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SUMMARY

In Rhodobacter (Rba.) sphaeroides, the subunit
PufX is involved in the dimeric organization of
the core complex. Here, we report the 3D recon-
struction at 12 Å by cryoelectron microscopy of
the core complex of Rba. veldkampii, a complex
of �300 kDa without symmetry. The core com-
plex is monomeric and constituted by a light-
harvesting complex 1 (LH1) ring surrounding
a uniquely oriented reaction center (RC). The
LH1 consists of 15 resolved a/b heterodimers
and is interrupted. Within the opening, PufX
polypeptide is assigned at a position facing
the QB site of the RC. This core complex is dif-
ferent from a dissociated dimer of the core
complex of Rba. sphaeroides revealing that
PufX in Rba. veldkampii is unable to dimerize.
The absence in PufX of Rba. veldkampii of a
G31XXXG35 dimerization motif highlights the
transmembrane interactions between PufX sub-
units involved in the dimerization of the core
complexes of Rhodobacter species.

INTRODUCTION

In purple photosynthetic bacteria, highly organized trans-

membrane pigment-protein complexes perform absorp-

tion of light and its conversion into chemical energy. Two

light-harvesting (LH), complexes LH2 and LH1, ensure

the collection of light. Then, the excitation energy is fun-

neled toward the special pair (P) of bacteriochlorophylls

in the reaction center (RC), followed by an electron transfer

from P to the ubiquinone (Q) acceptors QA and QB. After

two photoreactions and the acceptance of two protons

by the ubiquinol (QH2) at the QB site, this dissociates

from the RC and diffuses into the lipid bilayer. The cyto-

chrome bc1 complex (cyt bc1) utilizes QH2 and oxidized

cytochrome c2 as reductant and oxidant, respectively.
1674 Structure 15, 1674–1683, December 2007 ª2007 Elsevier
The net result is a cyclic electron transfer that promotes

the formation of a proton gradient across the membrane,

which is used for ATP synthesis by F1F0 ATPsynthase.

The description of the bacterial photosynthetic appara-

tus at the atomic level is nearly complete. Three RC struc-

tures (Allen et al., 1987; Deisenhofer et al., 1984; Nogi

et al., 2000), two LH2 structures (Koepke et al., 1996;

Papiz et al., 1989), and one structure of the cyt bc1 com-

plex (Berry et al., 2004) are available. The last unsolved

component is the core complex in which the conversion

of the light energy into charge separation occurs. A 4.8 Å

resolution structure of the core complex of Rhodopseudo-

monas (Rps.) palustris has been obtained by X-ray crystal-

lography (Roszak et al., 2003). Medium- and low-resolution

structures of core complexes from several species have

been reported from electron crystallography and from

atomic force microscopy (for a recent review, see Scheur-

ing et al. [2005a]).

In several photosynthetic species lacking LH2 (Rhodo-

spirillum [Rsp.] rubrum, Blastochloris [Blc.] viridis) or with

LH1-like LH2 subunits (Phaeospirillum molishianum) as

well as in Rsp photometricum, core complexes consist

of a monomeric assembly of a central RC that is sur-

rounded by a LH1 antenna system. The LH1 assembly is

composed of bacteriochlorophyll a molecules (Bchl) that

are held rigidly in place by a and b polypeptides, each hav-

ing a molecular weight of about 6 kDa. In these species,

the LH1 assembly is reported to form a closed and ellipti-

cal ring of 16 a/b pairs.

The RC is composed of the transmembrane subunits H,

M, L and an additional bound cytochrome in some species

(e.g., in Blc. Viridis). In such core complexes, the quinones

exchange between the RC and the cytochrome bc1 com-

plex is proposed to be mediated through LH1 ‘‘breathing,’’

which facilitates quinone diffusion through the LH1 ring

(Aird et al., 2007; Karrasch et al., 1995).

Additional subunits have also been found to be associ-

ated with the LH1 assembly although their functional or

structural roles have not been identified yet. For example,

a small hydrophobic subunit named U has been biochemi-

cally characterized but not found in the medium resolution
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structures obtained from 2D crystals of the core complex

(Ghosh et al., 1994; Jamieson et al., 2002). The single helix

subunit W, �10 kDa, has been found associated with the

15 a/b LH1 ring in the 3D crystal of the core complex Rps.

palustris (Roszak et al., 2003), but the putative gene has

not yet been assigned in the genome of Rps. palustris.

Another important subunit that is as yet not structurally

assigned is PufX, a �80 aminoacids polypeptide, found in

the core complex of Rba. sphaeroides and Rba. capsula-

tus and likely in all Rhodobacter species. The structure of

PufX from Rba. sphaeroides has been solved recently by

NMR in organic solvent and modeled both as a bent

(Tunnicliffe et al., 2006) and a straight (Wang et al., 2007)

helix suggesting possible flexibility. In Rba. sphaeroides

and Rba. capsulatus, PufX has been proposed to be in-

volved in photosynthetic growth and in the fast diffusion

of quinones from the QB site in the RC to the Qo site in

the cyt bc1 complex (Barz et al., 1995; Francia et al.,

1999). PufX is also reported to prevent the formation of

a closed LH1 ring, to induce the dimerization of the core

complex and to orient the RC within the LH1 antenna sys-

tem. The resulting core complex in Rba. sphaeroides and

Rba. blasticus forms a dimeric assembly with an S-shaped

LH1 surrounding two oriented RC (Jungas et al., 1999;

Qian et al., 2005; Scheuring et al., 2004b, 2005b), although

a dimer of two C-shaped LH1 has also been proposed

(Bahatyrova et al., 2004; Siebert et al., 2004). The number

of LH1 a/b pairs is 12 (Scheuring et al., 2004b), 13

(Abresch et al., 2005; Scheuring et al., 2005b), or 14

(Qian et al., 2005), leading to variable dimensions of the

opening within the LH1 structure. The precise localization

of PufX is under debate. It has been suggested that PufX is

within the LH1 assembly at the dimer junction (Scheuring

et al., 2004b, 2005b), or close to the inner a ring and the QB

site of the RC (Qian et al., 2005). Such architecture sug-

gests that the quinone exchange could occur through an

‘‘opening’’ in the LH1 ring or through the PufX subunit.

Moreover, as shown by spectroscopic analysis in Rba.

sphaeroides, both RCs within the dimer are functionally

interconnected, allowing excitation transfer between

them (Comayras et al., 2005a, 2005b). Finally, PufX is

also reported to be involved in the formation of a long-

range organization of core complexes in the membrane

(Bahatyrova et al., 2004; Frese et al., 2000; Jungas et al.,

1999) and in a putative supercomplex involving the cyt

bc1 complex and the cytochrome c2 (Joliot et al., 2005).

In this context, we have recently functionally character-

ized the photosynthetic apparatus of Rba. veldkampii,

a Rhodobacter strain that has diverged independently

from the subgroup of Rba. sphaeroides and of Rba. cap-

sulatus (Tsukatani et al., 2004). We have shown that the

fast exchange of quinones between the RC and the cyt

bc1 complex is similar to that of Rba. sphaeroides. How-

ever, the core complex was found to be monomeric after

purification by mild procedures and to contain a PufX sub-

unit associated with the LH1-RC (Gubellini et al., 2006).

Here, we report the 3D reconstruction of this Rba. veld-

kampii core complex by cryoelectron microscopy at 12 Å

resolution. This 3D reconstruction allows the determina-
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tion of the subunits organization of the core complex,

including the a/b heterodimers of the LH1 and of the RC

(H, M, and L) subunits. The core complex consists of

15 a/b subunits surrounding an oriented RC. The LH1

ring is larger and much less elliptical than the LH1 assem-

bly of the core complexes from other species. Additional

densities close to the LH1 assembly and facing the QB

site of the RC could be assigned to PufX. The sequence

analysis of PufX also revealed an absence of a G31XXXG35

dimerization motif that is thought to play a crucial role in

PufX-PufX transmembrane interactions during oligomeri-

zation of the core complexes from Rhodobacter species.

RESULTS

3D Reconstruction of LH1-RC from Cryo-Electron
Microscopy Images
The core complex from Rba. veldkampii was extracted

from photosynthetically grown bacteria and purified in

n-dodecyl-b-D-thiomaltoside (DOTM), a low cmc deter-

gent. Biochemical analysis by MALDI/MS and by ES

Q-tof MS/MS has shown the core complex to consist

of the RC proteins H (34.9 kDa), M (31.4 kDa), and L

(28.1 kDa), the LH1 subunits a (5.4 kDa) and b (6.7 kDa)

as well as PufX (�9 kDa) (Gubellini et al., 2006). Mild solu-

bilization always yielded a monomeric and never a dimeric

core complex, suggesting that this is its native oligomeric

state. Alignment and classification of negatively stained

solubilized core complexes at 25 Å resolution has

revealed that the core complex was �13 nm in diameter

and consisted of the LH1 ring surrounding the RC.

We then evaluated the use of a low-pass filtered volume

of the core complex of Rps. palustris (25 Å resolution), as

the first reference for the alignment of cryo-EM images of

the core complex of Rba. veldkampii. The core complex of

Rps. palustris is also monomeric, consisted of similar LH1

and RC subunits and of W, a ‘‘Puf-like’’ subunit, and it is

the only available structure of a core complex at high res-

olution. The aim was to bypass the building of a reference

volume of such a small, �300 kDa, globular, and nonsym-

metric particle with few distinct features in the top views

(white arrow) and in the side views (dark arrow)

(Figure 1A). After the first cycle of refinement, cryo-EM

images of Rba. veldkampii were subsequently iteratively

aligned on their own, and the resulting 3D reconstruction

of each cycle was used as a reference for the next. There-

fore, the volumes diverged from the original reference vol-

ume and reached a final resolution of 12 Å, using FSC0.5

resolution criterion (Figure 1B). The lack of influence of

the original reference on the final 3D reconstruction is

clearly illustrated by Figures 1D–1G. For example, when

comparing the top view 2D projections of Rps. palustris

(Figures 1D1 and 1D7) with the similar projections of the

final Rba. veldkampii 3D reconstruction (Figures 1G1 and

1G7) or the corresponding 2D cryo-EM class average (Fig-

ures 1E1 and 1E7), the ellipsoid overall shape of Rps. pal-

ustris is obvious, while it is clearly circular in Rba. veldkam-

pii. Another clear difference is observed in an intermediate

orientation (Figures 1D2–1G2), and other orientations also
3, December 2007 ª2007 Elsevier Ltd All rights reserved 1675
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Figure 1. Cryo-EM Analysis of LH1-RC from Rba. veldkampii

(A) Micrograph of ice-embedded core complexes of Rba. veldkampii. Top view and side view are depicted by white and black arrows, respectively.

Scale bar, 10 nm.

(B) FSC plot. The resolution of the 3D reconstruction is estimated to 1/12 Å�1 according to the FSC0.5 criterion and 1/9.5 Å according to the three

sigma criterion.

(C) Angular distribution of the LH1-RC cryo-EM experimental images as a plot of the Euler theta angle where 0�, 90�, and 180� correspond to the top,

the side, and the bottom views, respectively.

(D–G) Comparison of the final 3D reconstruction at 1/12 Å resolution with the low pass filtered up to 25 Å volume of the core complex of Rps palustris

(PDB ID: 1PYH) used as the initial reference volume for the iterative alignment of cryo-EM images of Rba. veldkampii (see Experimental Procedures).

(D) Set of 2D projection maps from the volume of Rps palustris. (E) Set of cryo EM class averages obtained by 3D projection alignment of the exper-

imental cryo EM images on the final 3D reconstruction volume of Rba. veldkampii. (F) Oriented 3D surface rendered views of the corresponding

projections in the final reconstruction volume. (G) Set of 2D projections of the final 3D reconstruction volume in selected directions of projections

matching the class averages in (D). In (D)–(G), each column corresponds to a given set of Euler angles (of identical orientations). Scale bar, 5 nm.
show several significant features that confirm an absence

of influence of the initial reference on the final 3D recon-

struction (e.g., Figures 1D5 and 1D6 and 1G5 and 1G6).

One can also see that central densities, which have a small

influence on the alignment process, are very similar (S

shaped) in Figures 1D1–1G1, indicating that these densi-

ties most likely correspond to similar features (RC) in

both species. Conversely, one feature that probably had

a strong influence during alignment is the presence of

the gap or notch in the LH1 ring (e.g. Figures 1D1–1G1).

Indeed, two other volumes without an interruption in the
1676 Structure 15, 1674–1683, December 2007 ª2007 Elsevier
LH1 assembly were also evaluated as references for the

3D projection matching but failed to converge. The first

one was built from the volume of the core complex of

Rps. palustris with an additional LH1 subunit to enclose

the LH1 ring, i.e. with 16 a/b subunits. The second one

was constructed from a ring of continuous densities, and

a central RC low pass filtered to 25 Å, from Rba. sphaer-

oides a related species. This showed that in the initial

stage of the refinement the origin of the reference was

not important if the overall shape allowed a rough align-

ment of 2D projections. Here, the absence of a notch in
Ltd All rights reserved
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Figure 2. 3D Reconstruction of LH1-RC

from Rba. veldkampii

(A) Top view of the cytoplasmic side showing

the LH1 ring constituted by 15 a/b subunits

surrounding the central RC.

(B) Side view highlighting an opening in LH1.

Scale bar, 5nm.
the circular ring explained the failure of both ‘‘unnotched’’

references. Finally, particles used for the 3D reconstruc-

tion were found to be approximately randomly oriented

in the vitreous ice layer (Figure 1C). A slight over represen-

tation of the views with elliptical shapes was small enough

to have an impact on the isotropy of the final 3D recon-

struction.

Subunits Organization of the Monomeric
Core Complex
The core complex (Figure 2) is larger and less elliptical than

the core complex of Rps. palustris. Its diameters are 133 Å

along the RC long axis by 129 Å, compared to 120 Å by

110 Å for Rps. palustris. The LH1 assembly is �45 Å high

and contains 15 well-resolved a/b heterodimers that sur-

round a central RC. The densities of each a/b heterodimer

are 8.5 Å in diameter, consistent with its helical pair struc-

ture. The helices within each heterodimer are separated by

an average distance of 20 ± 2 Å. The LH1 assembly is in-

terrupted by an opening of 40 ± 1 Å, large enough to allow

the insertion of an additional a/b pair.

The RC of Rba. sphaeroides, the most closely related

species, was fitted in the corresponding densities of the

3D reconstruction (Figure 3). Densities corresponding to

the bundles of helices LA/LB and LC/LD/LE of subunit L (Fig-

ure 3, orange) and helices MA/MB and MC/MD/ME of sub-

unit M (Figure 3, purple) were clearly identified in this

way. Furthermore the extramembraneous domains includ-

ing the cytoplasmic domain of the H subunit (Figure 3A,

yellow) as well as the periplasmic loops between the heli-

ces LA and LB and between the helices MA and MB were
Structure 15, 1674–168
also resolved. Collectively, these features reveal that the

RC is uniquely oriented within the LH1 assembly. Indeed,

this is demonstrated by the fact that a density could be as-

signed to the transmembrane helix of the H subunit

(Figure 3A, yellow). Furthermore, it is important to note

that in this orientation, the QB site is facing the gap in the

LH1 assembly.

The H, L, and M subunits of the RC and the a/b pairs of

LH1 being assigned, we then analyzed the densities that

can be attributed to the only subunit not assigned, i.e.,

the PufX subunit. As shown by several biochemical stud-

ies on the core complexes of Rba. sphaeroides and of

Rba. capsulatus, PufX interrupts the LH1 assembly and

interacts with the a and not the b subunit (see, e.g., Akluj-

kar and Beatty [2006] and Parkes-Loach et al. [2004]). In

Rba. veldkampii, within the opening region (Figure 4),

one additional density is found between the a inner ring

and the RC (Figure 4A, purple threshold, red ellipse). At

a lower threshold, other densities are found to be aligned

to the vertical axis of the previous density (Figure 4A,

brown threshold, blue and white ellipses). To verify that

these discontinuous densities were not from the neighbor-

ing a/b subunits, the LH1 densities were manually fitted

with the LH1 assembly of Rps. palustris constituted by

the a/b pairs and the single helix of W subunit. As shown

in Figure 4B, the densities of the LH1 close to the opening

region of the 3D reconstruction overlap with the corre-

sponding a/b pairs of the LH1 of Rps. palustris (green

helices). This confirms that they are constituted by a/b het-

erodimers, while the discontinuous densities correspond

to a different subunit. The overlap is progressively lost
Figure 3. Fitting of the RC of Rba.

sphaeroides in the Cryo-EM Volume of

Rba. veldkampii

(A and B) The RC is uniquely oriented within the

LH1 ring. The H, L, M subunits of the RC are

shown in ribbons: L subunit in orange, M sub-

unit in magenta, and H subunit in yellow. The

bacteriochlorophylls special pair in balls and

sticks is indicated in light brown, and the

quinone QB in blue. Note that the QB site is

adjacent to the gap in the ring.
3, December 2007 ª2007 Elsevier Ltd All rights reserved 1677
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Figure 4. Structural Arrangement of the LH1 Subunits around the Opening Region

Volumes are depicted at two thresholds in purple and in brown. All panels are side views. (A) A high density that can not be assigned to a LH1 or a RC

subunit is found close to the a subunit ring within the gap (red ellipse). At a lower threshold, two additional densities are found along the vertical axis of

the red density (white and blue ellipses). (B) Fitting of the LH1 assembly with the a/b pairs (green helices) and the W subunit (brown helix) of the core

complex of Rps. palustris within the volume of the core complex of Rba. veldkampii. It is important to note that W is only found in Rps. palustris and not

in Rba veldkampii, and the converse is true for PufX. (C) Same as in B but using the PufX NMR structure from Rba. sphaeroides (PDB ID: 2DW3) (purple

helix). Note that PufX fits into the three delineated densities (red, white, and blue ellipses).
for the a/b pairs closest to the opening due to the larger di-

ameter of the core complex of Rba. velkampii (data not

shown). We then manually fitted the PufX subunit of Rba.

sphaeroides recently determined by NMR (Wang et al.,

2007) (Figure 4C, purple helix) that overlaps with the

discontinuous densities (Figure 4C) (see discussion). This

position close to the ring opening and facing the QB site

is also consistent with the reported role of PufX in

mediating quinone diffusion through the LH1 ring (Comay-

ras et al., 2005a, 2005b; Gubellini et al., 2006). Finally, the

location of these densities is close to the position where the

W subunit interrupts the LH1assembly in the core complex

of Rps. palustris (Figure 4B, brown helix, red and white

ellipses).

DISCUSSION

The 3D reconstruction of LH1-RC from Rba. veldkampii

shows several features similar to the core complex of

Rps. palustris, e.g., the number of a/b pairs and the pres-

ence of an opening in the LH1 ring. Since we used a filtered

model of LH1-RC of Rps. palustris as a first reference for

the alignment of the cryo-EM images, we carefully evalu-

ated the final 3D reconstruction to confirm that it was

not biased by the reference. Other references constituted

by a closed LH1 assembly were tested and did not allow

a correct alignment of the images, highlighting the impor-

tance of the LH1 opening in the image alignment process.

Besides, the shape and dimensions of both core com-

plexes are significantly different, with a much less elliptical

and larger core complex of Rba. veldkampii (Figures

1D–1G). This divergence appeared after the second cycle

of refinement, indicating that the refinement had become

independent from the original reference structure. Several

methods to generate initial models have been developed

by different groups to bypass the use of an initial model

built from experimental cryo-images (Baker and Cheng,

1996; Chen et al., 1994; Crowther, 1971; Gelfand and
1678 Structure 15, 1674–1683, December 2007 ª2007 Elsevier
Goncharov, 1989; Leschziner and Nogales, 2006; Ludtke

et al., 1999; Radermacher et al., 1987a, 1987b). Starting

volumes were in many cases synthetic models and for

symmetric objects entire 3D reconstructions strategies

now rely on such synthetic references (Yan et al., 2007).

The use of homologous atomic models, as we performed

here, has already been successfully used (Baker and

Cheng, 1996), and its principle can be compared to the

molecular replacement method.

The LH1 assembly (Figure 2) with a long axis/short axis

ratio Raxis of 1.03, is much less elliptical than the core com-

plexes of Rps. palustris (Raxis of 1.18) (Roszak et al., 2003;

Scheuring et al., 2006), of Rsp. photometricum (Raxis of

1.19) (Scheuring and Sturgis, 2005), or of Rsp. rubrum

(Raxis of 1.19) (Jamieson et al., 2002). The ellipticity of

LH1 has been proposed to be induced by interaction of

the LH1 assembly with the central RC since recirculariza-

tion of the empty LH1 ring has been observed by AFM

upon RC removal from the native membranes (Scheuring

et al., 2003). Here, the LH1 ring appears similar to an

‘‘empty ring’’ or to a LH1 with reduced interactions with

the central RC. The larger size of the core complex with

a diameter of 133 Å compared to 120 Å for Rba. sphaer-

oides (Scheuring et al., 2004b), 115 Å for Rsp. rubrum (Ja-

mieson et al., 2002), or 110 Å for Rsp. photometricum

(Scheuring et al., 2004a), likely decreases the RC and

LH1 interactions. However, the RC is uniquely oriented

within the LH1 as shown by the resolved features of the

RC (e.g., H subunit, Figure 3A) within the 3D reconstruc-

tion. We thus suggest that as shown in the case of Rba.

sphaeroides (Qian et al., 2005; Scheuring et al., 2004b)

and Rba. blasticus (Scheuring et al., 2005b), direct interac-

tions of PufX with the RC are involved in the orientation of

the RC in Rba. veldkampii.

The monomeric state of the core complex of Rba.

veldkampii in detergent likely corresponds to the in vivo

state and did not result from the dissociation of a dimeric

core complex upon purification. The monomeric state
Ltd All rights reserved
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Figure 5. Dimerization of PufX Mediated through the G31XXXG35 Transmembrane Motif

(A) Sequence alignment of PufX from Rba. sphaeroides and Rba. veldkampii. The segment L18-V50 of PufX from Rba. sphaeroides is a helix and con-

tains a putatif G31XXXG35 dimerization motif.

(B) Seven dimers of PufX (in red) were built with the seven NMR conformers of monomeric PufX (PDB ID: 2DW3) and aligned with the dimer of gly-

cophorin GpA (in blue) (see Experimental Procedures). The segments G29-F38 are aligned with the GpA dimer, while deviations result from small bends

of the PufX conformers. The dimers of PufX are depicted with the N termini facing upwards.

(C) A30-F37 segment region of PufX from Rba. sphaeroides with G35 in red mesh.

(D) M30-F37 segment region of PufX from Rba. veldkampii with V35 in red mesh, a substitution that destabilizes the dimer.

(E) Proposed model for the assembly of the subunits of the core complexes from Rhodobacter species. PufX and a and b subunits are depicted in

pink, blue, and green, respectively. (1) In Rba. sphaeroides, following the biosynthesis of PufX, a dimer of PufX is formed, to which LH1 a/b pairs are

assembled, leading to two LH1 rings of opposite curvature. Steric hindrance prevents a complete enclosure of the LH1. (2) In Rba. veldkampii, LH1

a/b pairs are assembled from a single PufX up to the point of LH1 ring closure.
has been found without any detectable dimers after puri-

fication by all procedures reported for the purification of

the dimer of Rba. sphaeroides (Gubellini et al., 2006). Fur-

thermore, the number of the resolved a/b pairs is 15, while

the numbers of a/b pairs in a dissociated dimer would be

12 (Scheuring et al., 2004b), 13 (Abresch et al., 2005), or 14

(Qian et al., 2005) in Rba sphaeroides and 13 in Rba. blas-

ticus (Scheuring et al., 2005b). Finally, when analyzed by

AFM in the native membrane, the topographies of the

core complex of Rba. veldkampii and of Rba. blasticus

appeared strikingly different. In the former case, the LH1

analyzed at medium resolution presented a closed and

circular LH1 (Milhiet et al., 2006). In the latter case, mono-

meric complexes likely resulting from the dissociation of

the dimeric core complexes show an open C-shaped

LH1 (Scheuring et al., 2005b). This suggests that in Rba.

veldkampii, PufX is unable to induce the dimerization of

the core complex.

The presence of PufX in the core complex has been

determined biochemically through its partial sequencing,

while the W subunit was shown to be absent in Rba. veld-

kampii (Gubellini et al., 2006). According to the putative

sequence, PufX is expected to form a single transmem-

brane helix as for PufX of Rba. sphaeroides (Tsukatani

et al., 2004). In the 3D reconstruction, densities that can

be fitted with the structure of PufX from Rba. sphaeroides

solved by NMR (Wang et al., 2007) are found in the open-
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ing and facing the QB site of the RC at the a inner ring level

(Figure 4). This location of PufX is consistent with the role

of PufX in the quinones exchange through the LH1 assem-

bly in Rba. veldkampii (Gubellini et al., 2006) and in Rba.

sphaeroides (Barz et al., 1995; Comayras et al., 2005a).

The transmembrane part of PufX contains a G31XXXG35

motif similar to the G79XXXG83 motif involved in the dimer-

ization of the helical glycophorin GpA. This motif has been

found in several proteins, and the interactions that hold

together the dimer of GpA have been widely analyzed

(for reviews, see Curran and Engelman [2003] and Senes

et al. [2004]). In GpA, V84 also contributes to the stabiliza-

tion of the dimer (Doura and Fleming, 2004) and in PufX,

V36 is present at the equivalent position. We thus evalu-

ated the formation of a dimer of PufX of Rba. sphaeroides

and of Rba. veldkampii according to their sequence and

the NMR structures (Figure 5A), keeping in mind that

the NMR structures of Rba. sphaeroides were solved in

organic solvent in which PufX is monomeric. We were

unable to compute a dimer of PufX starting with the

NMR conformers of PufX that had large bends (PDB ID:

2NRG) (Tunnicliffe et al., 2006). However, seven dimers

of PufX-PufX could be built with the NMR conformers of

PufX modeled as straight helices (PDB ID: 2DW3) (Wang

et al., 2007) (rmsd of 0.6–1.45 Å for the G29-F38 segment

with the GpA dimer) (Figure 5B). These deviations are

small and related to small differences in the curvature of
3, December 2007 ª2007 Elsevier Ltd All rights reserved 1679
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the PufX conformers. It is worth noting that in these dimers

the bulky residues, e.g., W21, F24, W32, F37, and F38, point

outward in the dimer preventing steric hindrance between

helices (data not shown).

In the Rba. veldkampii PufX sequence, the G31XXXV35

motif is present instead of G31XXXG35 in PufX of Rba.

sphaeroides. Substitution of G35 with the bulkier V35 in

the interface region of the dimer results in an overlap of

the side chains that would lead to a steric hindrance, in-

compatible with the formation of a PufX-PufX dimer (Fig-

ures 5C and 5D). Furthermore, the equivalent position in

GpA is G83, and its substitution with several amino acids

has been analyzed in detail by thermodynamical measure-

ments and by the biochemical TOXCAT assay. It has been

demonstrated that the substitution by a valine abolished

the formation of dimer of GpA (Duong et al., 2007; Russ

and Engelman, 2000).

This result suggest that dimerization of the core com-

plexes from Rhodobacter species is mediated by the

transmembrane domains of PufX. This conclusion is

consistent with electron crystallographic studies of the

dimeric core complex of Rba. sphaeroides (Scheuring

et al., 2004b) and with AFM analysis of the dimeric core

complex of Rba. blasticus (Scheuring et al., 2005b). From

these studies, a model of the dimeric core complex has

been proposed with a dimer of PufX present in the LH1

assembly and located at the core complex dimer junction

(Scheuring et al., 2004b, 2005b). Finally, the transmem-

brane segment PufX of Rba. capsulatus is also capable

of self-association, as analyzed by a TOXCAT (Aklujkar

and Beatty, 2006).

A model involving PufX-PufX interaction mediated via

their N termini has also been proposed (Qian et al.,

2005). It is based on the projection map at 8.5 Å resolution

from 2D crystals of LH1-RC from Rba. sphaeroides where

two densities spaced by 90–100 Å were assigned to two

PufX subunits. This distance appears too long for the

unstructured N termini segments (A1-A13) if the structure

of PufX as a straight a helix is considered (Wang et al.,

2007). The NMR structure (PDB ID: 2NRG) reported a large

bend in the Q15-G32 segment of the a helix that is �23 Å

long and brings the N termini of PufX closer. Given a dis-

tance of �3 Å between amino acids in an extended con-

formation, dimerization would be mediated by interaction

between N termini segments of five to seven amino acids.

While this hypothesis can not be ruled out, only two

charged amino acids, K4 and D9, are present in the

sequence of PufX from Rba. sphaeroides, as well as Rba.

veldkampii, that could be involved in intermolecular elec-

trostatic interactions.

A study of the time-dependent assembly of the photo-

synthetic unit has shown that the first subunits present

in the native membrane are the PufX subunit, the H subunit

of the RC, and the subunit IV of the cyt bc1, followed by

the biosynthesis of the LH1 a/b polypeptides (Pugh

et al., 1998). We proposed that following the synthesis of

PufX from Rba. sphaeroides, a dimer of PufX is formed

via the G31XXXG35 motif (Figure 5E, 1). Then, one LH1 a/b

pair is assembled next at each side of the PufX dimer, and
1680 Structure 15, 1674–1683, December 2007 ª2007 Elsevier
this is followed by others until the encircling of the RC. Due

to the 2-fold axis of the PufX dimer and the nonequiva-

lence of the a and b subunits, the assembly of LH1 a/b

pairs leads to the formation of two antenna assemblies

of opposite curvature that keep the a and the b subunits

at their respective inner and the outer ring positions. The

assembly of the LH1 a/b pairs is stopped by the steric

hindrance of the PufX dimer and explains the two gaps

in the dimeric LH1 assembly. In contrast, the stage-wise

assembly of LH1 a/b pairs from the single PufX subunit,

unable to dimerize like in Rba. veldkampii, leads to a single

‘‘gapped’’ monomeric core complex (Figure 5E, 2).

A G101XXXG105 motif has also been reported to be

involved in the dimerization of the e subunit and the oligo-

merization of the mitochondrial ATP synthetase F1FO

complexes. It is worth noting that deletion of the e subunit

or single mutations that destabilize this motif have led to

the loss of the long-range organization of F1FO in cristae

in the mitochondria (Arselin et al., 2003; Bustos and

Velours, 2005). In Rba. sphaeroides, the deletion of pufX

that leads to the formation of a monomeric core complex

also leads to the loss of the supramolecular organization

of the core complexes in the membrane (Bahatyrova

et al., 2004; Frese et al., 2000). The data reported here

suggest that the destabilization of the G31XXXV35 motif

in PufX, e.g., by the substitution of G35 as in Rba. veldkam-

pii, would lead to a random organization of the core com-

plexes from Rhodobacter species in the membrane.

EXPERIMENTAL PROCEDURES

Bacterial Strain, Growth Conditions,

and Membrane Preparation

Rba. veldkampii strain DSM 11550 (from the German Strain Collection

of Microorganisms and Cell Culture, DSMZ, Braunschweig, Germany)

was grown for 72 hr (OD670nm = 4 Abs) under photosynthetic condi-

tions. Chromatophores were prepared as previously described

(Gubellini et al., 2006). Briefly, cells were disrupted by French Press

and centrifuged to remove unbroken cells. The supernatant was ultra-

centrifuged in a Beckman rotor type 45 Ti for 1 hr 30 min at 125,000 3 g

(4�C), resuspended in 50 mM glygly (pH 7.8), EDTA 1 mM, benzoami-

dine 1 mM, and immediately frozen.

Isolation and Purification of the Core Complexes

Membranes were solubilized for 15 min at 4�C in the dark in 3.5%

n-dodecyl-b-D-thiomaltopyranoside (DOTM), and the photosynthetic

complexes were separated on a linear gradient of 11%–33% w/w

sucrose in 50 mM gly-gly (pH 7.6), 0.1% DOTM (Gubellini et al.,

2006). The core complexes were extracted and further purified by

a DEAE column to remove any trace of LH2. Finally, core complexes

were purified by size-exclusion chromatography in 50 mM Gly-Gly

(pH 7.6), 0.1% DOTM. The H, L, and M subunits of the RC, the a and

b subunits from the LH1, and the PufX subunit were separated in

a 17% acrylamide SDS-PAGE and silver stained. It is worth noting

that no additional band was found in the 50–6 kDa region that could

reveal the presence of an additional peptide. The putative band of

PufX was cut from the gel and assigned as PufX after analysis by

MALDI/MS and by ES Q-Tof MS/MS analysis. Concentration of the

purified core complex (final ratio Abs880nm/Abs280nm of 1.9) was calcu-

lated with an extinction coefficient of 3.9 mM�1cm�1 at 884 nm as in

Rb. sphaeroides (Francia et al., 2004).
Ltd All rights reserved
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Electron Microscopy

For cryo-EM analysis, proteins concentrated at 1.5 mg/ml were flash

frozen in liquid ethane. Cryo-images were recorded in a Jeol 2010

FEG microscope operating at 200 kV under low-dose conditions at

a nominal magnification of 45,0003, with a 1.3–3.5 mm defocus range.

Micrographs were digitized with a Nikon Coolscan 8000ED densitom-

eter with a final pixel size of 1.95 Å/pixel. The magnification was cali-

brated with TMV virus.

3D Reconstruction from Cryo-Images

A total of 44,000 particles were semiautomatically picked with Boxer

algorithm of EMAN package. Each particle defocus was estimated

from the defocus of the micrograph, calculated with ctftilt (Mindell

and Grigorieff, 2003), and from its coordinates on the micrograph.

For CTF correction, eight groups of homogeneous defocus were con-

structed leading to a selection of 27,000 particles. The near atomic

structure of core complex of Rps. palustris (PDB ID: 1PYH) was

strongly low-pass filtered at 25 Å, to prevent alignment bias, and

used only once, to provide a rough first estimate of the orientations

corresponding to our images. Thenceforth, Rba veldkampii images

were iteratively aligned on their own, by using the 3D projection-

matching algorithm (Penczek et al., 1994; Radermacher, 1994) with

Wiener filtration (Grigorieff, 1998). Refinements converged to a stable

CTF corrected 3D reconstruction with a resolution estimated at

1/12 Å�1 by the FSC0.5 criterion.

Two other volumes were built and used as a reference volume for 3D

projection matching but failed to produce a stable 3D reconstruction:

a volume of Rps. palustris with a LH1 ring closed with an additional

a/b pair i.e., with a 16 a/b LH1 and filtered at 25 Å as above, and a sec-

ond volume constructed from a synthetic circular ring surrounding the

RC from Rba. sphaeroides filtered at 25 Å.

Classification of the 44,000 cryo-images projection images was

performed through multireference alignment with 92 directions of pro-

jection corresponding to an angular step of 20� of the final 3D recon-

struction volume of Rba. veldkampii. Hence, images matching the

2D projections of the volume were used to compute 92 specific class

averages (Figure 1E). The coherence of the 3D reconstruction was

evaluated by comparison of 2D projections of the volume with the

class averages and by the fitting of the RC of Rba. sphaeroides (PDB

ID: 1PSS) in the EM volume with the SITUS package (Wriggers et al.,

1999). The threshold of the 3D reconstruction depicted in Figure 4 (pur-

ple surface) has been adjusted according to a mass of 280 kDa, i.e., the

molecular weight of the core complex without the nonresolved bacte-

riochlorophylls, and an average density of 0.81 Da. Å�3 with Chimera

software. The brown threshold corresponds to a threshold slightly

above the noise appearing outside the 3D reconstruction and without

additional noise on the RC and LH1 subunits.

The X-mipp package (Sorzano et al., 2004) was used for all 2D-

image processing and SPIDER software (Frank et al., 1996) for multi-

variate statistical analysis, multireference alignment, 3D reconstruc-

tions, and CTF correction.

Structure Modeling

The structure of a dimer of PufX from Rba. sphaeroides was built with

the PyMOL software (DeLano Scientific, LLC) by using NMR structures

of the PufX monomer (PDB ID: 2DW3 [Wang et al., 2007] or PDB ID:

2ITA and PDB ID: 2NRG [Tunnicliffe et al., 2006]) and the NMR struc-

ture of the dimer of glycophorin GpA (PDB ID: 1AFO). For all con-

formers of both NMR structure of PufX (Wang et al., 2007), the back-

bones of the G29-F38 segments that contain the putative G31XXXG35

dimerization motif were selected and structurally aligned with the

backbone of chain A of GlpA. The segments were duplicated and

aligned with chain B of GlpA. No matching was found with the GpA

structure when NMR structures of PufX 2ITA and 2NRG were used,

likely due to the curvature of the structure. However, by using the

seven conformers of the PufX structure PDB ID 2DW3, the backbones

were aligned with rmsd ranging from 1.45 Å (conformer 1) to 0.61 Å

(conformer 5). These alignments were used to generate seven dimers
Structure 15, 1674–168
of PufX that were compared with the dimer of GpA with final rmsd rang-

ing from 1.44Å (dimer of conformers 1) to 0.62 Å (dimer of conformers

5). The substitution of G35 present in PufX of Rba. sphaeroides to V35 of

Rba. veldkampii was analyzed with PyMOL.
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