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Abstract

The notion of sofic equivalence relation was introduced by Gabor Elek and Gabor Lippner. Their technics
employ some graph theory. Here we define this notion in a more operator algebraic context, starting from
Connes’ Embedding Problem, and prove the equivalence of these two definitions. We introduce a notion of
sofic action for an arbitrary group and prove that an amalgamated product of sofic actions over amenable
groups is again sofic. We also prove that an amalgamated product of sofic groups over an amenable subgroup
is again sofic.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Sofic groups were first introduced by Gromov, in the context of symbolic dynamics, motivated
by the notion of surjunctivity (see [14]). A group is surjunctive if for every finite discrete set A

the shift on AG does not contain a proper copy of itself. Gromov showed that every sofic group
has this property. The name “sofic” belongs to B. Weiss and was first used in [25].

Examples of sofic groups include amenable and residually finite groups. Elek and Szabo
showed in [10] that the class of sofic groups is closed under the following constructions: direct
products, subgroups, inverse limits, direct limits, free products, amenable extensions.

Apart from Gottschalk’s Surjunctivity Conjecture (asserting that every group is surjunctive),
there are other conjectures about countable groups known to hold for sofic groups. Elek and
Szabo [8] proved that Kaplansky’s Conjecture is true in the case of sofic groups. For a nice
survey on sofic groups (and the related notion of hyperlinear group) see [18] and [19].

In [7], Elek and Lippner introduced the notion of sofic equivalence relation. They showed that
treeable equivalence relations, as well as equivalence relations arising from Bernoulli actions of
sofic groups are sofic. As in the case of groups, some conjectures about equivalence relations are
true for sofic equivalence relations. Elek and Lippner proved the Measure-Theoretic Determinant
Conjecture of Lück, Sauer and Wegner in the case of sofic equivalence relations. We don’t know
an example of a non-sofic equivalence relation.

The main purpose of this article is to present an operator algebraic motivation for this notion
of soficity. We shall begin with one of the central open problems of operator algebra theory,
namely Connes’ Embedding Problem. It asserts that every finite, separable von Neumann algebra
is embeddable in a tracial ultraproduct of the hyperfinite factor (denoted by Rω). The study of
this conjecture for group algebras led to the notion of hyperlinear group, a notion similar to the
sofic group. In view of this discussion, it is natural to ask when a crossed product algebra embeds
in Rω. This question suggested the definition of sofic action. By investigating its basic properties
we are able to present an operator algebraic definition for sofic equivalence relations.

1.1. Von Neumann algebras

A von Neumann algebra is a ∗-algebra of bounded operators on a Hilbert space that is closed
in the weak operator topology and contains the identity operator. This means B(H) itself is a von
Neumann algebra, as are matrix algebras as the particular case when H is finite dimensional.

A von Neumann algebra is a factor if its center consists only of scalars C · 1. Factors are the
building blocks for all von Neumann algebras, as proven by von Neumann in 1949 (see [6] for a
proof). The decomposition of an algebra into factors is essentially unique.
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At the other end of the spectrum there are the abelian von Neumann algebras. An algebra of
this type is isomorphic to L∞(X) for some measure space (X,μ).

We are interested only in algebras that poses a finite trace, that is a faithful, positive linear
functional Tr : M → C such that Tr(1) = 1 and Tr(xy) = Tr(yx) for any x, y ∈ M . Examples
include matrix algebras and group algebras, L(G) the weak closure in B(L2(G)) of the algebra
generated by λg , the left translation operators. The trace on L(G) is determined by Tr(λe) = 1
and Tr(λg) = 0 for g �= e. A factor with such a trace is called a type II1 factor. The group algebra
L(G) is a factor iff G has infinite conjugacy classes (ICC). We shall later see how to associate
such an algebra to an action or an equivalence relation.

A von Neumann algebra M is hyperfinite if it contains an increasing chain of finite dimen-
sional algebras whose union is weakly dense in M . Murray and von Neumann proved that up
to isomorphism there exists only one hyperfinite type II1 factor. We shall denote this factor
by R. In his classic paper [3], Connes proved that the group algebra L(G) is hyperfinite iff G is
amenable. S

fin∞ is an example of an ICC amenable group, so R = L(S
fin∞):

S
fin∞ = {

f : N → N
∣∣ f bijective and ∃k ∈ N such that f (n) = n ∀n > k

}
.

1.2. Ultraproducts and Connes’ Embedding Problem

In order to state Connes’ Embedding Problem we need to understand what a tracial ultraprod-
uct is. In a way the first example of an ultraproduct is the construction of the real numbers by
Cauchy sequences. The real numbers are the set of Cauchy sequences of rational numbers factor
by those sequences that converge to zero. This definition is not suitable for generalizations, as in
general is difficult or even impossible to define the notion of Cauchy sequence. We bypass this by
using an ultrafilter. Let ω be a free ultrafilter on N. With this new technical tool the real numbers
are the set of bounded sequences of rational numbers factor by those sequences convergent to
zero w.r.t. ω. We now generalize this to metric groups.

Example 1.1. Let (Gi, di)i∈N be a sequence of groups (not necessary countable) with a biinvari-
ant metric (di(x, y) = di(zx, zy) = di(xz, yz) for all x, y, z ∈ Gi ). Define:

G =
{
x ∈ ΠiGi : sup

i

di(xi, e) < ∞
}
;

Nω =
{
x ∈ G: lim

i→ω
di(xi, e) = 0

}
.

Due to the biinvariance property, Nω is a normal subgroup of G (biinvariance is essential for this
to hold, see [19], p. 9, Example 3.2). We define now the ultraproduct of metric groups:

Πi→ω(Gi, di) = G/Nω

and the distance d(x, y) = limi→ω d(xi, yi). An easy diagonal argument will show that
(Πi→ω(Gi, di), d) is complete.

Example 1.2. Let (Ai)i∈N a sequence of Banach spaces, or Banach algebras or C∗-algebras.
Using the metric induced by the norm, we can construct Πi→ωAi exactly as in the previous
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example. Verifications that the ultraproduct is a Banach space/Banach algebra/C∗-algebra are
straightforward, with the exception of completeness that is a diagonal argument.

Example 1.3. For von Neumann algebras things are different and a construction is possible only
for finite algebras where we have a trace. Let (M,Tr) be a von Neumann algebra with a finite
trace. Besides the operatorial norm, M posses a Hilbert–Schmidt norm: ‖x‖2 = Tr(x∗x)1/2. For
a matrix (aij ) ∈ Mn(C) this is ‖(aij )‖2 = ( 1

n

∑
ij |aij |2)1/2. When we construct the ultraproduct

we have to take into consideration this norm.
Let (Mi,Tr) a sequence of finite von Neumann algebras with normalized trace. Define:

l∞(N,Mi) =
{
x ∈ ΠiMi : sup

i

‖xi‖ < ∞
}
,

Nω =
{
x ∈ l∞(N,Mi): lim

i→ω
‖xi‖2 = 0

}
, and

Πi→ωMi = l∞(N,Mi)/Nω.

The ultraproduct Πi→ωMi is a von Neumann algebra, though the proof is a little involved. If
xi ∈ Mi we shall denote by Πi→ωxi the corresponding element in the ultraproduct.

Note that this algebra has a faithful trace, namely Tr(x) = limi→ω TrMi
(xi), where x =

Πi→ωxi . If Mi = M for all i we shall denote Πi→ωMi by Mω (this is called an ultrapower
of M , its isomorphism class may depend on ω).

The following well-know proposition is a very useful property of ultraproducts.

Proposition 1.4. Inside the ultraproduct algebra we have: U (Πi→ωMi) = Πi→ω U (Mi). As
group of unitaries (Πi→ω U (Mi),‖ · ‖2) = Πi→ω(U (Mi),‖ · ‖2) (ultraproduct of metric groups
as in Example 1.1).

Proof. As any sequence of unitaries is bounded, the second equality of the proposition is de-
duced from definitions. Inclusion Πi→ω U (Mi) ⊂ U (Πi→ωMi) is trivial. Let now u = Πi→ωui ∈
U (Πi→ωMi). Because Mi is a von Neumann algebra we have the polar decomposition ui =
vi |ui |, with vi a partial isometry. Because Mi is a finite von Neumann algebra vi can be extended
to a unitary, denoted also by vi , such that we still have ui = vi |ui |. Now:

(
Πi→ω|ui |

)2 = Πi→ωu∗
i ui = (Πi→ωui)

∗(Πi→ωui) = 1,

so Πi→ω|ui | is a positive element and its square is 1. We are in a C∗-algebra so we can deduce
that Πi→ω|ui | = 1. Then Πi→ωui = Πi→ωvi ∈ Πi→ω U (Mi). �

This proposition implies that U (Πi→ωMi) is closed in the Hilbert–Schmidt norm (as any
ultraproduct of metric group is complete). Together with some extra machinery we can use this
property to show that Πi→ωMi is indeed a von Neumann algebra.

In his famous article [3], A. Connes stated the following conjecture. Many definitions and
results in this article are motivated by this open problem.

Question 1.5 (CEP [1976]). Do all separable type II1 factors admit a trace preserving embedding
in Rω (ultrapower of the hyperfinite II1-factor)?
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1.3. A trick for diagonal arguments

This article contains plenty of diagonal arguments. Some of this arguments can be bypassed
using product ultrafilters. These ideas are from [1].

Definition 1.6. If ω,φ are ultrafilters on N, then define the product ultrafilter ω ⊗ φ on N × N

by:

F ∈ ω ⊗ φ ⇔ {
i ∈ N:

{
j ∈ N: (i, j) ∈ F

} ∈ φ
} ∈ ω.

Some computations will show ω⊗φ is indeed an ultrafilter. Because N is in bijection with N
2,

ω ⊗ φ can be still considered as an ultrafilter on N. The following proposition can be easily
checked.

Proposition 1.7. If {xj
i }(i,j)∈N2 is a bounded sequence of real numbers then:

lim
i→ω

(
lim
j→φ

x
j
i

)
= lim

(i,j)→ω⊗φ
x

j
i .

A diagonal argument, in general, means selecting in a clever way a subset of N × N. The idea
of this section is that the product ultrafilter will do the job for us. This is mainly because of its
properties contained in previous proposition. A relevant consequence for this proposition is the
following result.

Proposition 1.8. (See Proposition 2.1 from [1].) If {Mj
i }(i,j)∈N2 is a sequence of finite von Neu-

mann algebras then:

Πi→ω

(
Πj→φM

j
i

) = Π(i,j)→ω⊗φM
j
i .

Let us now present an example where a diagonal argument can be bypassed.

Proposition 1.9. Any type II1 factor embedding in Rω also embeds in an ultraproduct of matrix
algebras.

Proof. Approximating the hyperfinite factor by matrix algebras we can easily see that R ⊂
Πk→ωMnk

. The proof can be finished using this embedding, the initial embedding M ⊂ Rω and
a diagonal argument. Instead we can write: Rω ⊂ (Πk→ωMnk

)ω  Π(i,k)→ω⊗ωMm(i,k)
, where

m(i,k) = nk . �
This proposition allows us to work with ultraproducts of matrix algebras instead of Rω .

1.4. Hyperlinear groups

By studying Connes’ Embedding Problem for group algebras, we reach the following defini-
tion.
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Definition 1.10 (Rădulescu, 2000). A countable group is called hyperlinear if there exists a trace
preserving embedding of L(G) in Rω .

Needless to say that we don’t know a group that is non-hyperlinear, this will solve in negative
Connes’ Embedding Problem. By using 1.4, 1.9 and the definition of group algebra, we get the
following description:

Proposition 1.11. A group G is hyperlinear iff there exists a sequence {nk}k ⊂ N, limk nk = ∞
and a group morphism Θ : G → Πk→ω U (nk) such that Tr(Θ(g)) = 0 for any g �= e.

The numbers nk don’t play a special role here. If such a morphism exists for a sequence, it
will exists for any other sequence {mk} as long as limk mk = ∞. The following theorem is due
to Florin Rădulescu (see [22], Proposition 2.5) and an earlier work of Eberhard Kirchberg. It
contains a very useful tool called amplification, that will be used many times in this article.

Theorem 1.12. A group G is hyperlinear iff there exists an injective group morphism Θ : G →
Πk→ω U (nk) (we don’t need to care about the trace).

Proof. We shall prove this result when the center of the group is trivial (ICC groups have this
property). The proof in general case is not difficult, but it is a little technical and uninteresting to
our discussion.

Let Θ : G → Πk→ω U (nk) be an injective morphism. Let Θ(g) = Πk→ωuk
g with uk

g ∈ U (nk).
If |Tr(Θ(g))| = 1 then ‖Θ(g) − λ‖2 = 0, where λ = Tr(Θ(g)). This implies Θ(g) = λ, so Θ(g)

commutes with Θ(h) for any h ∈ G. Because Θ is injective it follows that g is in the center of G,
so by our assumption g = e. In the end we have |Tr(Θ(g))| < 1 for any g �= e.

Construct Θ(m) = Θ ⊗ Θ ⊗ · · · ⊗ Θ (m times tensor product), i.e. Θ(m)(g) = Πk→ωuk
g ⊗

uk
g ⊗ · · · ⊗ uk

g . This is a representation of G on Πk→ω U (nm
k ). Then Tr(Θ(m)(g)) = Tr(Θ(g))m.

This means that Tr(Θ(m)(g)) →m→∞ 0 for g �= e. A classic diagonal argument will finish the
proof.

Alternatively, let us use the methods presented in Section 1.3. The product ω⊗ω is an ultrafil-
ter on N × N. Construct Φ : G → Π(m,k)→ω⊗ω U (nm

k ) by Φ(g) = Πm→ωΘ(m)(g). Then by 1.7,
Tr(Φ(g)) = limm→ω Tr(Θ(m)(g)) = 0. �
1.5. Group actions and crossed product

Apart from group algebras, finite von Neumann algebras arise naturally from group actions
on measure spaces. We shall work only with probability measure preserving actions. Let (X,μ)

be a standard probability space and let α : G → Aut(X,μ) be a measure preserving action. The
algebraic crossed product is defined by:

L∞(X) �
alg
α G =

{ ∑
finite

agug: ag ∈ L∞(X), g ∈ G

}
.

The ∗-algebraic structure is defined by:

uguh = ugh, ugau∗
g = α(g)(a), u∗

g = ug−1,
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and multiplication in L∞(X) is preserved inside the crossed product. The trace is:

Tr
(∑

agug

)
=

∫
X

ae dμ.

The von Neumann algebra L∞(X) �α G will be the weak closure of L∞(X) �
alg
α G in the GNS

representation of (L∞(X) �
alg
α G,Tr).

A crossed product is a copy of an abelian von Neumann algebra L∞(X) together with a set
of unitaries {ug: g ∈ G} that act on the abelian algebra in the manner prescribed by the action α.
This algebra is a factor iff the action is ergodic. It is a hyperlinear algebra iff G is amenable as
shown by Connes in [3].

We shall denote by U (M) the group of unitaries in the algebra M . For a von Neumann algebra
inclusion A ⊂ M define the normalizer NM(A):

NM(A) = {
u ∈ U (M): uAu∗ = A

}
.

By the definition of the crossed product {ug: g ∈ G} is included in the normalizer of L∞(X) in
L∞(X) �α G. The following elementary example is crucial to our discussion.

Example 1.13. Let Mn = Mn(C) be a matrix algebra. We shall denote by Dn ⊂ Mn the subalge-
bra of diagonal matrices and by Pn ⊂ Mn the subgroup of permutation matrices. Then:

NMn(Dn) = U (Dn) · Pn.

Notation 1.14. Given an ultraproduct Πk→ωMnk
(C) we shall denote by Πk→ωDnk

and
Πk→ωPnk

the corresponding subsets.

By a theorem of Sorin Popa (see [20], Proposition 4.3) Πk→ωDnk
is a maximal abelian non-

separable subalgebra of Πk→ωMnk
(C). It can be proven that its normalizer is the ultraproduct of

normalizers:

N (Πk→ωDnk
) = U (Πk→ωDnk

) · Πk→ωPnk
. (1)

2. Sofic objects

We now begin the study of Connes’ Embedding Problem for crossed product algebras. We can
easily see that if a crossed product algebra L∞(X) �α G embeds in an ultraproduct Πk→ωMnk

then we can construct an embedding Θ : L∞(X) �α G → Πk→ωMnk
such that Θ(L∞(X)) ⊂

Πk→ωDnk
. In fact this is a property of hyperfinite algebras.

Proposition 2.1. Let N be a hyperfinite algebra and let Θ1,Θ2 : N → Πk→ωMnk
be two em-

beddings. Then there exists a unitary u ∈ U (Πk→ωMnk
) such that Θ2 = Adu ◦ Θ1.

Proof (Sketch). Let N = ⋃
i Ni

w , where Ni are finite dimensional subalgebras. Find a unitary
ui ∈ U (Πk→ωMnk

) such that Θ2(x) = uiΘ1(x)u∗
i for any x ∈ Ni . By a diagonal argument con-

struct u such that Θ2(x) = uΘ1(x)u∗, for any x ∈ ⋃
Ni . �
i
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In [15], Kenley Jung proved the converse of this result, if any two embeddings in Rω of a von
Neumann algebra N are conjugate by a unitary then N is hyperfinite.

Now we come back to our problem of constructing an embedding Θ of L∞(X) �α G in
Πk→ωMnk

. We can safely assume that Θ(L∞(X)) ⊂ Πk→ωDnk
. It is very difficult to find uni-

taries in the ultraproduct that are in the normalizer of Θ(L∞(X)). Inspired by equality (1) we
shall assume that Θ(ug) ∈ Πk→ωPnk

for any g ∈ G. This is primarily a restriction on the group.

2.1. Sofic groups

Definition 2.2. A group G is called sofic if there exists a sequence {nk}k ⊂ N, limk nk = ∞ and
a group morphism Θ : G → Πk→ωPnk

such that Tr(Θ(g)) = 0 for any g �= e.

The following theorem due to Elek and Szabo [9], is similar to 1.12.

Theorem 2.3. A group G is sofic iff there exists an injective group morphism Θ : G → Πk→ωPnk
.

Any sofic group is hyperlinear, while the converse implication is unknown. It is important
to note that, in the case of permutations, the Hilbert–Schmidt distance used to construct the
ultraproduct is related to the normalized Hamming distance.

Definition 2.4. For σ, τ ∈ Sn define the normalized Hamming distance by:

dhamm(σ, τ ) = 1

n
Card

{
i: σ(i) �= τ(i)

}
.

The following definition is sometimes easier to check for a particular example.

Proposition 2.5. A group G is sofic iff for every finite F ⊂ G and every ε > 0, there exists n ∈ N

and θ : F → Sn such that:

• if g,h,gh ∈ F , dhamm(Θ(g)Θ(h),Θ(gh)) < ε;
• if g ∈ F , g �= e, dhamm(Θ(g), Id) > 1/2.

The value 1/2 from the definition can be replaced by any real number in (0,1). With this defi-
nition we can easily see that residual finite groups are sofic. This includes free groups. Amenable
groups are sofic (use a Folner sequence to construct permutations). As we said in the introduction
the class of sofic groups is closed under the following constructions: direct products, subgroups,
inverse limits, direct limits, free products, amenable extensions (see [10]). In 2008 A. Thom
[24] constructed a hyperlinear group not know to be sofic at the moment. His motivation was
to provide an example of a sofic group that is not initially subamenable (every finite part of the
multiplication table can be recovered inside an amenable group). In 2009 Cornulier presented
in [5] an example of such a sofic group. Thompson groups F , T and V are not known to be
hyperlinear.

2.2. Definitions of hyperlinear and sofic actions

We now introduce a notion of hyperlinearity and soficity for actions.
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Definition 2.6. An action α of a countable group G on a standard probability space (X,μ) is
called hyperlinear if the crossed product L∞(X) �α G admits a trace preserving embedding
in Rω.

Definition 2.7. An action α of a countable group G on a standard probability space (X,μ) is
called sofic if there exists a trace preserving embedding Θ : L∞(X) �α G → Πk→ωMnk

(C)

such that Θ(L∞(X)) ⊂ Πk→ωDnk
(C) and Θ(ug) ∈ Πk→ωPnk

(C) for all g ∈ G.

The property of hyperlinear/sofic action is invariant under orbit equivalence. This is actually
a property of the crossed product. Recall that two free actions α : G → Aut(X,μ) and β : H →
Aut(X,μ) on the same measure space are orbit equivalent if α(G)(x) = β(H)(x) for almost
all x ∈ X.

Theorem 2.8. (See Singer [23].) Let α : G → Aut(X,μ) and β : H → Aut(X,μ) be two free
actions on the same probability space. Then α and β are orbit equivalent iff there exists a von
Neumann algebra isomorphism Ψ : L∞(X) �α G → L∞(X) �β H such that Ψ is the identity
on L∞(X).

Proof (Sketch of the direct implication). Let {ug: g ∈ G} and {vh: h ∈ H } be the unitaries in
the crossed product that implement the actions α and β respectively. Let ph

g ∈ L∞(X) be the
projection onto the set {x ∈ X: α(g)(x) = β(h)(x)}. Because of the orbit equivalence we deduce
that

∑
g ph

g = 1 ∀h and
∑

h ph
g = 1 ∀g. Define now Ψ : L∞(X) �α G → L∞(X) �β H by

Ψ (a) = a ∀a ∈ L∞(X);
Ψ (ug) =

∑
h

ph
gvh ∀g ∈ G.

Notice that Ψ (ph
gug) = ph

gvh so Ψ (
∑

h ph
gug) = vh. It follows that Ψ is an isomorphism. �

The next theorem hints very clearly that being sofic is a property of the orbit equivalence
relation, rather than of the action itself.

Theorem 2.9. Let α and β be two free orbit equivalent actions. If α is hyperlinear (sofic) then
also β is hyperlinear (sofic).

Proof. Let Ψ : L∞(X) �α G → L∞(X) �β H be the isomorphism constructed in the previous
proposition. The existence of such an isomorphism is enough to deduce the hyperlinear part of
the theorem. Consider now Θ : L∞(X)�β H → Πk→ωMnk

an embedding like in Definition 2.7.
We shall prove that Θ ◦ Ψ is the required embedding for L∞(X) �α G.

Because Ψ equals identity on L∞(X) we deduce that Θ ◦Ψ (L∞(X)) ⊂ Πk→ωDnk
. Using the

same notations as in the previous theorem we have Θ ◦Ψ (ug) = ∑
h Θ(ph

g)Θ(vh). By hypothesis
Θ(vh) ∈ Πk→ωPnk

and Θ(ph
g) is a projection in Πk→ωDnk

. By the next lemma, Θ ◦ Ψ (ug) ∈
Πk→ωPnk

and we are done. �
The following lemma is not difficult, but it is essential to our discussion. We shall use this

lemma many times. It provides elements in Πk→ωPnk
which are needed if we want to prove the

soficity of a certain object.
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Lemma 2.10. Let {ei | i ∈ N} be projections in Πk→ωDnk
such that

∑
i ei = 1. Let {ui | i ∈ N}

be unitary elements in Πk→ωPnk
such that v = ∑

i eiui is a unitary. Then v ∈ Πk→ωPnk
.

Proof. We should first visualize this result inside the algebra Mn(C). Let {ei | i ∈ N} be pro-
jections in Dn such that

∑
i ei = 1 (only a finite number of projections will be nonzero in this

case). Let {ui | i ∈ N} ⊂ Pn such that v = ∑
i eiui is a unitary. The matrix v has only 0 and

1 entries and exactly one entry of 1 on each row. On each column there has to be a nonzero
entry, otherwise v cannot be a unitary. This is enough to deduce that v is a permutation ma-
trix.

Now back to the general case. Using the equation
∑

i ei = 1 we can construct projections
ek
i ∈ Dnk

such that:

1. ei = Πk→ωek
i ;

2.
∑

i e
k
i = 1nk

.

By hypothesis we have ui = Πk→ωuk
i where uk

i ∈ Pnk
. If vk = ∑

i e
k
i u

k
i then v = Πk→ωvk , but

vk are not necessary unitary matrices. However vk is still a matrix only with 0 and 1 entries and
exactly one entry of 1 on each row.

In order to prove that v ∈ Πk→ωPnk
we shall construct wk ∈ Pnk

such that limk→ω ‖vk −
wk‖2 = 0. For this we need to estimate the number of columns in vk having only 0 entries.
Denote this number by rk . Then vk∗vk is a diagonal matrix having rk entries of 0 on the diagonal.
This implies:

∥∥vk∗vk − Id
∥∥2

2 � rk

nk

.

Because Πk→ωvk∗vk = 1 we have rk/nk →k→ω 0. This relation represents the upper bound of
rk that we need. We now construct wk as follows. The matrix vk has nk − rk columns with
at least one nonzero entry. For each such column j chose a row i such that vk(i, j) = 1. Let
wk(i, j) = 1. In this way we have nk − rk nonzero entries in wk , all of them distributed on
different rows and different columns. Choose a bijection between the remaining rk rows and rk
columns and complete wk to a permutation matrix. Then:

∥∥vk − wk
∥∥2

2 = 2rk

nk

.

Combined with rk/nk →k→ω 0 we get v = Πk→ωwk . This will prove the lemma. �
Theorem 2.9 obliges us to define the notion of sofic equivalence relation. Definition 2.7 to-

gether with this theorem provides a well-define notion of soficity for equivalence relations that
are generated by a free action. Unfortunately not all equivalence relations have this property. In
order to provide a definition for sofic equivalence relation we need a different construction than
crossed product. We need a construction that associates a von Neumann algebra to an equivalence
relation. This is the topic of the next section.
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2.3. The Feldman–Moore construction

Let us recall some things from [12]. We shall ignore the cocycle that is needed for the
Feldman–Moore construction in its full generality. Let (X, B,μ) be a probability space as usual.
Let E ⊂ X2 be an equivalence relation on X such that E ∈ B × B. We shall work only with equiv-
alence relations that are countable, i.e. every equivalence class is countable, and μ-invariant.
Before we recall what this means we introduce some notation.

Denote by [E] the full group of the relation E, i.e. set of all isomorphism with graph in E and
by [[E]] set of all partial isomorphism with graph in E:

[E] = {θ :X → X: θ bijection, graph θ ⊂ E};[[E]] = {φ :A → B: A,B ⊂ X, φ bijection, graphφ ⊂ E}.

If X is reducible to a finite space of cardinality n and E = X2 then [E] is just the symmetric
group Sn.

Definition 2.11. Let E an equivalence relation on (X,μ). Then E is called μ-invariant if for any
φ : A → B , φ ∈ [[E]] we have μ(A) = μ(B).

Now we can construct the algebra M(E) associated to an equivalence relation.

Definition 2.12. A measurable function a : E → C is called finite if a is bounded and there is a
natural number n such that:

Card
({

x: a(x, y) �= 0
})

� n ∀y ∈ X;
Card

({
y: a(x, y) �= 0

})
� n ∀x ∈ X.

A finite function (matrix) is a bounded function with finite number of nonzero entries on
each line and column (having also a global margin). We shall multiply this functions as general
matrices and the definition of finite function guarantees we get a ∗-algebra. Define:

M0(E) = {a :E → C: a finite function};
a · b(x, z) =

∑
y

a(x, y)b(y, z);

a∗(x, y) = a(y, x).

It is easy to check that this is indeed a ∗-algebra. The trace is defined in a similar way as in
the case of matrices:

Tr(a) =
∫
X

a(x, x) dμ.

The algebra M(E) will be the weak closure of M0(E) in the GNS representation of
(M0(E),Tr). By general theory of von Neumann algebras, using the cyclic separating vector of
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the GNS representation, we can still see elements of M(E) as measurable functions a : E → C.
This algebra is a factor iff E is an ergodic equivalence relation. By a famous theorem of Connes,
Feldman, and Weiss [4], M(E) is hyperlinear iff E is a hyperfinite equivalence relation, that is
up to a set of measure 0, E is the union of an ascending sequence of finite equivalence relations.

Let � = {(x, x): x ∈ X} be the diagonal in E. Define the subalgebra of diagonal matrices:

A = {
a ∈ M(E): supp(a) ⊂ �

}
.

We shall denote by δ
y
x the Kronecker delta function, i.e. δ

y
x = 1 iff x = y; otherwise δ

y
x = 0.

Notation χA stands for the characteristic function of A.

Definition 2.13. For θ ∈ [E] define uθ ∈ M(E) by: uθ (x, y) = δ
θ(y)
x . For φ ∈ [[E]], define

vφ(x, y) = χdom(φ)(y) · δφ(y)
x .

It is not hard to see that uθ ∈ N (A) for any θ ∈ [E]. Instead vφ is a partial isometry that
belongs to a set called the normalizing pseudogroup:

G NM(A) = {
v ∈ M partial isometry: vv∗, v∗v ∈ A, vAv∗ = vv∗A

}
.

Unitaries in G NM(A) are actually elements in NM(A), the same way as an element of [[E]]
defined on all X is an element of [E]. More general, any element v ∈ G NM(A) is of the form
p · u, where p is a projection in A and u ∈ NM(A).

Inside a matrix algebra we have NMn(Dn) = U (Dn) · Pn. Something similar is true for the
Feldman–Moore construction. Any u ∈ NM(E)(A) is of the form a · uθ , where a ∈ U (A) and
θ ∈ [E]. Also uθuψ = uθ◦ψ for θ,ψ ∈ [E]. This provides a group isomorphism between the
Weyl group N (A)/U (A) and [E]. This is the analog of the isomorphism between the group of
permutation matrices and the symmetric group.

The algebra A is maximal abelian in M(E). Also N (A)′′ = M(E). This properties make A a
Cartan subalgebra of M(E). We shall call A ⊂ M(E) a Cartan pair.

Motivation of Feldman–Moore construction was the invariance of crossed product up to orbit
equivalent actions. The next example shows this is indeed the right construction.

Example 2.14. Let α : G → Aut(X,μ) a free action. Denote by Eα the orbit equivalence relation
generated by α on X. Then:

L∞(X) �α G  M(Eα).

2.4. Definition of sofic equivalence relations

The notion of sofic equivalence relation was introduced by Gabor Elek and Gabor Lippner
(see [7]). We shall provide a different definition here and prove in Section 3.4 the equivalence of
the two definitions.

Definition 2.15. An equivalence relation E is called sofic if there is an embedding of M(E) in
some Πk→ωMn such that A ⊂ Πk→ωDn and N (A) ⊂ U (A) · Πk→ωPn .
k k k
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This has the advantage of being a compact definition, but in practice we shall need the follow-
ing type of embeddings.

Definition 2.16. Let E an equivalence relation and A ⊂ M(E) the Cartan pair associated to E.
We call an embedding Θ : M(E) → Πk→ωMnk

sofic if Θ(A) ⊂ Πk→ωDnk
and Θ(uθ ) ⊂

Πk→ωPnk
for any θ ∈ [E].

Proposition 2.17. An equivalence relation E is a sofic if and only if its Cartan pair A ⊂ M(E)

admits a sofic embedding.

Proof. Let Θ : M(E)→Πk→ωMnk
an embedding such that Θ(A) ⊂ Πk→ωDnk

and Θ(N (A))⊂
Θ(U (A)) · Πk→ωPnk

.
For ϕ ∈ [E] we have a unique decomposition Θ(uϕ) = Θ(fϕ)vϕ , where fϕ ∈ U (A) and vϕ ∈

Πk→ωPnk
. Then:

Θ
(
fψ ◦ ϕ−1) = Θ(uϕ)Θ(fψ)Θ

(
u∗

ϕ

) = Θ(fϕ)
(
vϕΘ(fψ)v∗

ϕ

)
Θ

(
f ∗

ϕ

) = vϕΘ(fψ)v∗
ϕ.

Because of the uniqueness of the decomposition of Θ(uϕψ) we have fϕψ = fϕ(fψ ◦ ϕ−1). If χϕ

denotes the projection with support {x ∈ X: ϕ(x) = x}, one has χϕuϕ = χϕ and hence:

Θ
(
f ∗

ϕ χϕ

) = Θ
(
f ∗

ϕ χϕuϕ

) = Θ(χϕ)vϕ.

The conditional expectation of vϕ on Πk→ωDnk
is a projection. Thus, taking the conditional

expectation on Θ(A) it follows that f ∗
ϕ χϕ is positive and hence equal to χϕ . So, for all ϕ ∈ [E]

we have fϕχϕ = χϕ . Altogether, it follows that the formula:

α(uϕ) = f ∗
ϕ uϕ for all ϕ ∈ [E],

α(a) = a for all a ∈ A

provides a well-defined automorphism of M(E). The composition of Θ and α is the required
sofic embedding of M(E). �

As a consequence of this proposition and Lemma 2.10, we have the following result.

Proposition 2.18. Let α be a free action. Then Eα is a sofic equivalence relation if and only if α

is a sofic action.

Observation 2.19. Let Θ = Πk→ωΘk be a sofic embedding of some von Neumann algebra M

in Πk→ωMnk
. Consider also {rk}k a sequence of natural numbers. Then Θ ⊗ 1 = Πk→ωΘk ⊗ 1rk

is again a sofic embedding of M in Πk→ωMnk
⊗ Mrk = Πk→ωMnkrk .

This trick will be used when we need to embed two algebras in the same Πk→ωMnk
(that is

the same matrix dimension at each step).
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3. Results

3.1. Sofic embeddings of hyperfinite Cartan pairs

The goal of this section is to prove that if we have a Cartan pair A ⊂ M and M is hyperfinite
then any two sofic embeddings of A ⊂ M are conjugate by a permutation. The starting point for
the proof is the sketch from 2.1. However we first need to conjugate embeddings in Πk→ωDnk

by permutations (Lemma 3.3).

Lemma 3.1. Let e, f be two projections in Πk→ωDnk
such that Tr(e) = Tr(f ). Then there is a

unitary u ∈ Πk→ωPnk
such that f = ueu∗.

Proof. Let e = Πk→ωek and f = Πk→ωf k such that ek and f k are projections in Dnk
. As-

sume ek has tk entries of 1 and f k has sk entries of 1, so limk→ω tk/nk = Tr(e) = Tr(f ) =
limk→ω sk/nk . Choose pk

1 ∈ Pnk
such that pk

1e
kpk∗

1 has the first tk entries of 1 on the diago-
nal. In the same way choose pk

2 such that pk
2f

kpk∗
2 has the first sk entries of 1 on the diagonal.

Define pi = Πk→ωpk
i for i = 1,2. Our constructions guarantee that Tr(|p1ep

∗
1 − p2fp∗

2 |) =
limk→ω |tk − sk|/nk = 0. Then p1ep

∗
1 = p2fp∗

2 so define u = p∗
2p1. �

Lemma 3.2. Let {ei}mi=1 and {fi}mi=1 be two sequences of projections in Πk→ωDnk
such that∑m

i=1 ei = 1 = ∑m
i=1 fi and Tr(ei) = Tr(fi) for each i = 1, . . . ,m. Then there is a unitary u ∈

Πk→ωPnk
such that fi = ueiu

∗ for all i = 1, . . . ,m.

Proof. Apply the previous lemma for each i = 1, . . . ,m to get elements ui ∈ Πk→ωPnk
such

that uieiu
∗
i = fi . Define u = ∑m

i=1 uiei . Then by Lemma 2.10 we know that u ∈ Πk→ωPnk
.

Also ueiu
∗ = uieiu

∗
i = fi . �

Proposition 3.3. Let Θ1,Θ2 be two embeddings of L∞(X) in Πk→ωDnk
. Then there exists a

unitary u ∈ Πk→ωPnk
such that Θ2(a) = uΘ1(a)u∗ for every a ∈ L∞(X).

Proof. Let Am be an increasing sequence of commutative finite dimensional subalgebras such
that L∞(X) = (

⋃
m Am)′′. By the previous lemma there exists a unitary um ∈ Πk→ωPnk

such
that Θ2(a) = Adum ◦ Θ1(a) for a ∈ Am. We shall construct u ∈ Πk→ωPnk

using a diagonal
argument. Let um = Πk→ωuk

m with uk
m ∈ Pnk

and Θi(a) = Πk→ωΘi(a)k with Θi(a)k ∈ Dnk
.

Inductively choose smaller Fm ∈ ω, m ∈ N such that ‖uk
mΘ1(a)kuk∗

m − Θ2(a)k‖2 < 1/m for
any a ∈ (Am)1, k ∈ Fm. Define uk = uk

m for k ∈ Fm \ Fm+1 and set u = Πk→ωuk . �
We are now ready to prove an analog of 2.1 for sofic embeddings.

Proposition 3.4. Let E be a hyperfinite equivalence relation and A ⊂ M(E) the Cartan pair
associated to E. Let Θ1,Θ2 two sofic embeddings of M(E) in Πk→ωMnk

. Then there exists a
unitary u ∈ Πk→ωPnk

such that Θ2(x) = uΘ1(x)u∗ for every x ∈ M(E).

Proof. The algebra M(E) is hyperlinear. If we write M(E) = ⋃
m Nm

w as in the proof of 2.1,
we have no control on the algebras Nm and we cannot use the hypothesis of sofic embedding.
Instead we have to use the properties of the equivalence relation. The hyperfinite property of
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M(E) implies that E is a hyperfinite equivalence relation. So, up to a set of measure 0, E is the
union of an ascending sequence of finite equivalence relations.

Using the previous proposition we can assume Θ1 and Θ2 coincide on A. We shall first prove
this result in case of ergodic equivalence relations, i.e. M(E) is the hyperfinite factor. By the
definition of hyperfinite equivalence relation and Feldman–Moore construction (see also proof
of 4.1 from [21]) there exists an increasing sequence of matrix algebras {Nm}m�1 of M(E) each
of them with a set of matrix units {em

ij } such that:

1. M(E) is the weak closure of
⋃

m Nm;
2. em

ii ∈ A and
∑

i e
m
ii = 1;

3. em
ij are of the form vθ with θ ∈ [[E]];

4. every e
p
rs , for p � m, is the sum of some em

ij .

Elements vθ are of the form e · uφ , where e is a projection in A and φ ∈ [E]. Combined with Θl

is sofic, we get that Θl(e
m
ij ) is an ultraproduct of permutations cut with a projection in Πk→ωDnk

.
Define

pm =
∑
j

Θ2
(
em
j1

)
Θ1

(
em

1j

)
.

Then

pmp∗
m =

∑
i,j

Θ2
(
em
i1

)
Θ1

(
em

1i

)
Θ1

(
em
j1

)
Θ2

(
em

1j

)

=
∑
j

Θ2
(
em
j1

)
Θ1

(
em

11

)
Θ2

(
em

1j

) =
∑
j

Θ2
(
em
jj

) = 1,

so pm is a unitary. Using 2.10 we have pm ∈ Πk→ωPnk
. Moreover:

pmΘ1
(
em
rs

)
p∗

m =
∑
i,j

Θ2
(
em
i1

)
Θ1

(
em

1i

)
Θ1

(
em
rs

)
Θ1

(
em
j1

)
Θ2

(
em

1j

)

= Θ2
(
em
r1

)
Θ1

(
em

11

)
Θ2

(
em

1s

) = Θ2
(
em
rs

)
.

We obtained pmΘ1(x)p∗
m = Θ2(x) for x ∈ Nm. Employing another diagonal argument we con-

struct a permutation p ∈ Πk→ωPnk
such that pΘ1(x)p∗ = Θ2(x) for x ∈ ⋃

m Nm. Using 1 we
are done.

The proof in general case works the same. The only difference is that {Nm}m�1 are finite
dimensional algebras instead of matrix algebras, so we need to be more careful when defining pm.
Assume that Nm = N1

m ⊕ N2
m ⊕ · · · ⊕ Nt

m, with Nv
m factors for v = 1, . . . , t . Let {em

ij ;v} a set of
matrix units for Nv

m. Then define:

pm =
t∑

v=1

∑
j

Θ2
(
em
j1;v

)
Θ1

(
em

1j ;v
)
.

Computations that pm is a unitary and pmΘ1(e
m
rs)p

∗
m = Θ2(e

m
rs) are the same. �
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3.2. Bernoulli shifts

In [7] Elek and Lippner proved that equivalence relations generated by Bernoulli shifts of
sofic groups are sofic. We present here the nice proof of Narutaka Ozawa from [17].

Theorem 3.5 (Elek–Lippner). Equivalence relations generated by Bernoulli shifts of sofic groups
are sofic.

Proof (Ozawa). Let G be a sofic group. Every Bernoulli shift is a free action. Using 2.18 we just
need to prove that each Bernoulli shift of G is a sofic action.

Let X = {0,1}G = {f : G → {0,1}}. For distinct g1, g2, . . . , gm, define the cylinder set:

ci1,i2,...,im
g1,g2,...,gm

= {
f ∈ X: f (gj ) = ij ∀j = 1, . . . ,m

}
,

and let Q
i1,i2,...,im
g1,g2,...,gm

be the projection onto this set. Then β is the action of G on X such that

β(g)c
i1,i2,...,im
g1,g2,...,gm

= c
i1,i2,...,im
gg1,gg2,...,ggm

.
Let Θ0 : G → Πk→ωPnk

be a sofic embedding of G with Tr(Θ0(g)) = 0 for each g �= e. Write
Θ0(g) = Πk→ωpg;k such that pg;k ∈ Pnk

. Define Θ : G → Πk→ωMnk
⊗ M2nk by Θ = Θ0 ⊗ 1.

Let Yk a set with nk elements and identify Dnk
with L∞(Yk). Also let Zk = {η: Yk → {0,1}} and

identify D2nk with L∞(Zk). Define now:

c
i1,i2,...,im
g1,g2,...,gm;k = {

(ξ, η) ∈ Ynk
× Znk

: η
(
p−1

gj ;k(ξ)
) = ij , j = 1, . . . ,m

}
.

Let Q
i1,i2,...,im
g1,g2,...,gm;k ∈ Dnk

⊗ D2nk be the characteristic function of c
i1,i2,...,im
g1,g2,...,gm;k . Define now

Θ(Q
i1,i2,...,im
g1,g2,...,gm

) = Πk→ωQ
i1,i2,...,im
g1,g2,...,gm;k . Then:

Θ(g)Θ
(
Qi1,i2,...,im

g1,g2,...,gm

)
Θ(g)∗ = Πk→ω(pg;k ⊗ 1)Q

i1,i2,...,im
g1,g2,...,gm;k

(
p−1

g;k ⊗ 1
)

= Πk→ωχ{(ξ,η): (p−1
g;k⊗1)(ξ,η)∈c

i1,i2,...,im
g1,g2,...,gm;k}

= Πk→ωχ{(ξ,η): η(p−1
gj ;kp

−1
g;k(ξ))=ij , j=1,...,m}

= notΠk→ωχTk
,

Θ
(
Qi1,i2,...,im

gg1,gg2,...,ggm

) = Πk→ωχ{(ξ,η): η(p−1
ggj ;k(ξ))=ij , j=1,...,m}

= notΠk→ωχSk
.

If (ξ, η) ∈ Tk�Sk then for some j = 1, . . . ,m we have p−1
gj ;kp

−1
g;k(ξ) �= p−1

ggj ;k(ξ). Given the fact
that Θ0 is a sofic embedding it follows that Πk→ωχTk

= Πk→ωχSk
.

The only thing left is to compute the trace of Θ(Q
i1,i2,...,im
g1,g2,...,gm

). For this, let Ak = {ξ ∈ Yk:
p−1

gj ;k(ξ) are different for j = 1, . . . ,m}. Because Tr(Θ0(g)) = 0 for g �= e we have
limk→ω Card(Ak)/nk = 1. Then:

Tr
(
Θ

(
Qi1,i2,...,im

g1,g2,...,gm

)) = lim
k→ω

Tr
(
Q

i1,i2,...,im
g1,g2,...,gm;k

) = lim
k→ω

1

nk2nk

( ∑
ξ∈Ak

2nk−m +
∑
ξ /∈Ak

vξ

)
= 1

2m
.

This will prove that Θ is an embedding of L∞(X) �β G, proving the soficity of the action β .



L. Păunescu / Journal of Functional Analysis 261 (2011) 2461–2485 2477
The proof can be adapted to work for any Bernoulli shift. For a finite uniform Bernoulli shift
the proof works the same. A diagonal argument will prove the theorem in case X = [0,1]G
(with product of Lebesgue measure). Any other Bernoulli shift will yield a subalgebra of
L∞([0,1]G) � G. �

The next easy proposition will be used in the proof of Corollary 3.7.

Proposition 3.6. Let G act freely on a countable set I . Then the generalized Bernoulli shift of G

on {0,1}I is sofic.

Proof. If G acts freely on I then I is of the form G × I ′ and the action is a shift on the first
component. The generalized Bernoulli shift on {0,1}I is a classical Bernoulli shift on XG where
X = {0,1}I ′

. �
A formally weaker version of the following result was first obtain by Benoit Collins and Ken

Dykema (see [2]). Independently, Elek and Szabo proved this theorem using different methods
(see [11]).

Corollary 3.7. Amalgamated products of sofic groups over amenable groups are sofic.

Proof. Let G1, G2 be two sofic groups with a common amenable subgroup H . Let X =
{0,1}G1∗H G2 equipped with product measure. Then G1 and G2 act on X as generalized Bernoulli
shifts and this actions coincide on H . Using the above proposition (and 2.19) we can construct
sofic embeddings Θi : L∞(X) � Gi → Πk→ωMnk

for i = 1,2. By proposition (3.4) we can as-
sume Θ1 = Θ2 on L∞(X) � H (here we use H amenable and the classic result from [4]). Note
that now Θ1 acts on Θi(L

∞(X)) by shifting with G1 and Θ2 acts on the same space by shift-
ing with G2. This will provide a representation Θ of G1 ∗H G2 on Πk→ωPnk

. Also, Θ acts on
Θi(L

∞(X)) as a classic Bernoulli shift. This implies Θ is faithful, so G1 ∗H G2 is sofic. �
Corollary 3.8. Let H be an abelian group and G a sofic group. Then H � G (wreath product) is
sofic.

Proof. The wreath product H � G is the semidirect product of G and HG by the shift action
of G. We shall work with the following presentation 〈S|R〉 of the wreath product:

S = {
f h

g ,ug: for every h ∈ H and g ∈ G
};

R = {
f e

g = e: ∀g ∈ G
} ∪ {

f h1
g f h2

g = f h1h2
g : ∀g ∈ G, ∀h1, h2 ∈ H

}
∪ {

f h1
g1

f h2
g2

= f h2
g2

f h1
g1

: ∀g1, g2 ∈ G, g1 �= g2, ∀h1, h2 ∈ H
}

∪ {ug1ug2 = ug1g2 : ∀g1, g2 ∈ G}
∪ {

ug1f
h
g2

u−1
g1

= f h
g1g2

: ∀g1, g2 ∈ G, h ∈ H
}
.

Consider first the case of Z2 � G. Apply Elek–Lippner result to embed L(ZG
2 ) �β G 

L(ZG
2 � G) = L(Z2 � G) in some Πk→ωMnk

. Generators ug will be ultraproduct of permuta-
tions. Instead, elements of the type f h are unitaries in Πk→ωDn with ±1 entries. Construct
g k
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a sofic representation of Z2 � G in Πk→ωP2nk
by replacing a 1 entry with I2 and a −1 entry

with:
(

0 1
1 0

)
.

Consider now the general case. Let Θ : L∞({0,1}G) � G → Πk→ωMnk
the sofic embed-

ding constructed in the last proof. Also let Λ : H → Pmk
be a sofic embedding of H . We shall

construct Φ : H � G → Πk→ωPnk
⊗ Pmk

as follows:

Φ(ug) = Θ(g) ⊗ 1;
Φ

(
f h

g

) = c0
g ⊗ 1 + c1

g ⊗ Λ(h).

Relations in the set R are easy to check (one needs H abelian for f
h1
g1 f

h2
g2 = f

h2
g2 f

h1
g1 ). Also

Tr(Φ(ug)) = 0 and Tr(Φ(f h
g )) = 1/2. In order to finish the proof we need to see that Φ is

injective.
The generic element of H � G is s = f

h1
g1 f

h2
g2 . . . f

hn
gn

ug with g1, g2, . . . , gn distinct. Then:

Φ(s) =
( ∑

(i1,...,in)∈{0,1}n
ci1,i2,...,in
g1,g2,...,gn

⊗ Λ(Πik=1hk)

)(
Θ(g) ⊗ 1

)
.

Assume Φ(s) = 1. Then for any (i1, . . . , in) ∈ {0,1}n, Λ(Πik=1hk) = 1. This force hk = e for
any k. Then Φ(ug) = 1, so ug = e. It follows that s = e. �
3.3. Sofic actions

The goal would be to prove that every (free) action of a sofic group is sofic. While this remains
open we shall prove this fact for a family of groups. Let’s first solve this ambiguity: free or general
actions.

Theorem 3.9. Let G be a group such that every free action is sofic. Then every action of G is
sofic.

Proof. Let α be an action of G on X. Let β : G → Aut(Y ) be a free action (e.g. Bernoulli shift).
Define α ⊗ β : G → Aut(X × Y) by g(x, y) = (gx, gy). With this definition α ⊗ β is a free
action of G, so it is sofic. We can embed L∞(X × Y) �α⊗β G in some Πk→ωMnk

satisfying the
requirements of sofic action. The space L∞(X) can be embedded in L∞(X ×Y) by id ⊗ 1. This
embedding can be extended to an embedding of L∞(X) �α G in L∞(X ×Y) �α⊗β G. This will
prove α is sofic. �
Definition 3.10. Denote by S the class of groups for which every action is sofic.

While we cannot prove that every sofic group is in S , we will provide some examples. First
goal is to deal with amenable groups.

Proposition 3.11. Each action of the integers admits a sofic embedding.

Proof. Let α : L∞(X) → L∞(X) the automorphism that generates the action. Choose Θ :
L∞(X) → Πk→ωDnk

an embedding. Apply Proposition 3.3 to Θ and Θ ◦ α to get a unitary
u ∈ Πk→ωPn such that Adu ◦ Θ = Θ ◦ α.
k
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As powers of permutation matrices are still permutation matrices, we have um ∈ Πk→ωPnk
.

Also umΘ(f )(um)∗ = Θ(αm(f )) for any f ∈ L∞(X). Now we have an embedding Θ of the
algebraic crossed product L∞(X) �

alg
α Z. In order to have an embedding of the crossed product

we need the relation Tr(um) = 0 for any m ∈ Z
∗.

Let Λ be an embedding of Z in some Πk→ωPrk using only elements of trace 0. Define the
embedding Θ ⊗ Λ of L∞(X) �α Z in Πk→ωMnk ·rk by:

Θ ⊗ Λ(T ) = Θ(T ) ⊗ 1 for T ∈ L∞(X);
Θ ⊗ Λ(ug) = Θ(ug) ⊗ Λ(ug) for g ∈ Z.

This embedding Θ ⊗ Λ of the algebraic crossed product respects the trace of the von Neumann
crossed product. Using the unique feature of the type II case the closure of its imagine will be
the crossed product. �
Proposition 3.12. Amenable groups are in S .

Proof. Let G be an amenable group and let α : G → Aut(X,μ) be a free action. Then Eα is
amenable. By [4] Eα is generated by an action β of Z. By the previous proposition beta is sofic.
Because almost all equivalence classes of Eα are non-finite, β is free. Using Proposition 2.9 we
deduce α is sofic. Combined with Theorem 3.9, we get G ∈ S . �

The next proposition will enlarge the class of groups for which such results hold.

Theorem 3.13. Let α1 and α2 be two sofic actions of G1 and G2 on the same space X. Con-
sider H , a common amenable subgroup of G1 and G2. Assume α1 and α2 coincide on H , and
this action of H is free. Then the action α1 ∗H α2 of G1 ∗H G2 is sofic.

Proof. Using 2.19 we can construct sofic embeddings of the two crossed products in the same
ultraproduct. So let Θi : L∞(X) � Gi → Πk→ωMnk

, i = 1,2. By 3.4 we can assume Θ1 = Θ2
on L∞(X) � H (using the freeness of this action). Now we can construct a representation Θ of
the algebraic crossed product L∞(X) � (G1 ∗H G2) on Πk→ωMnk

. In order to embed the von
Neumann crossed product the trace of each nontrivial ug , g ∈ G1 ∗H G2 must be equal to 0. The
groups G1 and G2 must be sofic, as only sofic groups can admit sofic actions. Then G1 ∗H G2 is
sofic (see 3.7). There exists an embedding Λ of G1 ∗H G2 in some Πk→ωPrk using only elements
of trace 0. Define the embedding Θ ⊗ Λ of L∞(X) �α1∗H α2 G1 ∗H G2 like in 3.11. �

Adapting the same methods we can prove this result for a countable family of actions.

Proposition 3.14. Let {αi}i∈N be a family of sofic actions of {Gi}i∈N on the same space. Assume
H is an amenable common subgroup of Gi and the actions αi coincide on H . Then ∗H αi is sofic.

Corollary 3.15. Each action of a free group, including F∞ is sofic.

Proof. Corollary of 3.11 and 3.14. �
We now recover with our methods the result of Elek and Lippner that any treeable equivalence

relation is sofic. A good reference for treeable equivalence relation is [16].
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Proposition 3.16. Every treeable equivalence relation is sofic.

Proof. Well, treeable is some kind of freeness and freeness in general goes well with soficity.
Let E be a treeable equivalence relation on (X,μ). Fix a treeing of E, i.e. a countable set

of partial Borel isomorphism {φi}i∈N∗ ⊂ [[E]]. For each i we have φi = aiλi , where ai is a
projection in L∞(X) and λi ∈ [E].

Define an action α of F∞ on X such that α(γi) = λi (where {γi}i are the generators of F∞).
Being an action of F∞, α is sofic.

The von Neumann subalgebra of L∞(X) �α F∞ generated by aiuγi
is naturally isomorphic

to M(E). Hence every sofic embedding of L∞(X)�α F∞ can be restricted to a sofic embedding
of M(E) ⊂ L∞(X) �α F∞. �

We end this section with the following theorem.

Theorem 3.17. Class S is closed under amalgamated product over amenable groups. It is strictly
larger than the class of treeable groups.

Proof. First part of the theorem is 3.13 and 3.9. By 3.16 (and again 3.9) every treeable group is
in S .

Consider now the group G = Z ∗(2,3)Z Z. It is not treeable but G ∈ S . This example is from
[13].

Relation G ∈ S is just 3.11 and 3.13. By general theory of Gaboriau, the cost of G is 1 + 1 −
1 = 1. If amalgamation is done with good morphism (multiplication by 2 and 3) then G is not
amenable. This implies G is not treeable. �
3.4. Sofic equivalence relations

Now we shall present from [7] the original definition of Elek and Lippner of soficity for
actions and equivalence relations.

Definition 3.18. We call a basic sequence of projections for L∞(X) a collection
{ei,m}1�i�2m,m�0 ⊂ L∞(X) with the following properties:

1. spanw{ei,m}i,m = L∞(X);
2. μ(ei,m) = 2−m, 1 � i � 2m, m � 0;
3. e2i−1,m + e2i,m = ei,m−1, m � 1.

Let F∞ = 〈γ1, γ2, . . .〉. For any r ∈ N denote by Wr the subset of reduced words of length
at most r containing only the first r generators and their inverses. We have W0 ⊂ W1 ⊂ · · · and
F∞ = ⋃

r�0 Wr .
Let α : F∞ � X be a Borel action and fix {ei,r}1�i�2r a basic sequence of projections for

L∞(X). The following definition will allow us to keep track of the position of a point x ∈ X

relative to sets {ei,r}1�i�2r under the action of Wr ⊂ F∞.

Definition 3.19. Let r ∈ N. A r-labeled, r-neighborhood is a finite oriented multi-graph contain-
ing:
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1. a root vertex such that any vertex is connected to the root by a path of length at most r ;
2. ever vertex has a label from the set {1, . . . ,2r};
3. out-edges of every vertex have different colors from the set {γ1, γ

−1
1 , . . . , γr , γ

−1
r };

4. if edge xy is colored with γi then yx is colored by γ −1
i .

Isomorphism classes of such objects form a finite set that we shall denote by Ur,r .

For G ∈ Ur,r , denote by RG the root vertex in G. For γ ∈ Wr let γRG be the vertex in G

obtained by starting from RG and following the path given by γ (if such a path exists). Finally,
let l(γRG) be the label of the vertex γRG in the set {1,2, . . . ,2r}.

Let X be a space together with a basic sequence of projections. For an action α : F∞ � X and
x ∈ X we can define Br

r (x) ∈ Ur,r by taking the imagines of x under Wr and their labels with
respect to {ei,r}1�i�2r . For G ∈ Ur,r let T (α,G) = {x ∈ X: Br

r (x) ≡ G}. Define also pG(α) =
μ(T (α,G)).

If α is an action on a finite space Y (having the normalized cardinal measure) we have the
same definitions provided that we still have some subsets {ei,r}1�i�2r , r�0 of Y satisfying the
same summation relations. This are needed to give labels to our vertices. Finite spaces with this
kind of partitions are called X-sets. We are now ready to give the definition.

Definition 3.20. An action α of F∞ is called sofic (in Elek–Lippner sense) if there exists a
sequence of actions αk of F∞ on X-sets such that for any r � 1, for any G ∈ Ur,r we have
limk→∞ pG(αk) = pG(α).

Definition 3.21. An equivalence relation is called sofic if it is generated by a sofic action of F∞
(all this in Elek–Lippner sense).

For actions of F∞ the two notions of soficity are different. With our definition every action
of F∞ is sofic (see 3.15). Instead for equivalence relations the two notions are the same. This is
what we shall prove now.

Proposition 3.22. Let E ⊂ X2 be an equivalence relation. Then E is sofic in sense of Elek–
Lippner if and only if E is sofic (M(E) admits a sofic embedding in some Πk→ωMnk

).

Proof. Let α : F∞ � (X,μ) be a sofic action in the sense of Elek–Lippner such that E = Eα .
Let αk a sequence of actions on X-sets Yk such that limk→∞ pG(αk) = pG(α). Finally let nk be
the cardinal of Yk . We shall embed M(E) in Πk→ωMnk

in a sofic way. For this we need:

1. an embedding L∞(X) ⊂ Πk→ωDnk
;

2. a representation Θ of F∞ on Πk→ωPnk
;

3. the formula Tr(f Θ(γ )) = ∫
Xγ

f dμ for every f ∈ L∞(X) and γ ∈ F∞, where Xγ = {x ∈
X: γ x = x}.

By hypothesis Yk are X-sets, so they come together with projections {ek
i,r}i,r . Construct ei,r =

Πk→ωek
i,r . We claim that {ei,r}1�i�2r , r�0 form a basic sequence of projections for the algebra

they generate. Relations ei,r = e2i−1,r+1 + e2i,r+1 are automatic, we just need to prove that
Tr(ei,r ) = 2−r .
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Let {fi,r}1�i�2r , r�0 ⊂ L∞(X) be the basic sequence of projections used in the construction
of numbers pG(α). Fix i and r . Let U

r,r
i = {G ∈ Ur,r : l(RG) = i}, i.e. graphs such that the

root has label i. Then T (α,G) ⊂ fi,r for each G ∈ U
r,r
i . Moreover: fi,r = ⊔

G∈U
r,r
i

T (α,G).

In the same way we have ek
i,r = ⊔

G∈U
r,r
i

T (αk,G). Because limk→∞ pG(αk) = pG(α) we have

Tr(ei,r ) = limk→ω Tr(ek
i,r ) = Tr(fi,r ) = 2−r .

By identifying ei,r with fi,r we get an embedding of L∞(X). Now we construct the represen-
tation Θ of F∞ in Πk→ωPnk

. We identified set Yk with diagonal Dnk
and we have actions αk of

F∞ that are defined on Yk . This will construct a representation. We need to make sure Θ acts the
same way as α.

Let γ be one of the generators of F∞. Fix i, j and r . Let U
r,r
i,γj = {G ∈ Ur,r : l(RG) = i,

l(γRG) = j}, the set of graphs such that the root has label i and the vertex connected with
the root by the γ edge has label j (the existence of such an edge is a requirement we ask
now for G). It is easy to see that fi,r ∩ α(γ −1)(fj,r ) = ⊔

G∈U
r,r
i,γj

T (α,G). In the same way

ek
i,r ∩αk(γ

−1)(ek
j,r ) = ⊔

G∈U
r,r
i,γj

T (αk,G). Using the hypothesis we get Tr(ei,r ·Θ(γ −1)(ej,r )) =
μ(fi,r ∩α(γ −1)(fj,r )). This is enough to deduce that the action that Θ induce on our embedding
of L∞(X) is equal to α.

For the third requirement let now γ ∈ F∞ be an arbitrary element. It is of course suffi-
cient to assume that f is one of the projections ei,r . We need to prove that Tr(ei,rΘ(γ )) =
μ(Xγ ∩ ei,r ). Lets say that in our construction we have Θ(γ ) = Πk→ωγk . Then Tr(ei,rΘ(γ )) =
limk→∞ Tr(ek

i,rγk). Let U
r,r
i,γ = {G ∈ Ur,r : l(RG) = i, γRG = RG}, i.e. the set of G ∈ Ur,r such

that the root has label i and the path in G described by γ , starting from the root, returns to the
root. Then Xγ ∩ ei,r = ⊔

G∈U
r,r
i,γ

T (α,G). A similar formula with fixed points of γk and ek
i,r takes

place. By limk→∞ pG(αk) = pG(α) we get Tr(ei,rΘ(γ )) = μ(Xγ ∩ ei,r ) and we are done.
For the reverse implication we shall assume that M(E) embeds in some Πk→ωMnk

. We want
to prove that E is also sofic in the sense of Elek–Lippner.

By 2.17 we have a sofic embedding M(E) ⊂ Πk→ωMnk
such that L∞(X) = A ⊂ Πk→ωDnk

and uθ ⊂ Πk→ωPnk
for any θ ∈ [E].

We shall denote by d the normalized Hamming distance on Pnk
. In general γ, δ will denote

elements in F∞ and γi, δi will denote generators of F∞. Let α : F∞ � (X,μ) an action that
generates the equivalence relation E on X. For any element γ ∈ F∞, α(γ ) induce an element
uγ ∈ N (A) and uγ uδ = uγ δ . We shall write uγ = Πk→ωuk

γ ∈ Πk→ωPnk
.

Let Yk be a set with nk elements and identify algebra Dnk
with L∞(Yk). For any genera-

tor γi of F∞, uk
γi

∈ Pnk
induce an automorphism of Yk . Denote it by αk(γi) and extend αk by

multiplicity to an action of F∞.
Let {ei,m}1�i�2m,m�0 ⊂ L∞(X) a basic sequence of projections. Use it in order to construct

sets T (α,G). Write ei,m = Πk→ωek
i,m such that {ek

i,m}i,m respect the same summation relations.

Now elements in Yk are labeled by projections {ek
i,m}i,m so we have ingredients for constructing

sets T (αk,G).
We need to show that out of this actions we can find a subsequence satisfying the definition

of soficity, namely that limk→∞ μnk
(T (αk,G)) = μ(T (α,G)) for any r ∈ N and any G ∈ Ur,r

(denote by μnk
the normalized cardinal measure on a set with nk elements). The subsequence is

just to get rid of the ultrafilter and obtain classical limit for the countable set of objects that we
are working with.

Fix r ∈ N and ε > 0. Let us see that it is enough to find k ∈ N such that |μnk
(T (αk,G)) −

μ(T (α,G))| < ε for any G ∈ Ur,r . The phenomena here is that, if we fix a G ∈ Ur,r , when we
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pass from step r to r + 1 we have T (α,G) = ⋃
G′∈Ur+1,r+1;G<G′ T (α,G′) (relation G < G′ is

defined in an obvious way). So μ(T (αk′ ,G)) is a sum of other μ(T (αk′ ,G′)), but a finite sum.
When we choose our sequence {εr} we have to make sure that it compensates this growth.

Sets {T (α,G): G ∈ Ur,r} form a partition of X. Let T (α,G) = Πk→ωT (α,G)k such that
{T (α,G)k: G ∈ Ur,r} is a partition of Yk . We also have in Dnk

projections T (αk,G). We know
that μnk

(T (α,G)k) →k μ(T (α,G)) and we want to show that μnk
(T (αk,G)) →k μ(T (α,G)).

Now fix G ∈ Ur,r . We need to understand equations that describe points in T (α,G). Remem-
ber that RG is the root vertex in G; for γ ∈ Wr , γRG is the vertex in G obtained by starting from
RG and following the path given by γ (if such a path exists). Finally, l(γRG) is the label of the
vertex γRG in the set {1,2, . . . ,2r}. We can now state our characterization of T (α,G).

A point x ∈ X is an element of the set T (α,G) iff:

1. α(γ )(x) ∈ el(γRG),r for any γ ∈ Wr for which γRG exists;
2. α(γ )(x) = α(δ)(x) ∀γ, δ ∈ Wr, γRG = δRG;
3. α(γ )(x) �= α(δ)(x) ∀γ, δ ∈ Wr, γRG �= δRG.

First condition gives the coloring of vertices. The other two give the structure of the graph G.
Let ε1 > 0 such that 2|Ur,r |(|Wr | + 2|Wr |2)ε1 < ε. We want to find k ∈ N such that for any
G ∈ Ur,r we have:

μnk

(
αk(γ )

(
T (α,G)k

) \ ek
l(γRG),r

)
< ε1 ∀γ ∈ Wr ; (2)

μnk

(
T (α,G)k \ {

y ∈ Yk: αk(γ )(y) = αk(δ)(y)
})

< ε1 ∀γ, δ ∈ Wr, γRG = δRG; (3)

μnk

(
T (α,G)k \ {

y ∈ Yk: αk(γ )(y) �= αk(δ)(y)
})

< ε1 ∀γ, δ ∈ Wr, γRG �= δRG; (4)∣∣μnk

(
T (α,G)k

) − μ
(
T (α,G)

)∣∣ < ε/2. (5)

First we shall prove that this four conditions are enough to guarantee |μnk
(T (αk,G)) −

μ(T (α,G))| < ε for every G ∈ Ur,r . Using (5) we just need to prove |μnk
(T (αk,G)) −

μnk
(T (α,G)k)| < ε/2.

Take x ∈ (T (α,G)k \ T (αk,G)) for some G ∈ Ur,r . Following our characterization of
T (α,G), we have:

1. ∃γ ∈ Wr such that αk(γ )(x) does not have the right label, namely l(γRG);
2. or ∃γ, δ ∈ Wr such that γRG = δRG and αk(γ )(x) �= αk(δ)(x);
3. or ∃γ, δ ∈ Wr such that γRG �= δRG and αk(γ )(x) = αk(δ)(x).

Using (2)–(4) we get:

μnk

(
T (α,G)k \ T (αk,G)

)
< |Wr |ε1 + 2|Wr |2ε1.

Because both {T (αk,G)}G and {T (α,G)k}G are partitions of Yk and the above formula holds for
any G ∈ Ur,r we have:

∣∣μn

(
T (αk,G)

) − μn

(
T (α,G)k

)∣∣ <
∣∣Ur,r

∣∣(|Wr |ε1 + 2|Wr |2ε1
)
< ε/2.
k k
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Now back to the choice of k. Let γ = γi1γi2 . . . γis ∈ Wr . We should in fact take γ =
γ

ζ1
i1

γ
ζ2
i2

. . . γ
ζs

is
, where ζj ∈ {±1}. The inverses will change nothing in our arguments and

will only overload our notations. Due to Feldman–Moore construction we know that uγ =
uγi1

uγi2
. . . uγis

. Next, combine α(γ )(T (α,G)) ⊂ el(γR),r and α(γ )(T (α,G)) = uγ T (α,G)u∗
γ

to get uγ T (α,G)u∗
γ ⊂ el(γR),r .

Consider now γ, δ ∈ Wr . If γRG = δRG then α(γ )|T (α,G) = α(δ)|T (α,G) so
Tr(T (α,G)u∗

δuγ ) = μ(T (α,G)) (here we consider T (α,G) to be a projection of L∞(X) ⊂
Πk→ωMnk

). If γRG �= δRG then Tr(T (α,G)u∗
δuγ ) = 0. Find k ∈ N such that (5) holds and:

∥∥uk
γ − uk

γi1
uk

γi2
. . . uk

γis

∥∥
2 < ε1/4 ∀γ = γi1γi2 . . . γis ∈ Wr ; (6)

μnk

(
uk

γ T (α,G)kuk∗
γ \ ek

l(γRG),r

)
< ε1/2 ∀γ ∈ Wr, ∀G ∈ Ur,r ; (7)

μnk

(
T (α,G)k

) − Tr
(
T (α,G)kuk∗

δ uk
γ

)
< ε1/2 ∀G ∈ Ur,r , ∀γ, δ ∈ Wr, γRG = δRG; (8)

Tr
(
T (α,G)kuk∗

δ uk
γ

)
< ε1/2 ∀G ∈ Ur,r , ∀γ, δ ∈ Wr, γRG �= δRG. (9)

By definition αk(γ ) = αk(γi1)αk(γi2) . . . αk(γir ) and αk(γij )(P ) = uk
γij

Puk∗
γij

for any projec-

tion P ∈ Dnk
. Then:

αk(γ )
(
T (α,G)k

) = (
uk

γi1
uk

γi2
. . . uk

γir

)
T (α,G)k

(
uk

γi1
uk

γi2
. . . uk

γir

)∗
. (10)

Both uk
γ and uk

γi1
uk

γi2
. . . uk

γis
are elements in Pnk

so by (6):

d
(
uk

γ ,uk
γi1

uk
γi2

. . . uk
γis

)
< ε1/4.

Combined with (10), we have μnk
(αk(γ )(T (α,G)k) \ uk

γ T (α,G)kuk∗
γ ) < ε1/4. Use (7) to get

μnk
(αk(γ )(T (α,G)k) \ ek

l(γR),r ) < ε1/4 + ε1/2 < ε1, so we have (2).
Let now γ = γi1γi2 . . . γis and δ = δj1δj2 . . . δjt such that γRG = δRG. Use (6) both for γ and

δ to get:

∥∥uk∗
δ uk

γ − (
uk

δj1
uk

δj2
. . . uk

δjt

)∗(
uk

γi1
uk

γi2
. . . uk

γir

)∥∥
2 < ε1.

As before, uk∗
δ uk

γ and (uk
δj1

. . . uk
δjt

)∗(uk
γi1

. . . uk
γir

) are elements in Pnk
, so:

d
(
uk∗

δ uk
γ ,

(
uk

δj1
uk

δj2
. . . uk

δjt

)∗(
uk

γi1
uk

γi2
. . . uk

γir

))
< ε1/2.

Restricting this inequality just to fixed points in set T (α,G)k , we get:

∣∣Tr
(
T (α,G)kuk∗

δ uk
γ

) − Tr
(
T (α,G)k

(
uk

δj1
uk

δj2
. . . uk

δjt

)∗(
uk

γi1
uk

γi2
. . . uk

γir

))∣∣ < ε1/2. (11)

Apply (10) for γ and δ to get:

μnk

(
T (α,G)k \ {

y ∈ Yk: αk(γ )(y) = αk(δ)(y)
})

= μnk

(
T (α,G)k

) − Tr
(
T (α,G)k

(
uk

δj1
uk

δj2
. . . uk

δjt

)∗(
uk

γi1
uk

γi2
. . . uk

γir

))
.

This combined with (11) and (8) yields (3).
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Assume now that γRG �= δRG. Then:

μnk

(
T (α,G)k \ {

y ∈ Yk: αk(γ )(y) �= αk(δ)(y)
})

= Tr
(
T (α,G)k

(
uk

δj1
uk

δj2
. . . uk

δjt

)∗(
uk

γi1
uk

γi2
. . . uk

γir

))
.

Inequalities (11) and (9) will imply (4). �
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