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The existence of traveling wave solutions connecting two half-positive equilibria in Ricker
competition system can be obtained by the results (B. Li, H.F. Weinberger, M.A. Lewis,
Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci. 196 (2005)
82–98). In this paper we first prove that any nondecreasing traveling wave solutions have
the exponential decay asymptotic behavior at the minus/plus infinity by means of Ikehara’s
Theorem, and then use the strong comparison principle and the sliding method to obtain
the uniqueness of the traveling wave solutions for this system.
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1. Introduction

For a large class spreading speeds of discrete time and possibly discrete space, recursions of the form

un+1 = Q [un], n = 1,2, . . . , un = (
u1

n, . . . , uk
n

) ∈ R
k,

there are many important results (see [5,8,9,12,11,14–18] and references therein). These results can be applied to the Richer
competition system [16]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+1(x) =
∫

R

k1(x − y)un(y)er1−un(y)−σ1 vn(y) dy,

vn+1(x) =
∫

R

k2(x − y)vn(y)er2−vn(y)−σ2un(y) dy,

(1.1)

where r1, r2, σ1, σ2 are all positive constants, un(x) and vn(x) denote the population densities restriction rates of the prey
and predator at time n and point x. The re-distribution kernel gi(x) describes the dispersal of u, v , which it is assumed
to depend upon the signed distance x − y connecting the location of “birth” y and the “settlement” location x; gi(x) is a
homogeneous probability kernel that satisfies

∫
R

ki(x)dx = 1 (i = 1,2).

Recently, Wang et al. [16] considered the spreading speed of system (1.1) with non-cooperative case by carefully
constructing monotone functions. For more about results about the spreading speed of non-monotone integro-difference
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systems, one can refer to [7,13]. Early results from [5] showed that the traveling wave solutions for a single equation had
the exponential decay behavior at the minus infinity, which was determined by the wave speed. It is natural to ask if the
traveling wave solutions of system (1.1) have the exponential decay asymptotic behavior. To the best of our knowledge,
this problem remains open. In this paper, we will answer this question. For simplicity, we will consider system (1.1) with

ki(x) = 1√
4πdi

e
− x2

4di (i = 1,2), that is, the following system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un+1(x) =
∫

R

1√
4πd1

e
− (x−y)2

4d1 un(y)er1−un(y)−σ1 vn(y) dy,

vn+1(x) =
∫

R

1√
4πd2

e
− (x−y)2

4d2 vn(y)er2−vn(y)−σ2un(y) dy,

(1.2)

where all the parameters are positive. System (1.2) has four equilibria (0,0), (r1,0), (0, r2) and ( r1−σ1r2
1−σ1σ2

, r2−σ2r1
1−σ1σ2

) (if feasible).
In this paper, we are interested in the asymptotic behavior and uniqueness of the traveling wave solutions of system (1.2)
connecting (0, r2) with (r1,0) under the assumption

σ1r2 < r1 < 1, r2 < σ2r1, r2 < 1, (1.3)

which the existence of traveling wave solutions can be obtained in [12]. We remark that in this case the positive equilibrium
does not exist. Similarly, if reversing the inequality (1.3), we also can obtain the asymptotic behavior and uniqueness of the
traveling wave solutions connecting (r1,0) with (0, r2). For simplicity, we only consider the case (1.3).

In past few years, we note that many authors used the strong comparison principle and the sliding method (see [1]
for the application of the method to a single equation) to investigate the uniqueness of traveling wave solutions for lattice
system [4,3,6] and for reaction–diffusion system [10], and used Ikehara’s Theorem [2] to study the asymptotic behavior of
traveling wave solutions [6]. In this paper we will adopt these methods to deal with our problem.

This paper is organized as follows. In Section 2, by considering the singularity of the bilateral Laplace transform of travel-
ing wave solutions, we obtain the asymptotic behavior of any nondecreasing traveling wave solutions by means of Ikehara’s
Theorem. In Section 3, we use the strong comparison principle and the sliding method to prove the uniqueness of traveling
wave fronts.

2. Asymptotic behavior

In this paper, we use the usual notations for the standard ordering in R
2. In this section, we investigate the asymptotic

behavior of traveling wave solutions of system (1.2).
Let u∗

n = un , v∗
n = r2 − vn , and drop the star, then the existence of traveling wave solutions of system (1.2) connecting

(0, r2) with (r1,0) is equivalent to the existence of traveling wave solutions of system
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un+1(x) =
∫

R

1√
4πd1

e
− (x−y)2

4d1 un(y)er1−σ1r2−un(y)+σ1 vn(y) dy,

vn+1(x) =
∫

R

1√
4πd2

e
− (x−y)2

4d2
[
r2 − (

r2 − vn(y)
)
evn(y)−σ2un(y)

]
dy

(2.1)

connecting (0,0) with (r1, r2). A traveling wave solution of (2.1) is a pair of translation invariant solution having the form
(un(x), vn(x)) := (φ(ξ),ψ(ξ)), ξ = x+ cn, ξ ∈ R, the wave speed c > 0. If (φ(ξ),ψ(ξ)) is monotone in ξ ∈ R, then it is called
a traveling wave front. Substituting (φ(ξ),ψ(ξ)) into (2.1), let ξ̃ = ξ + c, ỹ = x − y + c, and drop the tilde, then system (2.1)
has a traveling wave front connecting (0,0) with (r1, r2) if and only if the wave equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ(ξ) =
∫

R

1√
4πd1

e
− (y−c)2

4d1 φ(ξ − y)er1−σ1r2−φ(ξ−y)+σ1ψ(ξ−y) dy,

ψ(ξ) =
∫

R

1√
4πd2

e
− (y−c)2

4d2
[
r2 − (

r2 − ψ(ξ − y)
)
eψ(ξ−y)−σ2φ(ξ−y)

]
dy

(2.2)

with the asymptotic boundary conditions

lim
ξ→−∞

(
φ(ξ),ψ(ξ)

) = 0 := (0,0), lim
ξ→∞

(
φ(ξ),ψ(ξ)

) = r := (r1, r2) (2.3)

has a pair of monotone solutions on R.
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The characteristic equation of the linearization equation of the first equation in (2.2) at 0 is �1(λ, c) = 0, where

�1(λ, c) := 1 −
∫

R

1√
4πd1

e
− (y−c)2

4d1
−λy+r1−σ1r2 dy = 1 − ed1λ2−cλ+r1−σ1r2 . (2.4)

Then �1(λ, c) = 0 has two real roots

λ1 = c − √
c2 − 4d1(r1 − σ1r2)

2d1
> 0, λ2 = c + √

c2 − 4d1(r1 − σ1r2)

2d1
> 0

for c > c0 := 2
√

d1(r1 − σ1r2).
Let

�2(λ, c) := 1 −
∫

R

1√
4πd2

e
− (y−c)2

4d2
−λy+ln(1−r2)

dy = 1 − ed2λ2−cλ+ln(1−r2). (2.5)

Then, for any c > 0, �2(λ, c) = 0 has a unique positive root

λ3 = c + √
c2 − 4d2 ln(1 − r2)

2d2
> 0 (since r2 < 1)

and

�2(λ, c) < 0, λ ∈ (0, λ3).

From Theorem 3.1 in [12], one can easily get the existence result of traveling wave front of system (2.1). We list it as a
lemma.

Lemma 2.1. System (2.1) has a traveling wave front connecting 0 with r for the wave speed c � c0 .

In this paper we are interesting in the asymptotic behavior and uniqueness of traveling wave solutions of system (2.1).
First we prove that any nonnegative solutions of (2.2) and (2.3) cannot reach the equilibria 0 and r at any finite time, which
will be used later.

Lemma 2.2. Assume that (φ(ξ),ψ(ξ)) is any nonnegative solution of (2.2) and (2.3). If 0 � (φ(ξ),ψ(ξ)) � r, ∀ξ ∈ R, then 0 < φ < r1
and 0 < ψ < r2.

Proof. We first prove φ,ψ > 0. For φ, it is obvious that φ(ξ) ≡ 0 if there exists ξ0 such that φ(ξ0) = 0. For ψ , assume that
there exists ξ0 such that ψ(ξ0) = 0, since

−σ2r1 � ψ − σ2φ � r2 and ex � 1

1 − x
, x ∈ (−∞,1) ⊃ [−σ2r1, r2], (2.6)

we have

r2 − (r2 − ψ)eψ−σ2φ � r2 − r2 − ψ

1 − ψ + σ2φ
= (1 − r2)ψ + σ2r2φ

1 − ψ + σ2φ
� (1 − r2)ψ + σ2r2φ

1 + σ2r1
� 0,

which implies that ψ(ξ) ≡ 0. This is a contradiction. Similarly, ψ > 0. Let φ∗ = r1 − φ,ψ∗ = r2 − ψ , and drop the star,
substituting them into (2.2), one can prove that φ < r1 and ψ < r2. The proof is completed. �

Now we first consider the asymptotic behavior of any nondecreasing solution (φ(ξ),ψ(ξ)) of (2.2) and (2.3) at the minus
infinity. Give the continuous function ϕ : R → R, define the bilateral Laplace transform

L(λ,ϕ) =
∞∫

−∞
ϕ(ξ)e−λξ dξ.

Then we have the following lemma.

Lemma 2.3. Assume that (1.3) holds and (φ(ξ),ψ(ξ)) is any nondecreasing solution of (2.2) and (2.3) with the wave speed c � c0 .
Then the followings are true:

(i) L(λ,φ) < ∞, λ ∈ (0,Λ) and L(λ,φ) = ∞, λ ∈ R \ (0,Λ), where Λ ∈ {λ1, λ2};
(ii) L(λ,ψ) < ∞, λ ∈ (0, γ ) and L(λ,ψ) = ∞, λ ∈ R \ (0, γ ), where γ = min{Λ,λ3}.
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Proof. We divide this proof into two steps.

Step 1. We first prove the following facts:

(1) there exists λ′ > 0 such that L(λ,φ) < ∞, λ ∈ (0, λ′);
(2) there exists σ > 0 such that L(λ,ψ) < ∞, λ ∈ (0, σ ).

We first show (1). To do this, we will show that there exists λ′ > 0 such that supξ∈R φ(ξ)e−λ′ξ < ∞. Take ν satisfying
0 < ν < r1 − σ1r2 < 1 and (1 − ν)er1−σ1r2−ν > 1. Since

∫

R

1√
4πd1

e
− (y−c)2

4d1 dy = 1 and lim
ξ→−∞

(
φ(ξ),ψ(ξ)

) = 0,

there exists y0 = y0(ν) > 0 large enough such that

y0∫

−∞

1√
4πd1

e
− (y−c)2

4d1 dy � 1 − ν and φ(ξ − y0) � ν, ∀ξ < 0.

By the first equation of (2.2), the monotonicity of (φ(ξ),ψ(ξ)) and

xe−x is nondecreasing in [0,1], (2.7)

we have

φ(ξ) =
∫

R

1√
4πd1

e
− (y−c)2

4d1 φ(ξ − y)er1−σ1r2−φ(ξ−y)+σ1ψ(ξ−y) dy

�
∫

R

1√
4πd1

e
− (y−c)2

4d1 φ(ξ − y)er1−σ1r2−φ(ξ−y) dy

�
y0∫

−∞

1√
4πd1

e
− (y−c)2

4d1 φ(ξ − y)er1−σ1r2−φ(ξ−y) dy

�
y0∫

−∞

1√
4πd1

e
− (y−c)2

4d1 φ(ξ − y0)er1−σ1r2−φ(ξ−y0) dy

� (1 − ν)er1−σ1r2−νφ(ξ − y0)

for any ξ < 0. Let h(ξ) = φ(ξ)e−λ′ξ with λ′ = 1
y0

ln[(1 − ν)er1−σ1r2−ν ] > 0 (since (1 − ν)er1−σ1r2−ν > 1), then

h(ξ − y0) � h(ξ), ∀ξ < 0. (2.8)

Since h(ξ) is bounded on the bounded closed interval [−y0,0], then (2.8) implies that h(ξ) is bound on the interval
(−∞,0]. Hence,

0 < sup
ξ∈R

φ(ξ)e−λ′ξ < ∞

by limξ→∞ φ(ξ) = r1, which implies that L(λ,φ) < ∞, λ ∈ (0, λ′).
Next we show (2). Multiplying the second equation of (2.2) by e−λξ with λ ∈ (0, c

d2
), integrating from −∞ to ∞, we

have

0 �
(
1 − ed2λ2−cλ)L(λ,ψ)

�
(
1 − ed2λ2−cλ)L(λ,ψ) +

∞∫

−∞

∞∫

−∞

1√
4πd2

e
− (y−c)2

4d2
[
r2 − ψ(ξ − y)

](
eψ(ξ−y) − 1

)
e−λξ dy dξ

=
∞∫ ∞∫

1√
4πd2

e
− (y−c)2

4d2
[
r2 − ψ(ξ − y)

](
1 − e−σ2φ(ξ−y)

)
eψ(ξ−y)e−λξ dy dξ
−∞ −∞
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� r2er2

∞∫

−∞

∞∫

−∞

1√
4πd2

e
− (y−c)2

4d2
(
1 − e−σ2φ(ξ−y)

)
e−λξ dy dξ

� σ2r2er2

∞∫

−∞

∞∫

−∞

1√
4πd2

e
− (y−c)2

4d2 φ(ξ − y)e−λξ dy dξ

= σ2r2er2

∞∫

−∞

∞∫

−∞

1√
4πd2

e
− (y−c)2

4d2
−λy

φ(ξ̃ )e−λξ̃ dξ̃ dy

= σ2r2er2 ed2λ2−cλL(λ,φ) (2.9)

with ξ̃ = ξ − y, where the fourth inequality holds since

ex � 1 + x, ∀x ∈ R. (2.10)

Since d2λ
2 − cλ < 0 for λ ∈ (0, c

d2
), it follows that there exists σ ∈ (0,min{λ′, c

d2
}) such that L(λ,ψ) is well defined for

λ ∈ (0, σ ).

Step 2. We prove: (1) maxλ′ = Λ, (2) maxσ = γ .
For (1), multiplying the first equation of (2.2) by e−λξ with λ > 0 and integrating from −∞ to ∞, we obtain that

�1(λ, c)L(λ,φ) = er1−σ1r2

∞∫

−∞

∞∫

−∞

1√
4πd1

e
− (y−c)2

4d1 φ(ξ − y)
(
e−φ(ξ−y)+σ1ψ(ξ−y) − 1

)
e−λξ dy dξ

= er1−σ1r2

∞∫

−∞

∞∫

−∞

1√
4πd1

e
− (y−c)2

4d1
−λy

φ(ξ̃ )
(
e−φ(ξ̃ )+σ1ψ(ξ̃) − 1

)
e−λξ̃ dξ̃ dy

= er1−σ1r2 ed1λ2−cλ

∞∫

−∞
φ(ξ̃ )

(
e−φ(ξ̃ )+σ1ψ(ξ̃) − 1

)
e−λξ̃ dξ̃ (2.11)

with ξ̃ = ξ − y. We first claim that maxλ′ < ∞. Otherwise, if max λ′ = ∞, we can choose large enough λ > λ2 such that
(1 − r1)ed1λ2−cλ+r1−σ1r2 > 1, that is, �1(λ, c) < −r1ed1λ2−cλ+r1−σ1r2 . By φ(ξ) � r1 and (2.10), we have

∞∫

−∞
φ(ξ̃ )

(
e−φ(ξ̃ )+σ1ψ(ξ̃) − 1

)
e−λξ̃ dξ̃ �

∞∫

−∞
φ(ξ̃ )

[−φ(ξ̃ ) + σ1ψ(ξ̃)
]
e−λξ̃ dξ̃

� −
∞∫

−∞
φ2(ξ̃ )e−λξ̃ dξ̃

� −r1

∞∫

−∞
φ(ξ̃ )e−λξ̃ dξ̃

= −r1L(λ,φ),

which is a contradiction by 0 < L(λ,φ) < ∞ and (2.11). Thus the left side of (2.11) is well defined for λ ∈ (0, λ′) and the
right side of (2.11) is well defined for λ ∈ (0,min{2λ′, λ′ + σ }). It follows that the singularity of L(λ,φ) only happens at the
zeros of �1(λ, c). If not, max λ′ = ∞, which is a contradiction.

For (2), multiplying the second equation of (2.2) by e−λξ with λ > 0 and integrating from −∞ to ∞, we obtain that

�2(λ, c)L(λ,ψ) =
∞∫

−∞

∞∫

−∞

1√
4πd2

e
− (y−c)2

4d2
[
r2 − (1 − r2)ψ(ξ − y) − (

r2 − ψ(ξ − y)
)
eψ(ξ−y)−σ2φ(ξ−y)

]
e−λξ dy dξ

=
∞∫ ∞∫

1√
4πd2

e
− (y−c)2

4d2
−λy[

r2 − (1 − r2)ψ(ξ̃ ) − (
r2 − ψ(ξ̃)

)
eψ(ξ̃)−σ2φ(ξ̃ )

]
e−λξ̃dξ̃ dy
−∞ −∞
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= ed2λ2−cλ

∞∫

−∞

[
r2 − (1 − r2)ψ(ξ̃ ) − (

r2 − ψ(ξ̃)
)
eψ(ξ̃)−σ2φ(ξ̃ )

]
e−λξ̃ dξ̃ (2.12)

with ξ̃ = ξ − y.
On one hand, by (2.10), we have

r2 − (1 − r2)ψ − (r2 − ψ)eψ−σ2φ � r2 − (1 − r2)ψ − (r2 − ψ)(1 + ψ − σ2φ)

= ψ2 + σ2φ(r2 − ψ), (2.13)

on the other hand, by (2.6), we have

r2 − (1 − r2)ψ − (r2 − ψ)eψ−σ2φ � r2 − (1 − r2)ψ − r2 − ψ

1 − ψ + σ2φ

= (1 − r2)ψ
2 + σ2φ(r2 − ψ) + σ2r2φψ

1 − ψ + σ2φ

= 1

1 + σ2r1

[
(1 − r2)ψ

2 + σ2φ(r2 − ψ)
]
. (2.14)

Then the right side of (2.12),
∫ ∞
−∞[ψ2(ξ̃ ) + σ2φ(ξ̃ )(r2 − ψ(ξ̃))]dξ̃ and

∫ ∞
−∞[(1 − r2)ψ

2(ξ̃ ) + σ2φ(ξ̃ )(r2 − ψ(ξ̃))]dξ̃ are both

positive and have the same singularity. Since
∫ ∞
−∞[ψ2(ξ̃ )+σ2φ(ξ̃ )(r2 −ψ(ξ̃))]dξ̃ is well defined for λ ∈ (0,min{2 maxσ ,Λ}),

it follows that maxσ � Λ from (2.12), (2.13) and (2.14). We claim that maxσ � λ3. Otherwise, if maxσ > λ3, then
L(λ3,ψ) < ∞. Taking λ = λ3 in (2.12), the left-hand side of (2.12) equals to 0 by �2(λ3, c) = 0 and the right-hand side
of (2.12) is always positive by ψ � r2, which is a contradiction. Also it follows easily from (2.12) that γ = Λ if Λ < λ3 and
γ = λ3 if Λ � λ3. Furthermore, if Λ � λ3, limλ→λ−

3
L(λ,φ)(λ3 − λ) exists. The proof is completed. �

In order to study the asymptotic behavior (φ(ξ),ψ(ξ)) at the minus infinity, we need the following modified version of
Ikehara’s Theorem [2].

Lemma 2.4 (Ikehara’s Theorem). Let ϕ be a positive nondecreasing function on R, and define F (λ) := ∫ 0
−∞ ϕ(ξ)e−λξ dξ . Assume that

F can be written as F (λ) = H(λ)/(α − λ)ν+1 , where ν > −1, α > 0, and H is analytic in the strip 0 < Reλ � α, then

lim
ξ→−∞

ϕ(ξ)

|ξ |νeαξ
= H(α)

Γ (α + 1)
.

We have the following the exponential asymptotic behavior of (φ(ξ),ψ(ξ)) at the minus infinity.

Theorem 2.1. Assume that (1.3) holds and (φ(ξ),ψ(ξ)) is any nondecreasing solution of (2.2) and (2.3) with the wave speed c � c0 .
Then

(i) There exists θi = θi(φ,ψ) (i = 1,2) such that

lim
ξ→−∞

φ(ξ + θ1)

eΛξ
= 1, if c > c0,

lim
ξ→−∞

φ(ξ + θ2)

|ξ |μeΛξ
= 1, if c = c0.

(ii) For c > c0 , there exists θi = θi(φ,ψ) (i = 3,4,5) such that

lim
ξ→−∞

ψ(ξ + θ3)

eΛξ
= 1, if λ3 > Λ,

lim
ξ→−∞

ψ(ξ + θ4)

|ξ |eΛξ
= 1, if λ3 = Λ,

lim
ξ→−∞

ψ(ξ + θ5)

eλ3ξ
= 1, if λ3 < Λ.
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(iii) For c = c0 , there exists θi = θi(φ,ψ) (i = 6,7,8) such that

lim
ξ→−∞

ψ(ξ + θ6)

|ξ |μeΛξ
= 1, if λ3 > Λ,

lim
ξ→−∞

ψ(ξ + θ7)

|ξ |μ+1eΛξ
= 1, if λ3 = Λ,

lim
ξ→−∞

ψ(ξ + θ8)

eλ3ξ
= 1, if λ3 < Λ,

where

μ = 1, if

∞∫

−∞
φ(ξ)

(
e−φ(ξ)+σ1ψ(ξ) − 1

)
e−Λξ dξ �= 0,

μ = 0, if

∞∫

−∞
φ(ξ)

(
e−φ(ξ)+σ1ψ(ξ) − 1

)
e−Λξ dξ = 0.

Proof. From Lemma 2.3, L(λ,φ) and L(λ,ψ) are also well defined for λ ∈ C with Reλ ∈ (0,Λ) and Reλ ∈ (0, γ ), respectively.
It follows from (2.2), (2.11) and (2.12) that

�1(λ, c)

∞∫

−∞
φ(ξ)e−λξ dξ = er1−σ1r2 ed1λ2−cλ

∞∫

−∞
φ(ξ)

(
e−φ(ξ)+σ1ψ(ξ) − 1

)
e−λξ dξ (2.15)

for λ ∈ C with 0 < Reλ < Λ and

�2(λ, c)

∞∫

−∞
ψ(ξ)e−λξ dξ

= σ2r2er1−σ1r2 e2d1λ2−2cλ 1

�1(λ, c)

∞∫

−∞
φ(ξ)

(
e−φ(ξ)+σ1ψ(ξ) − 1

)
e−λξ dξ

+ ed2λ2−cλ

∞∫

−∞

[
r2 − (1 − r2)ψ(ξ) − (

r2 − ψ(ξ)
)
eψ(ξ)−σ2φ(ξ) − σ2r2φ(ξ)

]
e−λξ dξ (2.16)

for λ ∈ C with 0 < Reλ < γ by (2.15). The following conclusions are obvious:

(1) λ = Λ is a unique root with Reλ = Λ of �1(λ, c) = 0 and λ = λ3 is a unique root with Reλ = λ3 of �2(λ, c) = 0.
(2) The function

∞∫

−∞
φ(ξ)

(
e−φ(ξ)+σ1ψ(ξ) − 1

)
e−λξ dξ

is analytic in the strip 0 < Reλ < Λ + γ by ex � 1
1−x , x ∈ (−∞,1) ⊃ [−r1, σ1r2] and

∞∫

−∞

[
r2 − (1 − r2)ψ(ξ) − (

r2 − ψ(ξ)
)
eψ(ξ)−σ2φ(ξ) − σ2r2φ(ξ)

]
e−λξ dξ

is analytic in the strip 0 < Reλ < 2γ by Lemma 2.3, (2.13) and (2.14).

Let

F (λ) :=
0∫

−∞
φ(ξ)e−λξ dξ

= er1−σ1r2 ed1λ2−cλ
∫ ∞
−∞ φ(ξ)(e−φ(ξ)+σ1ψ(ξ) − 1)e−λξ dξ

�1(λ, c)
−

∞∫
φ(ξ)e−λξ dξ

(
by (2.15)

)
(2.17)
0
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and

H(λ) := er1−σ1r2 ed1λ2−cλ
∫ ∞
−∞ φ(ξ)(e−φ(ξ)+σ1ψ(ξ) − 1)e−λξ dξ

�1(λ, c)/(Λ − λ)ν+1
− (Λ − λ)ν+1

∞∫

0

φ(ξ)e−λξ dξ, (2.18)

where ν = 0 if c > c0 and ν = μ if c = c0. By the relation between F (λ) and H(λ), we can get H(λ) is analytic in the strip
0 < Reλ < Λ. And, by the facts (1), (2) and the presentation of H(λ), we also get H(λ) is analytic in the strip {λ | Reλ = Λ}.
Therefore, H(λ) is analytic in the strip 0 < Reλ � Λ. Since φ(ξ) is nondecreasing in R, then, by Lemmas 2.2 and 2.4, it
follows that

lim
ξ→−∞

φ(ξ)

|ξ |νeΛξ
= H(Λ)

Γ (Λ + 1)
,

where ν = 0 if c > c0 and ν = μ if c = c0. If H(Λ) �= 0, then (i) holds. Hence we only need to prove H(Λ) �= 0.
If c > c0, since Λ is a simple root of �1(λ, c) and ν = 0, it follows that the denominator of the first term of the right-

hand side of (2.18) does not equal to zero for 0 < Reλ < γ + Λ. We claim that

∞∫

−∞
φ(ξ)

(
e−φ(ξ)+σ1ψ(ξ) − 1

)
e−Λξ dξ �= 0. (2.19)

In fact, if not, we obtain that L(Λ,φ) exists by (2.17), which contradicts Lemma 2.3. Thus H(Λ) �= 0 by (2.18).
For c = c0, then Λ is a double root of �1(λ, c). If (2.19) holds, we can take μ = 1 such that H(Λ) �= 0 by (2.18). If (2.19)

does not hold, then

lim
λ→Λ

∫ ∞
−∞ φ(ξ)(e−φ(ξ)+σ1ψ(ξ) − 1)e−λξ dξ

(λ − Λ)2

does not exist. Indeed, if it exists, L(Λ,ψ) exists by (2.17), which contradicts Lemma 2.3. Thus we can take μ = 0 such that
H(Λ) �= 0 by (2.18).

Next we only need to prove (ii) since the proof of (iii) is similar. Let

F (λ) :=
0∫

−∞
ψ(ξ)e−λξ dξ

= −
∞∫

0

ψ(ξ)e−λξ dξ + σ2r2er1−σ1r2 e2d1λ2−2cλ
∫ ∞
−∞ φ(ξ)(e−φ(ξ)+σ1ψ(ξ) − 1)e−λξ dξ

�1(λ, c)�2(λ, c)

+ ed2λ2−cλ

�2(λ, c)

∞∫

−∞

[
r2 − (1 − r2)ψ(ξ) − (

r2 − ψ(ξ)
)
eψ(ξ)−σ2φ(ξ) − σ2r2φ(ξ)

]
e−λξ dξ

(
by (2.16)

)
(2.20)

and

H(λ) := (γ − λ)ν+1 F (λ) (2.21)

in the strip 0 < Reλ � γ , where ν = 0 if λ3 �= Λ, ν = 1 if λ3 = Λ. By using a similar argument as (i), H(λ) is analytic in the
strip 0 < Reλ � γ . Since φ(ξ) is nondecreasing in R, by Lemmas 2.2 and 2.4, it follows that

lim
ξ→−∞

ψ(ξ)

|ξ |νeγ ξ
= H(γ )

Γ (γ + 1)
,

where ν = 0 if λ3 �= Λ, ν = 1 if λ3 = Λ. Next we only need to prove H(γ ) �= 0.
If λ3 � Λ, then γ = Λ. Combining (2.20) with (2.21), it follows easily that H(γ ) �= 0 by (2.19). If λ3 < Λ, then γ = λ3.

Since

H(λ) = ed2λ2−cλ
∫ ∞
−∞[r2 − (1 − r2)ψ(ξ) − (r2 − ψ(ξ))eψ(ξ)−σ2φ(ξ)]e−λξ dξ

�2(λ, c)/(λ3 − λ)
− (λ3 − λ)

∞∫

0

ψ(ξ)e−λξ dξ,

H(λ3) �= 0. Indeed, if H(λ3) = 0, then

∞∫

−∞

[
r2 − (1 − r2)ψ(ξ) − (

r2 − ψ(ξ)
)
eψ(ξ)−σ2φ(ξ)

]
e−λξ dξ = 0,

furthermore, φ(ξ) ≡ ψ(ξ) ≡ 0 by (2.14) and 0 � (φ(ξ),ψ(ξ)) � r, which is a contradiction. The proof is completed. �
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Next we investigate the asymptotic behavior of (φ(ξ),ψ(ξ)) at the plus infinity. For convenience, let φ̃ = r1 − φ,
ψ̃ = r2 − ψ , substituting φ̃, ψ̃ into (2.2), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ̃(ξ) =
∫

R

1√
4πd1

e
− (y−c)2

4d1
[
r1 − (

r1 − φ̃(ξ − y)
)
eφ̃(ξ−y)−σ1ψ̃(ξ−y)

]
dy,

ψ̃(ξ) =
∫

R

1√
4πd2

e
− (y−c)2

4d2 ψ̃(ξ − y)er2−σ2r1−ψ̃(ξ−y)+σ2φ̃(ξ−y) dy

(2.22)

satisfying

lim
ξ→−∞

(
φ̃(ξ), ψ̃(ξ)

) = r, lim
ξ→∞

(
φ̃(ξ), ψ̃(ξ)

) = 0. (2.23)

Let

�3(λ, c) := 1 −
∫

R

1√
4πd1

e
− (y−c)2

4d1
−λy+ln(1−r1)

dy = 1 − ed1λ2−cλ+ln(1−r1).

Then �3(λ, c) = 0 has a unique negative root λ4 = c−
√

c2−4d1 ln(1−r1)

2d1
< 0 (since r1 < 1).

The characteristic equation of the second equation of (2.22) at 0 is �4(λ, c) = 0, where

�4(λ, c) := 1 −
∫

R

1√
4πd2

e
− (y−c)2

4d2
−λy+r2−σ2r1 dy = 1 − ed2λ2−cλ+r2−σ2r1 .

Then �4(λ, c) = 0 has a unique negative root λ5 = c−
√

c2−4d2(r2−σ2r1)

2d2
< 0 by (1.3) and �4(λ, c) < 0, λ ∈ (λ5,0).

Lemma 2.5. Assume that (1.3) holds and (φ(ξ),ψ(ξ)) is any nondecreasing solution of (2.2) and (2.3) with the wave speed c � c0 .
Then the following is true:

(i) L(λ, ψ̃) < ∞, λ ∈ (λ5,0) and L(λ, ψ̃) = ∞, λ ∈ R \ (λ5,0);
(ii) L(λ, φ̃) < ∞, λ ∈ (γ1,0) and L(λ, φ̃) = ∞, λ ∈ R \ (γ1,0), where γ1 = max{λ4, λ5} < 0.

Proof. Similar to Lemma 2.3, one can show that there exists λ′ < 0 such that L(λ, ψ̃) < ∞, λ ∈ (λ′,0). Next we show that
there exists σ < 0 such that

L(λ, φ̃) < ∞, λ ∈ (σ ,0). (2.24)

Since

d1λ
2 − cλ + 1

2
ln(1 − r1) = 0

has only two real roots: one is Λ∗ = c−
√

c2−2d1 ln(1−r1)

2d1
< 0, the other is positive. Then

d1λ
2 − cλ + 1

2
ln(1 − r1) < 0, λ ∈ (Λ∗,0). (2.25)

Since φ̃(ξ) → 0 as ξ → ∞, there exists ξ0 large enough such that φ̃(ξ) �
√

1 − r1 for ξ � ξ0. From (2.10), it follows that

r1 − (1 − r1)φ̃ − (r1 − φ̃)eφ̃−σ1ψ̃ � r1 − (1 − r1)φ̃ − (r1 − φ̃)(1 + φ̃ − σ1ψ̃)

= φ̃2 + σ1ψ̃(r1 − φ̃). (2.26)

Multiplying the second equation of (2.22) by e−λξ with λ ∈ (Λ∗,0) and integrating from −∞ to ∞, by (2.26), we have

σ1r1ed1λ2−cλL(λ, ψ̃) = σ1r1

∞∫

−∞

∞∫

−∞

1√
4πd1

e
− (y−c)2

4d1
−λy

ψ̃(ξ̃ )e−λξ̃ dξ̃ dy

= σ1r1

∞∫ ∞∫
1√

4πd1
e
− (y−c)2

4d1 ψ̃(ξ − y)e−λξ dy dξ
−∞ −∞
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= �3(λ, c)L(λ, φ̃) −
∞∫

−∞

∞∫

−∞

1√
4πd1

e
− (y−c)2

4d1

× [
r1 − (1 − r1)φ̃(ξ − y) − (

r1 − φ̃(ξ − y)
)
eφ̃(ξ−y)−σ1ψ̃(ξ−y) − σ1r1ψ̃(ξ − y)

]
e−λξ dy dξ

� �3(λ, c)L(λ, φ̃) −
∞∫

−∞

∞∫

−∞

1√
4πd1

e
− (y−c)2

4d1 φ̃2(ξ − y)e−λξ dy dξ
(
by (2.26)

)

= �3(λ, c)L(λ, φ̃) − ed1λ2−cλ

∞∫

−∞
φ̃2(ξ̃ )e−λξ̃ dξ̃

= �3(λ, c)

ξ0∫

−∞
φ̃(ξ̃ )e−λξ̃ dξ̃ − ed1λ2−cλ

ξ0∫

−∞
φ̃2(ξ̃ )e−λξ̃ dξ̃

+ �3(λ, c)

∞∫

ξ0

φ̃(ξ̃ )e−λξ̃ dξ̃ − ed1λ2−cλ

∞∫

ξ0

φ̃2(ξ̃ )e−λξ̃ dξ̃

� �3(λ, c)

ξ0∫

−∞
φ̃(ξ̃ )e−λξ̃ dξ̃ − ed1λ2−cλ

ξ0∫

−∞
φ̃2(ξ̃ )e−λξ̃ dξ̃

+ (
1 − ed1λ2−cλ+ 1

2 ln(1−r1)
) ∞∫

ξ0

φ̃(ξ̃ )e−λξ̃ dξ̃ (2.27)

with ξ̃ = ξ − y. Since the singularity of L(λ, φ̃) only happens at the plus infinity when λ < 0, the singularity of the last
inequality of (2.27) is equivalent to that of the third term. Since the first and the second terms of the last inequality
of (2.27) are finite, by Lemma 2.5, (2.25) and φ̃(ξ) � 0, it follows that there exists σ ∈ (max{λ′,Λ∗},0) such that L(λ, φ̃)

is well defined for λ ∈ (σ ,0). The proofs of minλ′ = λ5 and minσ = γ1 are similar to those of Lemma 2.3. The proof is
completed. �

Using a similar argument as Theorem 2.1, we have the following the exponential asymptotic behavior of (φ̃(ξ), ψ̃(ξ)) =
(r1 − φ(ξ), r2 − ψ(ξ)) at the plus infinity. We omit the proof here.

Theorem 2.2. Assume that (1.3) holds and (φ(ξ),ψ(ξ)) is any nondecreasing solution of (2.2) and (2.3) with the wave speed c � c0 .
Then

(i) There exists θ9 = θ9(φ,ψ) such that limξ→∞ r2−ψ(ξ+θ9)

eλ5ξ = 1.

(ii) There exists θi = θi(φ,ψ) (i = 10,11,12) such that

lim
ξ→∞

r1 − φ(ξ + θ10)

eλ5ξ
= 1, if λ5 > λ4,

lim
ξ→∞

r1 − φ(ξ + θ11)

ξeλ5ξ
= 1, if λ5 = λ4,

lim
ξ→∞

r1 − φ(ξ + θ12)

eλ4ξ
= 1, if λ5 < λ4.

3. Uniqueness

In this section, we adopt the strong comparison principle and the sliding method to prove the uniqueness of traveling
wave fronts of (2.1). We first give the strong comparison principle.

Lemma 3.1. Let (φ1,ψ1) and (φ2,ψ2) be two any nonnegative solutions of (2.2) and (2.3) with the wave speed c � c0 satisfying
φ1 � φ2 and ψ1 � ψ2 in R. Then either φ1 > φ2 and ψ1 > ψ2 in R or φ1 ≡ φ2 and ψ1 ≡ ψ2 in R.
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Proof. Let

f1(t, s) = ter1−σ1r2−t+σ1s and f2(t, s) = r2 − (r2 − s)es−σ2t .

By (2.7), we have

f1(φ1,ψ1) − f1(φ2,ψ2) = φ1er1−σ1r2−φ1+σ1ψ1 − φ2er1−σ1r2−φ2+σ1ψ2

= (
φ1e−φ1 − φ2e−φ2

)
er1−σ1r2+σ1ψ1 + (

eσ1ψ1 − eσ1ψ2
)
φ2er1−σ1r2−φ2 � 0,

and by (x − r2)ex is nondecreasing in [r2 − 1,∞) ⊃ [0,∞), we have

f2(φ1,ψ1) − f2(φ2,ψ2) = (r2 − ψ2)eψ2−σ2φ2 − (r2 − ψ1)eψ1−σ2φ1

= [
(ψ1 − r2)eψ1 − (ψ2 − r2)eψ2

]
e−σ2φ1 + (r2 − ψ2)

(
e−σ2φ2 − e−σ2φ1

)
eψ2 � 0.

If these exists ξ0 ∈ R such that φ1(ξ0) = φ2(ξ0), then

0 = φ1(ξ0) − φ2(ξ0)

=
∫

R

1√
4πd1

e
− (y−c)2

4d1
[

f1
(
φ1(ξ0 − y),ψ1(ξ0 − y)

) − f1
(
φ2(ξ0 − y),ψ2(ξ0 − y)

)]
dy

�
∫

R

1√
4πd1

e
− (y−c)2

4d1 × {[
φ1(ξ0 − y)e−φ1(ξ0−y) − φ2(ξ0 − y)e−φ2(ξ0−y)

]
er1−σ1r2+σ1ψ1(ξ0−y)

+ (
eσ1ψ1(ξ0−y) − eσ1ψ2(ξ0−y)

)
φ2(ξ0 − y)er1−σ1r2−φ2(ξ0−y)

}
dy

� 0,

which implies that φ1(ξ) ≡ φ2(ξ),ψ1(ξ) ≡ ψ2(ξ) by φ1 � φ2,ψ1 � ψ2. Similarly, if these exists ξ0 ∈ R such that
ψ1(ξ0) = ψ2(ξ0), we also have φ1(ξ) ≡ φ2(ξ),ψ1(ξ) ≡ ψ2(ξ). The proof is completed. �
Theorem 3.1. Assume that (1.3) holds and d1 � d2 . Then for every two traveling wave fronts (φ1(ξ),ψ1(ξ)) and (φ2(ξ),ψ2(ξ))

of (2.1) with the wave speed c � c0 which connects 0 with r, there exists ξ0 ∈ R such that (φ1(ξ + ξ0),ψ1(ξ + ξ0)) ≡ (φ2(ξ),ψ2(ξ)).

Proof. Since Λ = λ1 or λ2, by Theorem 2.1, there exists ηi = ηi(φi,ψi) (i = 1,2), such that one of the following is at least
true:

(i) lim
ξ→−∞

φi(ξ + ηi)

|ξ |ωeλ1ξ
= 1, i = 1,2;

(ii) lim
ξ→−∞

φi(ξ + ηi)

|ξ |ωeλ2ξ
= 1, i = 1,2;

(iii) lim
ξ→−∞

φ1(ξ + η1)

|ξ |ωeλ1ξ
= 1, lim

ξ→−∞
φ2(ξ + η2)

|ξ |ωeλ2ξ
= 1;

(iv) lim
ξ→−∞

φ1(ξ + η1)

|ξ |ωeλ2ξ
= 1, lim

ξ→−∞
φ2(ξ + η2)

|ξ |ωeλ1ξ
= 1,

where ω = 0 if c > c0 and ω = μ if c = c0.
Therefore there exists θ1 = θ1(φ1,ψ1, φ2,ψ2) such that one of the following is true, which corresponds to the cases as

the above (i)–(iv):

(i) limξ→−∞ φ1(ξ + θ1)/φ2(ξ) = 1, then limξ→−∞ φ1(ξ + ξ̄ )/φ2(ξ) = eλ1(ξ̄−θ1) > 1 for all ξ̄ > max{θ1,0};

(ii) limξ→−∞ φ1(ξ + θ1)/φ2(ξ) = 1, then limξ→−∞ φ1(ξ + ξ̄ )/φ2(ξ) = eλ2(ξ̄−θ1) > 1 for all ξ̄ > max{θ1,0};
(iii) limξ→−∞ φ1(ξ + θ1)/φ2(ξ) = 1 or ∞, then limξ→−∞ φ1(ξ + ξ̄ )/φ2(ξ) > 1 or = ∞ for all ξ̄ > max{θ1,0} (since λ1 = λ2

or λ1 < λ2);
(iv) limξ→−∞ φ1(ξ)/φ2(ξ + θ1) = 1 or 0, then limξ→−∞ φ1(ξ)/φ2(ξ + ξ̄ ) < 1 or = 0 for all ξ̄ < min{θ1,0} (since λ1 = λ2 or

λ1 < λ2).

Assume that (i) happens. Since d1 � d2, then λ3 > λ2 � λ1, and thus λ3 > Λ. By Theorem 2.1 again, there exists
θ2 = θ2(φ1,ψ1, φ2,ψ2) such that limξ→−∞ ψ1(ξ + θ2)/ψ2(ξ) = 1, then limξ→−∞ ψ1(ξ + ξ̄ )/ψ2(ξ) = eλ1(ξ̄−θ2) > 1 for all
ξ̄ > max{θ2,0}. Thus, choosing ξ̄1 > max{θ1, θ2,0}, then there exists N1 � 1 large enough such that φ1(ξ + ξ̄2) � φ2(ξ)

and ψ1(ξ + ξ̄1) � ψ2(ξ), ∀ξ ∈ (−∞,−N1]. By the monotonicity of (φi(ξ),ψi(ξ)) (i = 1,2), for any ξ̄ � ξ̄1, φ1(ξ + ξ̄ ) � φ2(ξ)

and ψ1(ξ + ξ̄ ) � ψ2(ξ),∀ξ ∈ (−∞,−N1].
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By Theorem 2.2, there exists θ3 = θ3(φ1,ψ1, φ2,ψ2) such that limξ→∞(r2 − ψ1(ξ + θ3))/(r2 − ψ2(ξ)) = 1, then

limξ→∞(r2 − ψ1(ξ + ξ̄ ))/(r2 − ψ2(ξ)) = eλ5(ξ̄−θ3) < 1 for all ξ̄ > max{θ3,0}. By Theorem 2.2 again, there exists θ4 =
θ4(φ1,ψ1, φ2,ψ2) such that limξ→∞(r1 − φ1(ξ + θ4))/(r1 − φ2(ξ)) = 1, then limξ→∞(r1 − φ1(ξ + ξ̄ ))/(r1 − φ2(ξ)) =
eλ∗(ξ̄−θ4) < 1 for all ξ̄ > max{θ4,0}, where λ∗ = λ4 or λ5. Thus, choosing ξ̄2 > max{θ3, θ4,0}, then there exists N2 � 1
large enough such that φ1(ξ + ξ̄2) � φ2(ξ) and ψ1(ξ + ξ̄2) � ψ2(ξ), ∀ξ ∈ [N2,∞). By the monotonicity of (φi(ξ),ψi(ξ))

(i = 1,2) for any ξ̄ � ξ̄2, φ1(ξ + ξ̄ ) � φ2(ξ) and ψ1(ξ + ξ̄ ) � ψ2(ξ),∀ξ ∈ [N2,∞).
Take N = max{N1, N2}, by the monotonicity of (φi(ξ),ψi(ξ)) (i = 1,2), we can choose ξ̄0 > max{ξ̄1, ξ̄2} suitably large

such that φ1(ξ + ξ̄0) � φ2(ξ) and ψ1(ξ + ξ̄0) � ψ2(ξ),∀ξ ∈ [−N, N].
Therefore, from the above, φ1(ξ + ξ̄0) � φ2(ξ) and ψ1(ξ + ξ̄0) � ψ2(ξ),∀ξ ∈ R. Then there exists ξ0 � ξ̄0 (by translation)

such that at least one of the following is true

(1) φ1(ξ̃ + ξ0) = φ2(ξ̃ ) for some ξ̃ ∈ R, φ1(ξ + ξ0) � φ2(ξ) and ψ1(ξ + ξ0) � ψ2(ξ), ξ ∈ R,

(2) ψ1(ξ̃ + ξ0) = ψ2(ξ̃ ) for some ξ̃ ∈ R, φ1(ξ + t0) � φ2(ξ) and ψ1(ξ + ξ0) � ψ2(ξ), ξ ∈ R.

Without loss of generality, we assume that (1) is true, since the traveling wave fronts of (2.1) are translation invariant
solutions, (φ1(ξ + ξ0),ψ1(ξ + ξ0)) is also a traveling wave front of (2.1). By Lemma 3.1, φ1(ξ + ξ0) ≡ φ2(ξ) and ψ1(ξ + ξ0) ≡
ψ2(ξ).

For the case (ii), the proof is completely similar.
We claim that the cases (iii) and (iv) cannot happen. Otherwise, if (iii) happens, similar argument to the above, there

exists ξ0 ∈ R such that (φ1(ξ + ξ0),ψ1(ξ + ξ0)) = (φ2(ξ),ψ2(ξ)), ξ ∈ R, which contradicts the asymptotic behavior ψ1(ξ)

and ψ2(ξ) at the minus infinity. Similarly, (iv) cannot hold. The proof is completed. �
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