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CONCEPT LATTICES AND
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Fachbereigh Mathematik, Technisch Hochschule Darmstadt
Schlofigartenstrae 7, 6100 Darmstadt, Germany

Abstract—"Concept Lattice” is the central notion of “Formal Concept Analysis,” a new area of
research which is based on a set-theoretical model for concepts and conceptual hierarchies. This
model yields not only a new approach to data analysis but also methods for formal representation
of conceptual knowledge. These methods are outlined on three levels. First, basics on concept
lattices are explained starting from simple data contexts which consist of a binary relation between
objects and attributes indicating which object has which attribute. On the second level, conceptual
relationships are discussed for data matrices which assign attribute values to each of the given objects.
Finally, a mathematical model for conceptual knowledge systems is described. This model allows us
to study mathematically the representation, inference, acquisition, and communication of conceptual
knowledge.

1. CONCEPT LATTICES AS KNOWLEDGE REPRESENTATION

Knowledge: What it is, how it is acquired, and how it can be represented, this has been discussed
for more than two thousand years as central matter of epistemology and the discussion is far from
being exhausted [1]. Thus, there cannot be any hope that mathematical models will capture the
rich variety of ideas and understandings about knowledge and its representations. Although we
restrict our considerations in this paper to conceptual knowledge, we are still confronted with
a multitude of substantial views and theories about grasping knowledge by concepts and their
relations. Already the different understandings of a concept, as a unit of thoughts, as the meaning
of some word, as a cognitive structure, etc. [2], makes it clear that a formalization of conceptual
knowledge has to concentrate on some specific type of abstraction which enables us to fulfill
specified aims.

Formal concept analysis, which has been developed during the last ten years and shall be
explained in this paper [3], is supposed to achieve aims as they are formulated in the German
standards on concepts and conceptual systems (see [4,5]); these standards are seen as a general
aid in sciences, economy and administration for a better understanding and use of “conceptual
tools.” The standards are based on the philosophical understanding of a concept as a unit of
thoughts consisting of two parts: the extension and the intension (comprehension); the extension
covers all objects (or entities) belonging to the concept while the intension comprises all attributes
(or properties) valid for all those objects [6]. A set-theoretic model for these relationships is the
root of formal concept analysis. This model yields not only a new approach to data analysis, but
also methods for formal representation of conceptual knowledge.

Formal concept analysis starts with the primitive notion of a (formal) contert which is defined
as a triple (G, M, I) where G and M are sets while [ is a binary relation between G and M, i.e.,
I C G x M; the elements of G and M are called objects (in German: Gegenstinde) and attributes
(in German: AMerkmale), respectively, and gIm, i.e., (g, m) € I, is read: the object g has the
attribute m. Frequently used are the following derivation operators represented by “prime”:

X—X'={meM)|gImforallg e X},
Y=Y ={geG|lgimforallmeY}.
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These operators form a so-called Galois connection between the power sets of G and M which

can be expressed by the following conditions indicating a natural “duality” between objects and
attributes {7, pp. 122-125}):

(1) X1 c Xa lmphes .Xé c Xi for X, X2 - G,
(1) Y1 CYaimplies Y5 C Y/ for ¥7,Y= C M;
(2) X CX”and X'=X" for X C G
(2) YCY'andY' =Y"for Y C M;

. - - .
(3 (YX'= DXl for Xe C Gl € T);

7 . 1 B .
) (YY) =0V forYiCMteT)

In the frame of a formal context (G, M, I), the philosophical view of a concept as a unit
of thoughts constituted by its extension and its intension can be formalized by the following
definition: a pair (A4, B) is said to be a (formal) concept of the context (G,M,I) if A C G,
BC M, A=DPb, and B = A’; A and B are called the eztent and the intent of the concept
(A, B), respectively. The set of all concepts of (G, M, ) is denoted by B(G,M,I). The most
tmportant structure on B(G, M, ) is given by the subconcept-superconcept-relation which is
defined as follows: the concept (A, By) is a subconcept of the concept (Aa, Ba) if A; C Aa which
is equivalent to By C By by (1) and (') ((As, B2) is then a superconcept of (A, B,)). Since
this definition yields an order relation, the subcoucept-superconcept-relation is denoted by <;
furthermore, let B(G, M, I) := (B(G, M, I), <). For the formulation of the basic theorem about
the ordered set B(G, M, 1), the [ollowing lattice-theoretical notions are needed: a subset of D
of a complete lattice L is called infimum-dense (supremum-dense) if each element of L is the
infimum (supremum) of sowme subset of D. An element a of a lattice L is said to be A-irreducible
(V-irreducible) if a = b A c(a = bV c) always implics a = b or a = ¢; the set of all A-irreducible
(V-irreducible) elements of L is denoted by J(L) (M(L)). For further lattice-theoretical notions
sce [7-10]. Now, we are ready to describe and characterize the hierarchy of all formal concepts
of a formal context.

Basic THEOREM FOR CONCEPT LATTICES [11]. Let (G, M, 1) be a context. Then B(G, M, )
is a complete lattice, called the concept lattice of (G, M, 1), for which infimum and supremum
can be described as follows:

N4, B) = (ﬂ Ae, (U B,)”) . V(4B = ((U A‘)”,ﬂ B,).

teT teT teT teT teT teT

In general, a complete lattice L is isomorphic to B(G, M, I) if and only if there exist mappings
Y:G— Land it : M — L such that 3G is supremum-dense in L, zM is infimum-dense in L,
and gIm is equivalent to g < pm; in particular, L = B(L, L, <) and, if L has finite length,
L =3B(J(L), M(L),<).

A formal context can be considered as an elementary model for formal representation of knowl-
edge yielding even a more structural representation of conceptual knowledge by its concept lattice;
graphically, contexts are usually described by cross-tables while concept lattices are effectively
visualized by labelled line diagrams (Hasse diagrams). The power of this approach to formal rep-
resentation of conceptual knowledge is explained in this article on three levels: concept lattices
of formal contexts, concept lattices of many-valued contexts, and conceptual knowledge systems.
Let us begin with an example from sociology given by the cross-table in Figure 1 (see {12}, p. 148).
This table can be understood as a description of a formal context: its objects are the eighteen
ladies from Old City whose names are heading the rows and its attributes are the fourteen social
events which are represented by the columns; furthermore, the crosses indicate when an object
has an attribute, i.e., which lady has participated in which social event.

A labelled line diagram of the concept lattice of the context given by Figure 1 is shown in
Figure 2. The little circles represent the 65 concepts of the context and the ascending paths
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Figure 2. Concept lattice of the formal context in Figure 1.
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of line segments represent the subconcept-superconcept-relation (such a path may change its
direction at a meeting of lines only if there is a little circle or a dot). A name of an object
g is attached to the little circle representing vg := ({g}”, {9}’) which is the smallest concept
having g in its extent; a name of an attribute m is attached to the little circle representing
pm = ({m}', {m}") which is the largest concept having m in its intent. This labelling allows
us to read from the diagram for each concept (A, B) its extent A and its intent B because
g€ A 79 < (A,B)and m € B < (4,B) < pm. In Figure 2, for instance, the unlabelled
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Figure 3. Representation of the table in Figure 1 as a bipartite graph.

circle most to the right represents the concept with the extent {Myra, Katherine, Sylvia, Helen}
and the intent {8, 10, 12}. The labelling, in particular, preserves the underlying context because
gIlm ¢ yg < pm (notice that v and p are the mappings 5 and g of the Basic Theorem in
the case L = B(G, M, I)). Therefore, concept lattices constitute a structural analysis of data
contexts without reducing the data. A labelled line diagram of a concept lattice still represents
all knowledge coded in the underlying context and, furthermore, unfolds (and reveals to the
eye) the inherent conceptual structure of the coded knowledge. Of course, a context can also be
represented as bipartite graph as in Figure 3, but mostly such representation is less readable and
less informative.

Before we discuss how to derive further information from a concept lattice, there should be
an answer to the basic question: How can one determine the concept lattice of a given context
(G, M, 1)? The derivation operators yield for each X C G the concept (X, X’) by (2) and for
each Y C M the concept (Y',Y") by (2'). This construction method is often used to generate
single concepts, but it is too costly for determining all concepts of a given context if one starts
from acbitrary subsets of objects or attributes. It is better to use first the formulas X' = 'QT{g}'

orY'= QY {m}’, which are special cases of (3) and (3'), and then to form (X", X') or (Y',Y").
m

Thus, one can start with the special intents {g}’ (¢ € G) or the special extents {m}’' (m € M)
since, by the formulas, every intent is the intersection of some special extents {¢}’ and every
extent is the intersection of some special extents {m}’. Although this improved construction
method works quite well for treating small contexts by hand, for computer programs another
method has been proven more successful; its basic idea is to construct from a given extent the
next extent with respect to a lexicographic order fixed for all subsets of objects (see {13]). A
comparative study of different algorithms for determining concept lattices can be found in (14].

The drawing of labelled line diagrams has been the most successful graphical method for
representing concept lattices. Up to now, it is still a kind of art which requires experience. Nev-
ertheless, there is a major effort to develop computer programs which assist in drawing adequate
line diagrams for concept lattices; basic ideas and existing programs are discussed in {15]. Since
diagrams should not only represent the conceptual structure but also unfold views for interpre-
tations, there is not a unique way to draw concept lattices. Different aims and meanings require
different drawings, where often, for a single concept lattice, several line diagrams are desirable.
As a general strategy, it has been proven successful to decompose a concept lattice in smaller
and more easily understood parts which can be visualized by more or less standardized graphical
patterns [15,16]. As is indicated by the diagram in Figure 2, the most elementary graphical
patterns are the parallelogram [17] and the straight line formed by several line segments. These
patterns are often combined to two- or higher-dimensional grids; in Figure 2, for instance, we
have on the lower left the grid of a four-dimensional cube (hypercube) which also occurs (incom-
plete) at the top of the diagram. Recognition and arrangement of the patterns can be supported
by a geometric representation of the concept lattice which is described in [18]. In general, the
decomposition strategy is dependent on methods for the structural analysis of concept lattices
which are developed in great variety [11,19-25]. An essential advantage of the representation
by labelled line diagrams is that their correctness can be controlled without knowing how they
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are constructed: By the second part of the Basic Theorem, for a finite context (G, M, I), one
has to check that the line diagram describes a finite lattice, that the circles of the V-irreducible
and A-irreducible elements are labelled by object names and attribute names, respectively, and
that g/m is equivalent to vg < um for all ¢ € G and m € M; this is necessary and sufficient to
determine that the labelled line diagram represents B(G, M, I).

Let us now come back to the discussion about further information represented in a concept
lattice. First of all, a concept lattice can be viewed as a hierarchical conceptual clustering
of the objects (via its extents). The concept lattice in Figure 2, for instance, shows that the
conceptual hierarchy classifies the ladies in mainly two directions with some marginal deviations
caused by some ladies who participated in only a few events. This results also from other studies
of the same data set by methods of social network analysis: one outcome is shown in Figure 4
(see [26]) where the resulting graph has just three maximal cliques which are the extents {5}',
{11}, and {12}. (Dorothy and Pearl are missing in Figure 4). Obviously, the concept lattice is
more informative than the graph (even with further labellings for the edges). Other clustering
methods also have failed to differentiate knowledge as fully as concept lattices.

Eleanor Frances Verne

Ruth Charlotte Myrna Heicn Olivia

Brenda Katherine Flora

B2\ SN\

Lawa Theresa Sylvia

Figure 4. Some reduced representation of the data in Figurc I by a graph.
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Figure 5. The ordered set of all attributes in Figure 1.

Second, a concept lattice can be understood as a representation of all implications between
the attributes (via its intents). An implication of a context (G, M,I) is a pair of subsets of M,
denoted by Y — Z, for which Y’ C Z’, i.e., each object from ¢ having all attributes of Y has
also all attributes of Z. This corresponds to “inheritance” of attributes in conventional semantic
networks. Since Y' C 2’ & Vne€ Z:(Y',Y") < unin B(G, M, I) and since (Y',Y") = /€\me

m

by the Basic Theorem, the implication ¥ — Z can be read from a labelled line diagram of
B(G, M, I). In Figure 2, for instance, we see that {11,12} — {7,10} is an implication of the
context in Figure 1, because ull A ul2 < u7 and pll A p12 < pl0 (any lady who attended
parties 11 and 12 also attended 7 and 10). The implications with a one-element premise are of
special interest because they yield a natural ordering on the set of all attributes which is defined
by m < n: & m — n(¢> pm < pun). A line diagram of this ordering for our example is shown
in Figure 5. A basis for all implications (i.e. a minimal generating set of all implications) of a
finite context (G, M, ) is given by {P — (P”\P) | P pseudo-intent} where a pseudo-intent is
recursively defined as follows: a set P of attributes is a pseudo-intent in (G,M,I) if P £ P
and Q" C P for all pseudo-intents Q with Q C P (see [13,27,28]). The described basis of all
implications of the context in Figure 1 is listed in Figure 6.

Let us briefly summarize that formal contexts and their concept lattices are substantial tools
for formal representation of conceptual knowledge. These tools activate the rich source of math-
ematical developments in order and lattice theory for knowledge representation. In particular,
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1: Mig4  ==> M9 M10 Mi2 Mi13

2: M13  ==> M9 M10 M12 Mi4

3: M11 M12 ==> N7 M10

4: MI10 ==> M12

5: M8 Mit == M7 M10 M12

6: M7 M1l  ==> M10 M12

T: M7 M9 M10 NM12 == Mi3 Mi4

8: M7 MO M10 M1i1  M12 Mi3 Mi4 == M6
9:

M6 M12 == M7 M9 M10 Mi1 M13 Mi4

i0: M6 M11  ==> M7 M9 M10 Mif M13 M14

11: M6 M7 M8 M5

12: MS  Mi12  ==> M1 M2 M3 M4 M6 M7 M8
M9 MI10 M12 Mi3 Mi4

[}
1
v

13: M6 M1t ==> M1 M2 M3 M4 M6 M7 M8
M9 M10 M12 M13 M14

14: M5 M9 == M8

1§: M5 M6 ==> M8

16: M5 M6 M8 MO ==> M2 M3 M4

17: M&¢ == M3 M5

18: M3  ==> M5

19: M3 MS M8 ==> M8

20: M2 == M3 MS M6 M8

21: M2 M3 M4 M5 M6 M8 ==> M9

22; M1 ==> M3 M5 M6 M8

23: M1 M2 M3 M4 MS M8 M7 M8 M9 ==>

M10 M11 M12 M13 Mi14

Figure 6. A basis of all implications of the formal context in Figure 1.

the representation by labelled line diagrams is a powerful instrument if it is combined with the
structure theory of concept lattices. Then these diagrams can make transparent the different
meanings of concept lattices as, for instance, the hierarchical classification of objects or the logic
of attribute implications (further basic meanings of concept lattices are discussed in [29]).

2. CONCEPT LATTICES OF MANY-VALUED CONTEXTS

Often data are not given by cross-tables so that it is not obvious how to understand them as
formal context. In formal concept analysis, a general approach has been developed to interpret
data as formal contexts (see [11,30,31]). This approach is based on the set-theoretic model
of many-valued context formalizing data structures which are represented in statistics by data
matrices and in computer science by relational databases. A many-valued contezt is defined to
be a quadruple (G, M, W, I) where G, M, and W are sets and [ is a ternary relation between
G,M,and W (ie., I C Gx M x W) such that (g,m,w,) € I and (g, m, w2) € [ imply wy = wn.
The elements of G, M, and W are called objects, (many-valued) attributes, and attribute values
(in German: lﬁerkmalswerte), respectively, and (g,m,w) € [ is read: the object g has the value
w for the attribute m; (G, M, W, ) is called an n-valued contezt if |W| = n. A formal context
may be understood in this terminology as a special case: a l-valued context. An attribute m
of a many-valued context (G, M,W,I) may be considered as a partial map from G into W,
which suggests writing m(g) = w instead of (g,m,w) € I and defining the domain of m by
dom(m) := {g € G| (9,m,w) € I for some w € W}. The attribute m is said to be complete if
dom(m) = G, and a many valued context is called complete if all its attributes are complete. Let
us remark that the object-attribute-value triad is represented in frame-based semantic network
as frames, slots and values, respectively.

In general, there is no automatic way to derive from a many-valued context a suitable formal
context. Such a derivation is always an action of interpretation. In formal concept analysis, this
interpretation is performed by a method called conceptual scaling (see [31]). The first step of
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conceptual scaling is to interpret for each attribute m its values as objects of some separate
formal context $,, := (Gm,Mm, Im), i.e., the attribute m of the many-valued context K :=
(G, M, W, I) is understood as a partial map from G into Gm. The contexts $m and their concept
lattices should have a clear structure and should reflect some meaning for interpretation: such
contexts are therefore called (conceptual) scales. In a second step, the scales 8m(m € M) are
combined to a common scale $ by some product operator; for the sake of simplicity, we restrict

ourselves here to the operator X called semiproduct which yields $ := mgm $, = (m}e(M Gm, mLGJM

(Mm x {m}), ) where ¥ is the relation with (¢ )merr V7 (n,p) 1> gp [pn. Finally, we obtain the
formal context (G,mLEJM (Mm x {m}),J) with gJ(n,p) :& (m(9))mear V (n,p) (or equivalently

p(g)Ipn); the extents of this context are exactly the pre-image of the extents of $ under the
map g ~— (m(g))mesr. Let us recall that the resulting formal context is determined by the

chosen scales S, interpreting the attributes m of K and by the product operator X; therefore,
(G, LEJM (M, x {m}),J) is called the derived context of the scaled contezt (K, eXM $.n) and the

concept lattice of the derived context is also taken as the concept lattice of the scaled context,
ie., B(K, mgM Sm) := B(G, U, (Mm x {m}),J).

The notion of a scaled context opens a new level for formal representation of conceptual knowl-
edge which will be demonstrated by a second example. Figure 7 shows a data table which lists
the amounts of absorption for nine colour stimuli for eleven receptors in the goldfish retina
(see [32]). This table can be understood as the description of a many-valued context: its
objects are the eleven receptors; its attributes are the nine colours (wavelengths); and its at-
tribute valucs are the numbers measuring the amount of absorption; furthermore, m(g) = w
means that the receptor g has w as amount of absorption for the colour m. Let us denote
the many-valued context of Figure 7 by K := (G, M, W, I) with G := {ri,r2,...,rn}, M=
{v4a0, bass, bass, baos, 9530, 9540, Ysss, 0610, Tes0 }, and W :={0,1,2,...,199}.

Receptor Violet Blue Blue Blue-Green  Green  Blue Ycllow Orange Red
430 458 485 498 530 540 585 610 660

1 147 153 89 57 12 4 0 ] 0
2 153 154 110 75 32 24 23 17 (1}
3 145 152 125 100 14 0 0 0 0
4 29 101 122 140 154 153 93 44 0
5 46 85 103 127 152 148 116 75 26
6 73 78 85 121 151 154 109 57 0
7 14 2 46 52 97 106 137 92 45
8 44 65 77 73 84 102 151 154 120
9 87 59 58 52 86 79 139 153 146
10 60 27 23 24 56 72 136 144 111
11 0 V] 40 39 55 62 120 147 132

Figure 7. Colour absorption of eleven receptora in the goldfish retina.

To obtain a conceptual structure of the many-valued context K, a conceptual scaling of K shall
be performed. For a conceptual interpretation of the attributes and their values, a variety of
conceptual scales may be considered (a list of standardized scales can be found in {31, p. 150].
The most simple scale would be the nominal scale (W, W, =) which, at least, would conceptually
separate different values; but it would not reflect the important order “smaller-higher” of the
values. Thus, the one-dimensional ordinal scale (W, W,>) is more appropriate to capture the
ordinal nature of the attribute values. The non-empty extents of (W,W,>) are the integer
intervals [n,199] with n € W which are more interesting for interpreting the data than the
extents [0, n] (n € W) of the one-dimensional ordinal scale (W, W, <) because one is interested in
large amounts of absorption. If one wants both types of intervals for the interpretation, one has
to choose the one-dimensional interordinal scale (W,{<,>} x W,Q) with wd(<,n): @ w < n
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Figure 8. A derived context of the many-valued context in Figure 7.

and wQ(2,n) :& w > n. Let us remark that even the algebraic structure of the real numbers
can be captured by a suitable conceptual scale.

For this paper, we restrict ourselves to the ordinal scale W := (W, W, >). If we scale our many-
valued context K by the semi-product of nine copies of W, we obtain as the derived context the
formal context shown in Figure 8. Its concept lattice in Figure 9, which consists of 137 concepts,
represents a rich but clear conceptual structure of our many valued context. The structure is
dominated by two main dimensions which are represented by the long chains on the left and right
in Figure 9: the left chain leads from low to high absorption of blue and violet, while the right
chain ranges from low absorption of green, yellow and orange to high absorption of red. Two
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minor dimensions of the 4-dimensional conceptual structure are caused by green and blue-green.
The richness of the structure indicates that the eleven receptors receive a differentiated spectrum
of the colours. The classification of the receptors described in [32] is formed by the extents
{bass :2 152} = {r, 73,73}, {gsa0 :> 148} = {ry,rs,76}, and {reeo :> 111}’ = {rg,rg, 10,71}
(the receptor rr is excluded).
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Blus-Green 698,35

Green 530,35
Green SL0.,45
Yellow 585.35,570
Orange 510,35

Blue 485,70 -
Violet 430,70 Qrange 610,70

Blue-Green 498,70

Red 4603705105
Orange 610,105

Blue-Green 498,105
Green $30.105
Green 540,05

Vielet 430,405
Blue 458105

Figure 10. Concept lattice of a subcontext in Figure 8.

The chosen conceptual scaling has the advantage that it unfolds a conceptual structure with-
oul losing the original data. Therefore, the concept lattice in Figure 9 can be viewed as a
complete knowledge representation of the data. Of course, an appropriate reduction of this
lattice may also be a useful knowledge representation. For instance, Figure 10 shows the (re-
duced) concept lattice, which is derived by suitable partitions of the attribute values into four
segments; in particular, Green 540 is scaled by (W, {45,90,135},>) and all the other colours
are scaled by (W, {35,70,105},>). This conceptual scaling yields as the derived context the
subcontext in Figure 8, which consists of the columns headed by: Violet 430: > 44, > 73,
> 145; Blue 458: > 59, > 78, > 152; Blue 485: > 40, > 77, > 110; Blue-Green 498: > 30,
> 73, 2 121; Green 530: > 55, > B4, > 151; Green 540: 2> 62, > 102, > 148; Yellow 585: > 93,
> 93, > 109; Orange 610: > 44, > 75, > 144; Red 660: > 45, > 111, > 111. Since the extents
of such a subcontext (consisting of a collection of columns) are also extents of the underlying
context, the concept lattice of Figure 10 has a natural A-embedding into the concept lattice of
Figure 9. From this it is clear that the lattice of Figure 10 shows a similar dimensional structure
as the lattice of Figure 9. The appropriateness of the segmentation of the attribute values is
confirmed by the fact that the natural classes of the receptors described in [32] are also extents
of the derived subcontext. Instead of segmenting the attribute values into disjoint intervals, one
can also use overlapping blocks of some tolerance relation [33].

Concept lattices can also be used to represent dependencies between the attributes of a many-
valued context. A general method for such representation is to deduce, from the many-valued
context, a suitable formal context whose attribute implications are exactly the specified de-
pendencies between the attributes of the many-valued context (see [31,34,35]). Let us first
consider functional dependency in a complete many-valued context K := (G,M,W,I). For
Y,Z € M, Z is called functionally dependent on Y if, for all g,h € G,y(g9) = y(h), for all
y € Y, implies z(g) = z(h) for all z € Z, i.e., there is a function f : WY — W?Z such that
F(w(9))yer = (2(9)):ez for all g € G [36, p. 43]. To represent functional dependency, we deduce
the formal context K; := (B2(G), M, I;) where P3(G) is the set of all two-element subsets of
G and {g,h}I;m :¢ m(g) = m(h). It is easy to prove that, for Y,Z C M, Z is functionally
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Figure 11. A reduced context for determining all functional dependencies between
the attributes in Figure 7.

Red 660
' .2}
Bive - Green 498
9
Yellow 585
| Qrange 410
L3

Violet 430
Blue 458
Blue 485
Green 530
Green 540

Figure 12. Concept lattice of the formal context in Figure 11.

dependent on Y in K if and only if Y — Z is an implication of K;. Thus, the canonical basis
of all implications of K;, which is described in Section 1, can also be taken as a basis of all
functional dependencies of K. For the many-valued context K in Figure 7, the deduced context
K, has 55 objects which may be reduced to only 3 objects by the following argument: by the
Basic Theorem for Concept Lattices, a finite formal context (G, M, I) has the same intents and
so the same implications as a reduced context (G,, M,/ N (G, x M)) for which G, C G, and
{79 | 9 € G,} is the set of all V-irreducible elements of B(G, M,I). Such a reduced context
for K, is shown in Figure 11; its concept lattice in Figure 12 represents all implications of K,
and hence all functional dependencies on K. Recall from Section 1 that, for instance, u(Red
660) Ap(Blue-Green 498) < u(Yellow 585) in Figure 12 means: the attribute “Yellow 585" is
functionally dependent on the pair of attributes “Red 660", “Blue-Green 498.”

The small concept lattice in Figure 12 indicates that there is a large number of functional
dependencies in the many-valued context of Figure 7. Many of these dependencies might be
considered less meaningful since they are caused by only small differences between the attribute
values. This suggests that we introduce the following notion of dependency in a complete many-
valued context K := (G, M, W, I) with W C R (see [33]). ForY,Z C M and 6§ e Rwith 6§ > 0, Z is
called 6-dependent on Y if, for all g, h € G, |y(g)—y(h)| < 6, for all y € Y, implies |z(g)~z(h)| < &



504 R. WILLE

[-.+3
=2
-
8 =}
o 1ol |3~
Sleigld|83%(¢g
SIS vl bl 5182
EIEIEA R AR I A A
~IRAR|OC|O{>|0O =
{12} x | x x
{13}t x | x x x| x|x|x
{16} x ’ x
{4,6} x | x x
{5.6} X x| x| x
{58} x
{7,9} X x
{7,11} x | x
{8.9} x x x
{8,10} x| x
{9.10} X | x| x
{10,11) x |

Figure 13. A reduced context for determining all §-dependencies between the at-
tributes in Figure 7 (§ := 10).

Bive ~ Green 4‘

Figure 14. Concept lattice of the formal context in Figure 13.

for all z € Z. To represent é-dependency, we deduce the formal context K; := (P2(G), M, Is)
where {g,h}I;m & |m(g9) — m(h)| < 6. Again, it is easy to prove that, for Y,Z C M, Z is
S-dependent on Y in K if and only if Y — Z is an implication of Ks. For the many-valued
context K in Figure 7 and for § := 10, a reduced context of K; is shown in Figure 13; its concept
lattice in Figure 14 represents all implications of K; and hence all §-dependencies of K.

To increase the meaningfulness, functional dependency may also be modified in another direc-
tion: We require not only the existence of the function f, but also that f preserves a specified
structure on the attribute values. This will be outlined by one of the most important examples
of a dependency notion for a complete many-valued context K := (G, M, W, I) in which the value
set W carries an order relation < (see [34]). For Y,Z C M, Z is called ordinally dependenton Y
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if, for all g,h € G,y(g) < y(h), for all y € Y implies z(g) < z(h) for all z € Z; i.e., there is an
order-preserving function f : WY — WZ such that f(y(g9))yer = (2(9)).ez. To represent ordinal
dependency, we deduce the formal context Kq := (G2, M, Ig) where (g, h)Iom :¢> m(g) < m(h).
It easily follows that, for Y, Z C M, Z is ordinally dependent on Y in K ifand only f ¥ — 2
is an implication of Ky. For the many-valued context K in Figure 7, a reduced context of Ko is
shown in Figure 15.
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Figure 15. A reduced context for determining all ordinal dependencies between the
attributes in Figure 7.

From Figure 15 we derive the canonical basis of all implications of Ky and hence of all ordinal
dependencies of K (this basis is listed in Figure 16). Since the context of Figure 15 has 134
concepts, it is better to represent the ordinal dependencies of K by the small concept lattice
(see Figure 17) of the context which is complementary to the one in Figure 15. In general, for
a formal context (H,N,J), the complementary contezt is defined by (H,N,(H x N)\J). For Y
where Z C N, Y — Z is an implication of (H, N, J) if and only if (g,m) € (H x Z)\J always
implies (g,n) € (H x Z)\J for some n € Y. This yields the consequence that, for instance, the
first implication in the list of Figure 16 can be read from the diagram in Figure 17 as follows:
The extent of u(Orange 610) is contained in the union of the extents of u(Yellow 585) and of
#(Red 660); hence {Yellow 585, Red 660} — {Orange 610} is an implication of Kq and therefore
an ordinal dependency on K.

Let us stop here our discussion of the second level of representing conceptual knowledge and
emphasize once more that such a representation is always based on a conceptually scaled many-
valued context. This basic idea has been recently elaborated to the notion of a “conceptual file”
to support interactive procedures with the represented knowledge (see [37]). Let us also remark
that the conceptual scaling of many-valued contexts is tightly connected with the theory of
conceptual measurement (see [30,31)) which also offers tools for the representation of conceptual
knowledge. Of course, the tools of knowledge representation already described in Section 1
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1 Y585 R660 ==> 0610

2 G540 0610 == R660

3 G530 G540 Re6O ==> 0610

4 BG498 0610 == R660

5 BG498 G540 Q810 R860 == G530
6 BG498 G540 Y585 == G530

7 B485 0610 ==> BG498 RE60

8 B485 Y585 ==> BG498

9 B485 G540 ==> BG498

10 B48S G530 ==> BG498
11 B458 0610 ==> R660

12 B458 BG498 == B48S

13 V430 G540 RE60 == B458 (0610
14 V430 G540 Y885 ==> B458

15 V430 G530 Re60 ==>  B458

16 V430 G830 G540 ==>  B458

17 V430 BG498 == B458 B485

18: V430 B485 == B458

19: V430 B458 G530 0610 Re60 == G540
20: V430 B458 G530 Y585 == G540
21: V430 B458 B485 BG498 G540 == G530

Figure 16. Basis of all ordinal dependencies between the attributes in Figure 7.

Orange 410

Blue 458 Red 640

(1.4) Py

()

Figure 17. Concept lattice of the formal context in Figure 15.

may be applied on our second level of knowledge representation too, since conceptual scaling
of many-valued contexts yields formal contexts and concept lattices. As a new content on our
second representation level, we have the dependencies between many-valued attributes (for the
representation of partial dependencies and implications see [38].

3. CONCEPTUAL KNOWLEDGE SYSTEMS

A systematic treatment of knowledge would not be satisfying if it is only concerned with
knowledge representation; it should cover inference and acquisition of knowledge and should



507

Concept lattices and conceptual knowledge systems

Lattice

Properties

Lattice

Concepts

pajuawsjdwod Kppubrun pVv? H . . . . . . .
uTaUOIG PVY] Y NE N .
Ienpowtuas fvili ¢ L I O I 4 C [ .
pajuswajdwod Ajjeuondas | 2Vove| 1 x | x| - . . X
pajusurdjduiod KPArje[as IVY [ Y - | X . . . X
Ienpouwt Eval § . -] x -] x .
popea3 I x| x| x x | % X
Ie[npowiwas A[jenp Jval| 2 x 1+ ]x X | x X
sAnNqIsSip Syvpl P P P . .
paudwadwod 2 Xt x| - <)o X
uelamnolg Pl 9 I T Y .
J1stuioge D x x| - x| - X
2219 SUPN 61 Al Y . ox .
anty3e] d1IPWoaN) fvollll -y x| . . . .
2MeI-5aD aval 11 x| ] - ol X
23117e] uesjoog Pval 1 S O A .
=12z il g a

sydasuoy sajdwmexy

ERIei -2 2on3e]

v G

]

5

CAMWA 23-6/9-J

Y @ <

Figure 18. A conceptual knowledge system of finite lattices.
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also establish tools for a communication about knowledge. To model conceptual knowledge
systems which fulfill these tasks, we need a specification of conceptual knowledge. In [39],
such a specification is founded on three basis notions, namely objects, attributes, and concepts,
which are linked by four basic relations: an object has an attribute, an object belongs to a con-
cept, an attribute abstracts from a concept, and a concept is a subconcept of another concept.
These structural elements are well mathematized in formal concept analysis: In the frame of a
formal context(G, M, I) (and its concept lattice), we have objects g € G, attributes m € M,
and concepts (A, B) € B(G, M,I) for which gIm(¢> vg < pm) means “the object g has the
attribute m”, g € A(& vg < (A4, B)) means “the object g belongs to the concept (A, B)”,
m € B(¢ (A,B) < pm) means “the attribute m abstracts from the concept (4, B)”, and
(A1, By) < (A2, B;) means “the concept (A1, B;) is a subconcept of the concept (A, Ba)”.
This underlines that formal contexts and their concept lattices are the appropriate mathematical
structures for a formal representation of the basic elements of conceptual knowledge.

Knowledge inference and acquisition are performed to extend given knowledge. Therefore,
inference and acquisition can only be mathematically treated within a system which models
the represented knowledge as part of some knowledge universe. The notion of a conceptual
knowledge system introduced in [39] relates to some “conceptual universe” which comprises the
basic elements of all the conceptual knowledge within a field of interest. Formally, a conceptual
universe is defined as a formal context U := (Gy, My, Iy). Before we define what is a conceptual
knowledge system related to U, we want to discuss ideas for such systems by an example.

The table in Figure 18 represents a conceptual knowledge system within the conceptual uni-
verse U of all finite lattices and their properties. More precisely, Gy consists of all finite lattices
(up to isomorphism), My comprises all documented properties of finite lattices, and glym is
valid in U if and only if the finite lattice g has the property m. The conceptual knowledge system
in Figure 18 is composed by a set B of four concepts of U (i.e., B C B(V)), a set G of ten
objects of U (i.e., G C Gy), and a set M of twelve attributes of U (i.e., M C My). The crosses
in the table of Figure 18 represent four relations, namely L CGx M, b CGx B, L CBx M,
and Iy € B x B, which are “part” of the four basic relations of the conceptual knowledge coded
in U. The dots in Figure 18 describe the negations (complements) Ji of the relations [ in
U(k = 1,2,3,4). Each cell of the table contains either a cross or a dot which means that the
conceptual knowledge system represents the full restrictions of the four basic relations of U to 13,
G, and M.

Often there are also empty cells (39] so that the corresponding relationships of the conceptual
universe are not fully represented by the present system. There are two possibilities for such
an ermipty cell: either one can infer or one cannot infer how to fill it from the already coded
knowledge in the system. For instance, the cross in Figure 18 indicating that lattice 1 is modular
can be inferred by the crosses indicating that lattice 1 is a metric lattice and that a metric lattice
is modular. On the other hand, it could not be inferred that lattice 3 is relatively complemented
if there would not be a cross representing exactly this relationship; hence, such a cross results
from knowledge acquisition exceeding the given system (without the considered cross).

Let us briefly sketch how the example in Figure 18 was elaborated by a method of knowledge
acquisition called attribute ezploration (see [40]). First we took the listed lattice concepts and
properties from the index in [7) and analysed some finite lattices with respect to these concepts and
properties. The resulting information was stored in a computer with an implemented program for
attribute exploration (see [41,42]). Based on the present information, the program asks whether
certain implications between the properties (and concepts) are valid in the conceptual universe. A
typical question was: “Is a relatively complemented finite lattice always atomistic, complemented,
graded and sectionally complemented?” We answered “No” and justified this by lattice 3 which
is relatively complemented, but not graded. After finishing the interactive procedure of questions
and answers, we had ended with the conceptual knowledge system in Figure 18. The confirmed
implications are coded by certain crosses and the lattice terms above the columns which may be
considered as further descriptors of the concepts and properties; for instance, the term cAd above
the first column indicates that the complemented distributive lattices are the Boolean lattices.
Since the coded implications form a basis of all implications of U between the listed concepts
and properties, it can be concluded that the concept lattice of the resulting context described by
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Figure 19. Concept lattice of the formal context in Figure 18.

Figure 18 (see Figure 19) has a natural A-embedding into the concept lattice of the universe U
between the listed concepts and properties (for an extended analysis of 50 properties of finite
lattices see [43)]).

In our example, components of the conceptual knowledge system are a set B of concepts, a
set G of objects, a set M of attributes, a relation I = Iy U, U U Iy C (BUG) x (BUM)
represented by crosses, a relation J C (BUG) x (BUM) disjoint from I represented by dots
(U denotes the disjoint union of sets), and lattice terms as descriptors of concepts and attributes.
All these components obtain their semantical meaning by the underlying conceptual universe U.
For the general definition of a conceptual knowledge system, this setting will only be slightly
generalized. First we allow two sets of concepts, which might coincide in special cases. Secondly,
the descriptor terms are taken from a richer algebraic structure than a lattice to capture the
Boolean logic both of the objects and of the attributes in the conceptual universe.

The richer algebraic structure is given by the semi-concepts of the conceptual universe. In
general, a semi-concept of a formal context (G, M, I) is defined as a pair (4, B) with A C G and
B C M such that A = B' or B = A’. Obviously, the concepts of (G, M, I) are special semi-
concepts but not every semi-concept has to be a concept. The order-relation between concepts is
extended to semi-concepts by the definition (A1, By) C (A2, B3) 1> A; C Az and By C B,. The
operations A and V have also natural extensions to semi-concepts, but they do not yield a lattice
structure anymore. In {39], the following algebraic operations N, U, *, and . are introduced for
semi-concepts:

(A1, B1) N (A2, B2) 1= (A1 N Ay, (A1 N 4y)),

(A1, By)U(A2,B3) :=((B1 N Bz)',Bl N By),
(A, B) ;= (G\A4, (G\4)'), and
(A, B) := ((M\B), M\B);
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the constants (D, M) and (G, @) are considered as nullary operations L and T, respectively. The
set of all semi-concepts of (G, M, I) together with the operations I, U, *, ., L, and T is called the
algebra of semi-concepts of (G, M, I) and denoted by H(G, M, I). The semi-concepts of the type
(A, 4") form a Boolean algebra with respect to M, ¥, and L which is obviously isomorphic to the
Boolean algebra of all subsets of G, while the semi-concepts of the type (B’, B) form a Boolean
algebra with respect to U, ., and T dually isomorphic to the Boolean algebra of all subsets
of M. These two Boolean algebras of semi-concepts have G, M, I) as union and B(G, M, )
as intersection. For X C H(G,M,I), T(X) denotes the set of all algebraic terms constructed
from X by the operational symbols M, U, 7, ,, L, and T; for t € T(X), t(G.a,1) is then the
semi-concept which we obtain by evaluating ¢ in $(G, M, I) [44, p. 162ff].

As already pointed out, for the general definition of a conceptual knowledge system we presup-
pose a conceptual universe U := (Gy, My, Iy); furthermore, let us recall that, for ¢ € Gy and
m € My, w9 := ({9}, {g}) and pym := ({m}’, {m}"). Now, a conceptual knowledge system
with respect to U is defined to be a 7-tuple (By, B2, G, M, I, J, 7) with the following properties
(see [39)):

(i) B1, B2 € B(U),G < Gu, M C My, and I,J C (B1UG) x (B2UM),

(il

z <y, ifz€ B, and y € B,,
wr<y, ifre€G and y€ Ba,

zly impli
Y ymplies r< gy, fr€Byandye M,
zlyy, ifreG andye M,
(i)
z Ly, ifx € By, and y € Ba,

wz Ly, ifz € G and y € B,
z £ puy, ifreBandye M,
(z,¥)¢ Iy, fr€G andye M,

(iv) for X := By U B2 UyyG U puyM, 7 is a map from B;UBsUGUM into the power set of
T(X) such that, for all ¢t € 7(x),

zJy implies

z, ifx € B, orz € B,
ty = wz, ifzed,
Huz, ifz € M.

The example of Figure 18 might have already elucidated that the model of a conceptual knowl-
edge system allows a comprehensive representation of conceptual knowledge. The advantage of
our formal model is that it opens the application of a rich variety of mathematical tools. Here we
only mention that questions about inference can be transferred to algebraic word problems which
can be successfully treated by elaborating methods developed for solving word problems in lattices
(see [45,46]). Solving algebraic word problems is also essential for methods of knowledge acqui-
sition like the mentioned attribute exploration and the so-called concept exploration [13,40,42].
Mathematically designed tools for knowledge communication applicable to conceptual knowledge
systems are already developed for different aims in formal concept analysis {15,37,47,48].

The model of a conceptual knowledge system extends the knowledge representation discussed
in Section 1. But it may also be based on the more general approach described in Section 2. This
will again be outlined by an example. The table in Figure 20 represents a conceptual knowledge
system which comprises all paintings of Rembrandt in the Rijksmuseum Amsterdam documented
in [49]; the concepts are taken from [50]. As conceptual universe we assume the formal context
U := (Gu, My, Iy), where Gy is the set of all paintings of Rembrandt and My is the set of
all attributes which might be assigned to a painting of Rembrandt. Since the representation
in Figure 20 uses many-valued attributes, we have to understand U as the derived context of
a scaled many-valued context. In particular, let us assume a2 nominal scale for the attribute
“Material,” a one-dimensional interordinal scale for the attributes “Height” and “Width,” and



Concept lattices and conceptual knowledge systems 511

~ £ . b E v
PR VR »E @ c
25998 TEE )
SEr8y g2s3 §
260550 =058 3 . a
Sleerdidiny ¢ 5§ g O
Cadsf6d8<c0z 3 i 3 48 2
Portrait | x - 21
Self-Portralt I X X X X - - '
Familly Portralt | x « x - - - - 1
Male Portrait [ X + * X 1
Fermale Portralt | X + X 1
Group Portrait | X - X 22
Genre . . . . . . x . . . -
Landscape L I T R * SR R R
Animal Study } ¢+ » ¢ ¢ 0 0 X
Old Testament |- *+ + « * « » « + X
New Testament |- = « « « + +» « « <« X
The Night Watch (2016) X+ < X Canvas 3590 4380 1642 22
De Staalmecesters (2017) X+« X + X+« | Canvas 1910 27930 1662 6
The Anatornical Lesson (2018) X+ o X -] Canvas 1000 1340 1665 4
Sketch of “Tha Anatom.L.” {2018 A1) | x * X e Paper 109 132
The Bridal Couple (2019) X» o+ =+ X+ + + | Canvas 1215 1665 >1665
The Stone Bridgo (2020) L Oak P. 295 425 ~1638 =4
Portrait of Marla Trip (2022) X - ©x + « + | Teak W. 1070 820 1639 1
Rembrandt's Mother (2024 A1){x « x + x - « + < - - OQak P. 600 480 1631 1
Peacocks (2024 A2)}: + + - + + « « x + -] Canvas 1450 1335 ~1639 |
S. Poter's Denlat (2024 A3)] -+ + - - -+« o x Canvas 1540 1630 1660 10
Titus In a Monk's Habit (2024 A4l x - x x - - - « « - - Canvas 795 677 1660 |
Joromiah (2024 AS)) - -« -« o o v % Oak P. 580 460 1630
Orlental Potantata (2024 A6){x - - x - - « - « « - lMahogany 720 545 1635 |
oseph Telling His Dreams (2024 A7)} - - -+« « + + - x - 9.','32,- 510 390 ~1637 12
Or. Ephraim Buono (2024 A8){x - + x = « - « - - - Oak P. 190 150 ~1647 |
Setf-Portrait {2024 AIO] X X x x « « + « « « Oak P, 710 570 ~1645 1|
Portrait of Titus (2024 A)fx « xx « « « « « + .| Canvas 720 560 ~1660 1!
Tobit and Anna with a Kid (2024 A2} - - - - « « « + « x - Oak P. 335 300 1626 3
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Study of His Own Face (2024 A4]x x x x « « « + - « - Oak P. 412 338 ]

Figure 20. Conceptual knowledge system of Rembrandt’s painting in the Rijksmu-
seum Amsterdam.

a one-dimensional ordinal scale for the attribute “No. of Persons.” The knowledge about the
structure of the scales determining U may be coded in a conceptual knowledge system of U
by term descriptors. For instance, the term uy(Material: Canvas) N * uy (Material: Paper)
as descriptor for the (one-valued) attribute “Material: Canvas” yields the information about
the nominal scale that an object having “Material: Canvas” has never "Material: Paper.” Of
course, an implementation of our conceptual knowledge system may not explicitly code such term
descriptors, but store the many-valued attributes with the corresponding scales. Nevertheless,
the understanding of our conceptual knowledge system as an instance of the general model is
important because it opens for the system the general methods of representation, inference,
acquisition, and communication.
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Figure 22. Concept lattice derived from Figure 20.
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In Figure 20, incomplete knowledge [42] is indicated in different ways. First of all, empty cells
signify missing data. For instance, the catalogue [49] does not report the date of the painting
“Study of His Own Face.” The full information for the cell (Portrait, Date) would be the exact
time period in which Rembrandt has painted portraits. A time period as partial information is
given for the “The Bridal Couple” by the dating "> 1665.” Also the information “~1638” for
“The Stone Bridge” might be understood as a given time interval, for instance 1637-1639. All
such types of incomplete information does not prevent the application of the conceptual scaling
method; in [31], this method is also described for incomplete many-valued contexts. Thus, we
can derive from Figure 20 a formal context and a concept lattice for Rembrandt’s paintings in
the Rijksmuseum. Instead of representing the total concept lattice of our knowledge system, we

show in Figure 21 and 22 smaller concept lattices of the paintings determined by some derived
attributes.
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