Convergence and stability of the split-step θ-method for stochastic differential equations ${ }^{\text {* }}$

Xiaohua Ding*, Qiang Ma, Lei Zhang
Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209, PR China

ARTICLE INFO

Article history:

Received 1 May 2009
Received in revised form 7 June 2010
Accepted 7 June 2010

Keywords:

Stochastic differential equations
Split-step θ-method
Mean-square convergence
Mean-square stability

Abstract

In this paper, we construct a new split-step method for solving stochastic differential equations, namely the split-step θ-method. Under Lipschitz and linear growth conditions, we establish a mean-square convergence theory of split-step θ-approximate solutions. Moreover, the mean-square stability of the method for a linear test equation with real parameters is considered and the real mean-square stability region is plotted. Finally, numerical results are presented to demonstrate the efficiency of the split-step θ-method. © 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic differential equations (SDEs) have been used to model the phenomena arising in many branches of science and industry such as biology, economics, medicine, engineering and finance (see, e.g., [1-4]). So it is valuable to investigate the properties of the solutions of SDEs. For the main theoretical results on SDEs, we refer to $[3,4]$.

As explicit solutions of SDEs can rarely be obtained, the construction of numerical methods for solving SDEs has become an active research area of computational mathematics. For example, Sickenberger [5] analyzed the meansquare convergence of stochastic multi-step methods with variable step size. Wang [6] discussed three-stage stochastic Runge-Kutta methods for solving SDEs. The convergence in probability of the approximate solution to the exact solution was proved in [7]. There are other types of convergence for stochastic numerical methods. Details of these and other concepts on numerical solutions of SDEs can be found in [8,9].

Moreover, the stability of numerical methods for solving SDEs is essential to avoid a possible explosion of numerical solutions. Saito et al. [10] proposed the concept of mean-square stability (MS-stability) of the numerical method for solving scalar SDEs. Higham [11,12] plotted the real MS-stability regions of stochastic θ and semi-implicit Milstein methods for a linear test equation. We can also find other results on the MS-stability of numerical methods (see [6,13-16] and the references therein).

Higham et al. [17] introduced the split-step backward Euler (SSBE) method for solving nonlinear autonomous SDEs. Under the one-sided Lipschitz condition, the authors obtained strong convergence of the SSBE method with order $p=1 / 2$. In this paper, we consider the split-step θ-method ($\mathrm{SS} \theta$ method) for solving nonlinear non-autonomous SDEs. The $\operatorname{SS} \theta$ method is equivalent to the SSBE method if $\theta=1$.

This paper is organized as follows. In Section 2, we begin with some preliminary results which are essential for introduction and analysis of the $\operatorname{SS} \theta$ method. In Section 3, we expound that $\operatorname{SS} \theta$ approximate solutions are bounded in

[^0]the mean-square sense. After that, we analyse the mean-square convergence of continuous-time $\operatorname{SS} \theta$ approximations. In Section 4, we consider the numerical stability for a linear test equation with real parameters based on some elementary inequalities. Finally, numerical results are given to illustrate the performance of the SS θ method.

2. The split-step θ-method

Let (Ω, \mathscr{F}, P) be a complete probability space with a filtration $\left\{\mathscr{F}_{t}\right\}_{t \in[0, T]}$. The filtration $\left\{\mathscr{F}_{t}\right\}_{t \in[0, T]}$ is increasing and right continuous, and \mathscr{F}_{0} contains all P-null sets. Let B_{t} be a standard one-dimensional Brownian motion defined on (Ω, \mathscr{F}, P). Let x_{0} be an \mathscr{F}_{0}-measurable one-dimensional random variable such that $\mathbb{E}\left|x_{0}\right|^{2}<+\infty$. Let $f, g: \mathbb{R} \times[0, T] \mapsto \mathbb{R}$ both be Borel measurable. $\mathscr{L}^{p}([0, T], \mathbb{R})(p=1,2)$ denotes the family of all \mathbb{R}-valued measurable $\left\{\mathscr{F}_{t}\right\}$-adapted stochastic processes $f=\{f(t)\}_{t \in[0, T]}$ such that $\int_{0}^{T}|f(t)|^{p} \mathrm{~d} t<+\infty . \mathscr{M}^{2}([0, T], \mathbb{R})$ denotes the family of all stochastic processes $f \in \mathscr{L}^{2}([0, T], \mathbb{R})$ such that $\mathbb{E} \int_{0}^{T}|f(t)|^{2} \mathrm{~d} t<+\infty$.

We consider a one-dimensional stochastic differential equation (SDE) of Itô type,

$$
\left\{\begin{array}{l}
\mathrm{d} x(t)=f(x(t), t) \mathrm{d} t+g(x(t), t) \mathrm{d} B_{t}, \quad t \in[0, T], \tag{2.1}\\
x(0)=x_{0},
\end{array}\right.
$$

where $0<T<+\infty$. Assume that f and g satisfy the Lipschitz and linear growth conditions. That is, there exists a $K_{1}>0$ such that

$$
\begin{equation*}
|f(x, t)-f(y, t)|^{2} \vee|g(x, t)-g(y, t)|^{2} \leq K_{1}|x-y|^{2} \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$ and $t \in[0, T]$; and there is, moreover, a $K_{2}>0$ such that

$$
\begin{equation*}
|f(x, t)|^{2} \vee|g(x, t)|^{2} \leq K_{2}\left(1+|x|^{2}\right) \tag{2.3}
\end{equation*}
$$

for all (x, t) $\in \mathbb{R} \times[0, T]$. The existence and uniqueness of the solution to Eq. (2.1) can be guaranteed by (2.2) and (2.3) (see Theorem 3.1 in Chapter 2 of [3]).

Given a step size $h>0$, the split-step θ-method (SS θ method) applied to (2.1) computes the approximation $y_{k} \approx x\left(t_{k}\right)$, where $t_{k}=k h$, by setting $y_{0}=x_{0}$ and forming

$$
\begin{align*}
& y_{k}^{*}=y_{k}+h\left[(1-\theta) f\left(y_{k}, t_{k}\right)+\theta f\left(y_{k}^{*}, t_{k}\right)\right], \tag{2.4a}\\
& y_{k+1}=y_{k}^{*}+g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}, \tag{2.4b}
\end{align*}
$$

where $\theta \in[0,1]$ is a fixed parameter and each $\Delta B_{k}=B_{t_{k+1}}-B_{t_{k}}$ is an independent $N(0, h)$-distributed Gaussian random variable.

The choice $\theta=1$ gives the SSBE method [17]. If $\theta=0$, the $\operatorname{SS} \theta$ method is an explicit method. If $0<\theta \leq 1$, (2.4a) is an implicit equation in y_{k}^{*} that must be solved in order to obtain the intermediate approximation y_{k}^{*}. Having obtained y_{k}^{*}, substituting it into (2.4b) produces the next approximation y_{k+1}. Similarly to Lemma 3.4 in [17], using the fixed point theorem, we can prove the following lemma.

Lemma 2.1. Assume that $f: \mathbb{R} \times[0, T] \mapsto \mathbb{R}$ satisfies (2.2), and let $0<\theta \leq 1,0<h<1 /\left(\sqrt{K_{1}} \theta\right)$. Then, for given $a, b \in \mathbb{R}$, the implicit equation

$$
x=a+h \theta f(x, b)
$$

has a unique solution x.
When $t \in\left[t_{k}, t_{k+1}\right.$), the above lemma ensures the existence of y_{k}^{*} verifying (2.4a), and allows us to define

$$
\begin{equation*}
y(t)=y_{k}+(1-\theta)\left(t-t_{k}\right) f\left(y_{k}, t_{k}\right)+\theta\left(t-t_{k}\right) f\left(y_{k}^{*}, t_{k}\right)+g\left(y_{k}^{*}, t_{k}\right)\left(B_{t}-B_{t_{k}}\right) \tag{2.5}
\end{equation*}
$$

It is convenient to use a continuous-time approximation. We define two step functions:

$$
\begin{align*}
& Z_{1}(t)=\sum_{k=0}^{N-1} y_{k} \chi_{\left[t_{k}, t_{k+1}\right)}(t)+y_{N} \chi_{\{t=T\}}(t), \tag{2.6}\\
& Z_{2}(t)=\sum_{k=0}^{N-1} y_{k}^{*} \chi_{\left[t_{k}, t_{k+1}\right)}(t)+y_{N}^{*} \chi_{\{t=T\}}(t), \tag{2.7}
\end{align*}
$$

where $\chi_{F}(t)$ is the characteristic function of a set F; that is,

$$
\chi_{F}(t)= \begin{cases}0, & t \notin F, \tag{2.8}\\ 1, & t \in F .\end{cases}
$$

Then we obtain

$$
\begin{equation*}
y(t)=y_{0}+\int_{0}^{t}(1-\theta) f\left(Z_{1}(s), \tilde{s}\right) \mathrm{d} s+\int_{0}^{t} \theta f\left(Z_{2}(s), \tilde{s}\right) \mathrm{d} s+\int_{0}^{t} g\left(Z_{2}(s), \tilde{s}\right) \mathrm{d} B_{s} \tag{2.9}
\end{equation*}
$$

with initial value $y(0)=x_{0}, \tilde{s}=[s / h] h$, where $[a]$ is the integer part of a (that is, the largest integer not larger than a). It is straightforward to check that $Z_{1}\left(t_{k}\right)=y_{k}=y\left(t_{k}\right)$; that is, $y(t)$ and $Z_{1}(t)$ coincide with the discrete solutions at the gridpoints. We refer to $y(t)$ as a continuous-time extension of the discrete approximation $\left\{y_{k}\right\}$.

3. Mean-square convergence of the $\operatorname{SS} \boldsymbol{\theta}$ method

In this section, we prove the mean-square convergence of the $\operatorname{SS} \theta$ method. The proof is relatively long. Therefore, we divide it into four steps for readability. The following lemma gives the relationship between $\mathbb{E}\left|y_{k}\right|^{2}$ and $\mathbb{E}\left|y_{k}^{*}\right|^{2}$.

Lemma 3.1. Suppose that $f: \mathbb{R} \times[0, T] \mapsto \mathbb{R}$ satisfies (2.3) and let $0<\theta \leq 1, h<\min \left\{1,1 /\left(4 \theta K_{2}\right)\right\}$. Then there exist two positive constants $A=4\left(1+K_{2}\right)$ and $B=4 K_{2}$ such that

$$
\mathbb{E}\left|y_{k}^{*}\right|^{2} \leq A \mathbb{E}\left|y_{k}\right|^{2}+B
$$

where y_{k} and $y_{k}^{*}(k=0,1,2, \ldots, N)$ are produced by (2.4a) and (2.4b).
Proof. Squaring both sides of (2.4a), we find

$$
\begin{align*}
\left|y_{k}^{*}\right|^{2}= & \left|y_{k}\right|^{2}+(1-\theta)^{2} h^{2}\left|f\left(y_{k}, t_{k}\right)\right|^{2}+\theta^{2} h^{2}\left|f\left(y_{k}^{*}, t_{k}\right)\right|^{2}+2 \theta h y_{k} f\left(y_{k}^{*}, t_{k}\right) \\
& +2(1-\theta) h y_{k} f\left(y_{k}, t_{k}\right)+2 \theta(1-\theta) h^{2} f\left(y_{k}, t_{k}\right) f\left(y_{k}^{*}, t_{k}\right) \tag{3.1}
\end{align*}
$$

Using the elementary inequality $2 a b \leq a^{2}+b^{2}$, we obtain

$$
\begin{align*}
\left|y_{k}^{*}\right|^{2} \leq & \left|y_{k}\right|^{2}+(1-\theta)^{2} h^{2}\left|f\left(y_{k}, t_{k}\right)\right|^{2}+\theta^{2} h^{2}\left|f\left(y_{k}^{*}, t_{k}\right)\right|^{2}+(1-\theta) h\left|y_{k}\right|^{2} \\
& +(1-\theta) h\left|f\left(y_{k}, t_{k}\right)\right|^{2}+\theta h\left|y_{k}\right|^{2}+\theta h\left|f\left(y_{k}^{*}, t_{k}\right)\right|^{2}+\theta(1-\theta) h^{2}\left|f\left(y_{k}, t_{k}\right)\right|^{2}+\theta(1-\theta) h^{2}\left|f\left(y_{k}^{*}, t_{k}\right)\right|^{2} \tag{3.2}
\end{align*}
$$

Due to $h<1$ and (2.3), we get

$$
\begin{align*}
\left|y_{k}^{*}\right|^{2} \leq & \left|y_{k}\right|^{2}+\left[(1-\theta)^{2} h^{2}+(1-\theta) h+\theta(1-\theta) h^{2}\right] K_{2}\left(1+\left|y_{k}\right|^{2}\right)+h\left|y_{k}\right|^{2} \\
& +\left[\theta^{2} h^{2}+\theta h+\theta(1-\theta) h^{2}\right] K_{2}\left(1+\left|y_{k}^{*}\right|^{2}\right) \\
\leq & \left|y_{k}\right|^{2}+2(1-\theta) K_{2} h\left|y_{k}\right|^{2}+h\left|y_{k}\right|^{2}+2 \theta K_{2} h\left|y_{k}^{*}\right|^{2}+K_{2}\left(h^{2}+h\right) . \tag{3.3}
\end{align*}
$$

We can obtain the following estimate derived from (3.3):

$$
\begin{equation*}
\mathbb{E}\left|y_{k}^{*}\right|^{2} \leq\left(1+2(1-\theta) K_{2} h+h\right) \mathbb{E}\left|y_{k}\right|^{2}+2 \theta K_{2} h \mathbb{E}\left|y_{k}^{*}\right|^{2}+K_{2}\left(h^{2}+h\right) \tag{3.4}
\end{equation*}
$$

Since $2 \theta K_{2} h<1 / 2$, we can derive that

$$
\begin{equation*}
\mathbb{E}\left|y_{k}^{*}\right|^{2} \leq \frac{1+2(1-\theta) K_{2} h+h}{1-2 \theta K_{2} h} \mathbb{E}\left|y_{k}\right|^{2}+\frac{K_{2}\left(h^{2}+h\right)}{1-2 \theta K_{2} h} \leq A \mathbb{E}\left|y_{k}\right|^{2}+B \tag{3.5}
\end{equation*}
$$

where $A=4\left(1+K_{2}\right), B=4 K_{2}$. The proof is complete.
The second lemma shows that the numerical solutions $y_{k}(k=1,2, \ldots, N)$ produced by the $\operatorname{SS} \theta$ method are bounded in the mean-square sense.

Lemma 3.2. Let y_{k} and $y_{k}^{*}(k=0,1,2, \ldots, N)$ be produced by (2.4a) and (2.4b). Assume that $f, g: \mathbb{R} \times[0, T] \mapsto \mathbb{R}$ satisfy (2.2), (2.3), and let $0<\theta \leq 1, h<\min \left\{1,1 /\left(4 \theta K_{2}\right), 1 /\left(\sqrt{K_{1}} \theta\right)\right\}$. Then we have

$$
\mathbb{E}\left|y_{k}\right|^{2} \leq F, \quad \mathbb{E}\left|y_{k}^{*}\right|^{2} \leq G
$$

where

$$
\begin{aligned}
& F=\frac{3(B+1) K_{2}}{1+2 K_{2}+3 A K_{2}}\left(\mathrm{e}^{\left(1+2 K_{2}+3 A K_{2}\right) T}-1\right)+\mathbb{E}\left|x_{0}\right|^{2} \mathrm{e}^{\left(1+2 K_{2}+3 A K_{2}\right) T} \\
& G=A F+B
\end{aligned}
$$

Proof. Lemma 2.1 allows us to express the $\operatorname{SS} \theta$ method (2.4a) and (2.4b) in the form

$$
\begin{equation*}
y_{k+1}=y_{k}+(1-\theta) h f\left(y_{k}, t_{k}\right)+\theta h f\left(y_{k}^{*}, t_{k}\right)+g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k} . \tag{3.6}
\end{equation*}
$$

Squaring both sides of (3.6), it follows that

$$
\begin{align*}
\left|y_{k+1}\right|^{2}= & \left|y_{k}\right|^{2}+(1-\theta)^{2} h^{2}\left|f\left(y_{k}, t_{k}\right)\right|^{2}+\theta^{2} h^{2}\left|f\left(y_{k}^{*}, t_{k}\right)\right|^{2}+\left|g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}\right|^{2} \\
& +2(1-\theta) h y_{k} f\left(y_{k}, t_{k}\right)+2 \theta h y_{k} f\left(y_{k}^{*}, t_{k}\right)+2 y_{k} g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}+2 \theta(1-\theta) h^{2} f\left(y_{k}, t_{k}\right) f\left(y_{k}^{*}, t_{k}\right) \\
& +2(1-\theta) h f\left(y_{k}, t_{k}\right) g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}+2 \theta h f\left(y_{k}^{*}, t_{k}\right) g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k} . \tag{3.7}
\end{align*}
$$

Applying the elementary inequality $2 a b \leq a^{2}+b^{2}$, we get that

$$
\begin{aligned}
\left|y_{k+1}\right|^{2} \leq & \left|y_{k}\right|^{2}+(1-\theta)^{2} h^{2}\left|f\left(y_{k}, t_{k}\right)\right|^{2}+\theta^{2} h^{2}\left|f\left(y_{k}^{*}, t_{k}\right)\right|^{2}+\left|g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}\right|^{2}+(1-\theta) h\left|y_{k}\right|^{2} \\
& +\theta(1-\theta) h^{2}\left|f\left(y_{k}^{*}, t_{k}\right)\right|^{2}+\theta h\left|y_{k}\right|^{2}+\theta h\left|f\left(y_{k}^{*}, t_{k}\right)\right|^{2}+2 y_{k} g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}+\theta(1-\theta) h^{2}\left|f\left(y_{k}, t_{k}\right)\right|^{2} \\
& +(1-\theta) h\left|f\left(y_{k}, t_{k}\right)\right|^{2}+2(1-\theta) h f\left(y_{k}, t_{k}\right) g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}+2 \theta h f\left(y_{k}^{*}, t_{k}\right) g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k} \\
= & \left|y_{k}\right|^{2}+(1-\theta)\left(h^{2}+h\right)\left|f\left(y_{k}, t_{k}\right)\right|^{2}+h\left|y_{k}\right|^{2}+\theta\left(h^{2}+h\right)\left|f\left(y_{k}^{*}, t_{k}\right)\right|^{2} \\
& +\left|g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}\right|^{2}+2 y_{k} g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}+2 \theta h f\left(y_{k}^{*}, t_{k}\right) g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}+2(1-\theta) h f\left(y_{k}, t_{k}\right) g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k} .
\end{aligned}
$$

Next, note that, by $h<1$, (2.3) and the above inequality,

$$
\begin{align*}
\left|y_{k+1}\right|^{2} \leq & \left|y_{k}\right|^{2}+(1-\theta)\left(h^{2}+h\right) K_{2}\left(1+\left|y_{k}\right|^{2}\right)+\theta\left(h^{2}+h\right) K_{2}\left(1+\left|y_{k}^{*}\right|^{2}\right)+h\left|y_{k}\right|^{2}+K_{2}\left(1+\left|y_{k}^{*}\right|^{2}\right)\left|\Delta B_{k}\right|^{2} \\
& +2 y_{k} g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}+2(1-\theta) h f\left(y_{k}, t_{k}\right) g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k}+2 \theta h f\left(y_{k}^{*}, t_{k}\right) g\left(y_{k}^{*}, t_{k}\right) \Delta B_{k} . \tag{3.8}
\end{align*}
$$

Taking mathematical expectation on both sides of (3.8), noting that $\mathbb{E}\left(\Delta B_{k}\right)=0$ and $\mathbb{E}\left|\Delta B_{k}\right|^{2}=h$, from Lemma 3.1, we deduce that

$$
\begin{align*}
\mathbb{E}\left|y_{k+1}\right|^{2} & \leq \mathbb{E}\left|y_{k}\right|^{2}+\left(2 K_{2}+1\right) h \mathbb{E}\left|y_{k}\right|^{2}+3 K_{2} h \mathbb{E}\left|y_{k}^{*}\right|^{2}+3 K_{2} h \\
& \leq(1+C h) \mathbb{E}\left|y_{k}\right|^{2}+D h, \tag{3.9}
\end{align*}
$$

where $C=1+2 K_{2}+3 A K_{2}$ and $D=3(B+1) K_{2}$.
In view of the Gronwall lemma (see Theorem 1.1.12 in Chapter 1 of [18]), we see that

$$
\begin{align*}
\mathbb{E}\left|y_{k}\right|^{2} & \leq \frac{D h}{1-(1+C h)}\left(1-(1+C h)^{k}\right)+\mathbb{E}\left|y_{0}\right|^{2}(1+C h)^{k} \\
& \leq \frac{D}{C}\left(\left(1+\frac{C T}{N}\right)^{N}-1\right)+\mathbb{E}\left|y_{0}\right|^{2}\left(1+\frac{C T}{N}\right)^{N} \\
& \leq \frac{D}{C}\left(\mathrm{e}^{C T}-1\right)+\mathbb{E}\left|y_{0}\right|^{2} \mathrm{e}^{C T} . \tag{3.10}
\end{align*}
$$

Since $x_{0}=y_{0}$, we have $\mathbb{E}\left|y_{k}\right|^{2} \leq F$, where $F=D\left(\mathrm{e}^{C T}-1\right) / C+\mathbb{E}\left|x_{0}\right|^{2} \mathrm{e}^{C T}$. Thus, Lemma 3.1 implies that $\mathbb{E}\left|y_{k}^{*}\right|^{2} \leq G$, where $G=A F+B$. The proof is complete.

Now, we show that the continuous-time approximation $y(t)$ in (2.5) remains close to the two step functions $Z_{1}(t)$ and $Z_{2}(t)$ in the mean-square sense.

Lemma 3.3. Suppose that $f, g: \mathbb{R} \times[0, T] \mapsto \mathbb{R}$ satisfy (2.2), (2.3), and let $0<\theta \leq 1, h<\min \left\{1,1 /\left(4 \theta K_{2}\right), 1 /\left(\sqrt{K_{1}} \theta\right)\right\}$. Then there exist two positive constants $H=(3 F+6 G+9) K_{2}$ and $I=(10 F+16 G+26) K_{2}$ such that

$$
\mathbb{E}\left|y(t)-Z_{1}(t)\right|^{2} \leq H h, \quad \mathbb{E}\left|y(t)-Z_{2}(t)\right|^{2} \leq I h,
$$

where $y(t), Z_{1}(t), Z_{2}(t)$ are defined by (2.5), (2.6), (2.7), respectively.
Proof. For $t \in[0, T]$, there exists a nonnegative integer k such that $t \in[k h,(k+1) h)$. By virtue of (2.5) and (2.6), we have

$$
\begin{equation*}
y(t)-Z_{1}(t)=(1-\theta)\left(t-t_{k}\right) f\left(y_{k}, t_{k}\right)+\theta\left(t-t_{k}\right) f\left(y_{k}^{*}, t_{k}\right)+g\left(y_{k}^{*}, t_{k}\right)\left(B_{t}-B_{t_{k}}\right) . \tag{3.11}
\end{equation*}
$$

Using $(a+b+c)^{2} \leq 3 a^{2}+3 b^{2}+3 c^{2}$, (2.3) and Lemma 3.2, we obtain

$$
\begin{align*}
\mathbb{E}\left|y(t)-Z_{1}(t)\right|^{2} & \leq 3(1-\theta)^{2}\left(t-t_{k}\right)^{2} K_{2}\left(1+\mathbb{E}\left|y_{k}\right|^{2}\right)+3 \theta^{2}\left(t-t_{k}\right)^{2} K_{2}\left(1+\mathbb{E}\left|y_{k}^{*}\right|^{2}\right)+3 K_{2}\left(1+\mathbb{E}\left|y_{k}^{*}\right|^{2}\right) \mathbb{E}\left|\left(B_{t}-B_{t_{k}}\right)\right|^{2} \\
& \leq H h, \tag{3.12}
\end{align*}
$$

where $H=(3 F+6 G+9) K_{2}$.
By (2.4a), we know that

$$
\begin{equation*}
Z_{1}(t)-Z_{2}(t)=y_{k}-y_{k}^{*}=-(1-\theta) h f\left(y_{k}, t_{k}\right)-\theta h f\left(y_{k}^{*}, t_{k}\right) . \tag{3.13}
\end{equation*}
$$

Similarly to the proof of (3.12), we can show that

$$
\begin{equation*}
\mathbb{E}\left|Z_{1}(t)-Z_{2}(t)\right|^{2} \leq(2 F+2 G+4) K_{2} h \tag{3.14}
\end{equation*}
$$

Since $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$, we find

$$
\begin{equation*}
\mathbb{E}\left|y(t)-Z_{2}(t)\right|^{2} \leq 2 \mathbb{E}\left|y(t)-Z_{1}(t)\right|^{2}+2 \mathbb{E}\left|Z_{1}(t)-Z_{2}(t)\right|^{2} \leq I h \tag{3.15}
\end{equation*}
$$

where $I=(10 F+16 G+26) K_{2}$. The proof is complete.
Next, we use the above lemmas to prove a strong convergent result.
Theorem 3.1. Let $x(t)$ be the exact solution of Eq. (2.1) and $y(t)$ be defined by (2.9). Suppose that $f, g: \mathbb{R} \times[0, T] \mapsto \mathbb{R}$ satisfy (2.2), (2.3), and let $0<\theta \leq 1, h<\min \left\{1,1 /\left(4 \theta K_{2}\right), 1 /\left(\sqrt{K_{1}} \theta\right)\right\}$. Assume that there exists a positive constant K_{3} such that

$$
\begin{equation*}
|f(x, s)-f(x, t)|^{2} \vee|g(x, s)-g(x, t)|^{2} \leq K_{3}\left(1+|x|^{2}\right)|s-t| \tag{3.16}
\end{equation*}
$$

for all $s, t \in[0, T], x \in \mathbb{R}$. Then there exists a positive constant M such that

$$
\mathbb{E}\left(\sup _{0 \leq t \leq T}|x(t)-y(t)|^{2}\right) \leq M h
$$

Proof. By virtue of (2.1) and (2.9), we can obtain for $t \in[0, T]$

$$
\begin{align*}
x(t)-y(t)= & (1-\theta) \int_{0}^{t}\left(f(x(s), s)-f\left(Z_{1}(s), s\right)\right) \mathrm{d} s+(1-\theta) \int_{0}^{t}\left(f\left(Z_{1}(s), s\right)-f\left(Z_{1}(s), \tilde{s}\right)\right) \mathrm{d} s \\
& +\theta \int_{0}^{t}\left(f(x(s), s)-f\left(Z_{2}(s), s\right)\right) \mathrm{d} s+\theta \int_{0}^{t}\left(f\left(Z_{2}(s), s\right)-f\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} s \\
& +\int_{0}^{t}\left(g(x(s), s)-g\left(Z_{2}(s), s\right)\right) \mathrm{d} B_{s}+\int_{0}^{t}\left(g\left(Z_{2}(s), s\right)-g\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} B_{s} . \tag{3.17}
\end{align*}
$$

In view of the elementary inequality $(a+b+c+d+e+f)^{2} \leq 6 a^{2}+6 b^{2}+6 c^{2}+6 d^{2}+6 \mathrm{e}^{2}+6 f^{2}$, we see that

$$
\begin{aligned}
|x(t)-y(t)|^{2} \leq & 6(1-\theta)^{2}\left|\int_{0}^{t}\left(f(x(s), s)-f\left(Z_{1}(s), s\right)\right) \mathrm{d} s\right|^{2}+6(1-\theta)^{2}\left|\int_{0}^{t}\left(f\left(Z_{1}(s), s\right)-f\left(Z_{1}(s), \tilde{s}\right)\right) \mathrm{d} s\right|^{2} \\
& +6 \theta^{2}\left|\int_{0}^{t}\left(f(x(s), s)-f\left(Z_{2}(s), s\right)\right) \mathrm{d} s\right|^{2}+6 \theta^{2}\left|\int_{0}^{t}\left(f\left(Z_{2}(s), s\right)-f\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} s\right|^{2} \\
& +6\left|\int_{0}^{t}\left(g(x(s), s)-g\left(Z_{2}(s), s\right)\right) \mathrm{d} B_{s}\right|^{2}+6\left|\int_{0}^{t}\left(g\left(Z_{2}(s), s\right)-g\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} B_{s}\right|^{2}
\end{aligned}
$$

Next, note that, by the Hölder inequality (see Theorem 3.5 in Chapter 3 of [19]),

$$
\begin{aligned}
|x(t)-y(t)|^{2} \leq & 6 T(1-\theta)^{2} \int_{0}^{t}\left|f(x(s), s)-f\left(Z_{1}(s), s\right)\right|^{2} \mathrm{~d} s+6 T(1-\theta)^{2} \int_{0}^{t}\left|f\left(Z_{1}(s), s\right)-f\left(Z_{1}(s), \tilde{s}\right)\right|^{2} \mathrm{~d} s \\
& +6 T \theta^{2} \int_{0}^{t}\left|f(x(s), s)-f\left(Z_{2}(s), s\right)\right|^{2} \mathrm{~d} s+6 T \theta^{2} \int_{0}^{t}\left|f\left(Z_{2}(s), s\right)-f\left(Z_{2}(s), \tilde{s}\right)\right|^{2} \mathrm{~d} s \\
& +6\left|\int_{0}^{t}\left(g(x(s), s)-g\left(Z_{2}(s), s\right)\right) \mathrm{d} B_{s}\right|^{2}+6\left|\int_{0}^{t}\left(g\left(Z_{2}(s), s\right)-g\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} B_{s}\right|^{2} .
\end{aligned}
$$

Using (2.2), (3.16), $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$ and the above inequality, we observe that

$$
\begin{aligned}
|x(t)-y(t)|^{2} \leq & 24 T K_{1} \int_{0}^{t}|x(s)-y(s)|^{2} \mathrm{~d} s+12 T K_{1} \int_{0}^{t}\left|y(s)-Z_{1}(s)\right|^{2} \mathrm{~d} s+6 T K_{3} h \int_{0}^{t}\left|Z_{1}(s)\right|^{2} \mathrm{~d} s \\
& +6 T K_{3} h \int_{0}^{t}\left|Z_{2}(s)\right|^{2} \mathrm{~d} s+12 T^{2} K_{3} h+12 T K_{1} \int_{0}^{t}\left|y(s)-Z_{2}(s)\right|^{2} \mathrm{~d} s \\
& +6\left|\int_{0}^{t}\left(g(x(s), s)-g\left(Z_{2}(s), s\right)\right) \mathrm{d} B_{s}\right|^{2}+6\left|\int_{0}^{t}\left(g\left(Z_{2}(s), s\right)-g\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} B_{s}\right|^{2} . \\
\leq & 24 T K_{1} \int_{0}^{t}\left(\sup _{0 \leq r \leq s}|x(r)-y(r)|^{2}\right) \mathrm{d} s+12 T K_{1} \int_{0}^{t}\left|y(s)-Z_{1}(s)\right|^{2} \mathrm{~d} s+6 T K_{3} h \int_{0}^{t}\left|Z_{1}(s)\right|^{2} \mathrm{~d} s
\end{aligned}
$$

$$
\begin{aligned}
& +6 T K_{3} h \int_{0}^{t}\left|Z_{2}(s)\right|^{2} \mathrm{~d} s+12 T^{2} K_{3} h+12 T K_{1} \int_{0}^{t}\left|y(s)-Z_{2}(s)\right|^{2} \mathrm{~d} s \\
& +6 \sup _{0 \leq r \leq t}\left|\int_{0}^{r}\left(g(x(s), s)-g\left(Z_{2}(s), s\right)\right) \mathrm{d} B_{s}\right|^{2}+6 \sup _{0 \leq r \leq t}\left|\int_{0}^{r}\left(g\left(Z_{2}(s), s\right)-g\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} B_{s}\right|^{2} .
\end{aligned}
$$

Then it follows that

$$
\begin{align*}
& \sup _{0 \leq s \leq t}|x(s)-y(s)|^{2} \leq 24 T K_{1} \int_{0}^{t}\left(\sup _{0 \leq r \leq s}|x(r)-y(r)|^{2}\right) \mathrm{d} s+12 T K_{1} \int_{0}^{t}\left|y(s)-Z_{1}(s)\right|^{2} \mathrm{~d} s \\
& \quad+6 T K_{3} h \int_{0}^{t}\left|Z_{1}(s)\right|^{2} \mathrm{~d} s+6 T K_{3} h \int_{0}^{t}\left|Z_{2}(s)\right|^{2} \mathrm{~d} s+12 T^{2} K_{3} h+12 T K_{1} \int_{0}^{t}\left|y(s)-Z_{2}(s)\right|^{2} \mathrm{~d} s \\
& \quad+6 \sup _{0 \leq r \leq t}\left|\int_{0}^{r}\left(g(x(s), s)-g\left(Z_{2}(s), s\right)\right) \mathrm{d} B_{s}\right|^{2}+6 \sup _{0 \leq r \leq t}\left|\int_{0}^{r}\left(g\left(Z_{2}(s), s\right)-g\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} B_{s}\right|^{2} . \tag{3.18}
\end{align*}
$$

Taking mathematical expectation on both sides of (3.18), we know that

$$
\begin{align*}
& \mathbb{E}\left(\sup _{0 \leq s \leq t}|x(s)-y(s)|^{2}\right) \leq 24 T K_{1} \int_{0}^{t} \mathbb{E}\left(\sup _{0 \leq r \leq s}|x(r)-y(r)|^{2}\right) \mathrm{d} s+12 T K_{1} \int_{0}^{t} \mathbb{E}\left|y(s)-Z_{1}(s)\right|^{2} \mathrm{~d} s \\
& \quad+6 T K_{3} h \int_{0}^{t} \mathbb{E}\left|Z_{1}(s)\right|^{2} \mathrm{~d} s+6 T K_{3} h \int_{0}^{t} \mathbb{E}\left|Z_{2}(s)\right|^{2} \mathrm{~d} s+12 T^{2} K_{3} h+12 T K_{1} \int_{0}^{t} \mathbb{E}\left|y(s)-Z_{2}(s)\right|^{2} \mathrm{~d} s \\
& \quad+6 \mathbb{E}\left(\sup _{0 \leq r \leq t}\left|\int_{0}^{r}\left(g(x(s), s)-g\left(Z_{2}(s), s\right)\right) \mathrm{d} B_{s}\right|^{2}\right)+6 \mathbb{E}\left(\sup _{0 \leq r \leq t}\left|\int_{0}^{r}\left(g\left(Z_{2}(s), s\right)-g\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} B_{s}\right|^{2}\right) . \tag{3.19}
\end{align*}
$$

In view of the Burkholder-Davis-Gundy inequality (see Theorem 7.3 in Chapter 1 of [3]), we can show that

$$
\begin{align*}
& 6 \mathbb{E}\left(\sup _{0 \leq r \leq t}\left|\int_{0}^{r}\left(g(x(s), s)-g\left(Z_{2}(s), s\right)\right) \mathrm{d} B_{s}\right|^{2}\right) \leq 24 \mathbb{E}\left(\int_{0}^{t}\left|g(x(s), s)-g\left(Z_{2}(s), s\right)\right|^{2} \mathrm{~d} s\right) \\
& \quad \leq 24 K_{1} \mathbb{E}\left(\int_{0}^{t}\left|x(s)-Z_{2}(s)\right|^{2} \mathrm{~d} s\right) \\
& \quad \leq 48 K_{1} \int_{0}^{t} \mathbb{E}\left(\sup _{0 \leq r \leq s}|x(r)-y(r)|^{2}\right) \mathrm{d} s+48 K_{1} \int_{0}^{t} \mathbb{E}\left|y(s)-Z_{2}(s)\right|^{2} \mathrm{~d} s \tag{3.20}
\end{align*}
$$

and

$$
\begin{align*}
6 \mathbb{E}\left(\sup _{0 \leq r \leq t}\left|\int_{0}^{r}\left(g\left(Z_{2}(s), s\right)-g\left(Z_{2}(s), \tilde{s}\right)\right) \mathrm{d} B_{s}\right|^{2}\right) & \leq 24 \mathbb{E}\left(\int_{0}^{t}\left|g\left(Z_{2}(s), s\right)-g\left(Z_{2}(s), \tilde{s}\right)\right|^{2} \mathrm{~d} s\right) \\
& \leq 24 K_{3} h \mathbb{E}\left(\int_{0}^{t}\left(1+\left|Z_{2}(s)\right|^{2}\right) \mathrm{d} s\right) \\
& =24 K_{3} h \int_{0}^{t} \mathbb{E}\left|Z_{2}(s)\right|^{2} \mathrm{~d} s+24 T K_{3} h . \tag{3.21}
\end{align*}
$$

Inserting estimates (3.20) and (3.21) into (3.19), we deduce that

$$
\begin{align*}
\mathbb{E}\left(\sup _{0 \leq s \leq t}|x(s)-y(s)|^{2}\right) \leq & \left(12 T H K_{1}+6 T F K_{3}+(6 T+24) G K_{3}+(12 T+24) K_{3}\right. \\
& \left.+(12 T+48) I K_{1}\right) T h+(24 T+48) K_{1} \int_{0}^{t} \mathbb{E}\left(\sup _{0 \leq r \leq s}|x(r)-y(r)|^{2}\right) \mathrm{d} s . \tag{3.22}
\end{align*}
$$

Using the Gronwall inequality (see Theorem 8.1 in Chapter 1 of [3]), we have

$$
\mathbb{E}\left(\sup _{0 \leq s \leq t}|x(s)-y(s)|^{2}\right) \leq M h
$$

where $M=\left[12 T H K_{1}+6\right.$ TFK $\left._{3}+(6 T+24) G K_{3}+(12 T+24) K_{3}+(12 T+48) I K_{1}\right] T \mathrm{e}^{(24 T+48) K_{1} T}$.

Table 5.1
The endpoint mean-square errors of the SS θ method for Eq. (5.1) with $\theta=0.1$.

Step size	2^{-5}	2^{-6}	2^{-7}	2^{-8}	2^{-9}
Errors	0.0004270	0.0002321	0.0001202	0.0000563	

The assertion follows since $t \in[0, T]$ is arbitrary; that is,

$$
\mathbb{E}\left(\sup _{0 \leq t \leq T}|x(t)-y(t)|^{2}\right) \leq M h .
$$

The proof is complete.
Remark 3.1. In the case of $\theta=0$, similarly to Theorem 3.1, we can prove the mean-square convergence of the $\operatorname{SS} \theta$ method. The proof is rather similar, so is omitted.

4. Mean-square stability of the $\operatorname{SS} \boldsymbol{\theta}$ method

In order to study the stability property of the SS θ method, we focus on a linear scalar SDE of Itô type:

$$
\left\{\begin{array}{l}
\mathrm{d} x(t)=a x(t) \mathrm{d} t+b x(t) \mathrm{d} B_{t}, \quad t \geq 0, \tag{4.1}\\
x(0)=x_{0},
\end{array}\right.
$$

where $a, b \in \mathbb{R}$ are constants. The zero solution to Eq. (4.1) is said to be mean-square stable if $\lim _{t \rightarrow \infty} \mathbb{E}|x(t)|^{2}=0$ (see [12,13]). It is known [10,12,13] that the mean-square stability for Eq. (4.1) is equivalent to

$$
\begin{equation*}
a<-\frac{1}{2} b^{2} . \tag{4.2}
\end{equation*}
$$

Applying the SS θ method to Eq. (4.1), we can obtain the following discrete schemes:

$$
\begin{align*}
& y_{k}^{*}=y_{k}+h\left[(1-\theta) a y_{k}+\theta a y_{k}^{*}\right], \tag{4.3a}\\
& y_{k+1}=y_{k}^{*}+b y_{k}^{*} \Delta B_{k} . \tag{4.3b}
\end{align*}
$$

Assuming that $1-\theta a h \neq 0$, we have

$$
\begin{equation*}
y_{k}^{*}=\frac{1+(1-\theta) a h}{1-\theta a h} y_{k} . \tag{4.4}
\end{equation*}
$$

Substituting (4.4) into (4.3b) yields

$$
\begin{align*}
y_{k+1} & =\frac{1+(1-\theta) a h}{1-\theta a h} y_{k}+\frac{(1+(1-\theta) a h) b}{1-\theta a h} y_{k} \Delta B_{k} \\
& =\frac{1+(1-\theta) a h}{1-\theta a h}\left(1+b \Delta B_{k}\right) y_{k} . \tag{4.5}
\end{align*}
$$

Now we investigate the mean-square stability of the $\operatorname{SS} \theta$ method.
Definition 4.1 ([12]). A numerical method is said to be mean-square stable (MS-stable) for a particular a, b, h if

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left|y_{k}\right|^{2}=0,
$$

where $y_{k}(k=1,2, \ldots)$ are numerical solutions produced by the numerical method.
Theorem 4.1. Suppose that condition (4.2) holds; then we have the following statements.
(1) For given a, b satisfying (4.2), when $\theta=1$, the SS θ method (4.5) is MS-stable for all $h>0$.
(2) For given $a<0$ and $b=0$, when $\theta \in[0,1 / 2)$, the SS θ method (4.5) is MS-stable if $h \in(0,-2 /(a(1-2 \theta)))$; and when $\theta \in[1 / 2,1)$, the $\operatorname{SS} \theta$ method (4.5) is MS-stable for all $h>0$.
(3) For given a, b satisfying (4.2) and $a b \neq 0$, when $\theta \in[0,1)$, the $\operatorname{SS} \theta$ method (4.5) is MS-stable if $h \in\left(0, h_{0}(a, b, \theta)\right)$, where

$$
\begin{aligned}
& h_{0}(a, b, \theta)=\left(-\left(a^{2}(1-2 \theta)+2 a b^{2}(1-\theta)\right)+\sqrt{\Delta}\right) /\left(2 a^{2} b^{2}(1-\theta)^{2}\right) \\
& \Delta=\left(a^{2}(1-2 \theta)+2 a b^{2}(1-\theta)\right)^{2}-4 a^{2} b^{2}(1-\theta)^{2}\left(b^{2}+2 a\right) .
\end{aligned}
$$

Fig. 4.1. Real MS-stability regions for different values of θ of the $\operatorname{SS} \theta$ method (vertical hashing) and Eq. (4.1) (horizontal hashing).

Proof. Under (4.2), $\theta \in[0,1]$ and $h>0$, it is easy to see that $1-\theta a h \neq 0$. Squaring both sides of (4.5), we can obtain

$$
\begin{equation*}
\left|y_{k+1}\right|^{2}=\left(\frac{1+(1-\theta) a h}{1-\theta a h}\right)^{2}\left(1+2 b \Delta B_{k}+b^{2}\left(\Delta B_{k}\right)^{2}\right)\left|y_{k}\right|^{2} \tag{4.6}
\end{equation*}
$$

Fig. 5.1. The convergence rate of the $\operatorname{SS} \theta$ method with fixed $\theta=0.1$ for (5.1).

(a) Simulations with fixed $a=-2$.
(b) Simulations with fixed $b=1$.

Fig. 5.2. Simulations for $h_{0}(a, b, \theta)$.
Taking mathematical expectation on both sides of (4.6) yields

$$
\begin{aligned}
\mathbb{E}\left|y_{k+1}\right|^{2} & =\left(\frac{1+(1-\theta) a h}{1-\theta a h}\right)^{2}\left(1+2 b \mathbb{E} \Delta B_{k}+b^{2} \mathbb{E}\left(\Delta B_{k}\right)^{2}\right) \mathbb{E}\left|y_{k}\right|^{2} \\
& =\left(\frac{1+(1-\theta) a h}{1-\theta a h}\right)^{2}\left(1+b^{2} h\right) \mathbb{E}\left|y_{k}\right|^{2} .
\end{aligned}
$$

By recursive calculation, we conclude that $\lim _{k \rightarrow \infty} \mathbb{E}\left|y_{k}\right|^{2}=0$ if

$$
\begin{equation*}
\left(\frac{1+(1-\theta) a h}{1-\theta a h}\right)^{2}\left(1+b^{2} h\right)<1 \tag{4.7}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\varphi(h):=(a b-\theta a b)^{2} h^{2}+\left(a^{2}-2 a^{2} \theta+2 a b^{2}-2 \theta a b^{2}\right) h+b^{2}+2 a<0 . \tag{4.8}
\end{equation*}
$$

We divide the following proof into three cases. Noting that $b^{2}+2 a<0$, we have the following.
Case 1. For given a, b satisfying (4.2), when $\theta=1$, then $\varphi(h)=-a^{2} h+b^{2}+2 a<0$ holds. By (4.8), the SS θ method (4.5) is MS-stable for all $h>0$.
Case 2. For given a, b satisfying (4.2), obviously, $a b=0$ is equivalent to $a<0$ and $b=0$ as a, b satisfy (4.2). Then we have $\varphi(h)=a^{2}(1-2 \theta) h+2 a$. For $\theta \in[0,1 / 2)$, by (4.8), the SS θ method (4.5) is MS-stable if $h \in(0,-2 /(a(1-2 \theta)))$. When $\theta \in[1 / 2,1)$, by (4.8), the $\operatorname{SS} \theta$ method (4.5) is MS-stable for all $h>0$.
Case 3. For given a, b satisfying (4.2) and $a b \neq 0$, when $\theta \in[0,1), \varphi(h)$ is a quadratic function with respect to h. Let

$$
\Delta=\left(a^{2}(1-2 \theta)+2 a b^{2}(1-\theta)\right)^{2}-4 a^{2} b^{2}(1-\theta)^{2}\left(b^{2}+2 a\right)
$$

Fig. 5.3. Simulations with fixed parameter $\theta=0.1$ for $a=-15, b=1$ of (4.1).
and

$$
h_{0}(a, b, \theta)=\frac{-\left(a^{2}(1-2 \theta)+2 a b^{2}(1-\theta)\right)+\sqrt{\Delta}}{2 a^{2} b^{2}(1-\theta)^{2}}
$$

Under (4.2), it is easy to verify that $\Delta>0$ and $h_{0}(a, b, \theta)>0$.
From (4.2), $\varphi(h)=0$ has two different real roots, h_{0} and h_{1}, with $h_{1}<0<h_{0}$, where

$$
\begin{aligned}
& h_{0}=\frac{-\left(a^{2}-2 a^{2} \theta+2 a b^{2}-2 \theta a b^{2}\right)+\sqrt{\Delta}}{2(a b-\theta a b)^{2}} \\
& h_{1}=\frac{-\left(a^{2}-2 a^{2} \theta+2 a b^{2}-2 \theta a b^{2}\right)-\sqrt{\Delta}}{2(a b-\theta a b)^{2}} .
\end{aligned}
$$

So $\varphi(h)<0$ holds when $h \in\left(0, h_{0}(a, b, \theta)\right)$. According to (4.8), the $\operatorname{SS} \theta$ method (4.5) is MS-stable if $h \in\left(0, h_{0}(a, b, \theta)\right)$. The proof is complete.

Clearly, the mean-square stability of the SS θ method depends on $a h$ and $b^{2} h$. Following [12], we discuss the real MSstability regions in the $x-y$ plane, where $x=a h$ and $y=b^{2} h$. In this way, for given parameters a and b of Eq. (4.1), varying h corresponds to moving along a ray that passes through the origin and (a, b^{2}). The following result is immediate from (4.7).

Corollary 4.1. Suppose that $a, b \in \mathbb{R}$ and let $x=a h, y=b^{2}$. The $\operatorname{SS} \theta$ method is mean-square stable if $y<\left((2 \theta-1) x^{2}-\right.$ $2 x) /(1+(1-\theta) x)^{2}$.

Fig. 5.4. Simulations with fixed parameter $\theta=0.3$ for $a=-15, b=1$ of (4.1).
Fig. 4.1 illustrates how the real MS-stability region varies with θ. The horizontal hashing marks the region $y<-2 x$ where the solution of Eq. (4.1) is MS-stable. The vertical hashing superimposes the real MS-stability region for $\theta=$ $0,0.25,0.5,0.75,1$, respectively.

5. Numerical experiments

We first apply the SS θ method to solve the following linear SDE:

$$
\left\{\begin{array}{l}
\mathrm{d} x(t)=-\frac{1}{2} x(t) \mathrm{d} t+\frac{1}{2} x(t) \mathrm{d} B_{t}, \quad t \in[0,1] \tag{5.1}\\
x(0)=1
\end{array}\right.
$$

The exact solution of Eq. (5.1) is given by

$$
\begin{equation*}
x(t)=\exp \left(-\frac{5}{8} t+\frac{1}{2} B_{t}\right) \tag{5.2}
\end{equation*}
$$

In order to clearly demonstrate the convergence rate of the $\operatorname{SS} \theta$ method, we present the average sample errors at terminal time. 1000 different discretized Brownian paths over [0,1] will be computed with step size 2^{-9}. For each path, the $\operatorname{SS} \theta$ method is applied with five different step sizes: $h=2^{-5}, 2^{-6}, 2^{-7}, 2^{-8}, 2^{-9}$. We present mean-square errors at the terminal time 1 (i.e., $\left(\sum_{i=1}^{1000}\left|x\left(1, \omega_{i}\right)-y_{N}\left(\omega_{i}\right)\right|^{2}\right) / 1000$) for the $\operatorname{SS} \theta$ method with $\theta=0.1$ in Table 5.1. Fig. 5.1 shows the results of Table 5.1 in a $\log -\log$ plot.

We present the values of $h_{0}(a, b, \theta)$ that are calculated from different values of a, b, θ. Fig. 5.2 shows a three-dimensional figure of $h_{0}(a, b, \theta)$ values based on different values of b and θ but a fixed value of $a=-2$, and another three-dimensional
figure of $h_{0}(a, b, \theta)$ values based on different values of a and θ but a fixed value of $b=1$. It is exhibited that stochastic perturbation makes an impact on the restriction of step size for MS-stability. From the figure we also find that the values of $h_{0}(a, b, \theta)$ increase according to the increase of θ for fixed values a and b.

Next, we study several illustrative numerical examples of applying the $\operatorname{SS} \theta$ method to Eq. (4.1). The data used in the following figures is obtained by the mean-square of data from 500 trajectories; that is, $\omega_{i}: 1 \leq i \leq 500, y_{k}=$ $\left(\sum_{i=1}^{500}\left|y_{k}\left(\omega_{i}\right)\right|^{2}\right) / 500$. Each t_{k} denotes the gridpoint.

We choose the coefficients of Eq. (4.1) as $a=-15$ and $b=1$ with initial value $x_{0}=0.5$. For $\theta=0.1$ and 0.3 , we obtain $h_{0}(-15,1,0.1)=0.1593$ and $h_{0}(-15,1,0.3)=0.2879$. We first fix the parameter $\theta=0.1$ and change the step size h; see Fig. 5.3. We then fix the parameter $\theta=0.3$ and change step size h; see Fig. 5.4. It is shown that the $\operatorname{SS} \theta$ method is MS-stable if $h \in\left(0, h_{0}(a, b, \theta)\right)$.

6. Conclusions

In this paper, we construct the $\operatorname{SS} \theta$ method for solving SDEs of Itô type and prove that the $\operatorname{SS} \theta$ approximate solution is mean-square convergent with order $p=1 / 2$. In addition, we establish criteria for the MS-stability of the $\operatorname{SS} \theta$ method and plot the real MS-stability regions. Numerical results show that the SS θ method is valid for SDEs.

Acknowledgements

The authors would like to express their appreciation to the anonymous referees for their many valuable suggestions and for carefully correcting the preliminary version of the manuscript.

References

[1] L.P. Blenman, R.S. Cantrell, R.E. Fennell, D.F. Parker, J.A. Reneke, L.F.S. Wang, N.K. Womer, An alternative approach to stochastic calculus for economic and financial models, J. Econ. Dyn. Con. 19 (1995) 553-568.
[2] F.G. Ball, O.D. Lyne, Optimal vaccination policies for stochastic epidemics among a population of households, Math. Biosci. 177 \& 178 (2002) 333-354.
[3] X. Mao, Stochastic Differential Equations and their Applications, Harwood, New York, 1997.
[4] B. Øksendal, Stochastic Differential Equations, Springer, Berlin, 2005.
[5] T. Sickenberger, Mean-square convergence of stochastic multi-step methods with variable step-size, J. Comput. Appl. Math. 212 (2008) $300-319$.
[6] P. Wang, Three-stage stochastic Runge-Kutta methods for stochastic differential equations, J. Comput. Appl. Math. 222 (2008) 324-332.
[7] P. Bernard, G. Fleury, Convergence of numerical schemes for stochastic differential equations, Monte Carlo Methods Appl. 7 (2001) 35-44.
[8] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1999.
[9] G.N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers, Dordrecht, 1995.
[10] Y. Saito, T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal. 33 (1996) $2254-2267$.
[11] D.J. Higham, Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numer. Anal. 38 (2000) $753-769$.
[12] D.J. Higham, A-stability and stochastic mean-square stability, BIT 40 (2) (2000) 404-409.
[13] Y. Komori, Y. Saito, T. Mitsui, Some issues in discrete approximate solution for stochastic differential equation, Comput. Math. Appl. 28 (1994) 269-278.
[14] A. Tocino, Mean-square stability of second-order Runge-Kutta methods for stochastic differential equations, J. Comput. Appl. Math. 175 (2005) 355-367.
[15] A. Rathinasamy, K. Balachandran, Mean-square stability of second-order Runge-Kutta methods for multi-dimensional linear stochastic differential systems, J. Comput. Appl. Math. 219 (2008) 170-197.
[16] N. Hofmann, E. Platen, Stability of weak numerical schemes for stochastic differential equations, Comput. Math. Appl. 28 (1994) 45-57.
[17] D.J. Higham, X. Mao, A.M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal. 40 (2002) 1041-1063.
[18] A.M. Stuart, A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996.
[19] W. Rudin, Real and Complex Analysis, third ed., China Machine Press, Beijing, 2007.

[^0]: * This work is supported by the National Natural Science Foundation of China (No. 10671047) and the foundation of HITC (200713).
 * Corresponding author. Tel.: +86 631 5672718; fax: +86 6315672718.

 E-mail addresses: mathdxh@126.com, mathdxh@hitwh.edu.cn (X. Ding).

