Characterization of the Repetitive Commutative Semigroups

J. Justin*

Institut de Recherche d'Informatique et d'Automatique, France

Communicated by P. M. Cohn
Received September 28, 1970

Let X^* (resp., $XX^* = X^* \setminus \{1\}$; resp., X^+) denote the free monoid (resp., semigroup; resp., commutative monoid) generated by the finite set X. Throughout, \mathbb{Z} (resp., \mathbb{N}; resp., \mathbb{P}), the set of integers (resp., nonnegative integers; resp., positive integers), will be considered as an additive group (resp., semigroup). Recall [2, 3] the

Definition. A semigroup S is repetitive iff for any $R \in \mathbb{P}$ and morphism $\varphi : XX^* \to S$ there exists $L = L_\varphi(k) \in \mathbb{P}$ such that any word $f \in X^*$ of length $|f| \geq L$ has at least one factorization $f = f'gf''$ ($f', f'' \in X^*$) where $g = g_1g_2 \cdots g_k$ ($g_1, g_2, \ldots, g_k \in XX^*$) with $\varphi g_1 = \varphi g_2 = \cdots = \varphi g_k$, or, as we shall say, where g is a k-power mod φ.

In [1], Evdokimov constructed an infinite sequence on an alphabet of 25 letters without two consecutive segments containing the same number of each letter. This implies that \mathbb{N}^{25} is not repetitive, letting \mathbb{N}^n denote the direct product of n copies of \mathbb{N}.

We prove here the

Theorem. A commutative semigroup A is repetitive iff it contains no subsemigroup isomorphic to the free commutative semigroup on two generators.

According to [2], this statement can be considered as a generalization of van der Waerden's theorem on arithmetic progressions.

Proof of the "only if" part. We shall construct arbitrary long words on the alphabet $X = \{x, y\}$ containing as a factor no 5-power mod α where α is the natural morphism: $X^* \to X^+$. If $w = x_1x_2 \cdots x_n$ ($x_i \in X$) is a word of X^*, introduce the notation $w[i, j]$ for the factor $x_ix_{i+1} \cdots x_j$ ($1 \leq i \leq j \leq n$).

* Present address: J. Justin, 19, rue de Bagneux, 92-Sceaux, France.
Inspired by [1], consider the morphism \(\varphi : X^* \to X^* \) given by

\[
\varphi x = xxxxy, \\
\varphi y = xyyyy.
\]

Let \(g \in XX^* \) and \(f = \varphi g \). Suppose that \(f \) contains a 5-power mod \(\alpha \), say \(f_1f_2f_3f_4f_5 \) with \(f_u = f[i_u + 1, i_{u+1}] \).

Let \(i_u = 5r_u + j_u \) \(0 \leq j_u < 5 \) and let \(x_u \) be the \((r_u + 1)\)-th letter of \(g \) \((1 \leq u \leq 6)\). Write \(S_u = \varphi x_u \) and \(W_u = S_u[1, j_u] \) (with \(W_u = 1 \) if \(j_u = 0 \)).

Now consider the morphism \(\theta : X^* \to \mathbb{Z}/5\mathbb{Z} = \{0, 1, 2\} \) given by \(\theta x = 1 \), \(\theta y = 2 \), and write \(d_u = \theta W_u \). Remarking that \(\theta \varphi x = \theta \varphi y = 0 \), we have

\[
\begin{align*}
\sin u + v - \sin u - v & \equiv j_u - j_u \pmod{5}, \\
(1 \leq u \leq 4), \\
\end{align*}
\]

\[
\begin{align*}
\sin u + v - \sin u - v & \equiv d_u - d_u \pmod{3}, \\
(1 \leq u \leq 4).
\end{align*}
\]

If \(j_u + 1 \neq j_u \), we go from \(j_u \) to \(j_u + 1 \) by some power of the cycle \((0, 1, 2, 3, 4)\).

Simple verifications lead to impossibility. If all the \(j_u \)'s are equal to some \(j \), there are only four possibilities: \(j = 0 \), \(j = 1 \), \(j = 4 \), or all the \(x_u \)'s are equal.

In all the cases, for \(1 \leq u \leq 6 \), let \(i_u' = i_u + t \) with \(t = -j \) if \(j \neq 4 \), or \(t = 1 \) if \(j = 4 \), and \(f_u' = f[i_u' + 1, i_{u+1}'] \). Thus \(f_1'f_2' \cdots f_5' \) is a 5-power mod \(\alpha \) and, as \(i_u' = 0 \pmod{5} \), we have \(f_u' = \varphi q_u \), where the \(g_u \)'s are consecutive factors of \(g \). But then, the factor \(g_1g_2 \cdots g_5 \) of \(g \) is a 5-power mod \(\alpha \) because \(\alpha m \) determines in a unique way \(\alpha m \) for any \(m \in X^* \).

Consequently, the iteration of \(h_{n+1} = \varphi h_n \), starting with \(h_1 = x \), gives the result.

Proof of the “if” part. It suffices to prove that any finitely generated commutative monoid such that there exists a nontrivial relation between any two generators is repetitive.\(^1\)

Consider \(B = \{b_1, b_2, \ldots, b_n\} \) and a congruence \(\Sigma \) in \(B^+ \) generated by the relations \(\Sigma_{ij} \) \((1 \leq i < j \leq n)\):

\[
r_{ij}b_i + r_{ji}b_j \sim s_{ij}b_i + s_{ji}b_j,
\]

where \((r_{ij}, r_{ji}) \neq (s_{ij}, s_{ji})\) are in \(\mathbb{N}^2 \).

We assume \(n \geq 2 \) minimal such that \(A = B^+ / \Sigma \) is not repetitive and consider two cases:

(1) Suppose that there exist an element of \(B \), say \(b_1, f \in B_1^+ \), where \(B_1 = B \setminus \{b_1\} \) and \(p, q \in \mathbb{N} \) with \(p < q \) such that

\[
f + pb_1 \sim f + qb_1 \pmod{\Sigma}.
\]

\(^1\) For simplicity, we let aside the algebraic study of this type of monoids.
Let Θ be the congruence in B^+_{1+} generated by $\{\Sigma_{ij} \mid 2 \leq i < j \leq n\}$ and Δ be the congruence in B^+ generated by Θ together with the relation

$$f + pb_1 \sim f + qb_1.$$

Let σ (resp., θ, δ) be the natural morphisms associated with Σ (resp., Θ, Δ). We remark that two elements of $f + B^+ := \{f + g \mid g \in B^+\}$ are congruent modulo Δ iff they can be written $f + g + xb_1$ and $f + g' + x'b_1$, where $g, g' \in B^+_{1+}$, $x, x' \in N$ with $f + g \sim f + g'$ (mod Θ) and $x \sim x'$ (mod Ω), where Ω is the congruence in N generated by $p \sim q$. Consequently, $E = \delta(f + B^+)$ is isomorphic to the direct product of $\theta(f + B^+_{1+})$ by the finite cyclic monoid N/Ω. But B^+_{1+} is repetitive by the minimality of n and so is $\Theta(f + B^+_{1})$ as an homomorphic image of a subsemigroup. Thus E is repetitive by the first theorem of [3] and so is $F = \sigma(f + B^+)$ because $\Delta \subseteq \Sigma$.

Now consider a morphism $\varphi : X^* \to A$. We shall prove that an infinite sequence $s = x_1x_2x_3 \cdots$ (where $x_i \in X$) contains as a factor a k-power mod φ for arbitrary k. Choose a morphism $\psi : X^* \to B^+$ such that $\sigma\psi x = \varphi x$ (\forall x \in X). If there exists a proper subset B_2 of B such that $\psi B_2 \subsetneq B^+$ for some arbitrarily long factors g of s, we are finished because σB_2 is repetitive in view of the minimality of n. Thus we may assume that $\psi g \in f + B^+$ for every sufficiently long factor g of s. But then we may write $s = g_1g_2g_3 \cdots$ where $G = \{g_i \mid i \in \mathbb{P}\}$ is a finite subset of XX^* such that $\varphi G \subsetneq F$. Then, we are finished because F is repetitive.

(2) If we are not in the first case, let $d_{ij} = s_{ij} - r_{ij}$ for any $1 \leq i, j \leq n$ and $t = \sup\{|d_{ij}|\}$. We have $d_{ij} \neq 0$. Define a morphism $\theta : B^+ \to \mathbb{Z}$ by

$$\theta b_1 = t!,$$

$$\theta b_j = -\frac{d_{ij} t!}{d_{1j}}, \quad (j > 1).$$

It is easily seen that $\Sigma \subseteq \Theta$ where Θ is the congruence of θ. Moreover, the classes of A modulo the morphism $\theta^{-1} : A \to \mathbb{Z}$ have bounded cardinal numbers since any $a \in A$ can be written $a = \sum_{u=1}^{n} \lambda_u a_u$, where $\lambda_u \in \mathbb{N}$, and for all u's, except possibly one, $\lambda_u < \sup\{x_{ij}, t_{ij}\}$. Since \mathbb{Z} is repetitive [2] so is A by [3].

Acknowledgment

We thank Professor M. P. Schützenberger for his interest and helpful comments.
REFERENCES

