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1. Introduction

By max algebra we understand the semiring of nonnegative numbers R+ equipped 
with arithmetical operations of “tropical addition” a ⊕b = max(a, b) (instead of the usual 
one), and the ordinary multiplication. See Butkovič [4] for one of the recent textbooks, 
as well as Heidergott, Olsder and van der Woude [8] for another textbook explaining 
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a typical application of max algebra to scheduling problems. These arithmetical opera-
tions are extended to matrices and vectors in the usual way: for two matrices A and B
of appropriate sizes, we have (A ⊕B)ij = aij ⊕ bij and (A ⊗B)ik =

⊕
j aijbjk. We also 

consider the max-algebraic powers of matrices: A⊗t = A⊗ . . .⊗A︸ ︷︷ ︸
t

.

With each square matrix A ∈ R
n×n
+ we can associate a weighted directed digraph 

G(A) = (N, E) with set of nodes N = {1, . . . , n} and edges E = {(i, j) | aij �= 0}. Each 
matrix entry aij is the weight of edge (i, j).

A sequence of edges (i1, i2), . . . , (ik−1, ik) of G(A) is called a walk. The length of this 
walk is k−1, and the weight of this walk is defined as ai1i2 · . . . ·aik−1ik . Node i1 is called 
the beginning node, and ik is called the final node of that walk. If i1 = ik then the walk 
is called a cycle.

It is easy to see that the i, j entry of the max-algebraic power A⊗t is equal to the 
greatest weight of a walk of length t beginning at i and ending at j. Considering the 
formal series

A∗ = I ⊕A⊕A⊗2 ⊕ . . .⊕A⊗k ⊕ . . . , (1)

called the Kleene star of A we see that the i, j entry of A∗ is equal to the greatest weight 
among all walks connecting i to j with no restriction on weight. This greatest weight 
is defined for all i, j if and only if G(A) does not have cycles with weight exceeding 1, 
otherwise (1) diverges, or more precisely, some entries of A∗ diverge to +∞.

In this paper we consider the set of supereigenvectors of a given square matrix A ∈
R

n×n
+ . These are vectors x satisfying A ⊗ x ≥ x, so we are interested in the set

V ∗(A) = {x:A⊗ x ≥ x}. (2)

Supereigenvectors are of interest for several reasons. Let us first mention a work of 
Butkovič, Schneider and Sergeev [6], where the supereigenvectors were shown to be 
instrumental in the analysis of the sequences {Ak ⊗ x: k ≥ 1}, and where a problem 
of describing the sets of supereigenvectors was posed. Wang and Wang [10] solved this 
problem by describing a generating set for (2). The goal of the present paper is to describe 
those generators which are extremals, or loosely speaking, “essential generators”.

The set of max-algebraic eigenvectors of A (here, associated with eigenvalue 1) and 
the set of subeigenvectors of A defined, respectively, as

V (A) = {x:A⊗ x = x}, V∗(A) = {x:A⊗ x ≤ x}, (3)

have been well studied and thoroughly described in the literature. Let us also men-
tion that A ⊗ x ≥ x belongs to the class of two-sided systems A ⊗ x ≤ B ⊗ x, whose 
polynomial solvability is still under question, while it is known that the problem is 
in the intersection of NP and co-NP classes, see for instance Bezem, Nieuwenhuis and 
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Rodriguez-Carbonell [3]. A number of algorithms solving this general problem and de-
scribing the full solution set have been designed: see, in particular, the double description 
method of Allamigeon, Gaubert and Goubault [1].

V (A), V ∗(A) and V∗(A) are examples of max cones. Recall that a subset of Rn
+ is 

called a max cone if it is closed under addition ⊕ of its elements, and under the usual 
scalar multiplication. The description that we work with is in terms of max-algebraic 
generating sets and bases. Let us recall some definitions that are necessary here.

An element u ∈ R
n
+ is called a max combination of elements v1, . . . , vm ∈ R

n
+ if 

there exist scalars λ1, . . . , λm ∈ R+ such that u =
⊕m

i=1 λiv
i. Further S ⊆ R

n
+ is called 

a generating set for a max cone K if every element of K can be represented as a max 
combination of some elements of S. If S is a generating set of K, we write K = span⊕(S). 
Further, S is called a basis if none of the elements of S is a max combination of other 
elements of S.

An element u of a max cone K ⊆ R
n
+ is called an extremal, if whenever u = v⊕w and 

v, w ∈ K, we have u = v or u = w. An element u ∈ R
n
+ is called scaled if maxn

i=1 ui = 1. 
A basis of a max cone is called scaled if so is every element of that basis.

Proposition 1.1. (See [5,7].) For any closed max cone K ⊆ R
n
+, let E be the set of scaled 

extremals. Then E is non-empty, K = span⊕(E) and, furthermore, E is a unique scaled 
basis of K.

It is easy to see that the max cones V ∗(A), V∗(A) and V (A) are closed, so that 
Proposition 1.1 applies to them. In fact, all these cones have a finite number of scaled 
extremals, which constitute their essentially unique bases.

The rest of the paper is organized as follows. In Section 2 we describe a generating set 
of the supereigenvector cone. This description, obtained in Theorem 2.1, is equivalent to 
the description given by Wang and Wang [10] (see, in particular, [10] Theorem 3.2), but 
it is obtained using a more geometric “cellular decomposition” technique. In Section 3
we give criteria under which the generators described in Section 2 are extremals. These 
criteria are combinatorial in nature, and expressed in terms of certain cycles of the 
digraph associated with the matrix (namely, cycles whose weight is not less than 1). 
These criteria are the main result of the paper, formulated in Theorems 3.1, 3.2 and 3.3.

The combinatorial description of extremals given in this paper also leads to a test 
of extremality of a given generator. This test does not require any knowledge of other 
generators and runs in O(m2) time, where m is the number of nonzero components of a 
given generator.

2. Generating sets

Let A ∈ R
n×n
+ , and let [n] := {1, . . . , n}. A mapping τ of a subset of [n] into itself 

will be called a (partial) strategy of G(A). Given a strategy τ we can define the matrix 
Aτ = (aτi,j) by
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Fig. 1. Digraphs G(Aτ ) and G(Aτ−) for A ∈ R
11
+ (an example).

aτi,j =
{
ai,j , if j = τ(i),
0, otherwise.

(4)

By domain of τ , denoted by dom(τ), we mean the set of indices i for which τ(i) is defined, 
that is, the index subset which τ maps into itself.

If τ is a strategy then its inverse, denoted by τ−, is, in general, a multivalued mapping 
of a subset of dom(τ) to the whole dom(τ). Define the matrix Aτ− = (aτ−i,j ) by

aτ−i,j =
{
a−1
j,i , if i = τ(j),

0, otherwise.
(5)

Consider the associated digraphs G(Aτ ) and G(Aτ−) (see Fig. 1). Let us list some 
properties of G(Aτ ).

Lemma 2.1.

(i) For every pair of nodes of [n], either there is a unique walk in G(Aτ ) connecting 
one of these nodes to the other, or there is no such walk.

(ii) G(Aτ ) contains at least one cycle.
(iii) For each node of dom(τ), there is a unique cycle of G(Aτ ) that can be accessed from 

this node via a walk in G(Aτ ), which is also unique.
(iv) For each node of dom(τ), there are no nodes that can be accessed from it by a 

walk of G(Aτ ) other than the nodes of the unique cycle and the unique access walk 
mentioned in (iii).
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A strategy τ is called admissible if there is no cycle in G(Aτ ) whose weight is smaller 
than 1. In this case, there is no cycle of G(Aτ−) whose weight is greater than 1, hence 
we have λ(Aτ−) ≤ 1.

The set of all admissible strategies is denoted by Tadm(A). Let us argue that the set 
of all supereigenvectors can be represented as a union of the sets of subeigenvectors of 
Aτ− with τ ranging over all admissible strategies.

Proposition 2.1.

V ∗(A) =
⋃

τ∈Tadm(A)

V ∗(Aτ ) =
⋃

τ∈Tadm(A)

V∗(Aτ−). (6)

Proof. To prove that

V ∗(A) =
⋃

τ∈Tadm(A)

V ∗(Aτ ), (7)

observe that every vector x satisfying A ⊗ x ≥ x also satisfies Aτ ⊗ x ≥ x for some 
(partial) mapping τ which can be defined as follows:

dom(τ) = {i:xi �= 0}, τ(i): ai,τ(i)xτ(i) = max
j

ai,jxj . (8)

The choice of τ(i) among the indices attaining maximum is free, any such index can be 
taken for τ(i).

It can be verified that if xi > 0 then ai,τ(i)xτ(i) > 0, hence xτ(i) > 0, thus τ maps 
dom(τ) into itself, so it is a strategy. To check that it is admissible let i, τ(i), . . . , τ �(i) = i

constitute a cycle, so we have ai,τ(i)xτ(i) ≥ xi, . . . , aτ�−1(i),ixi ≥ xτ�−1(i). Multiplying up 
all these inequalities and canceling the product of xi’s we get that the cycle weight is 
not less than 1. This shows that τ is admissible. To complete the proof of (7) observe 
that A ⊗ x ≥ Aτ ⊗ x ≥ x for every mapping τ and every vector x satisfying Aτ ⊗ x ≥ x.

It remains to check that V ∗(Aτ ) = V∗(Aτ−) for every partial mapping τ . We have

V ∗(Aτ ) = {x: ai,τ(i)xτ(i) ≥ xi ∀i ∈ dom(τ)} =

{x: (ai,τ(i))−1xi ≤ xτ(i) ∀i ∈ dom(τ)} = V∗(Aτ−). (9)

Combined with (7), this implies (6). �
Thus the cones V ∗(Aτ ) = V∗(Aτ−), with τ ranging over all admissible strategies, can 

be considered as building blocks of V ∗(A). Hence the generating set of V ∗(A) can be 
formed as the union of all generating sets of V ∗(Aτ ) = V∗(Aτ−): these are the generating 
sets of subeigenvector cones. A generating set for a general subeigenvector cone V∗(A)
is easy to find.
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Proposition 2.2. (E.g. [2,4,9].) Let A ∈ R
n×n
+ be such that the weight of any cycles of 

G(A) does not exceed one. Then V∗(A) = span⊕(A∗).

We now specialize this description to V∗(Aτ−). For this purpose, let us denote by 
k −→τ i the situation when k = i or k can be connected to i by a walk on G(Aτ ). In 
this case, the unique walk connecting k to i on G(Aτ ) will be denoted by P τ

ki.

Proposition 2.3. Let τ be an admissible strategy. Then V ∗(Aτ ) = V∗(Aτ−) is generated 
by the vectors x(τ,k) for k = 1, . . . , n, whose coordinates are defined as follows:

x
(τ,k)
i =

⎧⎨
⎩

1, if i = k,

(w(P τ
ki))−1, if i �= k and k −→τ i,

0, if i �= k and k �−→τ i.

(10)

Proof. By Proposition 2.2, V∗(Aτ−) = span⊕((Aτ−)∗), so it amounts to argue that the 
columns of (Aτ−)∗ are exactly x(τ,1), . . . , x(τ,n). This claim follows by the optimal walk 

interpretation of the entries αi,k of (Aτ−)∗: we obtain that αi,k = x
(τ,k)
i as defined in (10).

Indeed, recalling that αkk = 1 for all k, i accesses k in G(Aτ−) if and only if k accesses i
in G(Aτ ) and that the weight of the unique access walk from i to k in G(Aτ−) is the 
reciprocal of the weight of the unique access walk from k to i in G(Aτ ), we obtain the 
claim from the optimal walk interpretation of the entries of the Kleene star. �

Denote by C≥1(A), respectively by C>1(A), the set of cycles in G(A) whose weight is 
not less than 1, respectively greater than 1.

If G(Aτ ), for a strategy τ , consists of one cycle and one non-empty walk connecting 
its origin to a node of that cycle, then τ is called a germ. The origin of that walk will 
be denoted by oτ . If the weight of the cycle is no less than 1 then the germ is called 
admissible. The set of all admissible germs in G(A) will be denoted by Tag(A).

Obviously, both C≥1(A) ⊆ Tadm(A) and Tag(A) ⊆ Tadm(A). The following theorem 
describes a generating set of V ∗(A) by means of nonnegative cycles and admissible germs.

Theorem 2.1. We have V ∗(A) = span⊕(S) where

S = {x(τ,oτ ): τ ∈ Tag(A)} ∪ {x(τ,k): τ ∈ C≥1(A), k ∈ dom(τ)}. (11)

Proof. Since every admissible germ and every nonnegative cycle is an admissible strategy, 
inclusion V∗(Aτ−) ⊆ V ∗(A) and Proposition 2.3 imply that

span⊕{x(τ,oτ ): τ ∈ Tag(A)} ⊆ V ∗(A)

and

span⊕{x(τ,k): τ ∈ C≥1(A), k ∈ dom(τ)} ⊆ V ∗(A).
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To prove the opposite inclusion, observe that for each x(τ,k) of (10) we can define a 
new strategy τ ′ by

dom(τ ′) = {i: k −→τ i}, τ ′(l) = τ(l) if l ∈ dom(τ ′), (12)

and then we have x(τ ′,k) = x(τ,k). We now argue that τ ′ is a more simple strategy than τ .
By Lemma 2.1 part (iv), in G(Aτ ) node k only accesses one nonnegative cycle and 

the nodes on the unique walk leading to that cycle. It follows that either τ ′ ∈ C≥1(A)
and then k ∈ dom(τ ′), or τ ′ ∈ Tadm(A) and k = oτ ′ . Hence for every generator of 
V ∗(A), expressed as x(τ,k), there exists τ ′ which is either a nonnegative cycle with one 
of the nodes being k, or it is an admissible germ and k = oτ ′ , in any case such that 
x(τ ′,k) = x(τ,k). This implies that

V ∗(A) ⊆ span⊕{x(τ,oτ ): τ ∈ Tag(A)} ⊕ span⊕{x(τ,k): τ ∈ C≥1(A), k ∈ dom(τ)}.

The theorem is proved. �
Remark 2.1. Algorithm 3.2 in Wang and Wang [10] is implicitly based on a theoretical 
result equivalent to Theorem 2.1 above. To help the reader compare Theorem 2.1 with 
the results of [10], let us mention that [10] uses different terminology and notation. In 
particular, the set V ∗(A) is denoted by X , and the notation X ′

σ stands for the set 
{x(σ,k: k ∈ dom(σ)}, where σ ∈ C≥1(A). A germ with a cycle σ appears as a union of 
cycle σ and a Jσ-path, in the terminology of [10].

3. Extremals

Let us introduce the following partial order relation.

y ≤i x if xi �= 0, yi �= 0 and yky
−1
i ≤ xkx

−1
i ∀k. (13)

In particular, this relation is transitive:

x ≤i y ≤i z ⇒ x ≤i z. (14)

The following fact is known, see [4, Proposition 3.3.6] or [5, Theorem 14], and also [9].

Proposition 3.1. Let S ⊆ R
n
+ and K = span⊕(S). Then x is not an extremal of K if and 

only if for each i ∈ supp(x) there exists yi ∈ S such that yi ≤i x and yi �= x.

We consider the case when K = V ∗(A). A generating set of this max cone is given 
in Theorem 2.1. Our purpose is to identify extremals, which yield an essentially unique 
basis of V ∗(A), by means of the criterion described in Proposition 3.1.

We first show that for each τ and k, there is a relation between x(τ,k) and x(τ,τ(k)), 
with respect to every preorder relation except for ≤k.
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Lemma 3.1. Let τ ∈ Tag(A) and k = oτ or τ ∈ C≥1(A) and k ∈ dom(τ).

(i) x(τ,τ(k)) ≤j x
(τ,k) for all j ∈ dom(τ) and j �= k.

(ii) x(τ,τ(k)) �= x(τ,k) if and only if τ ∈ Tag(A) or τ ∈ C>1(A).

Proof. Let τ ∈ Tag(A) and k = oτ . Then supp(x(τ,τ(k))) = dom(τ)\{k}, and in partic-
ular, x(τ,τ(k)) �= x(τ,k). As we also have (x(τ,τ(k))

j )−1x
(τ,τ(k))
i = (x(τ,k)

j )−1x
(τ,k)
i = w(P τ

ij)
for all i, j �= k, claim (i) follows, in the case when τ ∈ Tag(A).

Let τ ∈ C≥1(A). Then supp(x(τ,τ(k))) = supp(x(τ,k)) = dom(τ), and

(
x

(τ,τ(k))
j

)−1
x

(τ,τ(k))
i =

(
x

(τ,k)
j

)−1
x

(τ,k)
i = w(P τ

ij) for i, j �= k.

However, we also have

(
x

(τ,τ(k))
i

)−1
· x(τ,τ(k))

k ≤
(
x

(τ,k)
i

)−1
· x(τ,k)

k for i �= k, (15)

since

x
(τ,k)
k

(
x

(τ,k)
i

)−1
= w(P τ

ki), x
(τ,τ(k))
k

(
x

(τ,τ(k))
i

)−1
= (w(P τ

ik))−1,

w(P τ
ki)w(P τ

ik) = w(τ) ≥ 1. (16)

Furthermore, we have x(τ,τ(k)) �= x(τ,k) if and only if the inequality in (15) is strict, 
which happens if and only if w(τ) > 1. Hence both claims. �

If τ ∈ Tag(A) and k = oτ or τ ∈ C≥1(A) and k ∈ dom(τ), there is a unique walk 
issuing from k and containing all nodes of dom(τ). Denote the final node of that walk 
by endn(τ, k).

Corollary 3.1. Let τ ∈ Tag(A) and k = oτ or τ ∈ C≥1(A) and k ∈ dom(τ). Let i �= k be 
any index in dom(τ). Then x(τ,i) ≤i x

(τ,k).

Proof. Without loss of generality we will assume that the nodes of τ , where τ is a cycle 
or a germ, are numbered in such a way that k = 1 and τ(i) = i + 1 for all i ∈ dom(τ)
except for the node endn(τ, k) which has the greatest number m. Note that if τ is a cycle 
then τ(m) = 1.

Repeatedly applying Lemma 3.1 part (i), we have

x(τ,i) ≤i x
(τ,i−1) ≤i x

(τ,i−2) ≤i . . . ≤i x
(τ,1). � (17)

We now formulate and prove the main results of the paper, which constitute a combi-
natorial characterization of the supereigenvector cone V ∗(A). Let us distinguish between 
germs whose unique cycle has weight strictly greater than 1, whose set we denote by 



114 S. Sergeev / Linear Algebra and its Applications 479 (2015) 106–117
T >1
ag (A), and the set of germs whose unique cycle has weight 1, whose set we denote by 

T =1
ag (A).

Theorem 3.1. Let τ ∈ T >1
ag (A) and k = oτ or τ ∈ C>1(A) and k ∈ dom(τ). Then x(τ,k)

is not an extremal if and only if one of the following conditions holds:

(i) there exist i, l and j such that i �= l �= j, i −→τ l −→τ j and ai,j ≥ w(P τ
ij);

(ii) there exist i and j such that i �= j, i −→τ j, j �= endn(τ, k) and aj,i ≥ (w(P τ
ij))−1.

In the case of T =1
ag (A), we have to replace condition (i) by a more elaborate one. For 

a germ τ consisting of a cycle c and a walk connecting the origin oτ to c, denote by ocτ
the (unique) node which this cycle and this walk have in common.

Theorem 3.2. Let τ ∈ T =1
ag (A) and k = oτ . Then x(τ,k) is not an extremal if and only if 

one of the following conditions holds:

(̆ı) there exist i, l and j such that i �= l �= j, i −→τ l −→τ j, and either τ(i) �= ocτ and 
ai,j ≥ w(P τ

ij) or τ(i) = ocτ and ai,j > w(P τ
ij);

(ii) there exist i and j such that i �= j, i −→τ j, j �= endn(τ, k) and aj,i ≥ (w(P τ
ij))−1.

Proof of Theorem 3.1 and Theorem 3.2. Without loss of generality we will assume that 
the nodes of τ , where τ is a cycle or a germ, are numbered in such a way that k = 1
and τ(i) = i +1 for all i ∈ dom(τ) except for the node endn(τ, k) which has the greatest 
number m. Note that if τ is a cycle then τ(m) = 1, and otherwise τ(m) = ocτ . With 
such numbering, conditions (i), (ii) and (̆ı) take the following form:

(i’) there exist i, j such that i + 1 < j and ai,j ≥ w(P τ
ij);

(ii’) there exist i, j such that i < j, j �= m and aj,i ≥ (w(P τ
ij))−1;

(̆ı’) there exist i, j such that i < j, and either ocτ �= i +1 and ai,j ≥ w(P τ
ij) or ocτ = i +1

and ai,j > w(P τ
ij).

The “only if” part: Suppose that x(τ,1) is not an extremal. As V ∗(A) = span⊕(S)
where S is defined in (11), by Proposition 3.1 and Theorem 2.1, there exist τ ′ and 
s such that x(τ ′,s) ≤1 x(τ,1) and x(τ ′,s) �= x(τ,1). As x(τ ′,s) ≤1 x(τ,1), it follows that 
dom(τ ′) ⊆ dom(τ) and that 1 ∈ dom(τ ′) so that s −→τ ′ 1. Also since x(τ ′,1) ≤1 x(τ ′,s)

by Corollary 3.1, and since ≤1 is transitive, we can assume s = 1.
Now suppose there exist i, j such that i + 1 < j and j = τ ′(i). Consider the least 

such i and j. Condition x(τ ′,1) ≤1 x(τ,1) means that x(τ ′,1)
l ≤ x

(τ,1)
l for all l ∈ dom(τ). In 

terms of walks, this means that w(P τ ′

1l )−1 ≤ w(P τ
1l)−1, or equivalently, w(P τ ′

1l ) ≥ w(P τ
1l)

for all l ∈ dom(τ). In particular, this implies ai,j ≥ w(P τ
ij), thus we have (i’).

Suppose that there are no such i, j. Then it can be verified that we have τ ′(s) = s +1
for all s ∈ dom(τ ′) except for one node j for which i = τ ′(j) < j. However, if j = m then 
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x(τ ′,1) = x(τ,1), a contradiction. Hence j < m, and the edge (j, i) belongs to the unique 
cycle of τ ′. The other edges of that cycle form the walk P τ

ij and the cycle is in C≥1(A), 
hence we have (ii’).

It remains to prove that if τ ∈ T =1
ag (A) and not (i’) or (ii’), then we have (̆ı’). So 

suppose that condition (ii’) does not hold, τ ∈ T =1
ag (A) and there exist only i and j with 

i < j, ocτ = i + 1 and, by contradiction, that ai,j = w(P τ
ij) for all such i and j. Then we 

have x(τ ′,1) ≤1 x(τ,1) only for τ ′ = τ (trivially), or for τ ′ such that dom(τ ′) = dom(τ), 
τ ′(i) = j for some selection of j and τ ′(k) = τ(k) for all k ∈ dom(τ)\{i}. However, it 
can be checked that x(τ ′,1) = x(τ,1) for all such τ ′ since supp(x(τ ′,1)) = supp(x(τ,1)) and 
the weight of the unique cycle of τ is 1. This implies that there are no vectors preceding 
x(τ,1) with respect to ≤1 and different from x(τ,1), a contradiction. Hence we have (̆ı’).

The “if” part: By Proposition 3.1 and Lemma 3.1, it is enough to show that there 
exists τ ′ ∈ Tag(A) ∪ C≥1(A) such that x(τ ′,1) ≤1 x(τ,1) and x(τ ′,1) �= xτ,1.

Suppose that (i’) or (̆ı’) holds, and take any such i and j. Denote by c the (unique) 
cycle of τ . Define τ ′ by

dom(τ ′) =
{
{1, . . . , i} ∪ {j, . . . ,m}, if ocτ ≤ i or ocτ ≥ j,

{1, . . . , i} ∪ {ocτ , . . . ,m}, if i < ocτ < j.

τ ′(l) =
{
τ(l), if l ∈ dom(τ ′), l �= i,

j, if l = i.
(18)

The definition of τ ′ and the inequality ai,j ≥ w(P τ
ij) immediately imply w(P τ ′

1l ) ≥ w(P τ
1l)

for all l ∈ {1, . . . , i} ∪ {j, . . . , m}. For the case when l ∈ {ocτ , . . . , j} (if i < ocτ < j), 
observe that w(P τ ′

1l ) ≥ w(P τ
1l) · w(c) ≥ w(P τ

1l). Thus w(P τ ′

1l ) ≥ w(P τ
1l) holds for all l ∈

dom(τ ′), implying the inequalities x(τ ′,1)
l (x(τ ′,1)

1 )−1 ≤ x
(τ,1)
l (x(τ,1)

1 )−1 for all l ∈ dom(τ ′). 
Hence x(τ ′,1) ≤1 x(τ,1). It remains to show that x(τ ′,1) �= x(τ,1).

Observe that dom(τ ′) is a proper subset of dom(τ) unless when ocτ = i +1 (that is, the 
cycle begins at the next node after i). If dom(τ ′) is a proper subset of dom(τ) then clearly 
x(τ ′,1) �= x(τ,1). If ocτ = i + 1, we verify that for all l ∈ {ocτ , . . . , j}, we have that either 
w(P τ ′

1l > w(P τ
1l) · w(c) ≥ w(P τ

1l) (if ai,j > w(P τ
ij)) or w(P τ ′

1l ) ≥ w(P τ
1l) · w(c) > w(P τ

1l)
(if w(c) > 1), and then also x(τ ′,1) �= xτ,1.

If (i’) or (̆ı’) does not hold but (ii’) does, then define τ ′ by

dom(τ ′) = {1, . . . , j}, τ ′(l) =
{
i, if l = j,

τ(l) = l + 1, if l < j.
(19)

Then the condition aj,i ≥ w(P τ
ij)−1 implies that P τ

ij and (j, i) constitute a nonnegative 
cycle, hence τ ′ ∈ Tag(A) ∪ C≥1(A) and dom(τ ′) is a proper subset of dom(τ). Thus we 
have x(τ ′,1) ≤1 x(τ,1). �

It remains to consider the case when τ is a cycle with weight 1. The set of such cycles 
is denoted by C=1(A). In this case all vectors x(τ,i) are proportional to each other, for 
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all i ∈ dom(τ). Therefore we will denote xτ = x(τ,i), where i is an arbitrary index of 
dom(τ).

Theorem 3.3. Let τ ∈ C=1(A) and i ∈ dom(τ). Then xτ is not an extremal if and only 
if there exist two edges (k1, l1) and (k2, l2) such that k1, l1, k2, l2 ∈ dom(τ), l1 /∈ τ(k1), 
l2 /∈ τ(k2), k1 �= k2, ak1,l1 · w(P τ

l1k1
) ≥ 1 and ak2,l2 · w(P τ

l2k2
) ≥ 1.

Proof. Let xτ be not an extremal, then for each i ∈ dom(τ) there exist τi and i′ such 
that x(τi,i′) ≤i x

τ , and hence (ki, li) with ki, li ∈ dom(τ) and akili ·w(P τ
liki

) ≥ 1. Indeed, 
if there is no such edge then the domain of any cycle or germ other than τ includes a node 
not in dom(τ), while all generators derived from τ are proportional to xτ . Furthermore, 
some ki’s should be different, at least for two values of i. Indeed, if all ki are equal to 
the same index denoted by k, then we have x(τi,τ(k)) = xτ for all i, while τ(k) does not 
belong to the support of any other vector derived from the germ τi, for any i.

For the converse implication, let (k1, l1) and (k2, l2) be the two edges satisfying given 
conditions, and let τ1 and τ2 be defined by

τ1(i) =
{
τ(i), if i ∈ dom(τ)\{k1},
l1, if i = k1.

, τ2(i) =
{
τ(i), if i ∈ dom(τ)\{k2},
l2, if i = k2.

(20)

Since k1 �= k2, for each i ∈ dom(τ), either i �= τ(k1) or i �= τ(k2), and we define 
τ ′ := τ1 or τ ′ := τ2 respectively. Then we have x(τ ′,i) ≤i x

τ and x(τ ′,i) �= xτ . As such a 
vector can be found for any i, xτ is not extremal. �

Let us now formulate a corollary concerning the computational complexity of verifying 
whether a given generator is an extremal or not.

Corollary 3.2. Let a generator of the form x(τ,k), with a known τ ∈ Tadm, be given. 
Then one can verify whether x(τ,k) is an extremal or not in no more than O(m2) op-
erations (maximization, multiplication and inverse), where m is the number of nonzero 
components of x(τ,k).

Proof. In order to prepare for checking whether the conditions of Theorems 3.1, 3.2
or 3.3 hold, let us compute all path weights w(P τ

ij) where i −→τ j. All these weights 
and their inverses can be computed in O(m2) time and stored in m × m matrices. To 
describe the corresponding procedure, assume that k = 1 and that we have i −→τ j iff 
i ≤ j. On the lth step of the procedure, we have w(P τ

1l) ready, and then we compute 
w(P τ

2l) = w(P τ
1l) · a−1

12 , w(P τ
3l) = w(P τ

2l) · a−1
23 and so on until w(P τ

l−1,l) = al−1,l. After 
that we compute w(P τ

1,l+1) = w(P τ
1l) · al,l+1 and proceed with the next l + 1th step.

Checking the extremality of z requires verifying the conditions of Theorems 3.1, 3.2
or 3.3, for each pair i, j with i −→τ j. The choice of theorem depends on the type of the 
germ τ , and the verification takes O(m2) operations. �
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Remark 3.1. Checking the extremality of z = x(τ,k) relies on the knowledge of τ . If τ is 
not known, then reconstructing it from a given generator z poses a problem. To avoid 
the complications, we assume that τ is produced by an algorithm which provides the 
generator. To this end, let us remark that Algorithm 3.2 in [10] constructs a family of 
generators from a cycle and walk leading to that cycle (or Jσ-path in the terminology 
of [10]), which means that it can efficiently produce a strategy that we need. The ex-
tremality checking procedure described in the proof of Corollary 3.2, can be added to 
that Algorithm.

Acknowledgement

The author is grateful to Professor Peter Butkovič for useful discussions and advice, 
and for the anonymous referee for their fair and constructive criticism of the work.

References

[1] X. Allamigeon, S. Gaubert, E. Goubault, Computing the vertices of tropical polyhedra using directed 
hypergraphs, Discrete Comput. Geom. 49 (2) (2013) 247–279.

[2] F.L. Baccelli, G. Cohen, G.-J. Olsder, J.P. Quadrat, Synchronization and Linearity, Wiley and Sons, 
1992, http://cermics.enpc.fr/~cohen-g/documents/BCOQ-book.pdf.

[3] M. Bezem, R. Nieuwenhuis, E. Rodriguez-Carbonell, The max-atom and its relevance, in: Logic for 
Programming, Artificial Intelligence and Reasoning, in: Lecture Notes in Comput. Sci., vol. 5330, 
2008, pp. 47–81.

[4] P. Butkovič, Max-Linear Systems: Theory and Algorithms, Springer, London, 2010.
[5] P. Butkovič, H. Schneider, S. Sergeev, Generators, extremals and bases of max cones, Linear Algebra 

Appl. 421 (2007) 394–406.
[6] P. Butkovič, H. Schneider, S. Sergeev, Recognizing weakly stable matrices, SIAM J. Control Optim. 

50 (5) (2012) 3029–3051.
[7] S. Gaubert, R.D. Katz, The tropical Minkowski theorem, Linear Algebra Appl. 421 (2007) 356–369.
[8] B. Heidergott, G.-J. Olsder, J. van der Woude, Max-Plus at Work, Princeton Univ. Press, 2005.
[9] S. Sergeev, Multiorder, Kleene stars and cyclic projectors in the geometry of max cones, in: Tropical 

and Idempotent Mathematics, in: Contemp. Math., vol. 495, AMS, Providence, 2009, pp. 317–342.
[10] Xue-ping Wang, Hui-li Wang, The generators of the solution space for a system of inequalities, 

Linear Algebra Appl. 459 (2014) 248–263.

http://refhub.elsevier.com/S0024-3795(15)00189-5/bib414747s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib414747s1
http://cermics.enpc.fr/~cohen-g/documents/BCOQ-book.pdf
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib52432Bs1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib52432Bs1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib52432Bs1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib427574s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib425353s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib425353s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib4253537773s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib4253537773s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib474B2D3037s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib484F57s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib5365722D3039s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib5365722D3039s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib57616E67s1
http://refhub.elsevier.com/S0024-3795(15)00189-5/bib57616E67s1

	Extremals of the supereigenvector cone in max algebra: A combinatorial description
	1 Introduction
	2 Generating sets
	3 Extremals
	Acknowledgement
	References


