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Abstract 

This paper describes a general theory of overloading based on a system of qualified 
types. The central idea is the use of predicates in the type of a term, restricting 
the scope of universal quantification. A corresponding semantic notion of evidence is 
introduced and provides a uniform framework for implementing applications of this 
system, including Haskell style type classes, extensible records and subtyping. 

Working with qualified types in a simple, implicitly typed, functional language, we 
extend the Damas-Milner approach to type inference. As a result, we show that the set 
of all possible typings for a given term can be characterized by a principal type scheme, 
calculated by a type inference algorithm. 

1. Introduction 

In a language with a polymorphic type system, a term of type V’t.f (t ) can 
be treated (possibly after suitable instantiation) as having any of the types in 
the set: 

{f(t) I t is a type). 

It is natural to consider a more restricted form of polymorphism in which the 
value taken by t may be constrained to a particular subset of types. In this 
situation, we write Vt.n (t ) + f (t ), where n (t ) is a predicate on types, for the 
type of an object that can be treated (after suitable instantiation) as having 
any of the types in the set: 

{f(t) 1 t is a type such that n(t) holds}. 
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A term with a restricted polymorphic type of this kind is often said to be 
overloaded, having different interpretations for different argument types. 

This paper presents a general theory of overloading based on the use of qual- 
ified types, which are types of the form 7t + G denoting those instances of type 
c that satisfy the predicate n. The main benefits of using qualified types are: 

l A general approach that includes a range of familiar type systems as special 
cases. Results and tools developed for the general system are immediately 
applicable to each particular application. 

l A precise treatment of the relationship between implicit and explicit over- 
loading. This is particularly useful for describing the implementation of 
systems supporting qualified types. 

l The ability to include local constraints as part of the type of an object. This 
enables the definition and use of polymorphic overloaded values within a 
program. 

2. Outline of the paper 

Each of the type systems considered in this paper is parameterized by the 
choice of a system of predicates on type expressions, whose basic properties are 
described in Section 3. A number of examples are included to illustrate the use 
of this framework to describe a range of type systems including Haskell type 
classes, extensible records and subtyping. Section 4 describes the use of qual- 
ified types in the context of polymorphic d-calculus with explicit typing. This 
is extended in Section 5 using a general notion of evidence to explore the re- 
lationship between implicit and explicit overloading. An alternative approach, 
suitable for use in an implicitly typed language, is introduced in Section 6 
using an extension of the ML type system [ 141 to support qualified types. Al- 
though substantially less powerful than polymorphic I-calculus, we show that 
the resulting system is suitable for use in a language based on type inference, 
that allows the type of a term to be determined without explicit type annota- 
tions. The development of a suitable type inference algorithm is described in 
Sections 7 and 8. Finally, Section 9 surveys some areas for further work. 

Detailed proofs for many of the results described in this paper may be found 
in [ 12,13 ] ; for reasons of space, they cannot be included here. 

3. Predicates 

Each of the type systems considered in this paper is parameterized by 
the choice of a language of predicates n whose properties are described by an 
entailment relation H- between (finite) sets of predicates. Individual predicates 
may be written using expressions of the form n = p z1 . . . z,, where p is 
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a predicate symbol corresponding to an n-place relation between types; the 
predicate rc represents the assertion that the types rI, . . ., z,, are in this 
relation. The definition of tt varies from one application to another. The only 
properties that we will assume are: 

l Monotonicity. P H- P’ whenever P > P’. 
l Transitivity. If P k Q and Q F- R, then P W R. 
l Closure property. If P H- Q, then SP tt SQ for any substitution S mapping 

type variables (and hence type expressions) to type expressions. 
If P is a set of predicates and n is a predicate, then we write P H- n and P, n 
as abbreviations for P I+ {n} and P u {n} respectively. 

The following subsections illustrate the languages of predicates that might be 
used in three applications of qualified types. Only the basic ideas are sketched 
here; further details are given in [ 11,13 1. 

3.1. Example: type classes 

Introduced in [23] and adopted as part of the standard for the programming 
language Haskell [ lo], type classes are particularly useful for describing the 
implementation of standard polymorphic operators such as computable equal- 
ity. Much of the original motivation for qualified types came from the study 
of type classes. 

Broadly speaking, a type class is a family of types (the instances of the 
class) on which a number of values (the member functions) are defined. Each 
predicate symbol corresponds to a user-defined class and a predicate of the 
form C T represents the assertion that r is an instance of the class named C. The 
class Eq is a standard example whose instances are those types whose elements 
can be tested for equality using the operator ( = = ) :: Va.Eqa + a --f a + Bool. 
As a further example, one possible type for a function to test for membership 
of a value in a list is Va.Eqa =s- a -+ [a] + Boo1 where [a] denotes the type 
of lists of values of type a. 

Differences in the basic approach to type classes are reflected in the properties 
of the H- relation. In a standard Haskell system we have axioms such as 8 I+ 
Eq Int and Eqa H- Eq [a]. The same framework can also be used to describe 
the use of Haskell superclasses, and to support the extension to classes with 
multiple parameters. 

Type classes are best suited to systems with a type inference algorithm such as 
that described in Section 8 where the appropriate instances of each overloaded 
operator can be determined automatically as part of the type inference process. 

3.2. Example: extensible records 

A record is a set of values labeled by the elements I of a specified set 
of labels. There has been considerable interest in the use of record types to 
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4. Polymorphic L-calculus with qualified types 

4.1. Basic definitions 

In this section, we work with a variant of the polymorphic Il-calculus that 
includes qualified types using type expressions of the form: 

CT::= tla+alt;lt.al71=5rJ 

where t ranges over a given set of type variables. The -+ and + symbols are 
treated as right associative infix binary operators with -+ binding more tightly 
than +. Additional type constructors such as those for integers, lists and record 
types will be used as required. The set of type variables appearing (free) in an 
expression X is denoted W(X). 

To begin with we use an unmodified form of the (unchecked) terms of 
polymorphic I-calculus, given by expressions of the form: 

where x ranges over a given set of term variables. The set of free (term) 
variables appearing in a term M will be denoted FL’(M). Note that we do not 
provide constructs for the introduction of new overloadings such as inst and 
over in [23]. If none of the free variables for a given term have qualified (i.e. 
overloaded) types, then no overloading will be used in the expression. 

4.2. Typing rules 

A type assignment is a (finite) set of typing statements of the form x : CT in 
which no term variable x appears more than once. If A is a type assignment, 
then we write domA = {x 1 (x : CT) E A }, and if x is a term variable with 
x $ dom A, then we write A, x : TV as an abbreviation for the type assignment 
A u {x : a}. The type assignment obtained from A by removing any typing 
statement for the variable x is denoted A,. A type assignment A can be 
interpreted as a function mapping each element of dom A to a type scheme. In 
particular, if (x: a) E A, then we write A (x) = CJ. 

An expression of the form P 1 A k M : r~ represents the assertion that the 
term M has type o when the predicates in P are satisfied and the types of 
free variables in M are as specified in the type assignment A. The typing rules 
for this system are given in Fig. 1. Most of these are similar to the rules for 
explicit typing of polymorphic A-calculus and do not involve the predicate set. 

By an abuse of notation, we will also use P I A k M : o as a proposition 
asserting the existence of a derivation of P I A t M : g. 
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Standard rules: (var) 

C-E) 

(- I) 

Qualified types: (+ E) 

Polymorphism: (VE ) 

(x:a) E A 

PIAtx:a 

PIAtM:a’+a PIAtN:a’ 

PlAtMN:O 

PIA,x:a'tM:o 

PIAtilx:a’.M:a’-a 

PJAtM:Ir+o Ptkz 

PIAtM:o 

P,nIAtM:o 

PJAtM:rr+a 

P I A t M : ‘dt.a 

P I At MT: [T/t]a 

PIAtM:a t@W(A)uTV(P) 

P I A k 1t.M : Vt.o 

Fig. 1. Typing rules for polymorphic I-calculus with qualified types. 

5. Evidence 

Although the system of qualified types described in the previous sections is 
suitable for reasoning about the types of overloaded terms, it cannot be used to 
describe their evaluation. For example, the knowledge that Int is an instance of 
the class Eq is not sufficient to determine the value of the expression 2 = = 3; 
we must also be provided with the value of the equality operator that makes 
Znt an instance of Eq. In general, we can only use a term of type n + CJ if we 
are also supplied with suitable evidence that the predicate n does indeed hold. 

This leads us to consider an extension of the term language that makes the 
role of evidence explicit, using: 

l Evidence expressions: A language of evidence expressions e denoting evi- 
dence values, including a set of evidence variables v. 

l Evidence construction: A predicate assignment is a set of elements of the 
form (V : 7~) in which no evidence variable appears more than once. The 
H- relation is extended to a three place relation P H- e : n, indicating that it 
is possible to construct evidence e for the predicate n in any environment 
binding the variables in the predicate assignment P to appropriate evidence 
values. Thus predicates play a similar role for evidence expressions as types 
for simple A-calculus terms. 



M.P. Jones/Science of Computer Programming 22 (1994) 231-256 231 

Evidence abstraction: A term M of type 71 + p is implemented by a term 
of the form Jv : n&f’ where v is an evidence variable and M’ is a term of 
type p corresponding to A4 using v in each place where evidence for n is 
needed. 
Evidence application: Each use of an overloaded expression N of type rr + 
p is replaced by a term of the form N’e where N’ is a term corresponding 
to N and e is an evidence expression for rc. 
Evidence reduction: The standard rules of computation are augmented by 
a variant of P-reduction for evidence abstraction and application: 

(iv.M)e Dpe [e/v]M. 

Most of the typing rules given in Fig. 1 can be used with the extended 
system without modification. The only exceptions are the rules for dealing 
with qualified types; suitably modified versions of these are given in Fig. 2. 

(* I) 
P,v:7cIAkM:0 

P(At;lv:n.M:n+a 

(*E) 
PjAkM:n+o Pktee:n 

PjAtMe:o 

Fig. 2. Modified rules for qualified types with evidence. 

Notice that extending the term language to make the use of evidence explicit 
gives unicity of type; each well-typed term has a uniquely determined type. 
This approach is very similar to the techniques used to make polymorphism 
explicit in the translation from implicit to explicit typed L-calculus using 
abstraction and application over types [ 161. As in that situation, there is 
a simple correspondence between derivations in the two systems, described 
by means of a function Erase mapping explicitly overloaded terms to their 
implicitly overloaded counterparts: 

Erase(x) =x 
Erase(MN) = (Erase(M))(Erase(N)) 

Erase(2v : n.M) = Erase(M) 
Erase(Me) = Erase(M) 

The correspondence between the two systems can now be described by: 

Theorem 1. P 1 A k M : IS using the original typing rules if and only if P’ ) A k 
M’ : 0 by a derivation of the same structure in the extended system such that 
P = { TC 1 (v:n) E P’} and Erase(M) = M. 
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Given a term A4 in the original system, each corresponding term using 
explicit overloading is called a translation of M and can be used to give 
a semantics for the term. We write P’ 1 A t M * M’ : r~ to refer to the 
translation of a term in a specific context. Note that the translation of a given 
term may not be uniquely defined (with distinct translations corresponding 
to distinct derivations of P 1 A F M : a). This is discussed in more detail in 
Section 9.1. 

The form of evidence required will vary from one application to another. 
Suitable choices for each of the examples described in Section 3 are as fol- 
lows: 

l Type classes: The evidence for a type class predicate of the form C z is a 
dictionary containing the values of the members of C at the instance z. 
For example, in the simplest case, the evidence for a predicate Eqz might 
be an equality test function for values of type 7. 

l Extensible records: The evidence for a predicate of the form (r lacks I) is 
the function: 

(_I 1 = _)::Vt.r + t -+ (r \l:t) 

The evidence for a predicate of the form (r has 1: t ) is the pair of functions: 

(_\l)::r+r\l 

(-.I) ::r+ t 

In practice, a concrete implementation of extensible records is likely to use 
offsets into a table of values used to store a record as evidence, passing 
these values to generic functions for updating or selecting from a record 
as necessary. 

l Subtypes: The evidence for a predicate c C rs’ is a coercion function that 
maps values of type g to values of type rr’. 

Further details of the use of evidence in these applications is included in 

1131. 

6. An extension of ML using qualified types 

Polymorphic A-calculus is not a suitable language to describe an implicitly 
typed language in which the need for explicit type annotations is replaced by 
the existence of a type inference algorithm. In practice, the benefits of type 
inference are often considered to outweigh the disadvantages of a less powerful 
type system. The ML type system [ 7,141 is a well-known example in which the 
price of type inference is the inability to define functions with polymorphic 
arguments. Nevertheless, it has proved to be very useful in practice and has 
subsequently been adopted by a number of other languages. 
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6.1. Basic definitions 

239 

Following the definition of types and type schemes in ML we consider a 
structured language of types, with the principal restriction being the inability 
to support functions with either polymorphic or overloaded arguments: 

T::=tIT-+5 types 
p::=P*z qualified types 
o ::= VT.p type schemes 

(P and T range over finite sets of predicates and finite sets of type variables 
respectively). 

It is convenient to introduce some abbreviations for qualified type and type 
scheme expressions. In particular, if p = (P 3 7) and (T = VT.p, then we 
write: 

Abbreviation Qualitied type Abbreviation Type scheme 

7 8+7 P v O.p 

n*P P,?l*7 vt.a v(Tu {t>).p 
P’ + p PUP’*7 VT’.a V(T u T’).p 

In addition, if {Qi} is an indexed set of variables, we write Vai.p as an 
abbreviation for V{ai}.p. As usual, type schemes are regarded as equal if they 
are equivalent up to renaming of bound variables. 

Using this notation, any type scheme can be written in the form Vai.P + 7, 
representing the set of qualified types { [7,/ai] P + [7i/ai]7 1 Ti E Type} 
where [zi/~i] is the substitution mapping each of the variables aI to the 
corresponding type 7j and Type is the set of all simple type expressions 
(represented by 7 in the grammar above). 

As in [4,7,14], we use a term language based on simple untyped I-calculus 
with the addition of a let construct to enable 
morphic (and in this case, overloaded) terms. 

M::=xIMNI~x.MIletx=MinN 

A suitable set of typing rules for this system is 

the definition and use of poly- 

given in Fig. 3. Note the use of 
the symbols 7, p and o to restrict the application of certain rules to specific 
sets of type expressions. 

6.2. Constrained type schemes 

A typing judgement P 1 A k A4 : o assigns a type scheme cr to a term M, but 
also constrains uses of this typing to environments satisfying the predicates 
in P. This observation motivates the use of constrained type schemes, written 
as pairs of the form (P 1 0) where P is a set of predicates and o is a type 
scheme. Following the development of type inference in [7], we will define 
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Standard rules: (var) 
(x:a) E A 

P[Atx:a 

(-E) 
P\AtM:?-,T PIAtN:? 

PlAtMN:T 

(-+ 1) 
PIA,,x:z’tM:z 

PIAtIx.M:z’+z 

Qualified types: (*El 
P(AtM:n+p Pttn 

PIAtM:p 

(=+ I) 

Polymorphism: W’E) 

Local Definition: 

P,zIAtM:p 

PIAtM:z+p 

P 1 A t A4: ‘d’t.o 

P 1 A t A4 : [z/t]a 

(VI) 
PIAtM:a t~TV(A)uTV(P) 

P 1 A t M : V’t.a 

(let) 
PIAtM:a QIA,,x:atN:z 

PuQlAt (letx = Min N):z 

Fig. 3. ML-like typing rules for qualified types 

an ordering that can be used to describe when one constrained type scheme is 
more general than another. As a first step, we introduce the concept of generic 
instances: 

Definition 2. A qualified type R + p is said to be a generic instance of the 
constrained type scheme (P I Vai.Q =s 7) if there are types 7i such that 
R H- P U [ri/ai]Q and ,H = [z~/Q~]T. 

The principal motivation for the definition of the ordering ( Q ) between 
type schemes is that a statement of the form C? < o should mean that it is 
possible to use an object of type o wherever an object of type C’ is required. 

Definition 3. The constrained type scheme (Q I q) is said to be more general 
than a constrained type scheme (P I a), written (P 1 a) G (Q I v] ), if every 
generic instance of (P I CT ) is also a generic instance of (Q I q 1. 

It is straightforward to show that this defines a preorder on the set of 
constrained type schemes, such that a qualified type p is a generic instance 
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Definition 6. The generalization of a qualified type p with respect to a type 
assignment A is written Gen (A, p) and defined by: 

GenMp) =V(Tv/(p) \ TUA)).p. 

In other words, if {ai} = TV(p) \ TV(A), then Gen(A,p) = Val.p. The 
following propositions describe the interaction of generalization with predicate 
entailment and substitution. 

Proposition 7. Suppose that A is a type assignment, P and P’ are sets of 
predicates and T is a type. Then Gen (A, P’ + z) 6 Gen (A, P + z) whenever 
P’ tt P. 

Proposition 8. If A is a type assignment, p is a qualified type and S is a 
substitution. then: 

Gen(SA,Sp) d S(Gen(A,p)). 

Furthermore, there is a substitution R such that: 

RA = SA, SGen(A,p) = Gen(RA,Rp). 

7. A syntax-directed approach 

The typing rules in Fig. 3 provide clear descriptions of the treatment of 
each of the syntactic constructs of the term and type languages. Unfortunately, 
they are not suitable for use in a type inference algorithm where it should 
be possible to determine an appropriate order in which to apply the typing 
rules by a simple analysis of the syntactic structure of the term whose type is 
required. 

In this section, we introduce an alternative set of typing rules with a single 
rule for each syntactic construct in the term language. We refer to this as 
the syntax-directed system because it has the following important property: 
all typing derivations for a given term A4 (if there are any) have the same 
structure, uniquely determined by the syntactic structure of M. We regard the 
syntax-directed system as a tool for exploring the type system of Section 6 and 
we establish a congruence between the two systems so that results about one 
can be translated into results about the other. The advantages of working with 
the syntax-directed system are: 

l The rules are better suited to use in a type inference algorithm; having 
found types for each of the subterms of a given term M, there is at most 
one rule that can be used to obtain a type for the term M itself. 

l Only type expressions are involved in the matching process. Type schemes 
and qualified types can only appear in type assignments. 
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l There are fewer rules and hence fewer cases to be considered in formal 
proofs. 

A similar approach is described in [4] which gives a deterministic set of typing 
rules for ML and outlines their equivalence to the rules in [7]. 

7.1. Syntax-directed typing rules 

The typing rules for the syntax-directed system are given in Fig. 4. Typings 
in this system are written in form P 1 A ? M : 7, where r ranges over the 
set of type expressions rather than the set of type schemes as in the typing 
judgements of Section 6. Other than this, the principal differences between 
the two systems are in the rules (varY and (let)s which use the operations of 
instantiation and generalization introduced in Sections 6.2 and 6.4. 

(varY 
(x:(i) E A 

PIAf x:‘s 
(P * 5) < (7 

(- EY 

P(A+ M:?-+z P(AF N:7’ 

PIA< MN:7 

(- IY 
PlAx,x:7’f M:7 

PIA~~x.M:7’+7 

(let)” 
P(At M:7 P’(A,,x:ot N:7’ 

P’ 1 A < (let x = A4 in N) : 7’ 
g = Gen(A, P + 7) 

Fig. 4. Syntax-directed inference system. 

7.2. Properties of the syntax-directed system 

The following proposition illustrates the parametric polymorphism present in 
the syntax-directed system; instantiating the free type variables in a derivable 
typing with arbitrary types produces another derivable typing. 

Proposition 9. If P I A t M : 7 and S is a substitution, then SP I SA p M : S7. 

A similar result is established in [ 6 ] where it is shown that for any deriva- 
tion A k A4 : 7 in the usual (non-deterministic) ML type system and any 
substitution S, there is a derivation SA k M : S7 which can be chosen in such 
a way that the height of the latter is bounded by the height of the former. This 
additional condition is needed to ensure the validity of proofs by induction on 
the size of a derivation. This complication is avoided by the syntax-directed 
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system; the derivations in Proposition 9 are guaranteed to have the same 
structure because the term M is common to both. 

There is also a form of polymorphism over the sets of environments in which 
a particular typing can be used, as described by the following proposition: 

Proposition 10. Zf P 1 A f M : T and Q H- P, then Q 1 A p A4 : z. 

Recall that an ordering CJ’ d CJ is intended to mean that, at least for the 
purposes of type inference, it is possible to use an object of type CJ whenever 
with an object of type CJ’ is required. In much the same way, given two type 
assignments such that A’ < A (so that the type assigned to each variable in 
A is more general than the corresponding type in A’), we would expect that 
any typing that can be derived using A’ could also be derived from A. The 
following proposition establishes a slightly more general form of this result: 

Proposition 11. Zf P 1 A’ f M : T and (P 1 A’) < A, then P 1 A f A4 : z. 

The hypothesis (P 1 A’) < A means that the types assigned to variables in 
A are more general than those given by A’ in any environment that satisfies 

the predicates in P. For example: 

(Eqlntl {(==):znt~zntdIool}) 

d {(==):Va.Eqa*a--+a+Bool} 

and hence, by the proposition above, it is possible to replace an integer equality 
function with a generic equality function of type ‘da.Eqa =x a + a + Boo1 in 
any environment that satisfies EqZnt. 

7.3. Relationship with original type system 

In order to use the syntax-directed system as a tool for reasoning about the 
type system described in Section 6, we need to investigate the way in which the 
existence of a derivation in one system determines the existence of derivations 
in the other. 

Our first result establishes the soundness of the syntax-directed system with 
respect to the original typing rules, showing that any derivable typing in the 
former system is also derivable in the latter. 

Theorem 12. Zf P I A f A4 : 7, then P 1 A I- M : z. 

The translation of derivations in the original type system to those of the 
syntax-directed system is less obvious. For example, if P 1 A k A4 : Q, then it 
will not in general be possible to derive the same typing in the syntax-directed 
system because (T is a type scheme, not a simple type. However, for any 



M.P. Jones/Science ofcomputer Programming 22 (1994) 231-256 245 

derivation P’ 1 A p A4 : T, Theorem 12 guarantees the existence of a derivation 
P’ ) A i- A4 : z and hence 0 ) A k M : Gen(A, P’ + 5’) by Definition 6. The 
following theorem shows that it is always possible to find a derivation in this 
way such that the inferred type scheme Gen(A, P’ + 9) is more general than 
the constrained type scheme (P 1 a) determined by the original derivation. 

Theorem 13. If P I A I- M : (T, then P’ 1 A f M : z for some set of predicates P’ 
and type z such that (P 1 o) < Gen(A, P’ + 7). 

8. Type inference 

In this section, we give an algorithm for calculating a typing for a given 
term, using an extension of Milner’s algorithm W [ 141 to support qualified 
types. We show that the typings produced by this algorithm are derivable in the 
syntax-directed system and that they are, in a certain sense, the most general 
typings possible. Combining this with the results of the previous section, the 
algorithm can be used to reason about the type system in Section 6. 

8.1. Unification 

This section describes the unification algorithm which is a central component 
of the type inference algorithm. A substitution S is called a unifier for the type 
expressions r and r’ if Sr = ST’. The following theorem is due to Robinson 

[201- 

Theorem 14 (Unification algorithm). There is an algorithm whose input is a 
pair of type expressions ‘s and z’ such that: 

l Either the algorithm succeeds with a substitution U as its result and the 
unifiers of z and ? are precisely those substitutions of the form RU for any 
substitution R. The substitution U is called a most general unijer for z and 
9, and is denoted mgu (q 9). 

l Or the algorithm fails and there are no unifiers for z and 7’. 

In the following, we write r 2 T’ for the assertion that the unification 
algorithm succeeds by finding a most general unifier U for r and T’. 

8.2. A type inference algorithm 

Following the presentation of [ 191, we describe the type inference algorithm 
using the inference rules in Fig. 5. These rules use typings of the form 

PITAtW M:z 
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(var)w 
(XIV0i.P + T) E A 

[Pi/ailf’ I A ?’ x : [Pi/all~ 
pi new 

u 

(- E)w 
PITAP M:T QIT’TAP N:z’ T’z~Y-+ai 

U(T’PuQ, 1 UT/TAP MN: Ucu 
a new 

(- IJW 
P 1 T(A,,x:a) t” M: z 

PjTAtW ilx.M:Ta+~ 
ct new 

(1et)W 
PITAP M:T P’IT’(TA,,x:a)p N:z’ 

P’ I T’TA p (let x = M in N) : z’ 

(T = Gen(TA,P 3 z) 

Fig. 5. Type inference algorithm W. 

where P is a set of predicates, T is a substitution, A is a type assignment, M is 
a term and r is a simple type expression. The typing rules can be interpreted 
as an attribute grammar in which A are M inherited attributes, while P, T 
and r are synthesized. One of the advantages of this choice of notation is that 
it highlights the relationship between W and the syntax-directed system. This 
point is illustrated by the following theorem. 

Theorem 15. If P 1 TA p M : 7, then P I TA ? M : z. 

Combining this with the result of Theorem 12 gives the following important 
corollary. 

Corollary 16 (Soundness of W). If P 1 TA p M : z, then P ) TA k M : T. 

With the exception of (let)w, each of the rules in Fig. 5 introduces “new” 
variables; i.e. variables that do not appear in the hypotheses of the rule nor in 
any other distinct branches of the complete derivation. Note that it is always 
possible to choose type variables in this way because the set of type variables 
is assumed to be countably infinite. In the presence of new variables, it is 
convenient to work with a weaker form of equality on substitutions, writing 
S E R to indicate that St = Rt for all but a finite number of new variables 
t. In most cases, we can treat S z R as S = R, since the only differences 
between the substitutions occur at variables that are not used elsewhere in the 
algorithm. 

This notation enables us to give an accurate statement of the following result 
which shows that the typings obtained by W are, in a precise sense, the most 
general derivable typings for a given term. 



M.P. Jones/Science of Computer Programming 22 (1994) 231-256 247 

Theorem17. IfPISA< M:z, then& TAP M:vforsomeQ, Tandv 
and there is a substitution R such that S z RT, z = Rv and P kk RQ. 

Combining the result of Theorem 17 with that of Theorem 13 we obtain 
a similar completeness result for W with respect to the type system of Sec- 
tion 6. 

Corollary 18 (Completeness of W). Zf P 1 SA k M : CT, then Q 1 TA p M : v 

for some Q, T and v and there is a substitution R such that (P 1 0) < 

RGen(TA,Q+v) andS=RT. 

8.3. Principal type schemes 

A term M is well-typed under a type assignment A if P 1 A t M : CT for some 
P and 0. It is natural to try to characterize the set of constrained type schemes 
(P I r~) for which such a derivation can be found. This can be described using 
the concept of a principal type scheme: 

Definition 19. A principal type scheme for a term M under a type assignment 
A is a constrained type scheme (P 1 a) such that P I A t- M : r~, and 
(P’ I CT’) d (P I a) whenever P’ I A F M : cf. 

The following result gives a sufficient condition for the existence of principal 
type schemes, by showing how they can be constructed from typings produced 
by W. 

Corollary 20. Suppose that M is a term, A is a type assignment and 

Q ) TA r-” M : v for some Q, T and v. 

Then Gen ( TA, Q + v ) is a principal type scheme for M under TA. 

Combining this with Corollary 18 gives a necessary condition for the exis- 
tence of principal type schemes: a term is well-typed if and only if it has a 
principal type scheme. Furthermore, if it exists, a suitable principal type can 
be calculated using the type inference algorithm W. 

Corollary 21 (Principal Type Theorem). Let M be a term and A an arbitrary 
type assignment. The following conditions are equivalent: 

l M is well-typed under A. 
l Q 1 TA t” M : v for some Q and v and there is a substitution R such that 

RTA = A. 
l M has a principal typing under A. 
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9. Extensions and topics for further work 

9.1. The coherence problem 

It is important to point out that the type systems described by the rules in the 
previous sections are not coherent (in the sense of [ 1 ] ). In other words, it is 
possible to construct translations P 1 A k A4 * MI : o and P 1 A k A4 - M; : c 

in which the terms MI and A44 are not equivalent, and hence the semantics of 
A4 are not well-defined. 

For an example in which the coherence problem arises, consider the term 
out (in x) under the predicate assignment P = {u : C Znt, ‘u : C Bool} and the 
type assignment: 

A = {x : Znt, in : Va.Ca + Znt ---) a, out : Va.Ca + a -+ Znt} 

for some unary predicate symbol C. Instantiating the quantified type variable 
in the type of in (and hence also in that of out) with the types Znt and Boo1 
leads to distinct derivations P 1 A t out (inx) : Znt in which the corresponding 
translations, out u (in u x ) and out u (in u x ) are clearly not equal. 

Note that the principal type scheme of out (in x) in this example is Va.C a + 
Znt and that the type variable a (the source of the lack of coherence in the 
derivations above) appears only in the predicate qualifying the type of the 
term, not in the type itself. Motivated by the functional programming language 
Haskell [lo], we say that a type of the form V’ai.P + z is unambiguous if 
{ai} n TV(P) C TV(T). Extending the results of this paper to describe the use 
of translations in the syntax-directed system and the type inference algorithm, 
we have established the following coherence result: 

Theorem 22. Zf P 1 A t M * Mi : o and P 1 A t M * M; : o and the principal 
type scheme of M in A is unambiguous, then the translations MI and Mi are 
equivalent. 

This generalizes an earlier result by Blott [ 2 ] for the special case of [ 23 1. 

Full details are included in [ 131 and we expect to describe this work more 
fully in a forthcoming paper. 

9.2. Eliminating evidence parameters 

Using translations as described in Section 5, a term M of type Vai.P + z will 
be implemented by a term of the form ilvi _ . . . ilvn.M’, where P = {xl,. . . , n,} 

and each Vi is an evidence variable for the corresponding predicate Xi. The 
following subsections outline a number of situations in which it is useful to 
reduce or even eliminate the use of evidence parameters, either to obtain a 
more efficient implementation or to avoid unnecessary repeated calculations. 
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9.2.1. Simplijcation 
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The translation of a term whose type is qualified by a set of predicates P 
requires one evidence abstraction for each element of P. Thus the number of 
evidence parameters that are required can be reduced by finding a smaller set 
of predicates Q, equivalent to P in the sense that P tt Q and Q tt P (and 
hence the type of the new term is equivalent to that of the original term). 
In this situation, we have a compromise between reducing the number of 
evidence parameters required and the cost of constructing evidence for P from 
evidence for Q. The process of simplification can be formalized by allowing 
the rule: 

PIAI%f:v PttQ QttP 

QIAP M:v 

to be used at any stage during type inference to simplify the inferred predicate 
set. It is relatively straightforward to show that this rule is sound and that the 
extended algorithm still calculates principal (but potentially simplified) type 
schemes. 

In general, the task of finding an optimal set of predicates with which to 
replace P is likely to be intractable. One potentially useful approach would be 
to determine a minimal subset Q c P such that Q H- P. To see that this is 
likely to be a good choice, note that: 

P tt Q, by monotonicity of tt and hence Q is equivalent to P as required. 
Since Q C P, the number of evidence abstractions 
than or equal to the number required when using 
The construction of evidence for a predicate in P 
trivial for each predicate that is already in Q. 

required using Q is less 
P. 
using evidence for Q is 

9.2.2. Evidence parameters considered harmful 
The principal motivation for including the let construct in the term language 

was to enable the definition and use of polymorphic and overloaded values. 
In practice, the same construct is also used for a number of other purposes: 

l To avoid repeated evaluation of a value that is used at a number of points 
in an expression. 

l To create cyclic data structures using recursive bindings [ 3 1. 

l To enable the use of identifiers as abbreviations for the subexpressions of 
a large expression. 

Unfortunately, the addition of evidence parameters to the value defined in a 
let expression may mean that the evaluation of an overloaded term will not 
behave as intended. For example, if f : Va.Ca + Int + a, then we have a 
translation: 

letx = j-0 in (x,x) * Av.let x = (Av.fvO) in (XU,XU) 
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and the evaluation of xv in the translation is no longer shared. There are 
a number of potential solutions to this problem. In the example above, one 
method would be to rewrite the translation as: 

;Iv.let x = (fv0) in (x,x). 

This is the kind of translation which will be obtained using a monomorphism 
restriction such as that proposed for Haskell [ lo] which restricts the amount 
of overloading that can be used in particular syntactic forms of binding. Note 
that this approach is only useful when the variable defined in the let expression 
is not required to have a polymorphic type in the scope of that definition. 

9.2.3. Constant and locally-constant overloading 
Consider the typing of local definitions in the type system of Section 6 using 

the rule: 

PJAkM:a QlA,,x:at-N:T 

PUQIAE (letx = Min N):z 

Notice that this allows some of the predicates constraining the typing of 
M (i.e. those in P) to be retained as a constraint on the environment in 
the conclusion of the rule rather than being included in the type scheme c. 
However, in the corresponding rule (let)S for the syntax-directed system, all of 
the predicates constraining the typing of A4 are included in the inferred type 
scheme Gen(A, P + 7): 

PIAt M:r P’IA,,x:Gen(A,P=+z)+ N:z’ 

P’ 1 A $ (let x = M in N) : 7’ 

As a consequence, evidence parameters are needed for all of the predicates 
in P, even if some of the corresponding evidence values are the same for 
each occurrence of x in N. In particular, this includes constant evidence 
(for predicates with no free type variables) and locally-constant evidence (for 
predicates, each of whose free variables also appears free in A). 

From the relationship between the type inference algorithm W and the 
syntax-directed system, it follows that W has the same behaviour; indeed, this 
is essential to ensure that W calculates principal types: if x @ FV( N), then 
none of the environment constraints described by P need be reflected by the 
constraints on the complete expression in P’. 

However, if x E FV( N), it is possible to find a set F C_ P such that P’ H- F 
and hence the type scheme assigned to x can be replaced by Gen (A, (P \ F) + 
T), potentially decreasing the number of evidence parameters required by x. 
To see this, suppose that Gen(A, P + T) = (b’cxi.P + T). A straightforward 
induction, based on the hypothesis that x E FV(N), shows that P’ tt [Zi/Ni] P 
for some types ri. If we now define: 
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FP(A,P) = { (v : n) E P 1 W(n) G TV(A) }, 
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then F = FP(A, P) is the largest subset of P that is guaranteed to be unchanged 
by the substitution [ri/ai]. These observations suggest that (let)” could be 
replaced by the two rules: 

l In the case where x $ FV(N): 

P(AF M:r P’(AF N:7’ 

P’ 1 A f (let x = M in N) : 7’ 
(let)) 

The typing judgement involving M serves only to preserve to property 
that all subterms of a well-typed term are also well-typed. 

l In the case where x E FV(N): 

PlAp M:7 P’jA,,x:Gen(A,P\F+z)? N:7’ P’l+F 

P’ 1 A c (let x = A4 in N) : 7’ 
(let); 

where F = FP(A, P). 
While these rules retain the syntax-directed character necessary for use in a 
type inference algorithm, they are not suitable for typing top-level definitions 
(such as those in Haskell or ML) which are treated as let expressions in which 
the scope of the defined variable is not fully determined at compile-time. 

A more realistic approach would be to use just (let); in place of (let)s, 
with the understanding that type schemes inferred by W are only guaranteed 
to be principal in the case where x E FL’(N) for all subterms of the form 
let x = M in N in the term whose type is being inferred. Justification for this 
approach is as follows: 

l For a top-level declaration of the identifier x, we can take the scope of the 
declaration to be the set of all terms that might reasonably be evaluated 
in the scope of such a declaration, which of course includes the term x. 

l For let expressions in which the scope of the defined variable is known, the 
local definition in an expression of the form let x = M in N is redundant, 
and the expression is semantically equivalent to N. However, expressions 
of this form are sometimes used in implicitly typed languages to force a 
less general type than might otherwise be obtained by the type inference 
mechanism. For example, if (= = ) is an integer equality function and 0 
is an integer constant, then Ix.let y = (x = = 0) in x has principal type 
scheme Znt -+ Znt, whereas the principal type scheme for Ax.x is Va.a -+ a. 
Such ad-hoc ‘coding-tricks’ become unnecessary if the term language is 
extended to allow explicit type declarations. 

In a practical implementation, it would be useful to arrange for suitable 
diagnostic messages to be generated whenever an expression of the form let x = 
A4 in N with x @ FL’(N) is encountered; this would serve as a warning to 



252 M.P. Jones/Science of Computer Programming 22 (1994) 231-256 

the programmer that the principal type property may be lost (in addition to 
catching other potential program errors). 

9.3. Satisfiability 

One of the most important features of the systems of qualified types described 
in this paper is the ability to move “global” constraints on a typing derivation 
into the type of an object using (+ I): 

P,zIAl-M:p 

PIAt-M:n+p 

This is essential in many situations where overloading is combined with poly- 
morphism: without the ability to move predicates from the first component 
of a typing P 1 A t- M : p into the type of an object we would not be able to 
apply (VZ) for any type variables appearing in TV(P), severely limiting the 
use of polymorphism. 

On the other hand, with the formulation of the typing rules used in the 
previous sections there is no attempt to guarantee that the predicates introduced 
into the type of an object using (3 I) are satisfiable. As we have already 
mentioned, an object of type TC + p can only be used if we can provide 
evidence for the predicate 71. If no such evidence can be obtained, then any 
object with this type is useless. 

This problem was noted by Volpano and Smith [22] for the special case 
of the system of type classes described in [23]. With this in mind, they gave 
a stronger definition of well-typing that includes testing for satisfiability of 
an inferred type scheme and showed that, in an unrestricted version of the 
Wadler-Blott system, the process of determining whether a particular term 
is well-typed is undecidable. The framework used in this paper allows us to 
separate typability from predicate entailment and to identify the problem as 
undecidability of the latter. Nevertheless, the difficulty remains. 

On the one hand we could simply ignore the problem since it will never 
be possible to resolve the overloading for an object with an unsatisfiable type 
scheme and hence any attempt to use it will fail. On the other hand, it would 
certainly be useful if the type system could be used to identify such objects 
at the point where they are defined and produce suitable error diagnostics to 
assist the programmer. One possibility would be to modify the rule for typing 
let expressions with: 

PIAl-M:a Q[A,,x:akN:z Posata 

P,Q 1 A k (let x = A4 in N) : z 

to ensure satisfiability with respect to a fixed set of predicates PO, where: 
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PO sat (V’ai.P * 7) M lVi.P() I+ [Vj/Cri]P. 
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The following properties of this relationship between predicate sets and type 
schemes are easily established and show that this notion of satisjiability is well- 
behaved with respect to our use of polymorphism, entailment and ordering: 

l If P sat rr, then SP sat Sa for any substitution S. 
l If P sat CJ and Q I+ P, then Q sat O. 
l If P sat 19 and (P 1 a’) d (T, then P sat cr. 

We conjecture that, if we restrict our attention to derivations P 1 A k A4 : 0 
for which PO H- P, then the development of a principal type algorithm and 
coherence conditions described in the previous sections will extend naturally 
to deal with this extension. Note however that we will require decidability of 
PO sat c for arbitrary PO and CJ to ensure decidability of type checking. 

Another, more positive, application of satisliability is to enable the calcu- 
lation of more accurate types for given terms. As an example, consider the 
function ;Ir. (r.Z, r.1) using the record selection operator described in Section 3.2 
which has principal type scheme: 

Vr.Va.Vb.(r has l:a, r has I:b) + r -+ (a,b). 

However, for any given record type r, the types assigned to the variables a and 
b must be identical since they both correspond to the same field in r. It would 
therefore seem quite reasonable to treat f as having a principal satisjiable type 
scheme: 

Vr.Va.(r has l:a) + r + (a,a). 

To see how this might be dealt with more formally, recall the treatment of 
the ordering between type schemes in Section 6.2. Writing the set of generic 
instances of a type scheme as: 

[vai.P * 71 = {Q * [vi/a,17 ( vi E Type, Q tt- [vi/~,lP}, 

the ordering on type schemes is described by: 

CJ 6 0’ @ I[01 & [lo’] 

In a similar way can define the generic satisfiable instances of a type scheme 
with respect to a predicate set PO as: 

[Vai.P 3 7Jg’= { [Vi/ail7 1 pi E Type, PO H- [vi/ai]P} 

and define a satisliability ordering, again with respect to PO, by: 

0 ~2’ OI + nOn;t c IO’];’ 

We can formalize the notion of principal satisfiable type in the same way as in 
Section 8.3 using the ( <Et) ordering in place of ( < ). For the example above, 
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both of the type schemes given are principal satisfiable type schemes for the 
term Au. (r.l, r.1). The first of these is the type scheme that would be obtained 
using our type inference algorithm, but it would clearly be preferable if the 
algorithm could be modified to give the second alternative. Further investi- 
gation is needed to discover effective procedures or heuristics for calculating 
more informative types that can be used to support this extension. 

9.4. The use of subsumption 

The typing rules in Fig. 1 are only suitable for reasoning about systems with 
explicit coercions. For example, if Int c Real, then we can use an addition 
function: 

add :: Va.a g Real + a + a + Real 

to add two integers together, obtaining a real number as the result. More 
sophisticated systems, such as those in [ 8,151, cannot be described without 
adding a form of the rule of subsumption: 

PIAFM:? Ptt?cr 

PIAkM:7 

Each use of this rule corresponds to an implicit coercion; the addition of two 
integers to obtain a real result can be described without explicit overloading 
using a function: 

add :: Real + Real + Real 

with two implicit coercions from Int to Real. As a further example, in the 
framework of Section 4, the polymorphic identity function At.Ax : t.x can be 
treated as having type Va.Vb.a c b 3 a + b and hence acts as a generic 
coercion function. 

No attempt has been made to deal with systems including the rule of 
subsumption in the development of the type inference algorithm in Section 8, 
which is therefore only suitable for languages using explicit coercions. The 
results of [ 81 and [ 211 are likely to be particularly useful in extending the 
present system to support the use of implicit coercions. 
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