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a b s t r a c t

In this paper, we construct a new split-step method for solving stochastic differential
equations, namely the split-step θ-method. Under Lipschitz and linear growth conditions,
we establish a mean-square convergence theory of split-step θ-approximate solutions.
Moreover, the mean-square stability of the method for a linear test equation with real
parameters is considered and the real mean-square stability region is plotted. Finally,
numerical results are presented to demonstrate the efficiency of the split-step θ-method.
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1. Introduction

Stochastic differential equations (SDEs) have been used to model the phenomena arising in many branches of science
and industry such as biology, economics, medicine, engineering and finance (see, e.g., [1–4]). So it is valuable to investigate
the properties of the solutions of SDEs. For the main theoretical results on SDEs, we refer to [3,4].
As explicit solutions of SDEs can rarely be obtained, the construction of numerical methods for solving SDEs has

become an active research area of computational mathematics. For example, Sickenberger [5] analyzed the mean-
square convergence of stochastic multi-step methods with variable step size. Wang [6] discussed three-stage stochastic
Runge–Kutta methods for solving SDEs. The convergence in probability of the approximate solution to the exact solution
was proved in [7]. There are other types of convergence for stochastic numericalmethods. Details of these and other concepts
on numerical solutions of SDEs can be found in [8,9].
Moreover, the stability of numerical methods for solving SDEs is essential to avoid a possible explosion of numerical

solutions. Saito et al. [10] proposed the concept of mean-square stability (MS-stability) of the numerical method for solving
scalar SDEs. Higham [11,12] plotted the real MS-stability regions of stochastic θ and semi-implicit Milstein methods for
a linear test equation. We can also find other results on the MS-stability of numerical methods (see [6,13–16] and the
references therein).
Highamet al. [17] introduced the split-step backward Euler (SSBE)method for solving nonlinear autonomous SDEs. Under

the one-sided Lipschitz condition, the authors obtained strong convergence of the SSBE method with order p = 1/2. In this
paper, we consider the split-step θ-method (SSθ method) for solving nonlinear non-autonomous SDEs. The SSθ method is
equivalent to the SSBE method if θ = 1.
This paper is organized as follows. In Section 2, we begin with some preliminary results which are essential for

introduction and analysis of the SSθ method. In Section 3, we expound that SSθ approximate solutions are bounded in
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the mean-square sense. After that, we analyse the mean-square convergence of continuous-time SSθ approximations. In
Section 4, we consider the numerical stability for a linear test equation with real parameters based on some elementary
inequalities. Finally, numerical results are given to illustrate the performance of the SSθ method.

2. The split-step θ-method

Let (Ω,F , P) be a complete probability space with a filtration {Ft}t∈[0,T ]. The filtration {Ft}t∈[0,T ] is increasing and right
continuous, and F0 contains all P-null sets. Let Bt be a standard one-dimensional Brownian motion defined on (Ω,F , P).
Let x0 be an F0-measurable one-dimensional random variable such that E|x0|2 < +∞. Let f , g : R × [0, T ] 7→ R both be
Borelmeasurable.L p([0, T ],R) (p = 1, 2) denotes the family of allR-valuedmeasurable {Ft}-adapted stochastic processes
f = {f (t)}t∈[0,T ] such that

∫ T
0 |f (t)|

pdt < +∞.M 2([0, T ],R)denotes the family of all stochastic processes f ∈ L 2([0, T ],R)
such that E

∫ T
0 |f (t)|

2dt < +∞.
We consider a one-dimensional stochastic differential equation (SDE) of Itô type,{

dx(t) = f (x(t), t)dt + g(x(t), t)dBt , t ∈ [0, T ],
x(0) = x0,

(2.1)

where 0 < T < +∞. Assume that f and g satisfy the Lipschitz and linear growth conditions. That is, there exists a K1 > 0
such that

|f (x, t)− f (y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K1|x− y|2 (2.2)

for all x, y ∈ R and t ∈ [0, T ]; and there is, moreover, a K2 > 0 such that

|f (x, t)|2 ∨ |g(x, t)|2 ≤ K2(1+ |x|2) (2.3)

for all (x, t) ∈ R× [0, T ]. The existence and uniqueness of the solution to Eq. (2.1) can be guaranteed by (2.2) and (2.3) (see
Theorem 3.1 in Chapter 2 of [3]).
Given a step size h > 0, the split-step θ-method (SSθ method) applied to (2.1) computes the approximation yk ≈ x(tk),

where tk = kh, by setting y0 = x0 and forming

y∗k = yk + h[(1− θ)f (yk, tk)+ θ f (y
∗

k , tk)], (2.4a)

yk+1 = y∗k + g(y
∗

k , tk)∆Bk, (2.4b)

where θ ∈ [0, 1] is a fixed parameter and each ∆Bk = Btk+1 − Btk is an independent N(0, h)-distributed Gaussian random
variable.
The choice θ = 1 gives the SSBE method [17]. If θ = 0, the SSθ method is an explicit method. If 0 < θ ≤ 1, (2.4a)

is an implicit equation in y∗k that must be solved in order to obtain the intermediate approximation y
∗

k . Having obtained
y∗k , substituting it into (2.4b) produces the next approximation yk+1. Similarly to Lemma 3.4 in [17], using the fixed point
theorem, we can prove the following lemma.

Lemma 2.1. Assume that f : R× [0, T ] 7→ R satisfies (2.2), and let 0 < θ ≤ 1, 0 < h < 1/(
√
K1θ). Then, for given a, b ∈ R,

the implicit equation

x = a+ hθ f (x, b)

has a unique solution x.

When t ∈ [tk, tk+1), the above lemma ensures the existence of y∗k verifying (2.4a), and allows us to define

y(t) = yk + (1− θ)(t − tk)f (yk, tk)+ θ(t − tk)f (y∗k , tk)+ g(y
∗

k , tk)(Bt − Btk). (2.5)

It is convenient to use a continuous-time approximation. We define two step functions:

Z1(t) =
N−1∑
k=0

ykχ[tk,tk+1)(t)+ yNχ{t=T }(t), (2.6)

Z2(t) =
N−1∑
k=0

y∗kχ[tk,tk+1)(t)+ y
∗

Nχ{t=T }(t), (2.7)

where χF (t) is the characteristic function of a set F ; that is,

χF (t) =
{
0, t 6∈ F ,
1, t ∈ F . (2.8)
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Then we obtain

y(t) = y0 +
∫ t

0
(1− θ)f (Z1(s), s̃)ds+

∫ t

0
θ f (Z2(s), s̃)ds+

∫ t

0
g(Z2(s), s̃)dBs, (2.9)

with initial value y(0) = x0, s̃ = [s/h]h, where [a] is the integer part of a (that is, the largest integer not larger than a).
It is straightforward to check that Z1(tk) = yk = y(tk); that is, y(t) and Z1(t) coincide with the discrete solutions at the
gridpoints. We refer to y(t) as a continuous-time extension of the discrete approximation {yk}.

3. Mean-square convergence of the SSθ method

In this section, we prove the mean-square convergence of the SSθ method. The proof is relatively long. Therefore, we
divide it into four steps for readability. The following lemma gives the relationship between E|yk|2 and E|y∗k |

2.

Lemma 3.1. Suppose that f : R × [0, T ] 7→ R satisfies (2.3) and let 0 < θ ≤ 1, h < min{1, 1/(4θK2)}. Then there exist two
positive constants A = 4(1+ K2) and B = 4K2 such that

E|y∗k |
2
≤ AE|yk|2 + B,

where yk and y∗k (k = 0, 1, 2, . . . ,N) are produced by (2.4a) and (2.4b).

Proof. Squaring both sides of (2.4a), we find

|y∗k |
2
= |yk|2 + (1− θ)2h2|f (yk, tk)|2 + θ2h2|f (y∗k , tk)|

2
+ 2θhykf (y∗k , tk)

+ 2(1− θ)hykf (yk, tk)+ 2θ(1− θ)h2f (yk, tk)f (y∗k , tk). (3.1)

Using the elementary inequality 2ab ≤ a2 + b2, we obtain

|y∗k |
2
≤ |yk|2 + (1− θ)2h2|f (yk, tk)|2 + θ2h2|f (y∗k , tk)|

2
+ (1− θ)h|yk|2

+ (1− θ)h|f (yk, tk)|2 + θh|yk|2 + θh|f (y∗k , tk)|
2
+ θ(1− θ)h2|f (yk, tk)|2 + θ(1− θ)h2|f (y∗k , tk)|

2. (3.2)

Due to h < 1 and (2.3), we get

|y∗k |
2
≤ |yk|2 + [(1− θ)2h2 + (1− θ)h+ θ(1− θ)h2]K2(1+ |yk|2)+ h|yk|2

+ [θ2h2 + θh+ θ(1− θ)h2]K2(1+ |y∗k |
2)

≤ |yk|2 + 2(1− θ)K2h|yk|2 + h|yk|2 + 2θK2h|y∗k |
2
+ K2(h2 + h). (3.3)

We can obtain the following estimate derived from (3.3):

E|y∗k |
2
≤ (1+ 2(1− θ)K2h+ h)E|yk|2 + 2θK2hE|y∗k |

2
+ K2(h2 + h). (3.4)

Since 2θK2h < 1/2, we can derive that

E|y∗k |
2
≤
1+ 2(1− θ)K2h+ h

1− 2θK2h
E|yk|2 +

K2(h2 + h)
1− 2θK2h

≤ AE|yk|2 + B, (3.5)

where A = 4(1+ K2), B = 4K2. The proof is complete. �

The second lemma shows that the numerical solutions yk (k = 1, 2, . . . ,N) produced by the SSθ method are bounded
in the mean-square sense.

Lemma 3.2. Let yk and y∗k (k = 0, 1, 2, . . . ,N) be produced by (2.4a) and (2.4b). Assume that f , g : R × [0, T ] 7→ R
satisfy (2.2), (2.3), and let 0 < θ ≤ 1, h < min{1, 1/(4θK2), 1/(

√
K1θ)}. Then we have

E|yk|2 ≤ F , E|y∗k |
2
≤ G,

where

F =
3(B+ 1)K2

1+ 2K2 + 3AK2
(e(1+2K2+3AK2)T − 1)+ E|x0|2e(1+2K2+3AK2)T ,

G = AF + B.
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Proof. Lemma 2.1 allows us to express the SSθ method (2.4a) and (2.4b) in the form

yk+1 = yk + (1− θ)hf (yk, tk)+ θhf (y∗k , tk)+ g(y
∗

k , tk)∆Bk. (3.6)

Squaring both sides of (3.6), it follows that

|yk+1|2 = |yk|2 + (1− θ)2h2|f (yk, tk)|2 + θ2h2|f (y∗k , tk)|
2
+ |g(y∗k , tk)∆Bk|

2

+ 2(1− θ)hykf (yk, tk)+ 2θhykf (y∗k , tk)+ 2ykg(y
∗

k , tk)∆Bk + 2θ(1− θ)h
2f (yk, tk)f (y∗k , tk)

+ 2(1− θ)hf (yk, tk)g(y∗k , tk)∆Bk + 2θhf (y
∗

k , tk)g(y
∗

k , tk)∆Bk. (3.7)

Applying the elementary inequality 2ab ≤ a2 + b2, we get that

|yk+1|2 ≤ |yk|2 + (1− θ)2h2|f (yk, tk)|2 + θ2h2|f (y∗k , tk)|
2
+ |g(y∗k , tk)∆Bk|

2
+ (1− θ)h|yk|2

+ θ(1− θ)h2|f (y∗k , tk)|
2
+ θh|yk|2 + θh|f (y∗k , tk)|

2
+ 2ykg(y∗k , tk)∆Bk + θ(1− θ)h

2
|f (yk, tk)|2

+ (1− θ)h|f (yk, tk)|2 + 2(1− θ)hf (yk, tk)g(y∗k , tk)∆Bk + 2θhf (y
∗

k , tk)g(y
∗

k , tk)∆Bk
= |yk|2 + (1− θ)(h2 + h)|f (yk, tk)|2 + h|yk|2 + θ(h2 + h)|f (y∗k , tk)|

2

+ |g(y∗k , tk)∆Bk|
2
+ 2ykg(y∗k , tk)∆Bk + 2θhf (y

∗

k , tk)g(y
∗

k , tk)∆Bk + 2(1− θ)hf (yk, tk)g(y
∗

k , tk)∆Bk.

Next, note that, by h < 1, (2.3) and the above inequality,

|yk+1|2 ≤ |yk|2 + (1− θ)(h2 + h)K2(1+ |yk|2)+ θ(h2 + h)K2(1+ |y∗k |
2)+ h|yk|2 + K2(1+ |y∗k |

2)|∆Bk|2

+ 2ykg(y∗k , tk)∆Bk + 2(1− θ)hf (yk, tk)g(y
∗

k , tk)∆Bk + 2θhf (y
∗

k , tk)g(y
∗

k , tk)∆Bk. (3.8)

Taking mathematical expectation on both sides of (3.8), noting that E(∆Bk) = 0 and E|∆Bk|2 = h, from Lemma 3.1, we
deduce that

E|yk+1|2 ≤ E|yk|2 + (2K2 + 1)hE|yk|2 + 3K2hE|y∗k |
2
+ 3K2h

≤ (1+ Ch)E|yk|2 + Dh, (3.9)

where C = 1+ 2K2 + 3AK2 and D = 3(B+ 1)K2.
In view of the Gronwall lemma (see Theorem 1.1.12 in Chapter 1 of [18]), we see that

E|yk|2 ≤
Dh

1− (1+ Ch)
(1− (1+ Ch)k)+ E|y0|2(1+ Ch)k

≤
D
C

((
1+

CT
N

)N
− 1

)
+ E|y0|2

(
1+

CT
N

)N
≤
D
C
(eCT − 1)+ E|y0|2eCT . (3.10)

Since x0 = y0, we have E|yk|2 ≤ F , where F = D(eCT − 1)/C + E|x0|2eCT . Thus, Lemma 3.1 implies that E|y∗k |
2
≤ G,

where G = AF + B. The proof is complete. �

Now, we show that the continuous-time approximation y(t) in (2.5) remains close to the two step functions Z1(t) and
Z2(t) in the mean-square sense.

Lemma 3.3. Suppose that f , g : R × [0, T ] 7→ R satisfy (2.2), (2.3), and let 0 < θ ≤ 1, h < min{1, 1/(4θK2), 1/(
√
K1θ)}.

Then there exist two positive constants H = (3F + 6G+ 9)K2 and I = (10F + 16G+ 26)K2 such that

E|y(t)− Z1(t)|2 ≤ Hh, E|y(t)− Z2(t)|2 ≤ Ih,

where y(t), Z1(t), Z2(t) are defined by (2.5), (2.6), (2.7), respectively.

Proof. For t ∈ [0, T ], there exists a nonnegative integer k such that t ∈ [kh, (k+ 1)h). By virtue of (2.5) and (2.6), we have

y(t)− Z1(t) = (1− θ)(t − tk)f (yk, tk)+ θ(t − tk)f (y∗k , tk)+ g(y
∗

k , tk)(Bt − Btk). (3.11)

Using (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, (2.3) and Lemma 3.2, we obtain

E|y(t)− Z1(t)|2 ≤ 3(1− θ)2(t − tk)2K2(1+ E|yk|2)+ 3θ2(t − tk)2K2(1+ E|y∗k |
2)+ 3K2(1+ E|y∗k |

2)E|(Bt − Btk)|
2

≤ Hh, (3.12)

where H = (3F + 6G+ 9)K2.
By (2.4a), we know that

Z1(t)− Z2(t) = yk − y∗k = −(1− θ)hf (yk, tk)− θhf (y
∗

k , tk). (3.13)
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Similarly to the proof of (3.12), we can show that

E|Z1(t)− Z2(t)|2 ≤ (2F + 2G+ 4)K2h. (3.14)

Since (a+ b)2 ≤ 2a2 + 2b2, we find

E|y(t)− Z2(t)|2 ≤ 2E|y(t)− Z1(t)|2 + 2E|Z1(t)− Z2(t)|2 ≤ Ih, (3.15)

where I = (10F + 16G+ 26)K2. The proof is complete. �

Next, we use the above lemmas to prove a strong convergent result.

Theorem 3.1. Let x(t) be the exact solution of Eq. (2.1) and y(t) be defined by (2.9). Suppose that f , g : R × [0, T ] 7→ R
satisfy (2.2), (2.3), and let 0 < θ ≤ 1, h < min{1, 1/(4θK2), 1/(

√
K1θ)}. Assume that there exists a positive constant K3 such

that

|f (x, s)− f (x, t)|2 ∨ |g(x, s)− g(x, t)|2 ≤ K3(1+ |x|2)|s− t| (3.16)

for all s, t ∈ [0, T ], x ∈ R. Then there exists a positive constant M such that

E
(
sup
0≤t≤T

|x(t)− y(t)|2
)
≤ Mh.

Proof. By virtue of (2.1) and (2.9), we can obtain for t ∈ [0, T ]

x(t)− y(t) = (1− θ)
∫ t

0
(f (x(s), s)− f (Z1(s), s))ds+ (1− θ)

∫ t

0
(f (Z1(s), s)− f (Z1(s), s̃))ds

+ θ

∫ t

0
(f (x(s), s)− f (Z2(s), s))ds+ θ

∫ t

0
(f (Z2(s), s)− f (Z2(s), s̃))ds

+

∫ t

0
(g(x(s), s)− g(Z2(s), s))dBs +

∫ t

0
(g(Z2(s), s)− g(Z2(s), s̃))dBs. (3.17)

In view of the elementary inequality (a+ b+ c + d+ e+ f )2 ≤ 6a2 + 6b2 + 6c2 + 6d2 + 6e2 + 6f 2, we see that

|x(t)− y(t)|2 ≤ 6(1− θ)2
∣∣∣∣∫ t

0
(f (x(s), s)− f (Z1(s), s))ds

∣∣∣∣2 + 6(1− θ)2 ∣∣∣∣∫ t

0
(f (Z1(s), s)− f (Z1(s), s̃))ds

∣∣∣∣2
+ 6θ2

∣∣∣∣∫ t

0
(f (x(s), s)− f (Z2(s), s))ds

∣∣∣∣2 + 6θ2 ∣∣∣∣∫ t

0
(f (Z2(s), s)− f (Z2(s), s̃))ds

∣∣∣∣2
+ 6

∣∣∣∣∫ t

0
(g(x(s), s)− g(Z2(s), s))dBs

∣∣∣∣2 + 6 ∣∣∣∣∫ t

0
(g(Z2(s), s)− g(Z2(s), s̃))dBs

∣∣∣∣2 .
Next, note that, by the Hölder inequality (see Theorem 3.5 in Chapter 3 of [19]),

|x(t)− y(t)|2 ≤ 6T (1− θ)2
∫ t

0
|f (x(s), s)− f (Z1(s), s)|2ds+ 6T (1− θ)2

∫ t

0
|f (Z1(s), s)− f (Z1(s), s̃)|2ds

+ 6Tθ2
∫ t

0
|f (x(s), s)− f (Z2(s), s)|2ds+ 6Tθ2

∫ t

0
|f (Z2(s), s)− f (Z2(s), s̃)|2ds

+ 6
∣∣∣∣∫ t

0
(g(x(s), s)− g(Z2(s), s))dBs

∣∣∣∣2 + 6 ∣∣∣∣∫ t

0
(g(Z2(s), s)− g(Z2(s), s̃))dBs

∣∣∣∣2 .
Using (2.2), (3.16), (a+ b)2 ≤ 2a2 + 2b2 and the above inequality, we observe that

|x(t)− y(t)|2 ≤ 24TK1

∫ t

0
|x(s)− y(s)|2ds+ 12TK1

∫ t

0
|y(s)− Z1(s)|2ds+ 6TK3h

∫ t

0
|Z1(s)|2ds

+ 6TK3h
∫ t

0
|Z2(s)|2ds+ 12T 2K3h+ 12TK1

∫ t

0
|y(s)− Z2(s)|2ds

+ 6
∣∣∣∣∫ t

0
(g(x(s), s)− g(Z2(s), s))dBs

∣∣∣∣2 + 6 ∣∣∣∣∫ t

0
(g(Z2(s), s)− g(Z2(s), s̃))dBs

∣∣∣∣2 .
≤ 24TK1

∫ t

0

(
sup
0≤r≤s
|x(r)− y(r)|2

)
ds+ 12TK1

∫ t

0
|y(s)− Z1(s)|2ds+ 6TK3h

∫ t

0
|Z1(s)|2ds
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+ 6TK3h
∫ t

0
|Z2(s)|2ds+ 12T 2K3h+ 12TK1

∫ t

0
|y(s)− Z2(s)|2ds

+ 6 sup
0≤r≤t

∣∣∣∣∫ r

0
(g(x(s), s)− g(Z2(s), s))dBs

∣∣∣∣2 + 6 sup
0≤r≤t

∣∣∣∣∫ r

0
(g(Z2(s), s)− g(Z2(s), s̃))dBs

∣∣∣∣2 .
Then it follows that

sup
0≤s≤t
|x(s)− y(s)|2 ≤ 24TK1

∫ t

0

(
sup
0≤r≤s
|x(r)− y(r)|2

)
ds+ 12TK1

∫ t

0
|y(s)− Z1(s)|2ds

+ 6TK3h
∫ t

0
|Z1(s)|2ds+ 6TK3h

∫ t

0
|Z2(s)|2ds+ 12T 2K3h+ 12TK1

∫ t

0
|y(s)− Z2(s)|2ds

+ 6 sup
0≤r≤t

∣∣∣∣∫ r

0
(g(x(s), s)− g(Z2(s), s))dBs

∣∣∣∣2 + 6 sup
0≤r≤t

∣∣∣∣∫ r

0
(g(Z2(s), s)− g(Z2(s), s̃))dBs

∣∣∣∣2 . (3.18)

Taking mathematical expectation on both sides of (3.18), we know that

E
(
sup
0≤s≤t
|x(s)− y(s)|2

)
≤ 24TK1

∫ t

0
E
(
sup
0≤r≤s
|x(r)− y(r)|2

)
ds+ 12TK1

∫ t

0
E|y(s)− Z1(s)|2ds

+ 6TK3h
∫ t

0
E|Z1(s)|2ds+ 6TK3h

∫ t

0
E|Z2(s)|2ds+ 12T 2K3h+ 12TK1

∫ t

0
E|y(s)− Z2(s)|2ds

+ 6E
(
sup
0≤r≤t
|

∫ r

0
(g(x(s), s)− g(Z2(s), s))dBs|2

)
+ 6E

(
sup
0≤r≤t

∣∣∣∣∫ r

0
(g(Z2(s), s)− g(Z2(s), s̃))dBs

∣∣∣∣2). (3.19)

In view of the Burkholder–Davis–Gundy inequality (see Theorem 7.3 in Chapter 1 of [3]), we can show that

6E

(
sup
0≤r≤t

∣∣∣∣∫ r

0
(g(x(s), s)− g(Z2(s), s))dBs

∣∣∣∣2
)
≤ 24E

(∫ t

0
|g(x(s), s)− g(Z2(s), s)|2ds

)
≤ 24K1E

(∫ t

0
|x(s)− Z2(s)|2ds

)
≤ 48K1

∫ t

0
E
(
sup
0≤r≤s
|x(r)− y(r)|2

)
ds+ 48K1

∫ t

0
E|y(s)− Z2(s)|2ds (3.20)

and

6E

(
sup
0≤r≤t

∣∣∣∣∫ r

0
(g(Z2(s), s)− g(Z2(s), s̃))dBs

∣∣∣∣2
)
≤ 24E

(∫ t

0
|g(Z2(s), s)− g(Z2(s), s̃)|2ds

)
≤ 24K3hE

(∫ t

0
(1+ |Z2(s)|2)ds

)
= 24K3h

∫ t

0
E|Z2(s)|2ds+ 24TK3h. (3.21)

Inserting estimates (3.20) and (3.21) into (3.19), we deduce that

E
(
sup
0≤s≤t
|x(s)− y(s)|2

)
≤ (12THK1 + 6TFK3 + (6T + 24)GK3 + (12T + 24)K3

+ (12T + 48)IK1)Th+ (24T + 48)K1

∫ t

0
E
(
sup
0≤r≤s
|x(r)− y(r)|2

)
ds. (3.22)

Using the Gronwall inequality (see Theorem 8.1 in Chapter 1 of [3]), we have

E
(
sup
0≤s≤t
|x(s)− y(s)|2

)
≤ Mh,

whereM = [12THK1 + 6TFK3 + (6T + 24)GK3 + (12T + 24)K3 + (12T + 48)IK1]Te(24T+48)K1T .
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Table 5.1
The endpoint mean-square errors of the SSθ method for Eq. (5.1) with θ = 0.1.

Step size 2−5 2−6 2−7 2−8 2−9
Errors 0.0004270 0.0002321 0.0001202 0.0000563 0.0000264

The assertion follows since t ∈ [0, T ] is arbitrary; that is,

E
(
sup
0≤t≤T

|x(t)− y(t)|2
)
≤ Mh.

The proof is complete. �

Remark 3.1. In the case of θ = 0, similarly to Theorem 3.1, we can prove the mean-square convergence of the SSθ method.
The proof is rather similar, so is omitted.

4. Mean-square stability of the SSθ method

In order to study the stability property of the SSθ method, we focus on a linear scalar SDE of Itô type:{
dx(t) = ax(t)dt + bx(t)dBt , t ≥ 0,
x(0) = x0,

(4.1)

where a, b ∈ R are constants. The zero solution to Eq. (4.1) is said to be mean-square stable if limt→∞ E|x(t)|2 = 0 (see
[12,13]). It is known [10,12,13] that the mean-square stability for Eq. (4.1) is equivalent to

a < −
1
2
b2. (4.2)

Applying the SSθ method to Eq. (4.1), we can obtain the following discrete schemes:

y∗k = yk + h[(1− θ)ayk + θay
∗

k ], (4.3a)

yk+1 = y∗k + by
∗

k∆Bk. (4.3b)

Assuming that 1− θah 6= 0, we have

y∗k =
1+ (1− θ)ah
1− θah

yk. (4.4)

Substituting (4.4) into (4.3b) yields

yk+1 =
1+ (1− θ)ah
1− θah

yk +
(1+ (1− θ)ah)b

1− θah
yk∆Bk

=
1+ (1− θ)ah
1− θah

(1+ b∆Bk)yk. (4.5)

Now we investigate the mean-square stability of the SSθ method.

Definition 4.1 ([12]). A numerical method is said to be mean-square stable (MS-stable) for a particular a, b, h if

lim
k→∞

E|yk|2 = 0,

where yk (k = 1, 2, . . .) are numerical solutions produced by the numerical method.

Theorem 4.1. Suppose that condition (4.2) holds; then we have the following statements.
(1) For given a, b satisfying (4.2), when θ = 1, the SSθ method (4.5) is MS-stable for all h > 0.
(2) For given a < 0 and b = 0, when θ ∈ [0, 1/2), the SSθ method (4.5) is MS-stable if h ∈ (0,−2/(a(1− 2θ))); and when

θ ∈ [1/2, 1), the SSθ method (4.5) is MS-stable for all h > 0.
(3) For given a, b satisfying (4.2) and ab 6= 0, when θ ∈ [0, 1), the SSθ method (4.5) is MS-stable if h ∈

(
0, h0(a, b, θ)

)
,

where

h0(a, b, θ) =
(
−(a2(1− 2θ)+ 2ab2(1− θ))+

√
∆
)
/
(
2a2b2(1− θ)2

)
∆ = (a2(1− 2θ)+ 2ab2(1− θ))2 − 4a2b2(1− θ)2(b2 + 2a).
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Fig. 4.1. Real MS-stability regions for different values of θ of the SSθ method (vertical hashing) and Eq. (4.1) (horizontal hashing).

Proof. Under (4.2), θ ∈ [0, 1] and h > 0, it is easy to see that 1− θah 6= 0. Squaring both sides of (4.5), we can obtain

|yk+1|2 =
(1+ (1− θ)ah

1− θah

)2
(1+ 2b∆Bk + b2(∆Bk)2)|yk|2. (4.6)
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Fig. 5.1. The convergence rate of the SSθ method with fixed θ = 0.1 for (5.1).
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Fig. 5.2. Simulations for h0(a, b, θ).

Taking mathematical expectation on both sides of (4.6) yields

E|yk+1|2 =
(1+ (1− θ)ah

1− θah

)2
(1+ 2bE∆Bk + b2E(∆Bk)2)E|yk|2

=

(1+ (1− θ)ah
1− θah

)2
(1+ b2h)E|yk|2.

By recursive calculation, we conclude that limk→∞ E|yk|2 = 0 if(1+ (1− θ)ah
1− θah

)2
(1+ b2h) < 1, (4.7)

which is equivalent to

ϕ(h) := (ab− θab)2h2 + (a2 − 2a2θ + 2ab2 − 2θab2)h+ b2 + 2a < 0. (4.8)

We divide the following proof into three cases. Noting that b2 + 2a < 0, we have the following.
Case 1. For given a, b satisfying (4.2), when θ = 1, then ϕ(h) = −a2h+ b2 + 2a < 0 holds. By (4.8), the SSθ method (4.5) is
MS-stable for all h > 0.
Case 2. For given a, b satisfying (4.2), obviously, ab = 0 is equivalent to a < 0 and b = 0 as a, b satisfy (4.2). Then we have
ϕ(h) = a2(1 − 2θ)h + 2a. For θ ∈ [0, 1/2), by (4.8), the SSθ method (4.5) is MS-stable if h ∈ (0,−2/(a(1 − 2θ))). When
θ ∈ [1/2, 1), by (4.8), the SSθ method (4.5) is MS-stable for all h > 0.
Case 3. For given a, b satisfying (4.2) and ab 6= 0, when θ ∈ [0, 1), ϕ(h) is a quadratic function with respect to h. Let

∆ = (a2(1− 2θ)+ 2ab2(1− θ))2 − 4a2b2(1− θ)2(b2 + 2a)
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(a) h = 0.05 < h0(−15, 1, 0.1) = 0.1593. (b) h = 0.1 < h0(−15, 1, 0.1) = 0.1593.

(c) h = 0.2 > h0(−15, 1, 0.1) = 0.1593. (d) h = 0.4 > h0(−15, 1, 0.1) = 0.1593.

Fig. 5.3. Simulations with fixed parameter θ = 0.1 for a = −15, b = 1 of (4.1).

and

h0(a, b, θ) =
−(a2(1− 2θ)+ 2ab2(1− θ))+

√
∆

2a2b2(1− θ)2
.

Under (4.2), it is easy to verify that∆ > 0 and h0(a, b, θ) > 0.
From (4.2), ϕ(h) = 0 has two different real roots, h0 and h1, with h1 < 0 < h0, where

h0 =
−(a2 − 2a2θ + 2ab2 − 2θab2)+

√
∆

2(ab− θab)2
,

h1 =
−(a2 − 2a2θ + 2ab2 − 2θab2)−

√
∆

2(ab− θab)2
.

So ϕ(h) < 0 holds when h ∈ (0, h0(a, b, θ)). According to (4.8), the SSθ method (4.5) is MS-stable if h ∈
(
0, h0(a, b, θ)

)
.

The proof is complete. �

Clearly, the mean-square stability of the SSθ method depends on ah and b2h. Following [12], we discuss the real MS-
stability regions in the x–y plane, where x = ah and y = b2h. In this way, for given parameters a and b of Eq. (4.1), varying h
corresponds to moving along a ray that passes through the origin and (a, b2). The following result is immediate from (4.7).

Corollary 4.1. Suppose that a, b ∈ R and let x = ah, y = b2h. The SSθ method is mean-square stable if y <
(
(2θ − 1)x2 −

2x
)
/(1+ (1− θ)x)2.
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(a) h = 0.05 < h0(−15, 1, 0.3) = 0.2879. (b) h = 0.1 < h0(−15, 1, 0.3) = 0.2879.

(c) h = 0.2 < h0(−15, 1, 0.3) = 0.2879. (d) h = 0.4 > h0(−15, 1, 0.3) = 0.2879.

Fig. 5.4. Simulations with fixed parameter θ = 0.3 for a = −15, b = 1 of (4.1).

Fig. 4.1 illustrates how the real MS-stability region varies with θ . The horizontal hashing marks the region y < −2x
where the solution of Eq. (4.1) is MS-stable. The vertical hashing superimposes the real MS-stability region for θ =
0, 0.25, 0.5, 0.75, 1, respectively.

5. Numerical experiments

We first apply the SSθ method to solve the following linear SDE:{
dx(t) = −

1
2
x(t)dt +

1
2
x(t)dBt , t ∈ [0, 1],

x(0) = 1.
(5.1)

The exact solution of Eq. (5.1) is given by

x(t) = exp
(
−
5
8
t +
1
2
Bt

)
. (5.2)

In order to clearly demonstrate the convergence rate of the SSθ method,we present the average sample errors at terminal
time. 1000different discretizedBrownianpaths over [0,1]will be computedwith step size 2−9. For eachpath, the SSθ method
is applied with five different step sizes: h = 2−5, 2−6, 2−7, 2−8, 2−9. We present mean-square errors at the terminal time 1
(i.e., (

∑1000
i=1 |x(1, ωi)− yN(ωi) |

2)/1000) for the SSθ method with θ = 0.1 in Table 5.1. Fig. 5.1 shows the results of Table 5.1
in a log–log plot.
We present the values of h0(a, b, θ) that are calculated from different values of a, b, θ . Fig. 5.2 shows a three-dimensional

figure of h0(a, b, θ) values based on different values of b and θ but a fixed value of a = −2, and another three-dimensional
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figure of h0(a, b, θ) values based on different values of a and θ but a fixed value of b = 1. It is exhibited that stochastic
perturbation makes an impact on the restriction of step size for MS-stability. From the figure we also find that the values of
h0(a, b, θ) increase according to the increase of θ for fixed values a and b.
Next, we study several illustrative numerical examples of applying the SSθ method to Eq. (4.1). The data used in the

following figures is obtained by the mean-square of data from 500 trajectories; that is, ωi : 1 ≤ i ≤ 500, yk =
(
∑500
i=1 |yk(ωi)|

2)/500. Each tk denotes the gridpoint.
We choose the coefficients of Eq. (4.1) as a = −15 and b = 1 with initial value x0 = 0.5. For θ = 0.1 and 0.3, we obtain

h0(−15, 1, 0.1) = 0.1593 and h0(−15, 1, 0.3) = 0.2879. We first fix the parameter θ = 0.1 and change the step size h; see
Fig. 5.3. We then fix the parameter θ = 0.3 and change step size h; see Fig. 5.4. It is shown that the SSθ method is MS-stable
if h ∈ (0, h0(a, b, θ)).

6. Conclusions

In this paper, we construct the SSθ method for solving SDEs of Itô type and prove that the SSθ approximate solution is
mean-square convergent with order p = 1/2. In addition, we establish criteria for the MS-stability of the SSθ method and
plot the real MS-stability regions. Numerical results show that the SSθ method is valid for SDEs.

Acknowledgements

The authors would like to express their appreciation to the anonymous referees for their many valuable suggestions and
for carefully correcting the preliminary version of the manuscript.

References

[1] L.P. Blenman, R.S. Cantrell, R.E. Fennell, D.F. Parker, J.A. Reneke, L.F.S. Wang, N.K. Womer, An alternative approach to stochastic calculus for economic
and financial models, J. Econ. Dyn. Con. 19 (1995) 553–568.

[2] F.G. Ball, O.D. Lyne, Optimal vaccination policies for stochastic epidemics among a population of households, Math. Biosci. 177 & 178 (2002) 333–354.
[3] X. Mao, Stochastic Differential Equations and their Applications, Harwood, New York, 1997.
[4] B. Øksendal, Stochastic Differential Equations, Springer, Berlin, 2005.
[5] T. Sickenberger, Mean-square convergence of stochastic multi-step methods with variable step-size, J. Comput. Appl. Math. 212 (2008) 300–319.
[6] P. Wang, Three-stage stochastic Runge–Kutta methods for stochastic differential equations, J. Comput. Appl. Math. 222 (2008) 324–332.
[7] P. Bernard, G. Fleury, Convergence of numerical schemes for stochastic differential equations, Monte Carlo Methods Appl. 7 (2001) 35–44.
[8] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1999.
[9] G.N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers, Dordrecht, 1995.
[10] Y. Saito, T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal. 33 (1996) 2254–2267.
[11] D.J. Higham, Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numer. Anal. 38 (2000) 753–769.
[12] D.J. Higham, A-stability and stochastic mean-square stability, BIT 40 (2) (2000) 404–409.
[13] Y. Komori, Y. Saito, T.Mitsui, Some issues in discrete approximate solution for stochastic differential equation, Comput.Math. Appl. 28 (1994) 269–278.
[14] A. Tocino, Mean-square stability of second-order Runge–Kutta methods for stochastic differential equations, J. Comput. Appl. Math. 175 (2005)

355–367.
[15] A. Rathinasamy, K. Balachandran, Mean-square stability of second-order Runge–Kutta methods for multi-dimensional linear stochastic differential

systems, J. Comput. Appl. Math. 219 (2008) 170–197.
[16] N. Hofmann, E. Platen, Stability of weak numerical schemes for stochastic differential equations, Comput. Math. Appl. 28 (1994) 45–57.
[17] D.J. Higham, X. Mao, A.M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal. 40

(2002) 1041–1063.
[18] A.M. Stuart, A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996.
[19] W. Rudin, Real and Complex Analysis, third ed., China Machine Press, Beijing, 2007.


	Convergence and stability of the split-step  θ-method for stochastic differential equations
	Introduction
	The split-step  θ-method
	Mean-square convergence of the  SS θ method
	Mean-square stability of the  SS θ method
	Numerical experiments
	Conclusions
	Acknowledgements
	References


