(V ) (38)

(for the opposite inclusion we consider the analogous statement for �−1∗ and apply �∗). The set
�′ := �∗(�|V )∩ �|�(V ) is a closed subset which is the union of the analytic subset �(a)

�(V ) ∩ �∗(�
(a)
|V )

and the residual subset

[�(r)
|�(V ) ∩ �∗(�|V )] ∪ [�|�(V ) ∩ �∗(�

(r)
|V )]:

If any two germs that can be connected by a continuous path in T|�(V )\�′ have the same topological
type then �′ must contain the topological discriminant �|�(V ) of T|�(V ), and therefore inclusion (38)
holds.

Let 9 : [0; 1] → T|�(V )\�′ be a continuous path. The interval [0; 1] is the union of the open subsets
9−1(T|�(V )\�|�(V )) and 9−1(T|�(V )\�∗(�|V ). As over each of these subsets the topological type clearly
remains constant, then it also does along 9.

Shrink U so that its closure is contained in an open subset where �Ĩ;e is generated by global
sections, then the Main Theorem of [4], applied to T = J∞(U; Ĩ), gives:

Theorem 5.4. There exist a unique 9ltration (which we call the 9ltration by successive discrimi-
nants)

J∞(U; Ĩ) = A0 ⊃ A1 ⊃ · · · ⊃ Ai ⊃ · · ·
by closed analytic subsets, and a residual subset �(r) (called the cumulative residual topological
discriminant of J∞(U; Ĩ)), with the following properties:

(1) We have
⋂

i¿0 Ai ⊂ �(r).
(2) For any i¿ 0 the set Ai+1 ∪ (�(r) ∩ Ai) is the topological discriminant of Ai.
(3) Any irreducible component of Ai has codimension at least i.
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(4) If T is DĨ ; e-invariant then Ai is DĨ ; e-invariant for any i¿ 0. The set �(r) is contained in a
residual subset which is an intersection of DĨ ; e-invariant closed analytic subsets of C.

We need to make a remark concerning the level of generality of this paper in comparison to
[4]. Instead of working with analytic subsets of J∞(U; Ĩ), in [4] our attention was restricted to
closed analytic subsets of J∞(@i; Ĩ), where @i is a certain Ĩ -stratum of U . Once the existence of
decompositions in irreducible components has been proved in our setting, all the arguments of [4]
can be translated with minimal changes to prove the statements given here. Another diMerence is in
Property 4: here we state the DĨ ; e-invariance of certain subsets, and in [4] we state Dow-invariance,
which is a weaker property. The stronger property holds because here we work over C, and in [4]
we considered also the real case; actually Lemma 5.3 provides the required additional arguments
to [4].

By Theorem 5.4(4) there exists a DĨ ; e-invariant closed analytic subset H1 containing �(r), whose
irreducible components have codimension at least n + 1. We can suppose �(r) =

⋂
k∈N �k , being

each �k closed analytic with the properties H1 ⊃ �k and �k ⊃ �k+1. For any i6 n let {Ai;j}j∈Ji
be the set of irreducible components of Ai\Ai+1 of codimension smaller or equal than n. The subset
Ai;j\�(r) is path-connected for any i; j, as it is the union

⋃
k∈N Ai;j\�k , where the Ai;j\�k are an

increasing sequence of irreducible (and hence connected) locally closed subsets. We conclude that
all the germs in Ai;j\�(r) have the same topological type.

We say that two components Ai;j and Ai;j′ are equivalent if their respective generic germs have
the same topological type. Non-equivalent Ai;j and Ai;j′ are disjoint. If this were not the case let Y
be an irreducible component of their intersection. As �(r) is contained in closed subsets of arbitrarily
large codimension we deduce that Y is not contained in �(r). Therefore the topological type of a
generic germ in Y coincides with the generic topological type in Ai;j and Ai;j′ . This contradicts the
non-equivalence of Ai;j and Ai;j′ . Let Li be the set of equivalence classes and for any l∈Li de�ne
Bi;l as the union of all the subsets of the class l. Consider the decomposition⋃

j∈Ji

Ai; j =
∐
l∈Li

Bi; l:

Clearly the sets Bi;l are closed analytic in Ai\Ai+1 and the elements of Bi;l\�(r) and Bi;l\H1 are
germs which have pairwise the same topological type.

De�ne H2; i to be the union of all the irreducible components of Ai of codimension at least n+1.
De�ne H2 :=

⋃
j∈N H2; j. As H2 contains An+1 the union is easily seen to be locally �nite, and hence

H2 is an analytic closed subset.
We have a locally �nite partition

J∞(U; Ĩ) :=

[ ∐
i6n;l∈Li

Bi; l\(�(r) ∪ H2)

]∐
(�(r) ∪ H2) (39)

in disjoint subsets such that for any i6 n and l∈Li the set Bi;l is a DĨ ; e-invariant locally closed
analytic subset in J∞(U; Ĩ) such that any two germs in Bi;l\�(r) have the same topological type.
All the subsets of the partition are canonically de�ned.

De�nition 5.5. The partition introduced above is called the topological partition of J∞(U; Ĩ) up to
codimension n, and is canonically de�ned.
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6. Whitney strati�cations in J∞(U; Ĩ )

Let C be a locally closed analytic subset of J∞(U; Ĩ). A strati9cation of C is a partition of
C in a locally �nite family {Xj}j∈J of disjoint smooth irreducible locally closed analytic subsets
of J∞(U; Ĩ). Given two smooth irreducible locally closed analytic subsets X and Y of J∞(U; Ĩ),
we say that X is Whitney-regular over Y if for any k such that both X and Y are k-determined,
and for any open subset V ⊂ U and any system of generators H of Ĩ |V , the subset (j k’H)−1(X )
is Whitney-regular over (j k’H)−1(Y ) (this makes sense as (j k’H)−1(X ) and (j k’H)−1(Y ) are
submanifolds of J k(U;Cr)).

It is easy to show that given two smooth locally closed analytic subsets X; Y ⊂ J k(U;Cr), a positive
integer m¿ k, and a point y∈ ('m

k )
−1(Y ) then ('m

k )
−1(X ) is Whitney-regular over ('m

k )
−1(Y ) at a

point y if and only if X is Whitney-regular over Y at 'm
k (y). Therefore it is enough to check the

Whitney regularity condition for a particular k. An argument similar to the proof of Lemma 3.13
shows that to prove Whitney regularity at a point it is enough to check it at a single chart containing
the point.

A Whitney strati�cation of a locally closed analytic subset of J∞(U; Ĩ) is a strati�cation of it
such that any stratum is Whitney regular over any other stratum.

We will make use of the following fact (see [24]): let X and Y be two irreducible locally closed
analytic subsets of a complex manifold, such that dim(X )¿ dim(Y ). Denote by Xsm and Ysm the set
of smooth points of X and Y . There exists a unique minimal proper closed analytic subset W (X; Y )
of Y containing Sing(Y ) such that Xsm is Whitney regular over Ysm\W (X; Y ). Moreover the set of
points y∈Ysm such that X is not Whitney regular over Y at y is dense in W (X; Y ) ∩ Ysm.

Lemma 6.1. Let X and Y be two k-determined irreducible locally closed analytic subsets of
J∞(U; Ĩ) such that codim(X; J∞(U; Ĩ))¡ codim(Y; J∞(U; Ĩ)). There exists a unique minimal (k +
3)-determined proper closed analytic subset W (X; Y ) of Y such that Xsm is Whitney regular over
Ysm\W (X; Y ). Moreover the set of points y∈Ysm such that X is not Whitney regular over Y at y
is dense in W (X; Y ) ∩ Ysm. In addition, if X and Y are both DĨ ; e-invariant, then W (X; Y );Sing(X )
and Sing(Y ) are DĨ ; e-invariant.

Proof. Let k be such that both X and Y are k-determined. De�ne

X ′ := (j k’)−1('∞
k (X )) Y ′ := (j k’)−1('∞

k (Y )):

The sets X ′ and Y ′ are locally closed analytic subsets of J k(U;Cr) such that dim(X ′)¿ dim(Y ′);
consider the set W (X ′; Y ′). If we prove that for a certain m¿ k the set W := ('m

k )
−1(W (X ′; Y ′)) is

jm’-saturated, then the set W (X; Y ) := ('∞
m )−1(jm’(W )) clearly satis�es all the desired properties,

with the exception of DĨ ; e-invariance, which will be proved later.
We will prove the jm’-saturation for m= k + 3, where 3 is the uniform Artin-Rees constant. We

have to check

Wx + ker(jm’x) ⊂ Wx (40)

for any x∈U . Because of inclusion (23) it is enough to show that W is invariant by the group
action (28). The sets W and W (('m

k )
−1(X ′); ('m

k )
−1(Y ′)) are clearly equal; therefore, the subset Z
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of ('m
k )

−1(Y ′) formed by the singular locus of ('m
k )

−1(Y ′) and the points where ('m
k )

−1(X ′) is not
Whitney-regular over ('m

k )
−1(Y ′) is dense in W . As ('m

k )
−1(X ′) and ('m

k )
−1(Y ′) are invariant by

the action (28) and Whitney regularity is preserved by diMeomorphisms, then Z is also invariant by
the action. This implies in turn the invariance of W .
It remains to be prove the DĨ ; e-invariance of W (X; Y ).
Consider an open subset V of U and a set H = {h1; : : : ; hs} which generate Ĩ |V . As Whitney

regularity can be checked with respect to any chart, we have

W (X; Y ) ∩ J∞(V; Ĩ) = ('∞
m )−1(jm’H(W ′));

where W ′ = ('k+3
k )−1(W (X ′

H; Y ′
H)), with X ′

H := (j k’H)−1('∞
k (X )) and Y ′

H := (j k’H)−1 ×
('∞

k (Y )).
Suppose that X and Y are DĨ ; e-invariant. Consider an analytic diMeomorphism � :V → U pre-

serving Ĩ . We consider the associated push-forward mapping

j∞�∗: J∞(V; Ĩ) → J∞(�(V ); Ĩ): (41)

As Ĩ is generated over U by g1; : : : ; gr , the functions g1 ◦ �−1; : : : ; gr ◦ �−1 generate Ĩ over �(V ).
De�ne < :Or

�(V ) → Ĩ |�(V ) by the formula <(f1; : : : ; fr) :=
∑r

i=1 fi(gi ◦ �−1). For any k6∞ we let

j k<: J k(�(V );Cr) → J k(�(V ); Ĩ)

be the associated mapping of k-jets. For any k6∞ the mapping

j k�̃∗ : J k(V;Cr) → J k(�(V );Cr); (42)

de�ned by the formula

j k�̃∗(j kf1(x); : : : ; j kfr(x)) := (j k(f1 ◦ �−1)(�(x)); : : : ; j k(fr ◦ �−1)(�(x)))

satis�es j k< ◦ j k�̃∗ = j k�∗ ◦ j k’, and, if k ¡∞, de�nes an analytic isomorphism. Letting k =
m and taking into account the fact that the de�nition of the sets Sing(X|�(V )), Sing(Y|�(V )) and
W (X|�(V ); Y|�(V )) does not depend on the chosen set of generators of Ĩ �(V ), we obtain easily that
invariance of Sing(X );Sing(Y ) and W (X; Y ) by �∗.

Theorem 6.2. Let X be a closed analytic subset of J∞(U; Ĩ), consider a locally 9nite partition

X :=
∐
j∈J

Xj (43)

by closed analytic subsets of J∞(U; Ĩ). There is a canonical Whitney strati9cation of X such that
each stratum is a locally closed analytic subset contained in one of the sets Xi. Moreover, if each
of the subsets Xj is DĨ ; e-invariant, then the strata are DĨ ; e-invariant.

Proof. The construction is inductive: suppose that for a certain N we have constructed a locally
�nite partition in disjoint locally closed analytic subsets

X :=

(∐
i∈IN

Zi

)∐
∐

i∈I ′
N

Yi


 (44)
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re�ning the original partition (43) and with the following properties: for any i∈ IN the set Zi is
smooth and irreducible of codimension at most N , for any i1; i2 ∈ IN the stratum Zi1 is Whitney
regular over Zi2 , for any i∈ IN ′ the set Yi is irreducible, and the union

⋃
i∈I ′

N
Yi is closed analytic

with all the irreducible components of codimension at least N + 1. Moreover if each of the subsets
Xj is DĨ ; e-invariant, then the Zi’s and Yi’s are also DĨ ; e-invariant.
Let L ⊂ I ′

N be the set of indices parametrising components of codimension precisely N + 1. For
any i∈L we de�ne

Ai := Sing( TY i)
⋃

( TY i\Yi)
⋃
⋃

j �=i

TY j ∩ TY i


⋃


⋃

j∈IN

W (Zj; TY i)


 :

To check that it is a closed analytic subset of TY i we only have to show that the two possibly in�nite
unions involved in its de�nition are locally �nite; this follows easily from the local �niteness of
the family (44). We de�ne IN+1 := IN ∪ L and Zi := Yi\Ai for any i∈L. Let {Yi}i∈I ′

N+1
be the set

of disjoint subsets consisting of the union of {Yi}i∈I ′
N\L and the sets of irreducible components of

Ai ∩ Yi for any i∈L. The partition

X :=

( ∐
i∈IN+1

Zi

)∐
 ∐

i∈I ′
N+1

Yi


 (45)

has the properties of the partition (44) substituting N by N +1. Repeating this process in�nitely we
obtain the desired Whitney strati�cation.

7. Transversality in generalised jet-spaces

De�nition 7.1. Let W be an open subset of Cm. A mapping < :W → J∞(U;Cr) is analytic if the
composition '∞

k ◦< is analytic for any positive integer k. A mapping < :W → J∞(U; Ĩ) is analytic if
there exists a neighbourhood V around each point x∈W , and an analytic mapping <̃ :V → J∞(U;Cr)
such that ’ ◦ <̃= <|V . We say that <̃ is a local lifting of < at x.

De�nition 7.2. Let C ⊂ J∞(U; Ĩ) be a closed analytic subset endowed with a strati�cation X =
{Xj}j∈J by smooth irreducible locally closed subsets. Consider an analytic mapping < :W →
J∞(U; Ĩ). We say that < is transversal to the strati�cation at a point x∈W , and we denote it
by < ;x X if either <(x) 
∈ C, or, when <(x)∈Xj for a certain j ∈ J , there exists a local lifting
<̃ :V → J∞(U;Cr) around x, and a positive integer m such that Xj is m-determined and

d('∞
m ◦ <̃)x(TxV ) + T'∞

m ◦<̃(x)'∞
m (’−1(Xi)) = T'∞

m ◦<̃(x)Jm(U;Cr): (46)

It is easy to check that Condition (46) holds for a certain m¿ k if and only if it holds for any
m¿ k. As usual, transversality to a Whitney strati�cation is an open condition:

Lemma 7.3. Suppose that the strati9cation X considered in the last de9nition is a Whitney strat-
i9cation. If < ;x X then there is a neighbourhood V of x in W such that < ;y X for any y∈V .
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Proof. As X={Xj}j∈J is locally �nite there is a neighbourhood I of <(x) in J∞(U; Ĩ) meeting only
�nitely many strata {Xj}j∈J ′ . Let k be a positive integer such that all these strata are k-determined.
Consider a local lifting <̃ :V1 → J∞(U;Cr) with V1 ⊂ <−1(I) and such that condition (46) is satis�ed
for m=k. This means that the mapping '∞

m ◦<̃ :V1 → J k(U;Cr) is transversal to the complex manifold
'∞
k (’−1(Xi)) at x. Since X is a Whitney strati�cation the partition X′ := {'∞

k (’−1(Xj))}j∈J ′ forms
a Whitney strati�cation in the usual sense, and therefore there exists an open neighbourhood V of
x in V1 such that '∞

m ◦ <̃ is transversal to any stratum of X′. Clearly < ;y X for any y∈V .

Theorem 7.4 (Generalised parametric transversality). Let M and S be complex manifolds. Let
’ :M × S → J∞(U; Ĩ) be a analytic mapping. Consider a closed analytic subset C of J∞(U; Ĩ)
endowed with a Whitney strati9cation X. Suppose that ’ is transversal to X. Denote by H ⊂ S the
set of points where ’|s := ’|M×{s} is not transversal to X. Then S\H is dense in S. Moreover, if
there exists a compact subset K ⊂ M such that ’s is transversal to X at any point of (M\K)×S,
then H is a proper closed analytic subset of S.

Proof. Using local liftings it is easy to show that as ’ is analytic, the subset C ′ := ’−1(C) is
closed analytic in M × S, and since ’ is transversal to X, the strati�cation Y := {Yj}j∈J (where
Yj = ’−1(Xj)) is a Whitney strati�cation of ’−1(C).
Let ' :M × S → S be the projection to the second factor. Take (x; s)∈M × S; if (x; s)∈C ′ let Yj

be the stratum of Y to which it belongs. A straightforward argument shows that the mapping ’|s
is transversal to X at (x; s) if and only either (x; s) 
∈ C ′ or '|Yj

is a submersion in (x; s). For any
j ∈ J we let Zj be the set of points where '|Yj

fails to be a submersion. By Sard’s Theorem '(Zj)
is a set of measure 0 in S. The set H is equal to the union

⋃
j∈J '(Zj), and has measure 0 as J is

denumerable. This shows that S\H is dense.
Suppose that there exists a compact K with the property stated in the theorem. We claim that the

union Z =
⋃

j∈J Zj is a closed analytic subset of M × S. Then, as Z ⊂ K × S, the restriction '|Z is
proper and H= '(Z) is a closed analytic subset. It only remains to prove the claim. Using the fact
that Y is a Whitney strati�cation it is easy to show that Z is closed. Therefore Z=

⋃
j∈J

TZj. Due to
the local �niteness of {Yj}j∈J , if TZj is a closed analytic subset for any j ∈ J the claim is true. For
any j ∈ J we consider the closure of the stratum TY j. Consider (x; s)∈ TY j; choose local coordinates
(y1; : : : ; yk) of S around s, let ('1; : : : ; 'k) be the components of ' with respect to it; let f1; : : : ; fN

be a set of analytic equations in a neighbourhood V of (x; s) in M × S de�ning TY j ∩ V . If the
codimension of TY i is c then the rank of the set {df1; : : : ; dfN ; d'1; : : : ; d'k} of 1-forms de�ned over
V is at most c + k. De�ne

Z ′
j := {z ∈ TY j ∩ V : rank{df1(z); : : : ; dfN (z); d'1(z); : : : ; d'k(z)}¡c + k}:

Clearly Z ′
j is a closed analytic subset of V such that Z ′

j ∩ Yj = Zj ∩ V . Therefore TZj ∩ V is analytic
in V .

Next we show how the versality of an unfolding implies the transversality of its associated jet
extension with respect to any DĨ ; e-invariant subset.
Let F : (Cn × Cs; (O;O)) → C be an s-parametric I -unfolding. By Lemma 1.6 there are open

neighbourhoods V and W of the origin in Cn and Cs respectively, such that V ⊂ U and we can
write F =

∑r
i=1 giFi, with {g1; : : : ; gr} our �xed set of generators of Ĩ , and each Fi an analytic
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function on V × W . Then the jet extension

�F :V × W → J∞(U; Ĩ) (47)

de�ned by �F(x; s) = j∞F|s(x) is an analytic mapping, as it admits the analytic lifting

�̃F :V × W → J∞(U;Cr) (48)

de�ned by �̃F(x; s) = (j∞F1|s(x); : : : ; j∞Fr|s(x)).

Proposition 7.5. Consider F : (Cn ×Cs; (O;O)) → C as above. If F is versal at (x; s)∈V ×W , then
�F is transversal at (x; s) to any DĨ ; e-invariant smooth locally closed subset of J∞(U; Ĩ).

Proof. Let C be a k-determined DĨ ; e-invariant locally smooth closed subset. Suppose that F is
versal at (x; s). If �F(x; s) 
∈ C there is nothing to prove. Suppose �F(x; s)∈C. The set A :=
(j k’)−1('∞

k (C)) is a smooth analytic subset of J k(U;Cr).
To shorten formulas we denote the function F|s by f, the point '∞

k (�F(x; s))∈ J k(U; Ĩ) by p, and
the point '∞

k (�̃F(x; s))∈ J k(U;Cr) by q. Notice that �F(x; s)=fx=j∞f(x), and p=j kf(x)='∞
k (fx).

We have to show that

d('∞
k ◦ �̃F)(x; s)(T(x; s)V × W ) + TqA= TqJ k(U;Cr): (49)

As J k(U;Cr) is a trivial vector bundle, its tangent space at q splits as the direct sum

TqJ k(U;Cr) = TxU ⊕ E; (50)

where E denotes (OU;x=mk+1
x )r , the �bre of the vector bundle J k(U;Cr) over x. Then the diMerential

d(prk)q is the projection homomorphism to the �rst summand. Denote by > the projection to the
second summand. We have an epimorphism j k’x :E → Ĩx=(Ĩ x ∩ mk+1

x ). As A is j k’-saturated, we
have

{0} ⊕ ker(j k’x) ⊂ TqA: (51)

Consider any germ of vector �eld X ∈�Ĩx;e. Let � :Vx × (−8; 8) → U be the Dow obtained by
integrating a representative of X in a neighbourhood Vx of x in U . As fx belongs to the DĨ ; e-invariant
subset C, �t∗fx belongs to C for any t ∈ (−8; 8). Therefore the mapping

9 : (−8; 8) → J k(U;C)

de�ned by 9(t) := '∞
k (�t∗fx) = j k(�t∗f)(�t(x)) is a diMerentiable curve whose image lies in

'∞
k (C) ⊂ J k(U; Ĩ) and such that 9(0) = p. Let @i be the Ĩ -stratum to which x belongs. Clearly if

" := prk ◦ 9 then "(t) = �t(x). As any diMeomorphism preserving Ĩ leaves invariant the Ĩ -strata, the
integral curve " maps (−8; 8) into @i, and that image of 9 is contained in J k(@i; Ĩ). By Remark 3.4,
the mapping j k’ restricts to an epimorphism of analytic vector bundles

j k’|@i
: J k(@i;Cr) → J k(@i; Ĩ):

As j k’|@i
(q) = p there exists a diMerentiable lifting

9̃ : (−8; 8) → J k(@i;Cr) (52)
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such that 9 = j k’ ◦ 9̃ and 9̃(0) = q. As any lifting of 9 has its image contained in A, the tangent
vector 9̃′(0) belongs to TqA. Clearly d(prk)q(9̃′(0)) = "′(0) = X (x).
Consider the pullback vector bundle "∗J k(@i; Ĩ) → (−8; 8). Its �bre over 0 is Ĩ x=Ĩ x ∩ mk+1

x .
Denote by � : "∗J k(@i; Ĩ) → J k(@i; Ĩ) the mapping de�ned by �(h; t) := h for any t ∈ (−8; 8) and
h∈ ("∗J k(@i; Ĩ))t = J k(@i; Ĩ)"(t). We consider the trivialisation

 : (−8; 8) × (Ĩ x=Ĩ x ∩mk+1
x ) → "∗J k(@i; Ĩ) (53)

de�ned by  (t; '∞
k (hx)) := (t; '∞

k (�t∗hx)) for any hx ∈ Ĩ x and any t ∈ (−8; 8). De�ne the curve

<1 : (−8; 8) → (−8; 8) × (Ĩ x=Ĩ x ∩mk+1
x )

by the formula <1(t) := (t; '∞
k (fx)). Observe that 9= � ◦  ◦ <1.

On the other hand we consider the curve

� : (−8; 8) → V × W

de�ned by �(t) := ("(t); s). Then '∞
k ◦ �F ◦ �(t) = '∞

k (f"(t)) = j kf("(t)). De�ning

<2 : (−8; 8) → (−8; 8) × (Ĩ x=Ĩ x ∩mk+1
x )

as <2(t) := (t; '∞
k (�−t∗f"(t))) we have '∞

k ◦ �F ◦ � = � ◦  ◦ <2.
Consider the following direct sum decomposition:

T(0;p)[(−8; 8) × Ĩ x=Ĩ x ∩mk+1
x ] = R⊕ Ĩ x=Ĩ x ∩mk+1

x : (54)

With respect to it we have <′
1(0)=(1; 0) and <′

2(0)=(1; '∞
k (X (fx))). Then, decomposing the tangent

space of the vector bundle J k(U;C) at '∞
k (fx) as

TpJ k(U;C) = TxU × OU;x=mk+1;

we have

('∞
k ◦ �F ◦ �)′(0) − 9′(0) = d(� ◦  )(0;p)(<′

2(0) − <′
1(0)) = (0; '∞

k (X (fx))):

As '∞
k ◦ �F = j k’ ◦ '∞

k ◦ �̃F and 9= j k’ ◦ 9̃ we conclude that

(0; '∞
k (X (fx)))∈ d(j k’)q(d('∞

k ◦ �̃F)(x; s)(T(x; s)V × W ) + TqA):

Taking into account inclusion (51) we obtain

{0} ⊕ (j k’x)−1('∞
k (�Ĩx;e(fx)) ⊂ d('∞

k ◦ �̃F)(x; s)(T(x; s)V × W ) + TqA: (55)

Let @=@w1; : : : ; @=@wd be a basis of the tangent space TsW . The versality of F at (x; s) means

C(@F=@w1)|s; x + · · · + C(@F=@wd)|s; x +�Ĩx;e(fx) = Ĩ x: (56)

As d(j k’ ◦ '∞
k �̃F)(x; s)(0; @=@wi) = (0; '∞

F ((@F=@wi)|s; x), equality (56) together with inclusion (55)
imply

{0} ⊕ E ⊂ d('∞
k ◦ �̃F)(x; s)(T(x; s)V × W ) + TqA: (57)
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After this it is suKcient to prove that d(prk)q maps the space

d('∞
k ◦ �̃F)(x; s)(T(x; s)V × W )

surjectively over TxU , but this is trivial because prk ◦'∞
k ◦ �̃F is the projection of V ×W to its �rst

factor.

8. The relative morsi�cation theorem

Let H1 be a DĨ ; e-invariant closed analytic subset of �(U; Ĩ) with all its irreducible components of
codimension at least n+1, and containing �(r) (where �(r) was introduced in Theorem 5.4). Recall
the set H2, appearing in the topological partition (39). De�ne H := H1∪H2. The partition P0 de�ned
by

J∞(U; Ĩ) :=

[ ∐
i6n;l∈Li

Bi; l\H
]∐

H; (58)

is a partition of J∞(U; Ĩ) by locally closed analytic DĨ ; e-invariant subsets, which is closely related
with the topological partition: they only diMer in subsets of codimension strictly bigger than n. It has
the advantage that all the terms involved in its de�nition are locally closed analytic subsets. On the
other hand H is not canonically de�ned, but its irreducible components have codimension at least
n+1. As we will see, subsets of codimension bigger than n+1 are too small to aMect the singularity
types appearing in a generic deformation of any function of I of �nite extended codimension.

By Proposition 4.5 the level sets Cm of the �ltration by extended codimension are �nite-determined
closed analytic subsets if m¡∞. Let {C1; j}j∈J be the set of irreducible components of C1. Given
C1; j we let m(j) be the extended codimension of a generic element in it, that is, the minimal m such
that the intersection Ci;j ∩ Ċm is not empty. De�ne @C1; j := C1; j ∩Cm( j)+1. Observe that if m(j)=∞
then @C1; j =C1; j. The local �niteness of {@C1; j}j∈J follows from the locally �niteness of {C1; j}j∈J .
Therefore @C1 :=

⋃
j∈J @C1; j is a closed analytic subset. We have a canonically de�ned partition by

DĨ ; e-invariant locally closed subsets

J∞(U; Ĩ) = Ċ0

∐
(C1\@C1)

∐
@C1 (59)

such that the irreducible components of C1\@C1 are at least n-codimensional and the irreducible
components of @C1 are either of codimension strictly bigger than n or are contained in C∞. Indeed,
the irreducible components of C1\@C1 are of the form C1; j\@C1 for j ∈ J . If codim(C1; j)¡n, by
Proposition 4.6 we have C1; j ⊂ C∞, and hence m(j) = ∞; in this case @C1; j = C1; j and therefore
C1; j\@C1 is empty. Suppose that we have a component C ′ of @C1 not contained in C∞; then C ′ is a
component of @C1; j for a certain j such that C1; j is not contained in C∞; in this case codim(C1; j)¿ n
and C ′ is a proper closed analytic subset of the irreducible C1; j; we deduce codim(C ′)¿ n+ 1.
The partition

J∞(U; Ĩ) =
∐
k∈K

Zk ; (60)

whose strata are the subsets of the form X∩Y , where X and Y are, respectively, strata of the partitions
(58) and (59), is a locally �nite partition by locally closed analytic DĨ ; e-invariant subsets re�ning
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the partitions (58) and (59). It is canonically de�ned up to codimension n: the only non-canonical
element involved in its de�nition is the subset H1;whose irreducible components are at least n+1-
codimensional. Therefore, given a diMerent choice H′

1 for this set, and a stratum Z ′
i of codimension

smaller or equal than n of the resulting partition, it is easy to see that there exists a stratum Zk in
the original partition with the same closure TZ than Z ′

i such that

codim( TZ\(Zk ∩ Z ′
i )¿ n+ 1:

If Zk is a stratum such that codim(Zk)6 n then any two germs in Zk are topologically equivalent
and have the same extended codimension.

De�nition 8.1. The canonical Whitney strati�cation X := {Xj}j∈J associated (by Theorem 6.2) to
the partition (60) is called the n-canonical Whitney strati9cation of J∞(U; Ĩ).

Remark 8.2. The n-canonical Whitney strati9cation of J∞(U; Ĩ) is canonically de�ned up to codi-
mension n, in the sense explained above. If Xj is a stratum such that codim(Xj)6 n then any two
germs in Xj are topologically equivalent and have the same extended codimension.

De�nition 8.3. A stratum of the Topological Partition or of the n-canonical Whitney strati�cation of
J∞(U; Ĩ) is called thick if it has a irreducible component of codimension at most n.

Consider f∈ I de�ned on a neighbourhood V of the origin O in U such that cI;e(f)¡∞. Let
�f :V → J∞(U; Ĩ) be its associated jet-extension. By the local �niteness of X we can shrink V
such that �f(V ) only meets �nitely many strata. Therefore, there exists a radius j such that �f(B2j)
only meets the strata of X whose closures contain �f(O). Let X1; : : : ; Xs be such strata. If j is
small enough we know that the only point where f has positive extended codimension in B2j is
the origin. Therefore, f is its own versal unfolding for any x 
= O, and, by Proposition 7.5, the
jet extension �f is transversal to each stratum Xi at x. Consequently �−1

f (Xi) is smooth outside the
origin and {�−1

f|B2j
(Xi)}i6s de�nes a Whitney strati�cation in B2j\{O}. Hence, if j is small enough

we can assume that Sj is transversal to any stratum �−1
f|Bj(Xi). Any such radius j satisfying the

above properties is called a good radius for f. From this moment we say that a good system of
radii for f is a pair (j; �) satisfying the conditions imposed in De�nition 2.1, and such that j is a
good radius for f.

De�nition 8.4. A stratum of the topological partition or of the n-canonical Whitney strati�cation of
J∞(U; Ĩ) is called unavoidable by f if it is thick and �f(O) belongs to the closure of one of its
components of codimension at most n.

De�nition 8.5. Let f∈ Ĩ x such that cĨx;e ¡∞. We say that fx is codimensionally irreducible if there
not exist an unfolding F : (Cn; 0)× (C; 0) and a sequence {(xn; sn)}n∈N converging to (x; 0) such that
cĨx n ;e(F|sn;x n

)¡cĨx;e.

Let (A1; : : : ; As) and (A′
1; : : : ; A

′
s) be two tuples of topological spaces such that Ai ⊂ A1 and A′

j ⊂ A′
1

for any i; j6 s. We say that the two tuples are topologically equivalent if there exists a homeomor-
phism h :A1 → A′

1 such that h(Ai) = A′
i for any i.
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Theorem 8.6 (The relative morsi�cation theorem). Let f∈ I be such that cI;e(f)¡∞, and let
F :U × V → C be a representative of a versal unfolding of f. Let {X1; : : : ; Xs} and {B1; : : : ; Bk}
be respectively the strata of the n-canonical Whitney strati9cation and of the topological partition
that are unavoidable by f. Let j be a good radius for f. The subset V can be chosen small enough
so that there exists a closed analytic subset H ⊂ V (called the discriminant of F), and a positive
number � such that

�F|s :Bj+� × {s} → J∞(U; Ĩ)

is transversal to the canonical Whitney strati9cation X for any s∈V\H. As a consequence

(1) If s∈V\H then the image of �F|s meets only strata of X or of the Topological Partition that
are unavoidable by f.

(2) The topological types of the tuples

( TBj; �−1
Fs
(X1); : : : ; �−1

Fs
(Xs)); (61)

( TBj; �−1
Fs
(B1); : : : ; �−1

Fs
(Bk)) (62)

do not depend on s∈V\H. Moreover the topological types of these tuples do not depend on
the chosen versal unfolding.

(3) The germ of F|s; x is codimensionally irreducible for any x∈Bj and any s∈V\H.
(4) The number of points of TBj where F|s has a 9xed extended codimension depends neither

on s∈V\H nor on the choice of the versal unfolding. The points of Bj\V (I) where F|s has
positive extended codimension are A1-singularities. Moreover F|s has extended codimension 0
along @Bj.

(5) The analytic type of the germ (V; H; O) (where O is the origin of V ) does not depend on the
choice of the unfolding as long it is universal (that is, versal with dim(V ) = cI;e(f)).

Proof. As F is versal, by Proposition 7.5, the mapping �F is transversal to X. Using the same
argument as in Lemma 2.3, choosing V small enough we can assume that cĨx;e(F|s; x) = 0 for any
x∈B2j\Bj=2 × V ; therefore at such points the germ F|s; x is its own versal unfolding. Hence, by
Proposition 7.5, the mapping �F|s is transversal to X for any x∈B2j\Bj=2. Choose �¡ j. Applying
Theorem 7.4 we conclude the existence of a closed analytic subset H such that �Fs ;X for any
s∈V\H. Now we derive the stated consequences.

As the n-canonical Whitney strati�cation is a subdivision of the topological partition the assertions
concerning the former imply the analogous assertions concerning the later.

Let s∈V\H; as dim(Bj) = n, by transversality, the image of �F|s only can meet strata of X of
codimension at most n, hence thick. By local �niteness of X and the fact that the radius j is a good
radius for f, we can choose V small enough so that the closure of any stratum of X which is met
by �F(Bj+� × V ) necessarily contains the origin. Therefore, the image of �F|s only can meet strata
that are unavoidable by f. This proves assertion (1).

Let X1; : : : ; Xs; Xs+1; : : : ; Xl be the strata of X whose closures meet �f(O). It follows from the
transversality F ;X that

Y = {Yi := �1
F(Xi)}i6l
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is a Whitney strati�cation of Bj+� × V . Let ' :Bj+� × V be the projection to the second factor.
De�ne Yi|V\H := Yi ∩ '−1(V\H). For any s∈V\H, the transversality �F|s ;X implies that either
Yi|V\H is empty or it projects submersively to V\H. On the other hand, as j is a good radius,
choosing V small enough we have that Sj ;Yi|s for any i6 l and any s∈V . This implies that the
Whitney strati�cations Y and {Bj; Sj} meet transversely, and that, if Z is the Whitney strati�cation
formed by pairwise intersections of their strata, the restriction of the projection

' : TBj × (V\H) → V\H
to any stratum of Z is submersive. As ' is proper, Z is topologically trivial over V\H. This proves
the independence of the topological type of the tuple (61) of s∈V\H.
Let F :U × V → C and F ′ :U ′ × V ′ → C be two versal unfoldings. The mapping F ′′ :U × (V ×

V ′) → C de�ned by F|(v; v′) := Fv + Fv′ − f is an I -unfolding of F such that F ′′
|V×{O′} = F ′ and

F ′′
|{O}×V ′ = F ′ (where O and O′ are the respective origins of V and V ′). Clearly F ′′ is versal, and

moreover its discriminant contains neither V ×{O′} nor {O}×V ′. The independence on s∈V ×V ′\H
of the topological type of the tuple (61) for the unfolding F ′′ implies the independence of the choice
of versal unfolding. This �nishes the proof of Assertion (2).

Given s∈V , the set of points of Bj+� where F|s has extended codimension is �−1
F|s (C1). For

any i¿ 0 we let Zi be the union of the strata among X1; : : : ; Xs which contain germs of extended
codimension precisely i; de�ne Z :=

⋃
i¿0 Zi. Assertion (1) implies that for any s∈V\H we have

�−1
F|s (C1) = �−1

F|s (Z) and that, for any i¿ 0, the set of points where F|s has extended codimension
i equals �−1

F|s (Zi). The topological type of the tuple (61) determines the topological types of the
subsets �−1

F|s (Z) and �−1
F|s (Zi) for any i¿ 0. Consequently, by Assertion (2), these topological types

are independent of s∈V\H.
The independence of the topological type of �−1

F|s (Z) implies Assertion (3). As the topological
type of �−1

F|s (Zi) determines the number of points where F|s has extended codimension i, Assertion
(2) also implies the �rst part of Assertion (4). The fact that the points of Bj\V (I) where F|s has
positive extended codimension are of type A1 follows from Assertion (3): if x is such a point
then Ĩ x = OCn; x and, by the morsi�cation theory for isolated singularities, the only codimensionally
irreducible singularities in this case are Morse points.

The �fth assertion is easy, taking into account that the strata of X are DĨ ; e-invariant.

The fact that the topological type of the tuple (62) does not depend on s∈V\H can be rephrased
by saying that if g and h are any two generic close approximations of f in I , the partition of Bj
by topological type of g is homeomorphic to the analogous partition for h.

Addendum 8.7. The projections to the second factor

( TBj × V\H; �−1
F| TBj\H(X1); ; : : : ; �−1

F| TBj\H(Xs)) → V\H;

( TBj × V\H; �−1
F| TBj\H(B1); ; : : : ; �−1

F| TBj\H(Bk)) → V\H
are locally trivial 9brations of tuples of topological spaces with 9bres the tuples (61) and (62),
respectively. The topological types of these 9brations are DI -invariant.
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Addendum 8.8. With the notations of the last theorem, let r be the number of A1-points in Bj\V (I)
of a generic deformation F|s of f within I . There exists a closed analytic proper subset H′ ⊂ V
such that its complement V\H′ is the set of s∈V such that the images by F|s of the critical points
of F|s in Bj\V (I) are r di?erent points which are also di?erent from 0 if V (I) 
= ∅.

Proof. First we show that the set of values of the parameter s with the property of the statement
is dense in V . Consider s∈V\H. Then the only singularities of F|s in Bj\V (I) are r Morse points,
which we denote it by p1; : : : ; pr . Suppose that, for any i6 r, we manage to construct an I -unfolding
Gi := F|s + th such that for any t small enough the critical points of Gi

|t in Bj\V (I) are p1; : : : ; pr

and

Gi
|t(pi) = F|s(pi) + t;

Gi
|t(pj) = F|s(pj)

for i 
= j. Then, using the versality of F , we deduce easily that for s′ close enough to s the critical
points of F|s′ in Bj\V (I) are p1; : : : ; pr , their images are pairwise diMerent and diMerent from 0.

Let us construct the I -unfolding G1. As p1; : : : ; pr are diMerent and do not belong to V (I) there
exists a function g∈ I vanishing at p2; : : : ; pr and such that g(p1) = 1. Then the function h :=
(2 − g2)g2 belongs to I , vanishes and is singular at p2; : : : ; pr , takes the value 1 and is singular at
p1. De�ne G1 := F|s + th.
Consider the analytic mapping � :V\H → Cr whose ith component �i assigns to s the ith symmet-

ric function of the images of the critical points of F|s under Bj\V (I) → C\V (f). Let > :Cr → C be
the analytic mapping associating to a1; : : : ; ar the discriminant of the polynomial T r +

∑r
i=1 aiT r−i.

De�ne ’ :V\H → C to be the composition ’ := > ◦ �. The function F is de�ned on TBj × V ,
therefore, if V is small enough F(Bj ×V ) is a bounded set in C. Hence �, and consequently ’ are
bounded functions. By Riemann’s extension theorem we can suppose that the analytic function ’ is
de�ned on the whole of V . It is easy to check that the set de�ned by H′ := ’−1(0) if V (I)= ∅ and
H′ := ’−1(0) ∪ �−1

r (0) if V (I) 
= ∅ has the desired properties.

De�nition 8.9. The minimal closed analytic subset H ⊂ V with the properties of Theorem 8.6 is
called the discriminant of F in V . The subset H′ introduced in Addendum 8.8 is called the bifurcation
variety of F in V . The union H ∪ H′ is called the big discriminant of F in V .

The bifurcation variety de�ned here generalises the bifurcation variety for isolated singularities
and the one studied in [27].

De�nition 8.10. Let f∈ I be a function of �nite extended codimension and j a good radius for it.
An I -unfolding F : (Cn ×C; (O; 0)) → C is called a morsi9cation if for any small enough s 
= 0 the
jet-extension �F|s : (Cn; O) → J∞(U; Ĩ) is transversal to the n-canonical Whitney strati�cation in a
neighbourhood of the origin containing TBj, and the images of the isolated critical points of F|s are
pairwise diMerent and, if V (I) 
= ∅, also diMerent from 0.

A consequence of our result is that any generic 1-parameter I -unfolding is a morsi�cation.
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9. Applications

In this section we explain two applications of our relative morsi�cation theorem.

9.1. Numerical invariants

In Example 1.10 we proved that in general the extended codimension does not behave in an
conservative way with respect to deformation, unlike the Milnor number in the case of isolated sin-
gularities. We now introduce some numerical DI -invariants for functions of I which are conservative
and related to the extended codimension.

De�nition 9.1. Let f∈ I be a function such that cI;e(f)¡∞. Let j be small enough so that the
origin is the only point of Bj where f has positive extended codimension. De�ne the splitting
function

�I [f] :N → Z¿0 (63)

of f with respect to I by letting �f(k) be the number of points of Bj where F|s has extended
codimension k, where F is a versal I -unfolding and s is a parameter not contained in the discriminant.
De�ne the corrected extended codimension c̃I; e(f) of f with respect to I by the formula

c̃I; e(f) :=
∑
k∈N

k�I [f](k): (64)

De�ne the Morse number MI (f) of f with respect to I as the number of points of Bj\V (I) where
F|s has an A1 singularity.

Clearly c̃I; e(f)6 cI;e(f). Example 1.10 shows that the inequality may be strict. By formula (7) we
have �I [f](k)6 cI;e(f)=k. The Morse number, the extended codimension and the corrected extended
codimension coincides with the Milnor number when I = OCn;O.
Using versal unfoldings it is easy to check the conservativity of the invariants de�ned above:

consider f∈ I , a function such that cI;e(f)¡∞; let j be small enough so that the origin is the
only point of Bj where f has positive extended codimension. Given any I -unfolding F :Cn×Ck → C
and any small enough s∈Ck of the parameter we have∑

x∈Bj

<Ĩx(f) = <I (fO); (65)

where <Ĩx(fx) stands for �Ĩx [fx], c̃Ĩ x(fx) or MĨ x(fx).

Remark 9.2. Obviously, more re�ned numerical invariants can be de�ned taking into account the
distribution of the points of a �xed extended codimension of a generic deformation F|s in the
partitions given by the tuples (61) and (62), or even considering numerical topological invariants of
the tuples.

9.2. Consequences on the topology of the Milnor 9bre

In this section we deduce topological properties of Milnor �bres with the help of morsi�cations.



J. Fern)andez de Bobadilla / Topology 43 (2004) 925–982 965

Let V = V (I) be the analytic germ de�ned by I . Suppose V 
= ∅. Due to the conical structure of
analytic germs there exist j0 ¿ 0 such that V ∩ Bj is contractible for any j¡ j0.

Recall that we have �xed generators g1; : : : ; gr of Ĩ in the open subset U . Consider the real
analytic function L : TBj → R by the formula L(x) :=

∑r
i=1 |gi(x)|2. We claim that 0 is an isolated

critical value of L: otherwise, by the Curve Selection Lemma, there exists a germ of analytic path
9 : (R; 0) → TBj such that 9−1(V ) = {0} and (L ◦ 9)′(t) = 0 for any t. This is a contradiction, and
hence our claim is true. An analogous reasoning yields that 0 is an isolated critical value of the
restriction L|Sj . As a consequence we can choose a positive 10 such that 0 is the only critical value
of L in [0; 10] and L−1(1); Sj for any 1∈ (0; 10]. Then, for any 1∈ (0; 10], the set Nj; 1 := L−1[0; 1]
is a compact neighbourhood of V ∩ TBj in TBj, whose boundary is a manifold with corners. Moreover,
by Ehresmann �bration theorem the mapping

L|Nj; 1\L−1(0) :Nj; 1\L−1(0) → (0; 1] (66)

is a locally trivial �bration.
Consider f∈ I with cI;e(f)¡∞. Let F be a I -morsi�cation of f, and h := F|s for a certain s

to be chosen later. We can assume that j is small enough so that there is �¿ 0 such that (j; �) is
a good system of radii for f. Take a small enough positive number 8 so that the conclusions of
Theorem 2.2 are ful�lled; choose s∈D8. Then, for any t ∈D� we have h−1(t); Sj (the transversality
is meant in a strati�ed sense when t = 0).

De�ne

Yj; 1;� := Nj; 1 ∩ h−1(D�) Ẏ j; 1;� := Yj; 1;�\h−1(0):

We claim that there is a positive 16 10 small enough so that there exists � such that

h|Ẏ j; 1; � : Ẏ j; 1;� → D�\{0} (67)

is a locally trivial �bration, and, moreover, if (1′; �′), with 1′6 1, is a pair of radii de�ning an
analogous �bration, then this �bration is equivalent to the one associated with (1; �).

As the critical points of h in TBj are either points contained in V or isolated points of positive
extended codimension, it is clear that choosing 1 small enough we can assume that the only critical
points that h has in Nj; 1 are included in V . Therefore all the critical points have image 0.

The boundary of Nj; 1 is a manifold with corners admitting the following decomposition in smooth
strata

@Nj; 1 = (L−1([0; 1)) ∩ Sj)
∐

(L−1(1) ∩ Sj)
∐

(L−1(1) ∩ Bj):

As h−1(t); Sj for any t ∈Dj\{0} and L−1([0; 1)) ∩ Sj is open in Sj we deduce

h−1(t); L−1([0; 1))

for any t ∈D�\{0}.
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On the other hand h−1(0) is smooth outside V . We show that there exists 1 such that

h−1(0); (L−1(1′) ∩ Bj) h−1(0); (L−1(1′) ∩ Sj) (68)

for any 1′ ¡1. Suppose that for any 1¿ 0 the set of points where h−1(0) is not transversal to
(L−1(1) ∩ Bj) is not void. Then by the curve selection lemma there is a germ of analytic path
9 : (R; 0) → h−1(0) such that 9−1(V )={0} and (L◦9)′(t)=0 for any t ∈ (−8; 8). Then the function L◦9
has zero derivative, but is not constant. This gives a contradiction, which shows h−1(0); (L−1(1′)∩
Bj) for 1′ small. The transversality h−1(0); (L−1(1′) ∩ Sj) when 1′ is small enough is proven
analogously. Using the compactness of (L−1(1)∩ Sj)

∐
(L−1(1)∩ Bj) it is easy to show that if � is

small enough then

h−1(t); (L−1(1) ∩ Bj) h−1(t); (L−1(1) ∩ Sj)

for any t ∈D�.
Summarising, we have found 1 and � such that h−1(t) is transversal to the manifold with corners

@Nj; 1 for any t ∈ Ḋ�, and such that the only critical points of h at Nj; 1 are at h−1(0). By Ehresmann’s
�bration theorem, the mapping (67) is a locally trivial �bration. Using the fact that (68) holds for
any 1′ ¡1 it is easy to check that the �bration analogous to (67) associated with any other suitable
pair (1′; �′) satisfying 1′6 1 is equivalent to the one associated with (1; �). This shows the claim.

Using both the transversality conditions that we have checked up to now and the �brations (66) and
(67), it is easy to show that the set Int(Yj; 1;�) of interior points of Yj; 1;� is a dilation neighbourhood
of V ∩Bj in the sense of [14]. On the other hand, considering a Whitney strati�cation on V ∩Bj and
taking a controlled tube system for it (in the sense of [6]) we obtain a tubular neighbourhood T of
V∩Bj which admits a deformation retract to it. By the uniqueness theorem of dilation neighbourhoods
of [14] we deduce that T is diMeomorphic to Int(Yj; 1;�). Therefore the contractibility of V∩Bj implies
that Int(Yj; 1;�), and hence Yj; 1;�, is contractible.

The following theorem shows how to use our theory to extract topological information about the
Milnor �bre of f.

Let F denote the Milnor �bre of f. Denote by F0 the �bre of the �bration (67).

Theorem 9.3. Let F denote the Milnor 9bre of f. Denote by F0 the 9bre of the 9bration (67).
Recall that M(f) denotes the Morse number of F . Then

Hk(F;Z) = Hk(F0;Z) ⊕ [Hk(Sn−1;Z)]M (f) (69)

for any k.
Moreover, if either n = 2 or both F0 and F have trivial fundamental group then F has the

homotopy type of the bouquet

F0

∨
 ∨
M (f)

Sn−1


 ; (70)

that is, the bouquet of F0 with M(f) spheres of dimension n − 1.
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Proof. By Theorem 2.2 the Milnor �bre F is equal to the generic �bre of the mapping (10). After
this essentially the same arguments as in [22] (for which the contractibility of Yj; 1;� is needed) allow
us to conclude.

Addendum 9.4. If the critical locus of f is at least of codimension 3 then both F0 and F have
trivial fundamental group, and hence, the homotopy decomposition of last Theorem holds. This
happens, in particular, when codim(V (I))¿ 3.

Proof. Suppose that the codimension of the critical locus of f is at least 3. Let S ⊂ J∞(U; Ĩ)
be the closed analytic subset formed by the singular germs. Then any irreducible component of S
which is met by the image of the jet extension �f :Bj → J∞(U; Ĩ) has at least codimension 3. The
transversality properties of a morsi�cation F|s imply codim(�−1

F|s (S))¿ 3, that is, the codimension of
the critical locus of F|s is at least 3. Then the results of [11] imply the simple connectivity of F0

and F .

Theorem 9.3 reduces the study of many properties the Milnor �bre of f to the study of the Milnor
�bre of F0. In the study of F0 the �bration (67) our relative morsi�cation theorem becomes very
important: it tells us that the only singularities that F|s can have belong to strata of the topological
partition which are unavoidable by f (this imposes conditions for example on the codimension of
such sets of singularities). This has been already used successfully for certain classes of ideals (see
[20,21,10,26,16]). The transversality of the jet extension �F|s to the relevant strata of J∞(U; Ĩ) relates
the relative positions of the diMerent singularity types appearing in �F|s to the relative positions of
the relevant strata in J∞(U; Ĩ).

Similar bouquet decomposition for theorems has been already obtained by Siersma (see [22]) and
Tibar (see [25]) for the case of functions with isolated singularities de�ned on singular spaces.

10. Numerical invariants and intersection multiplicities

In this section we give a characterisation of the invariants introduced in De�nition 8.9 in terms
of intersection multiplicities in the generalised jet space. We will use certain intersection theoretic
constructions of [5]. It can be checked easily that remain valid in the analytic setting, at least in the
very restricted degree of generality that we need them.

Let V ⊂ J∞(U; Ĩ) be an irreducible closed analytic subset of codimension n. Given any f∈ Ĩ x, its
jet extension �f : (Cn; x) → J∞(U; Ĩ) is a germ of analytic mapping. Suppose that x is an isolated
point of �−1

f (V ); as we work with germs at x we can actually assume �−1
f (V ) = {x}. Express

f=
∑r

i=1 figi where g1; : : : ; gr is our �xed set of generators and f1; : : : ; fr are holomorphic in x. We
have the associated local lifting �̃f : (Cn; x) → J∞(U;Cr) given by �̃f(y)=( j∞f1(y); : : : ; j∞fr(y)).
Choose an integer k such that V is k-determined; then V ′ := j k’−1('∞

k (V )) is an irreducible variety
in J k(U;Cr). De�ne �̃k

f := '∞
k ◦�̃f; let x′ := �̃k

f(x). Let Zdim(V ′)(V ′) and Z0({x′}) be respectively the
groups of analytic cycles of dimension dim(V ′) and 0 of V ′ and {x′}. These groups are obviously
isomorphic to Z with respective generators [V ′] and {x′}. By De�nition 8.1.2. of [5] there is a
re�ned Gysin homomorphism

(�̃k
f)

! :Zdim(V ′)(V ′) → Z0({x′}:
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De�nition 10.1. We de�ne the intersection multiplicity of �f and V at x to be the integer ix(�f; V )
characterised by

(�̃k
f)

!([V ′]) = ix(�f; V )[x′]:

We have to prove that this integer is independent of k, and of the functions f1; : : : ; fr giving rise
to the local lifting. Moreover we want to give a formula to compute ix(�f; V ). For this we need to
recall from [5] how the intersection product (�̃k

f)
!([V ′]) is de�ned.

Consider the subvariety V ′′ := Cn ×V ′ of the product Cn × J k(U;Cr); denote by �k the projection
to the �rst factor. Let 9kf :Cn → Cn × J k(U;Cr) be de�ned by 9f(y) := (y; �̃k

f(y)); its image �k
f

is the graph of �̃k
f; let x′′ := 9kf(x). Observe that J k(U;Cr) is isomorphic to U × CN for a certain

N ; let pr1 and pr2 be the projections to the �rst and second factor. Recall that we have �xed
coordinates (x1; : : : ; xn) for Cn. Let z1; : : : ; zN be a coordinate system for CN ; consider the coordinate
system (y1; : : : ; yn+N ) of J k(U;Cr) de�ned by yi := xi ◦ pr1 for 16 i6 n, and yn+i := zi ◦ pr2 for
16 i6N ; then {x1; : : : ; xn; y1; : : : ; yn+N} is a coordinate system for Cn × J k(U;Cr). De�ne hi :=
yn+i ◦ 9kf ◦�k for i6N . Then the subvariety �k

f ⊂ Cn × J k(U;Cr) is de�ned by the regular sequence

(y1 − x1; : : : ; yn − xn; yn+1 − h1; : : : ; yn+N − hN ):

Composing with the natural ring epimorphism OCn×J k (U;Cn); x′′ → OV ′′ ; x′′ we obtain a sequence s =
(s1; : : : ; sn+N ) of elements of OV ′′ ; x′′ . Let K•(s) be the Koszul complex associated to s; denote by
Hi(K•(s)) its ith homology module. Then unwinding the de�nition of (�̃k

f)
! and applying Example

7.1.2 of [5] we obtain:

ix(�f; V ) :=
n+N∑
i=1

(−1)idimC(Hi(K•(s))): (71)

Remark 10.2. If s is a regular sequence then Hi(K•(s)) = 0 for i¿ 0. Then

ix(�f; V ) = dimC(H0(K•(s))) = dimC(OCn; c=�̃k∗
f J );

where J is the ideal sheaf of V ′. This happens when V ′ is a Cohen–Macaulay variety.

Suppose that l¿k. The projection 'l
k : J

l(U;Cr) → J k(U;Cr) is a trivial �bration with �bre CL,
for a certain L; hence we have a product decomposition

J l(U;Cr) = J k(U;Cr) × CL; (72)

let q1 and q2 be the projections to the �rst and second factors. Let w1; : : : ; wL be a coordinate system
for CL. De�ne a coordinate system Y1; : : : ; Yn+N+L of J l(U;Cr) by Yi := q∗

1yi for 16 i6 n + N
and yn+N+i := q∗

2wi for 16 i6L. The subvariety W ′ := ( jl’)−1('∞
l (V )) is clearly equal to

('l
k)

−1(V ′), which by the product decomposition (72) is equal to V ′ ×CL. Therefore the subvariety
W ′′ := Cn × W ′ of the product Cn × J l(U;Cr) is equal to the product Cn × W ′ × CL. Observe that
Yi◦9lf=yi◦9kf for 16 i6 n+N . De�ne Hi := Yn+i◦9lf◦�l (where �l is the projection of Cn×J l(U;Cr)
to the �rst factor) for 16 i6N + L. Consider the projection > := (IdCn ; 'l

k) :Cn × J l(U;Cr) →
Cn × J k(U;Cr); observe that Hi =hi ◦> for any i6N . De�ne x′′′ := 9lf(x); observe that >(x′′′)= x′′.
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Let s′ = (s′1; : : : :; s′n+N+L) be the sequence of elements of OW ′′ ; x′′′ obtained by projecting the regular
sequence

(Y1 − x1; : : : ; Yn − xn; Yn+1 − H1; : : : ; Yn+N+L − HN+L):

Using the product structure in W ′′ it is easy to check that (s′n+N+1; : : : ; s
′
n+N+L) is a regular sequence.

Moreover if Z is the analytic subspace of W ′′ de�ned by the ideal generated by (s′n+N+1; : : : ; s
′
n+N+L),

and s′′i denotes the class of s′i in OZ;x′′′ , then the restriction �|Z :Z → V ′′ is an isomorphism satisfying
�∗

|Zsi = s′′i .
Let (s1; : : : ; sr) be elements of a ring A. Let Ts2; : : : ; Tsr be the classes of s2; : : : ; sr in A=(s1). We

have the decomposition K•(s1; : : : ; sr) = K•(s1) ⊗ K•(s2; : : : ; sr), in which

Kp(s1; : : : ; sr) = [K0(s1) ⊗ Kp(s2; : : : ; sr)] ⊕ [K1(s0) ⊗ Kp−1(s2; : : : ; sr)]: (73)

Denote by >p : Kp(s2; : : : ; sr) → Kp( Ts2; : : : ; Tsr) be the natural epimorphism. Consider the morphism
of complexes <• : K•(s1; : : : ; sr) → K•( Ts2; : : : ; Tsr) de�ned by <p = >p ⊕ 0 in terms of the decom-
position (73).

Lemma 10.3. If s1 is not a zero divisor of A then <• is a quasi-isomorphism.

Proof. The homomorphism < is clearly surjective in each level. It is easy to check that the complex
formed by the kernels is acyclic.

Using the last lemma repeatedly we obtain
n+N+L∑

i=1

(−1)idimC(Hi(K•(s′))) =
n+N∑
i=1

(−1)idimC(Hi(K•(s′′1 ; : : : ; s
′′
n+N ))); (74)

due to the fact that �|Z is an isomorphism satisfying �∗
|Zsi = s′′i the last quantity equals

n+N∑
i=1

(−1)idimC(Hi(K•(s))):

This proves independence of k in De�nition 10.1.
Let X be a smooth analytic variety and Y an irreducible closed analytic subset of codimension n

in X . Consider an analytic mapping G :Bj × D8 → X . Suppose G−1
|0 (Y ) = {O}. Choosing j small

enough and 0¡8�j, the restriction ' :Z := G−1(Y ) → D8 of the projection to the second factor
is a �nite map. Consequently Z is a 1-dimensional closed analytic subspace of Bj × D8. For any
t ∈D8 the set G−1

|t (Y ) is a �nite number of points {p1; : : : ; pd}; therefore any cycle in Z0(G−1
|t (V ))

has a unique expression of the form
∑s

i=1 nipi, where ni are integers. De�ne the degree of a cycle
as deg(

∑d
i=1 nipi) :=

∑d
i=1 ni. Proposition 10.2 of [5] tells us

Lemma 10.4. In the preceding situation deg(G!
|t([V ]) does not depend on t.

Now we prove the independence of De�nition 10.1 on the functions f1; : : : ; fr . Suppose that we
have another expression f=

∑r
i=1 gihi. Choose j so that f, the fi’s and the hi’s are de�ned in Bj.

De�ning Fi :Bj×C → C as Fi := (1−t)fi+thi we have f=
∑r

i=1 giFi|t for each t. De�ne an analytic
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mapping �|t :Bj×C → J∞(U;Cr) by the formula �(x; t) := j∞F1|t(x); : : : ; j∞Fr|t(x). Choose j small
enough so that Bj∩�−1

f (V )={O}. As �|t :Bj → J∞(U;Cr) lifts �f we have �−1
|t (V )={O} for any t.

Therefore ix(�f; V ) computed in terms of G1|t ; : : : ; Gr|t is equal to deg('∞
k ◦�|t)!(['∞

k (V )])). Applying
Lemma 10.4 we see that this number is independent on t. Hence De�nition 10.1 is independent on
the choice of the functions f1; : : : ; fr .

Remark 10.5. If V is DĨ ; e-invariant the independence on choices of De�nition 10.1 also could be
proved using the versal unfolding to show that for a generic deformation F|t of f, the number of
points of �−1

F|t (V ) is equal to ix(�f; V ). In this way also follows the independence of iO(�f; V ) on
the choice of the system of generators of I .

Another easy consequence of Lemma 10.4 is the following “Conservation of Number Formula”:

Proposition 10.6. Let V ⊂ J∞(U; Ĩ) be an irreducible closed analytic subset of codimension n.
Consider any f∈ I for such that O is an isolated point of �−1

f (V ). Let F :Cn × C → C be any
I -unfolding of f. For any positive and small enough j there exists a positive 8 such that for any
t ∈Ck with ‖t‖¡8 we have

iO(�f; V ) =
∑
x∈Bj

ix(�F|t ; V ): (75)

Proof. Let �̃F :Cn × C → J∞(U;Cr) be an analytic local lifting of �F . Observe that

deg('∞
k ◦ �̃F|t)!(['∞

k (V )])) =
∑
x∈Bj

ix(�F|t ; V )

and apply Lemma 10.4.

This provides an algebraic formula for the splitting function and the Morse number:

Corollary 10.7. Consider f∈ I with cI;e(f)¡∞. Then

�I [f](n) = iO(�f; Zn);

where Zn is the union of the irreducible components of C1 such that the extended codimension of
a generic member of them is precisely n.

If a germ fx ∈ J∞(U; Ĩ x) has a Morse point at x then

(1) the projection pr(x) does not belong to V (I),
(2) the function fx has a critical point in x,
(3) the function fx has positive codimension with respect to Ĩ x.

The germs having Morse points are a dense open subset among the germs having these three
properties. Clearly conditions (1) and (2) hold simultaneously if and only if conditions (1) and (3)
hold at the same time. In other words, if Z is the set of germs fx having x as a critical point then

Z\pr−1(V (I)) = C1\pr−1(V (I)): (76)
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We de�ne the �nitely-determined closed analytic subset M ⊂ J∞(U; Ĩ) to be the union of the
irreducible components of C1 not contained in pr−1∞ (V (I)). We have

Corollary 10.8. Consider f∈ I with cI;e(f)¡∞. Then

M(f) = iO(�f;M):

Suppose that M is k-determined. A key step to eMectively compute the Morse number is to have
an explicit description of the ideal of M ′ := ( j k’)−1('∞

k (M)) as a subset of J k(U;Cr). Using (76)
we can obtain such a description:

Observe that Z is 1-determined. We show that it is a closed analytic subset and give generators
for the ideal de�ning ( j1’)−1('∞

1 (Z)).
Recall that C{x} denotes the space of convergent power series in n variables x1; : : : ; xn and

m denotes its maximal ideal. If < = (<1; : : : ; <r) we set x< := x<11 : : : x<rr . Given any element h =
(h1; : : : ; hr)∈C{x}r , for any <∈Zr

¿0 we denote by ai
<(g) the coeKcient of x< in the power series

expansion of hi. The set U × (C{x}=mk+1)r is an aKne space with coordinates x1; : : : ; xn and ai
<

(for 16 i6 n and < = (<1; : : : ; <r) such that |<| :=
∑r

i=1 <i6 k). We consider the trivialisation
"k :U × (C{x}=mk+1)r → J k(U;Ck) (see Formula (12)). De�ne >0; : : : ; >n ∈Zr

¿0 by: >0 = (0; : : : ; 0)
and >i is the n-tuple whose only non-zero component is the ith one and has value 1. An easy
computation shows that ( j k’ ◦ "k)−1('∞

k (Z)) is the subset of U × (C{x}=mk+1)r given by the set
of common zeros of the functions Q1; : : : ; Qn, where

Qi(: : : ; zi; : : : ; ai
<; : : :) :=

n∑
j=1

[
aj
>0

@fj

@xi
(z1; : : : ; zn) + aj

>i
fj(z1; : : : ; zn)

]
:

De�ne J1 := (Q1; : : : ; Qr) and let J2 be the pullback of I by the projection of U × (C{x}=mk+1)r to
its �rst factor, that is, the ideal generated by {gi(z1; : : : ; zn) : 16 i6 r}. Then the ideal of functions
vanishing at M ′ is

JM ′ = (
√
J1 : J2): (77)

This shows in particular that ( j∞’)−1(M) is 1-determined: we could have worked with k = 1.

Remark 10.9. In [3] a slightly diMerent morsi�cation result for hypersurface singularities with critical
locus an i.c.i.s. and transversal type A1 was proved. There the critical locus of a generic deformation
of a function of �nite codimension is the Milnor �bre of the i.c.i.s together with a �nite number of
A1 points. The techniques of this section can easily be adapted to compute the number of A1 points
in such a generic deformation.

10.1. Conservative numerical invariants

The following proposition tells us how to associate a numerical invariant to any closed analytic
subset V of pure codimension n of J∞(U; Ĩ):

Proposition 10.10. Suppose that V is DĨ ; e-invariant. Then the intersection multiplicity ix(�f; V ) is
a DĨ ; e-invariant de9ned in J∞(U; Ĩ).
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Proof. For simplicity we work at the origin. Let f∈ I and �∈DI . We have to prove the equality
iO(�f; V ) = iO(��∗f; V ). Consider neighbourhoods U1 and U2 of the origin in Cn such that � is
de�ned in U1 and �(U1) = U2. The mapping � induces a bijection

�∗ : J k(U1; Ĩ) → J k(U2; Ĩ)

and an analytic isomorphism

�∗ : J k(U1;Cr) → J k(U2;Cr)

for any positive k and r. A set of generators {f1;1; : : : ; f1; r} of Ĩ |U1
induces a set of generators

{f2;1; : : : ; f2; r} of Ĩ |U2
de�ning f2; i := �∗f1; i. Consider the associated epimorphisms

’i :Or
U1

→ Ĩ U1

for i = 1; 2, de�ned by ’i(h1; : : : ; hr) :=
∑r

j=1 hjfi; j. They induce respectively mappings

j k’i : J k(Ui;Cr) → J k(Ui; Ĩ)

satisfying j k’2 ◦ j k�∗ = j k�∗ ◦ j k’1.
Choose h1; : : : ; hr satisfying f =

∑r
i=1 hif1; i. This induces an analytic lifting �̃k

f of �k
f, de�ned

by the formula �̃k
f(x) := ( j kh1(x); : : : ; j kh2(x)). Noticing that �∗f =

∑r
i=1 �∗hif2; i we deduce that

j k�∗◦�̃k
f is an analytic lifting of �k

�∗f. As j k�∗ : J k(U1;Cr) → J k(U2;Cr) is an analytic isomorphism
which satis�es

j k�∗[( j k’1)−1('∞
k (V ))] = ( j k’2)−1('∞

k (V ))

(because of the DI -invariance of V ), the equality iO(�f; V ) = iO(��∗f; V ) holds.

De�nition 10.11. A numerical DĨ ; e-invariant O : J∞(U; Ĩ) → Z¿0 ∪ {∞} is called a conservative
invariant if, for any fx ∈ Ĩ x with cĨx;e(f)¡∞ and any I -unfolding F : (Cn; x)× (Ck ; O) → C of f,
the following properties are satis�ed:

(1) Finiteness: O(fx)¡∞.
(2) Analyticity: for any integer N the set

{(x; t)∈Cn × Ck :O(F|t; x)¿ 0}
is closed analytic.

(3) Discreteness and conservation of number: there exists a suKciently small neighbourhood Ux of
x such that O(fy) = 0 for any y∈Ux\{x} and, for any positive and small enough 8, we have

O(fx) =
∑
y∈Uy

O(F|t;y)

for any t ∈B8.

Remark 10.12. Any numerical DĨ ; e-invariant O : J∞(U; Ĩ) → Z¿0∪{∞} constructed by intersection
multiplicity with DĨ ; e-invariant closed analytic subsets of pure codimension n of J∞(U; Ĩ) is a
conservative invariant.



J. Fern)andez de Bobadilla / Topology 43 (2004) 925–982 973

Observe that the property of conservation of number implies shows upper semicontinuity of O,
that is O(F|t; x)6O(fx) for any t close enough to x.

The following theorem tells that any conservative invariant is a (locally) �nite sum of invariants
constructed by intersection multiplicity:

Theorem 10.13. Let O : J∞(U; Ĩ) → Z¿0 ∪ {∞} be a conservative numerical DĨ ; e-invariant. Then
there exist a family of pairs (Vi; ni), where Vi is a n-codimensional DĨ ; e-invariant closed ana-
lytic subset of J∞(U; Ĩ), and ni is a positive integer, such that for any fx ∈ J∞(U; Ĩ) satisfying
cĨx;e(fx)¡∞ the family {Vi}i∈N is locally 9nite at fx and O(fx) =

∑
i∈N niix(�f; Vi) (the sum is

9nite by the locally 9niteness of the family at fx).

Proof. Recall that Cn denotes the subset of J∞(U; Ĩ) formed by germs of extended codimension at
least n. De�ne the sets

Z := {fx ∈ J∞(U; Ĩ) :O(fx)¿ 0} Zk := Z\Ck;

for any k ¿ 0.
We claim that Zk is (k + 3)-determined, where 3 is the uniform Artin-Rees constant. Consider

fx ∈Z\Ck and gx ∈mk+3+1
x ∩ Ĩ x. We have to show that fx + gx belongs to Zk . By Lemma 4.4 the

subset Ck is (k + 3)-determined, and hence fx + gx 
∈ Ck . As cĨx;e(fx)¡k, by Lemma 4.2 we have
mk−1

x Ĩ x ⊂ �Ĩx;e(fx). As mx�Ĩx;e ⊂ �Ĩx we deduce mk+1
x Ĩ x ⊂ mx�Ĩx(fx). By uniform Artin-Rees

mk+3+1
x ∩ Ĩ x ⊂ mx�Ĩx(fx). Then the �nite I -determinacy theorem (see Theorem 6.5 of [18]) tells

that fx is a (k + 3)-determined in I ; in other words, given any gx ∈mk+3+1
x ∩ Ĩ x then fx + gx is

in the orbit DĨ x(f). Consequently, as Z is clearly DĨ ; e-invariant and fx belongs to Z , also fx + gx

belongs to Z . This proves the claim.
Our next claim is that the topological closure TZk of Zk in J∞(U; Ĩ) is a (k + 23)-determined

closed analytic subset of J∞(U; Ĩ), with no irreducible components contained in Ck . Moreover, the
set Zk is closed in J∞(U; Ĩ)\Ck . Let {f1; : : : ; fN} be monomials in x1; : : : ; xn forming a basis of
OCn;O=m3+k+1

O . Consider S := (OCn;O)=m3+k+1
O )r viewed as an aKne space. Consider the system of

coordinates {sij} for 16 i6 r and 16 j6N characterised by the property that the point with
coordinates (a11; : : : ; a

r
N ) represents the r-tuple (

∑N
j=1 a

1
jfj; : : : ;

∑N
j=1 a

r
jfj). De�ne the I -unfolding

F :U × S → C by the formula

F(x; s11; : : : ; s
r
N ) :=

r∑
i=1

N∑
j=1

sijfj(x)gj(x); (78)

where g1; : : : ; gr are the �xed generators for Ĩ at U . According to the second property of O the
subset A ⊂ U × S formed by the pairs (x; s) such that O(F|s; x)¿ 0 is closed analytic. The mapping
< :U × S → J k+3(U;Cr) de�ned by

<(x; s11; : : : ; s
r
N ) =


 N∑

j=1

s1j j
k+3fj(x); : : : ;

N∑
j=1

srjj
k+3fj(x)



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is an analytic vector bundle isomorphism. We have de�ned F and < so that the compatibility relation
'∞
k+3 ◦ �F = j k+3’ ◦ < holds. This implies

<(A)\( j k+3’)−1('∞
k+3(Ck)) = ( j k+3’)−1('∞

k+3(Zk)):

The set B := <(A) ∪ ( j k+3’)−1('∞
k+3(Ck)) is a closed analytic subset of J k+3(U;Cr) which is

j k+3’-saturated, as it is the union

[<(A)\( j k+3’)−1('∞
k+3(Ck))] ∪ ( j k+3’)−1('∞

k+3(Ck));

of j k+3’-saturated closed analytic subsets. Let B′ be the union of the irreducible components of B
not contained in ( j k+3’)−1('∞

k+3(Ck)). Due to Lemma 3.9 we know that B′′ := ('k+23
k+3 )−1(B′) is

j k+23’-saturated, and therefore Z ′
k := '∞

k+23+2( j
k+23’(B′′)) is a (k + 23)-determined closed analytic

subset of J∞(U; Ĩ) with no irreducible components contained in Ck . By construction, it is clear
that Z ′

k\Ck = Zk . By Lemma 3.14 and the fact that no irreducible component of Z ′
k is contained in

Ck we conclude that the topological closure of Zk = Z ′
k\Ck equals Z ′

k . Obviously, the set TZk\Zk =
Z ′
k\(Z ′

k\Ck) is contained in Ck . Our claim is proved.
For any positive integers k and m we have

TZk\Cm ⊂ Zm: (79)

Indeed, consider fx ∈ J∞(U; Ĩ) such that cĨ ; e(f)¡m. Suppose that O(fx)=0. Then, as Zm is closed
in J∞(U; Ĩ)\Cm, there is an open neighbourhood of fx in J∞(U; Ĩ) where O vanishes. From this,
the inclusion (79) in the case k ¡m follows easily. If k¿m then

TZk\Cm ⊂ TZk\Ck = Zk;

but as Zk\Cm is clearly equal to Zm, inclusion (79) follows.
Set Y :=

⋃
k¿0

TZk ; it follows from (79) that

Y\Cm = Zm = TZm\Cm (80)

for any m¿ 0. Therefore Y is a �nitely determined closed analytic subset locally at each point of
J∞(U; Ĩ)\C∞. This is expressed in other words as follows: let {Vi}i∈N be the set whose elements
are the irreducible components of any of the TZk’s. Then the family {Vi}i∈N is locally �nite in
J∞(U; Ĩ)\C∞. Moreover, each Vi is DĨ ; e-invariant, since it is an irreducible component of some TZk ,
which is DĨ ; e-invariant as it contains the DĨ ; e-invariant dense Zariski open subset Z\Ck .
Choose a component Vi. Consider fx ∈Vi with cĨx;e(fx)¡∞, which, by the local �niteness of

the family {Vi}i∈N at J∞(U; Ĩ)\C∞ can be chosen so that there is a neighbourhood W of fx in
J∞(U; Ĩ) satisfying W ∩Z=Vi. If codim(Vi)¡n, an easy argument using Statement (†) of the proof
of Lemma 4.6 shows that dimx(�−1

f (Vi))¿ 0. As O(fy)¿ 0 at any y∈ �−1
f (Vi) this contradicts the

third property of O. Hence codim(Vi)¿ n. Consider the canonical Whitney strati�cation X of Vi

(see Theorem 6.2); the strata are DĨ ; e-invariant. Consider a versal I -unfolding F : Ux × S → C
of fx at x (where Ux is a neighbourhood of x), let s0 be the point in S such that F|s0 ;x = fx. By
Proposition 7.5, the mapping �F is transversal to X. By Theorem 7.4 the set of s∈ S such that
�F|s is transversal to X is dense in S. Hence, if s is generic and codim(Vi)¿n, the set �F|s(Ux)
cannot meet Vi. Choosing S and Ux small enough we can ensure that the image of �F lies in W .
Consequently (�F|s)−1(Z) = (�F|s)−1(Vi) = ∅. This means that O(F|s;y) = 0 for any y∈Ux, which,



J. Fern)andez de Bobadilla / Topology 43 (2004) 925–982 975

if s is close enough to s0, contradicts the third property of O, since O(fx)¿ 0. We conclude that
codim(Vi) = n.
Suppose that Vi is a component of TZk . As TZk is k + 23-saturated, then the component Vi is

k +33-saturated. Let B be the union of all the irreducible components of TZk diMerent from Vi; then
B ∪Ck contains all the components Vj diMerent from Vi. The set Hi := (B ∪Ck ∪ Sing(Vi))∩ Vi is a
proper (k + 43)-determined closed analytic subset of Vi. As Vi is smooth outside Hi we can de�ne
Di ⊂ Vi to be the subset of Fx such that �f is not transversal to Vi at x. The k +33-determinacy of
Vi implies easily that Di is (k + 43)-determined: if fx and gx have the same k + 43-jet, by uniform
Artin-Rees, they diMer by an element of mk+33+1

x Ĩ x, and we can �nd liftings �̃f and �̃g of �f and
�g which are equal up to k + 33-jets.

The set X := ( j k+43+1’)−1('∞
k+43+1(Vi\Hi)) is a smooth irreducible locally closed analytic subset

of J k+43+1(U;Cr). Let T → X be its tangent bundle. Denote by – :X ,→ J k+43+1(U;Cr) the inclusion
mapping as T is a sub-bundle of the restriction to X of the tangent bundle of J k+43+1(U;Cr), the
mapping 'k+43+1

k+23 induces a natural homomorphism

q :T → T′;

where T′ is the pullback by 'k+43+1
k+23 ◦ – of the tangent bundle T′′ of J k+23(U;Cr). Observe that, as

prk+23 : J k+23(U;Cr) → U de�nes a vector bundle, for any p∈ J k+23(U;Cr) the �bre T′′
p decom-

poses naturally as

Tprk+23(p)U ⊕ J k+23(U;Cr)p:

Any vector of T′′
p is decomposed accordingly in two components; the �rst is called the base com-

ponent, and the second is called the �bre component. Consider the trivial vector bundle of rank n
over X and choose e1; : : : ; en to be global trivialising sections. We de�ne an analytic homomorphism

� :Cn × X → T′

by letting �(ei; j k+43+1f1(y); : : : ; j k+43+1fr(y)) be the unique vector of

T′
( j k+43+1f1(y);:::;j k+43+1fr(y))

=T′′
( j k+23f1(y);:::;j k+23fr(y))

with �bre component j k+23(@f1=@xi)(y); : : : ; j k+23(@fr=@xi)(y)) and base component @=@xi. The set

D′ := {p∈X : q(Tp) + �(Cn) 
= T′
p}

is easily shown to be closed analytic in X . As D′ has been de�ned so that ( j k+43+1’)−1

('∞
k+43+1(Di)) = D′ we conclude that Di is a proper closed analytic and (k + 33)-determined in

Vi\Hi.
We claim that O is constant on Vi\(Hi ∪ Di). The set TX is an irreducible analytic subset of

J k+43+1(U;Cr), as Vi is irreducible. Then, by well known properties of complex analytic sets (see
[13, Ch. IV, Section 2]), the set X \D′ is path-connected. Therefore Vi\(Hi ∪ Di) is path-connected.
Consequently we only have to show that O is locally constant on Vi\(Hi∪Di). Consider fx ∈Vi\(Hi∪
Di). Then fx ∈ J∞(U; Ĩ)\Ck . We have seen that any gy ∈ J∞(U; Ĩ)\Ck is (k + 3)-determined in Ĩ y.
Therefore, if we consider the I -unfolding G :Ux × S → C de�ned by G(y; s) := fx(y) + F(x; s)
(where Ux is a neighbourhood of x in U and F is the I -unfolding de�ned by formula (78)), then
any germ gy belonging to J∞(Ux; Ĩ)\Ck is DĨ ; e-equivalent to a germ of the form G|s;y for a certain
s∈ S. Consequently, as fx =G|0; x, to prove our claim it is enough to show that O(G|s;y) is constant
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on a neighbourhood of (x; 0) in Ux ×S. As fx does not belong to B, taking Ux and a neighbourhood
S ′ of 0 in S small enough we can assume

�−1
G (Z) ∩ (Ux × S ′) = �−1

G (Vi) ∩ (Ux × S ′);

and �−1
f (Z) = {x}. On the other hand, as fx does not belong to Di, the mapping �G|0 = �f is

transversal to Vi at x; therefore, by the open nature of transversality, if we choose Ux and S ′ small
enough, the mapping �F|s is transversal to Vi for any s∈ S ′. Consequently, for any s∈ S ′ the set
�−1
G|s(Vi) consists of a unique point y(s), which is the only point y∈Ux where OG|s;y ¿ 0. As O has

the property (3) of De�nition 10.11 we conclude O(G|s;y(s)) = O(fx). This shows the claim.
Let ni the value assumed by O at any point of Vi\(Hi ∪ Di). It only remains to show that

O(fx) =
∑
i∈N

niix(�f; Vi) (81)

for any fx of �nite extended codimension. Given such fx de�ned on Ux, consider the associated
mapping �f :Ux → J∞(U; Ĩ). The local �niteness of the family {Vi}i∈N implies that Ux can be
taken small enough so that �−1

f (Z)={x} and the image of �f meets only �nitely many components
Vi1 ; : : : ; Vim . We consider a versal I -unfolding F :Ux × S → C of fx. A transversality argument
(similar to earlier ones) using Proposition 7.5 and Theorem 7.4 shows that the subset of s∈ S such
that �F|s only meets Z in Vij\(Hij ∪ Dij) (for 16 j6m), and it does it transversally, is dense in
S. Using this, property of (3) of De�nition 10.11, and Proposition 10.6, the proof of Eq. (81) is
straightforward.

11. Examples

In this section we illustrate the morsi�cation theory by spelling it out for certain classes of ideals.

11.1. Classical case: I = OCn;O

This is the case of isolated singularities. Here our theory recovers the classical morsi�cation
theorem. Any conservative invariant is a multiple of the Milnor number, as the set of singular germs
M (which is the closure of the set of Morse germs) is the only n-codimensional closed analytic
subset of J∞(U;OCn).

11.2. The analytic subspace V (I) is smooth

Let k be the codimension of V (I). We can give coordinate functions

y1; : : : ; yk ; x1; : : : ; xp

(with k+p=n) of Cn such that I=(y1; : : : ; yk). We set V := V (I). Let Ĩ be the ideal sheaf generated
by y1; : : : ; yk . We study the DĨ ; e-invariant analytic subspaces of J∞(Cn; Ĩ) which are of codimension
at most n; let Z be such a subspace. Consider the projection mapping pr∞ : J∞(Cn; Ĩ) → Cn.
If pr∞(Z) is not contained in V then Z|Cn\V is a non-empty DĨ ; e-invariant subset of J∞(Cn\V; Ĩ).

As Ĩ |Cn\V=OCn\V then, by the case I=OCn;O, the subspace Z|Cn\V is either the total space J∞(Cn\V; Ĩ)
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or the set of singular germs. Therefore Z is equal either to J∞(Cn; Ĩ) or to the n-codimensional
subvariety M which is the closure of the set of Morse points.
Suppose that pr(Z) ⊂ V . Let A be the set of integer multi-indexes <∈Zk

¿0 such that |<|¿ 2.
Any function f∈ I can be written as

f(x1; : : : ; xp; y1; : : : ; yk) =
k∑

i=1

fi(x1; : : : ; xp)yi +
∑
<∈A

a<(x1; : : : ; xn)y<; (82)

with the fi’s and a<’s convergent power series in x1; : : : ; xp. It is easy to check that if f is
non-singular (that is fi(0; : : : ; 0) 
= 0 for a certain i6 k) then f is DI -equivalent to f = y1.
Let Z1 be the subset of J∞(Cn; Ĩ)|V formed by germs fx having x as a critical point. This condition,

in terms of the expression (82), means precisely that fi(0; : : : ; 0) = 0 for any i6 k. Therefore Z1

is a k-codimensional 1-determined closed analytic subset of J∞(Cn; Ĩ)|V . As the codimension of
J∞(Cn; Ĩ)|V in J∞(Cn; Ĩ) is k, the set Z1 is 2k-codimensional in J∞(Cn; Ĩ). Consequently if p¡k
then the only DĨ ; e-invariant proper analytic subsets of J∞(Cn; Ĩ) which are of codimension at most
n are M and J∞(Cn; Ĩ)|V .
Assume p¿ k. Let f∈Z1, express it as in (82). If the diMerentials

{dfi(0; : : : ; 0) : 16 i6 k}
are linearly independent then f is easily seen to be DI -equivalent to

k∑
i=1

xiyi: (83)

We say that a function of I is of type D̃(n − 2k; 0) if it is DI -equivalent to (83). Functions of type
D̃(n − 2k; 0) have a 2k-codimensional critical locus and transversal type A1, they are D-equivalent
to a function of type D(n − 2k; 0) (see De�nition 11.2).
The subset Z2 ⊂ Z1 consisting of germs for which {dfi(0; : : : ; 0)}16i6k are not linearly indepen-

dent is a 2-determined analytic subset of codimension p − k + 1 in Z1, and hence of codimension
2k +p− k +1= n+1 in J∞(Cn; Ĩ). Therefore if p¿ k, the only DĨ ; e-invariant analytic subsets of
J∞(Cn; Ĩ) which are of codimension at most n are M , J∞(Cn; Ĩ)|V and Z1, and their codimensions
are n, k and 2k.

Our morsi�cation theory tells us that any function f with cI;e ¡∞ can be approximated (pre-
serving the geometry at the boundary of a Milnor ball) by a function whose singularities are �nitely
many Morse points and a smooth 2k-codimensional set of points of type D̃(n− 2; 0). Moreover any
conservative invariant O is of the form O = n1M if n 
= 2k and O = n1M + n2H if n = 2k, where
M is the Morse number, H is the number of D̃(n − 2; 0) points appearing in a generic deformation
of f.

Remark 11.1. Let I be arbitrary and consider f∈ I with cI;e(f)¡ 0. The above reasoning shows
that the only singularities that a generic I -deformation g close enough to f can have at a smooth
point of V (I) are of type D̃(n − 2k; 0), where k = codimx(V (I);Cn). Moreover if such a singularity
appear then there is a 2k-codimensional locally closed subset of Cn where g has this singularity
type.
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11.3. Transversal type A1

In [3,19,16,20,21,26], in order to study functions which are singular with transversal type A1 and
a certain �xed singular locus, the following point of view was taken. Consider the ideal J de�ning
the singular locus (in all these works the singular locus is asked to be either an i.c.i.s. or a low
dimensional isolated singularity at the origin) with its reduced structure and study the singularities
appearing in generic deformations of functions which are �nite codimensional with respect to the
primitive ideal

∫
J .

Suppose that J is a radical ideal. Consider the variety V = V (J ) and the strati�cation Cn =
W
∐

V0
∐

V1, where U = Cn\V , V0 = V\Sing(V ) and V1 = Sing(V ). Let J̃ be the ideal sheaf of
functions vanishing at V . Denote the primitive ideal

∫
J by I and let Ĩ be the ideal sheaf associated

to it.
We study the DĨ ; e-invariant subspaces of J∞(U; Ĩ) of codimension at most n and whose image by

the projection pr : J∞(U; Ĩ) → U is not contained in V1. Let Z1 be the closed 1-determined subset
formed by germs fx ∈ J∞(U; Ĩ) having a critical point at x. Clearly Z1 =M ∪ '−1(V ), where M is
the closure of the set of germs fx ∈ J∞(U; Ĩ) having an isolated singularity at x; the set of germs
fx which have an A1-critical point at x are a dense open subset in M .

Given any fx ∈pr−1(V ) we de�ne rk(fx) to be the rank of its Hessian matrix at x. The set
Kr := {fx ∈pr−1(V ) : rk(fx)6 r} is a 2-determined DĨ ; e-invariant closed subset for any integer r.
Let C1|V be the closed analytic subset consisting of germs of pr−1(V ) of extended codimension at
least 1.

Consider any x∈V0; if d= dimx(V ) there is a coordinate system

(x1; : : : ; xd; y1; : : : ; ym)

of Cn at x such that J̃ x = (y1; : : : ; ym). In Pellikaan [18] it is proved that Ĩ x =
∫
J̃ x = J̃ 2

x . There-
fore, we can express any g∈ Ĩ x as g =

∑
i; j6m hi; jyiyj, where hi; j ∈OCn; x and hi; j = hj; i; more-

over the hi; j are unique modulo the ideal J̃ x, hence the matrix (h′
i; j)i; j6m (where h′

i; j := hi; j(O) +∑d
k=1(@hi; j=@xk)(O)xk) is well de�ned.

De�nition 11.2 (Pellikaan [18]). Let f∈OCn; x. We say that f is of type D(d; k) if there is a coor-
dinate system {x1; : : : ; xd; y1; : : : ; ym} of Cn at x such that

f(x; y) =
∑
i; j6k

li; jyiyj +
m∑

i=k+1

y2
i ;

where {li; j : i; j6 k} is a collection of linearly independent linear forms in x1; : : : ; xd.

Let fx ∈ Ĩ x. In [18] it is proved that cĨ ; e(fx) = 0 if and only if f is of type D(d; k) for a certain
k. Consequently, if fx ∈Kr then cĨ ; e(fx) = 0 if and only if f is of type D(d; d − r).
In [3] it was shown that a generic deformation within Ĩ x of any fx ∈ Ĩ x with cĨx;e ¡∞ only has

A1 and D(d; k) points as critical points (for k6 r); moreover the locus where the deformation has
D(d; k) points is a smooth subvariety of codimension k(k + 1)=2 in Vx; in [3] the singular locus Vx

of fx is smoothed while deforming fx, but in our case it is already smooth (since x∈V0).
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Let C ′ be an irreducible component of C1|V such that its image under pr is not contained in
V1. We claim that its codimension is strictly bigger than n: suppose that the codimension of C ′ is
smaller or equal than n, consider fx ∈C ′; if the codimension c of C ′ equals n, by the Conservation
of Number Formula for intersection multiplicities, any generic deformation of fx within Ĩ x must
contain points of positive extended codimension within V0. This contradicts the fact that in a generic
deformation only points of type D(d; k) arise in V0. If the codimension of C ′ is strictly smaller than
n we consider a subvariety C ′′ of C ′ of codimension n containing fx and repeat the argument.
De�ne C to be the union of the components of C1|V with image under pr not contained in V1.

Let C ′ be the union of the other components.
Let V ′ be a connected component of V0 of dimension d. Consider x∈V ′ and fx ∈ Ĩ x with rk(fx)=

r. Either fx is of type D(d; d− r) or fx belongs to C. Hence any irreducible component Y of Kr|V
not contained in C can be expressed as Y0

∐
(Y ∩C), where Y0 is the open subset containing points of

type D(d; d−r). As the locus of D(d; d−r)-points of a generic function gx within Ĩ x has codimension
(d − r)(d − r + 1)=2 in V0 then the codimension of Y in J∞(U; Ĩ) is n − d+ (d − r)(d − r + 1)=2.
We have the following splittings in locally closed DĨ ; e-invariant subsets of J∞(U; Ĩ):

J∞(U; Ĩ) = Z1

∐
(J∞(U; Ĩ)\Z1);

Z1 =M\pr−1(V )
∐

pr−1(V );

pr−1(V ) = pr−1(V1)
∐

(C\pr−1(V1))
∐
 ∐

r∈Z¿0

[Kr\(C ∪ Kr−1 ∪ pr−1(V1))]


 :

Applying the relative morsi�cation theorem to them we obtain

Proposition 11.3. Let I ⊂ OCn;O be a radical ideal and V be the subvariety de9ned by it. Let
V1; : : : ; Vr be the connected components of V\Sing(V ); let di be the dimension of Vi. If f∈ ∫ I is
such that c∫

I; e ¡∞, then given a small neighbourhood U of the origin, any generic deformation
of f suFciently close to f

• has only A1 singularities in U\V .
• only has singularities of type D(di; k) at Vi, for k6di. Moreover the locus of points of type

D(di; k) is a smooth subvariety of codimension k(k + 1)=2 in Vi.

Suppose that in addition I has an isolated singularity at the origin. Then the topological type at
the origin of any generic deformation of f is the generic topological type of a function in

∫
I

(such a generic topological type exists by the results of [4]). Moreover any conservative invariant
is the sum of an integer multiple of the Morse number, and integer multiples of the numbers of
D(di; k) points in Vi in a generic deformation, for i6 r and k such that k(k + 1)=2 = di.

11.4. Line singularities with simple transversal type

In [10] line singularities with transversal types A1, A2, A3, D4, E6, E7 and E8 were studied from a
topological point of view using a morsi�cation result. In each case an ideal I(S) was constructed in
[10] such that any singularity with transversal type S has a right representative in I(S), and if two
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functions f; g∈ I(S) are R-equivalent, then they are DI(S)-equivalent. For any S the orbits of DI(S)

of codimension 1 in J∞(V (I); ˜I(S)) are determined, and the singularity types determined by them
are called FiS, for 16 i6 3. It is proved that any function f∈ I(S) can be deformed within I(S)
to any function having only A1-points outside the singular line L, a �nite number hi(f) of points of
type FiS in L, for 16 i6 3, and the generic singularity in I(S) along the rest of the points of L.

Our theory recovers the morsi�cation result, interprets hi(f) as intersection multiplicities, and
shows that any conservative invariant O is of the form

O(f) =
3∑

i=1

nihi(f) + n4M(f):

11.5. Other examples

Example 11.4. Take I = mk ; then �I;e = m�. Give weight 1 to the variables xi and −1 to the
derivations @=@xi’s. Then the 0-weight graded piece of �I;e is generated by xi@=@xj, with 16 i; j6 n.
Therefore for any function f, the module I="I; e(f) + mI has complex dimension at least Nk − 2n,
where Nk is the dimension of the space of homogeneous polynomials in n variables of degree k.
This provides examples of ideals I for which the support of �I [f] contains arbitrarily high integers
for any f∈ I .

Example 11.5. Choose a function g∈C{x1; : : : ; xn−1} with an isolated singularity at the origin. View
g as an element of OCn;O; its zero-set is singular along the line L de�ned by x1 = · · · = xn−1 = 0.
De�ne I = (g2). Any X ∈�I;e admits a unique decomposition as X = X1 + X2, where

X1 = an@=@xn X2 =
n−1∑
i=1

ai@=@xi;

for a1; : : : ; an ∈OCn;O. There is a unique expression X2 =
∑∞

k=0 x
k
nX2; k , where each X2; k belongs to

C{x1; : : : ; xn−1}(@=@x1; : : : ; @=@xn−1). Then, each X2; k belongs to �I ′ ; e where I ′ is the ideal generated
by g in C{x1; : : : ; xn−1}. De�ne Y2 := X2;0 and Y3 =

∑∞
k=1 x

k−1
n × X2; k . We have the decomposition

X = X1 + Y2 + xnY3: (84)

Consider f∈ I of the form f = pg2, where p is a polynomial in xn of degree k¿ 1. The decom-
position (84) implies(

dp
dxn

g2
)
+ "I ′ ; e(g2)OCn;O ⊂ "I;e(f): (85)

As g2J (g) ⊂ "I ′ ; e(g2) (where J (g) is the Jacobian ideal of g) and (xk−1
n g2) ⊂ (p′(xn)g2) we have

cI;e(f)6 (k − 1)/(g); (86)

where /(g) is the Milnor number of g.
If dp=dxn vanishes at 0, the decomposition (84) implies

"I;e(f) ⊂ (xng2) + "I ′ ; e(g2)OCn;O: (87)
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In this case we have

cI;e(f)¿ dimC

(
(g2)

"I ′ ; e(g2)

)
= dimC

(
(g)

"I ′ ; e(g)

)
: (88)

We choose n = 3, g(x1; x2) := (x22 + x31)
2 + x52 and p(x3) := 1 + xk3 with k ¿ 2. We weight the

variables by wt(x1) = 2, wt(x2) = 3, wt(x3) = 0. A computation shows that for any X ∈�I ′ ; e we
have X ∈ (x2@=@x1) + (x1; x2)2(@=@x1; @=@x2) and wt(X (g))¿ 15. We can write X (g) = hg for some
h∈C{x1; x2}, and wt(h)¿ 3. Summarising

�I ′ ; e ⊂ (x2@=@x1) + (x1; x2)2(@=@x1; @=@x2) "I ′ ; e(g) ⊂ (x21g; x2g): (89)

Consider h1; : : : ; hm in C{x1; x2} forming a basis of the complex vector space C{x1; x2}=J (g). By
(85), the I -unfolding

F = f(x1; x2; x3) +
r∑

i=1

k−1∑
j=0

ti; jhi(x1; x2)x
j
3g

2(x1; x2)

depending on parameters ti; j is versal. We can choose h1 = 1 and hi ∈ (x1; x2) if i¿ 1. Then for any
value t in the parameter space, F|t is of the form

F|t = [1 + ht(x3) + q(x1; x2; x3)]g2;

with q(x1; x2; x3)∈ (x1; x2) and where ht(xn) is a polynomial in x3 of degree k. Choose t generic; we
study the points x in which F|t; x has positive extended codimension. Let L be the line de�ned by
x1 = x2 = 0. The set V (g) is smooth outside L, by Proposition 11.3 the only points in which F|t; x
can have extended codimension outside L are A1-points. Using @=@x3 ∈�I;e, we deduce that when
p′(xn) is not zero, (0; 0; xn) is a point of extended codimension 0. We can assume that the derivative
p′(xn) has k − 1 simple roots. Let a be a root; consider x = (0; 0; a). A computation taking into
account inclusions (89) yields

"Ĩx;e(F|t; x) ⊂ (x21g
2; x2g2; (x3 + /x1)g2);

where / is the coeKcient of x1x3 in q. Therefore "Ĩx;e(F|t; x)¿ 2.
This example shows how a point of positive extended codimension splits in a generic deformation

in several points of positive extended codimension, such k-1 of them have extended codimension at
least 2.
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