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1. Introduction

Most classical (co)homology theories of algebraic objects such as groups or Lie, Lie–Rinehart or
associative algebras can be realised as

H•(X, M) := Ext•U (A, M), H•(X, N) := TorU• (N, A) (1)

for an augmented ring X = (U , A) (a ring U with a distinguished left module A) that is functorially
attached to a given object. The cohomology coefficients are left U -modules M and those in homology
are right U -modules N .

Our aim here is to clarify the origin and interplay of products and dualities between such
(co)homology groups, and to provide a unified treatment of results by Van den Bergh on Hochschild
(co)homology [25] and by Huebschmann on Lie–Rinehart (co)homology [7]. The key concept involved
is that of a ×A -Hopf algebra introduced by Schauenburg [21].

The main results can be summarised as follows:
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Theorem 1. For any A-biprojective ×A -Hopf algebra U there is a functor

⊗ : U -Mod × U op-Mod → U op-Mod

that induces for M ∈ U -Mod, N ∈ U op-Mod and m,n � 0 natural products

� : Extm
U (A, M) × TorU

n (N, A) → TorU
n−m(M ⊗ N, A).

If A ∈ U -Mod admits a finitely generated projective resolution of finite length and there exists d � 0 with
Extm

U (A, U ) = 0 for m �= d, then there is a canonical element

[ω] ∈ TorU
d

(
A∗, A

)
, A∗ := Extd

U (A, U )

such that for m � 0 and M ∈ U -Mod with TorA
q (M, A∗) = 0 for q > 0 the map

· � [ω] : Extm
U (A, M) → TorU

d−m

(
M ⊗ A∗, A

)

is an isomorphism.

As we will recall below, ×A -bialgebras and ×A -Hopf algebras generalise bialgebras and Hopf alge-
bras towards noncommutative base algebras A. Besides Hopf algebras, both the universal enveloping
algebra U (A, L) of a Lie–Rinehart algebra (A, L) and the enveloping algebra Ae = A ⊗k Aop of an
associative algebra A are ×A -Hopf algebras.

For any ×A -bialgebra U , the base algebra A carries a left U -action and the category U -Mod of
left U -modules is monoidal with unit object A. But only for ×A -Hopf algebras one has a canonical
operation ⊗ as in Theorem 1 which turns U op-Mod into a module category over (U -Mod,⊗, A)

(Lemma 3).
Any ×A -Hopf algebra U carries two left and two right actions of the base algebra A, all commuting

with each other. The biprojectivity assumed in Theorem 1 refers to the projectivity of two of these, see
Section 2.1. Under this condition, we can use the elegant formalism of suspended monoidal categories
from [23] to define for M, N ∈ U -Mod and P ∈ U op-Mod products

� : Hm(X, M) × Hn(X, N) → Hm+n(X, M ⊗ N),

� : Hn(X, N) × H p(X, P ) → H p−n(X, N ⊗ P ),

where we again use the abbreviations from Eq. (1) above (cf. Sections 3.2 and 3.5).
In the last part of Theorem 1, A∗ = Hd(X, U ) = Extd

U (A, U ) is a right U -module via right multipli-
cation in U , and if we define the functor

ˆ : U -Mod → U op-Mod, M �→ M̂ := M ⊗ A∗,

then the statement can be rewritten as an isomorphism

Hm(X, M) � Hdim(X)−m(X, M̂), dim(X) := proj.dimU (A)

that is given by the cap product with the fundamental class [ω] ∈ Hdim(X)(X, Â) which corresponds
under the duality to idA ∈ H0(X, A) = HomU (A, A). For M = A this simply means that the H•(X, A)-
module H•(X, A∗) is free with generator [ω].

Theorem 1 is well known in group and Lie algebra (co)homology. For U = A ⊗k Aop it reduces
to Van den Bergh’s result [25] that stimulated a lot of recent research, see e.g. [2,4,5,13]. Note that



N. Kowalzig, U. Krähmer / Journal of Algebra 323 (2010) 2063–2081 2065
we do not need Van den Bergh’s invertibility assumption about A∗ which says that ˆ is an equiv-
alence. However, it is satisfied for many well-behaved algebras [2,4,5,13] and implies the condition
TorA

q (M, A∗) = 0 for arbitrary A-bimodules M (since invertible bimodules are finitely generated pro-
jective as one-sided modules from either side). For Lie–Rinehart algebras (A, L), Theorem 1 is due to
Huebschmann [7], and we find the general setting helpful for example to understand the different
roles of left and right modules that he has observed. As Huebschmann has showed, the conditions of
Theorem 1 are satisfied whenever L is finitely generated projective over A, and A∗ coincides as an A-
module with Λd

A L and is in particular projective, so also here we have TorA
q (M, A∗) = 0 for arbitrary

(A, L)-modules M .
We were also motivated by the current discussion of the numerous bialgebroid generalisations of

Hopf algebras, see [1]. Several authors have raised the question where Lie–Rinehart algebras fit in.
They were shown in [27,17] to be ×A -bialgebras, see also [11,8]; here we add the observation that
they are in fact always ×A -Hopf algebras. So both these examples and the applications in homological
algebra clearly demonstrate the relevance of the concept of a ×A -Hopf algebra.

Theorem 1 could be generalised to differentially graded ×A -Hopf algebras, sheaves of such, or
suitable abstract monoidal categories. One can also drop the condition Extn

U (A, U ) = 0 for n �= d and
the assumption that TorA

q (M, A∗) = 0. Then one obtains for a bounded below chain complex M over

U -Mod an isomorphism RHomU (A, M) � (M ⊗L
A RHomU (A, U )) ⊗L

U A.

N. Kowalzig is supported by the NWO through the GQT cluster. U. Krähmer is supported by the
EPSRC fellowship EP/E/043267/1 and partially by the Polish Government Grant N201 1770 33. We
thank Andy Baker, Gabriella Böhm, Ken Brown, Dima Kaledin, Henning Krause and Valery Lunts for
discussions and suggestions.

2. Preliminaries on ×A -Hopf algebras

2.1. Some conventions

Throughout this paper, “ring” means “unital and associative ring”, and we fix a commutative ring
k. All other algebras, modules, etc., will have an underlying structure of a k-module. Secondly, we fix a
k-algebra A, i.e., a ring with a ring homomorphism ηA : k → Z(A) to its centre. We denote by A-Mod
the category of left A-modules, by Aop the opposite and by Ae := A ⊗k Aop the enveloping algebra of
A. Thus left Ae-modules are A-bimodules with symmetric action of k.

Our main object is finally an algebra U over Ae , where we now refer to the less standard notion
of an algebra over a possibly noncommutative base algebra: U is a k-algebra with a k-algebra homo-
morphism η = ηU : Ae → U . This gives rise to a forgetful functor U -Mod → Ae-Mod using which we
consider every U -module M also as an A-bimodule with actions

a �m �b := η(a ⊗k b)m, a,b ∈ A, m ∈ M. (2)

Similarly, every right U -module N is also an A-bimodule via

a �m � b := nη(b ⊗k a), a,b ∈ A, n ∈ N. (3)

In particular, U itself carries two left and two right A-actions all commuting with each other. Usually
we consider U as an Ae-module using a � u �b, and otherwise we write e.g. � U � to denote which
actions are considered. Since this will be repeatedly a necessary technical condition, we define:

Definition 1. For an Ae-algebra U we call M ∈ U -Mod A-biprojective if both � M ∈ A-Mod and M � ∈
Aop-Mod are projective modules.
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2.2. ×A -bialgebras [24]

Consider an Ae-algebra U as above which is also a coalgebra in the monoidal category Ae-Mod.
That is, there are maps

� : U → U ⊗A U , ε : U → A

satisfying the usual coalgebra axioms (see e.g. [1] for the details), where

U ⊗A U = U ⊗k U/ spank{u �a ⊗k v − u ⊗k a � v | a ∈ A, u, v ∈ U }. (4)

For A = k one calls U a bialgebra if � and ε are algebra homomorphisms, but in general there is
no natural algebra structure on U ⊗A U . The way out of this problem was found by Takeuchi [24] and
involves the embedding

ι : U ×A U → U ⊗A U , (5)

where U ×A U is the centre of the A-bimodule � U � ⊗A � U � :

U ×A U :=
{∑

i

ui ⊗A vi ∈ U ⊗A U
∣∣∣ ∑

i

a � ui ⊗A vi =
∑

i

ui ⊗A vi �a

}
.

The product of U turns this into an algebra over Ae , with

ηU×A U : Ae → U ×A U , a ⊗k b �→ η(a ⊗k 1) ⊗A η(1 ⊗k b).

Similarly, A is an algebra over k, but not over Ae in general. To handle this one needs the canonical
map

π : Endk(A) → A, ϕ �→ ϕ(1), (6)

and the fact that Endk(A) is an algebra over Ae , with

ηEndk(A) : Ae → Endk(A),
(
ηEndk(A)(a ⊗ b)

)
(c) := acb.

Now it makes sense to require � and ε to factor through ι and π :

Definition 2. A (left) ×A -bialgebra is an algebra U over Ae together with two homomorphisms
�̂ : U → U ×A U and ε̂ : U → Endk(A) of algebras over Ae such that U is a coalgebra in Ae-Mod
via � = ι ◦ �̂ and ε = π ◦ ε̂.

So one has for example for any ×A -bialgebra

�(a � u �b) = a � u(1) ⊗A u(2) �b, �(a � u � b) = u(1) � b ⊗A a � u(2),

where we started to use Sweedler’s shorthand notation u(1) ⊗A u(2) for �(u).
Be aware that the four A-actions are not the only feature that disappears for A = k. Another crucial

one is that the counit ε : U → A is not necessarily a ring homomorphism. Note also that many authors
write s(a) := η(a ⊗ 1) and t(a) := η(1 ⊗ a) and formulate the theory using these so-called source and
target maps rather than η.
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2.3. The monoidal category U -Mod [20]

Definition 2 might appear complicated, but is the correct concept from several points of view. For
example, there is the following result of Schauenburg [20, Theorem 5.1]:

Theorem 2. The ×A -bialgebra structures on an algebra η : Ae → U over Ae correspond bijectively to monoidal
structures on U -Mod for which the forgetful functor U -Mod → Ae-Mod induced by η is strictly monoidal.

Given a ×A -bialgebra structure on U , the monoidal structure on U -Mod is defined as for bialge-
bras: one takes the tensor product M ⊗A N of the A-bimodules underlying M, N ∈ U -Mod and defines
a left U -action via �,

u(m ⊗A n) := u(1)m ⊗A u(2)n, u ∈ U , m ∈ M, n ∈ N. (7)

Definition 3. If U is a ×A -bialgebra and M, N ∈ U -Mod are left U -modules, we denote the left U -
module M ⊗A N with U -action (7) by M ⊗ N .

The unit object in U -Mod is A on which U acts via

ε̂(u)(a) = ε(a � u) = ε(u �a),

where the last equality is a consequence of the definition of a ×A -bialgebra.
There is an analogous notion of right ×A -bialgebra for which U op-Mod is monoidal. However, for

a left ×A -bialgebra there is no canonical monoidal structure on U op-Mod or even only right action
of U on A.

2.4. ×A -Hopf algebras [21]

Let U be a ×A -bialgebra and define

β : � U ⊗Aop U � → U � ⊗A � U , u ⊗Aop v �→ u(1) ⊗A u(2)v, (8)

the so-called Galois map of U , where

� U ⊗Aop U � = U ⊗k U/ span{a � u ⊗k v − u ⊗k v �a | u, v ∈ U , a ∈ A}.
One could flip the tensor components in order to avoid taking the tensor product over Aop, but we
found it more convenient to keep β in the form which is standard for bialgebras over fields. For
the latter it is easily seen that β is bijective if and only if U is a Hopf algebra with β−1(u ⊗k v) :=
u(1) ⊗ S(u(2))v , where S is the antipode of U . This motivates the following definition due to Schauen-
burg [21]:

Definition 4. A ×A -bialgebra U is a ×A -Hopf algebra if β is a bijection.

Following Schauenburg, we adopt a Sweedler-type notation

u+ ⊗Aop u− := β−1(u ⊗A 1) (9)

for the so-called translation map

β−1( · ⊗A 1) : U → � U ⊗Aop U � .
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Since substantial for the subsequent calculations, we list some properties of β−1 as proven in [21,
Proposition 3.7]: one has for all u, v ∈ U , a,b ∈ A:

u+(1) ⊗A u+(2)u− = u ⊗A 1 ∈ U � ⊗A � U , (10)

u(1)+ ⊗Aop u(1)−u(2) = u ⊗Aop 1 ∈ � U ⊗Aop U � , (11)

u+ ⊗Aop u− ∈ U ×Aop U , (12)

u+ ⊗Aop u−(1) ⊗A u−(2) = u++ ⊗Aop u− ⊗A u+−, (13)

(uv)+ ⊗Aop (uv)− = u+v+ ⊗Aop v−u−, (14)

η(a ⊗ b)+ ⊗Aop η(a ⊗ b)− = η(a ⊗ 1) ⊗Aop η(b ⊗ 1), (15)

where in (12) we abbreviated

U ×Aop U :=
{∑

i

ui ⊗Aop vi ∈ � U ⊗Aop U �
∣∣∣ ∑

i

ui �a ⊗Aop vi =
∑

i

ui ⊗Aop a � vi

}

and in (13) the tensor product over Aop links the first and third tensor component (cf. [21, Eq. (3.7)]).
By (10) and (12) one can write

β−1(u ⊗A v) = u+ ⊗Aop u−v (16)

which is easily checked to be well defined over A with (14) and (15).

2.5. Examples

Clearly, Hopf algebras over k such as universal enveloping algebras of Lie algebras or group al-
gebras are ×k-Hopf algebras. But also the enveloping algebra of an associative algebra that governs
Hochschild (co)homology is an example as pointed out by Schauenburg [21]:

Example 1. The enveloping algebra U := Ae of any k-algebra A is a ×A -bialgebra with η = idAe and
coproduct and counit

� : U → U ⊗ U , a ⊗k b �→ (a ⊗k 1) ⊗A (1 ⊗k b), ε : U → A, a ⊗k b �→ ab.

As for the ×A -Hopf algebra structure, the tensor product in question reads

� U ⊗Aop U � = U ⊗k U/ spank

{
(a ⊗k cb) ⊗k

(
a′ ⊗k b′) − (a ⊗k b) ⊗k

(
a′ ⊗k b′c

)}
,

where cb and b′c is understood to be the product in A. One then easily verifies that

(a ⊗k b)+ ⊗Aop (a ⊗k b)− := (a ⊗k 1) ⊗Aop (b ⊗k 1)

yields an inverse of the Galois map defined as in (16).

Finally we discuss Lie–Rinehart algebras which define for example Poisson (co)homology. Several
authors [27,11,17] have shown that their enveloping algebras are ×A -bialgebras, but they are in fact
×A -Hopf algebras:
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Example 2. Let (A, L) be a Lie–Rinehart algebra over k [19,6]. We denote by (a, X) �→ aX the A-
module structure on L and by (X,a) �→ X(a) the L-action on A given by the anchor ε̂ : L → Derk(A).
Its universal enveloping algebra U = U (A, L) is the universal k-algebra equipped with two maps

ιA : A → U , ιL : L → U

of k-algebras and of k-Lie algebras, respectively, and subject to the identities

ιA(a)ιL(X) = ιL(aX), ιL(X)ιA(a) − ιA(a)ιL(X) = ιA
(

X(a)
)

for a ∈ A, X ∈ L; confer [19] for the precise construction. The map ιA is injective, so we refrain from
further mentioning it. We will also merely write X when we mean ιL(X) (if L is A-projective, then ιL

is injective as well).
Recall now from e.g. [27,17] that U carries the structure of a ×A -bialgebra: the maps η(− ⊗ 1)

and η(1 ⊗ −) are equal and given by ιA . The prescriptions

�(X) = 1 ⊗A X + X ⊗A 1, �(a) = a ⊗A 1 (17)

which map X ∈ L and a ∈ A into U ×A U can be extended by the universal property to a coproduct
�̂ : U → U ×A U . The counit is similarly given by the extension of the anchor ε̂ to U . The bijectivity
of the Galois map is seen in the same way: the translation map is given on generators as

a+ ⊗Aop a− := a ⊗Aop 1, X+ ⊗Aop X− := X ⊗Aop 1 − 1 ⊗Aop X . (18)

These maps stay in U ×Aop U which is an algebra through the product of U in the first and its opposite
in the second tensor factor. By universality we obtain a map U → U ×Aop U , and then β−1 is defined
using (16).

3. Multiplicative structures

3.1. D−(U ) as a suspended monoidal category [23]

For any ring U , we denote by D−(U ) the derived category of bounded above cochain complexes
of left U -modules. As usual, we identify any M ∈ U -Mod with a complex in D−(U ) concentrated
in degree 0, and any bounded below chain complex P• with a bounded above cochain complex by
putting Pn := P−n .

If U is an A-biprojective ×A -bialgebra, then any projective P ∈ U -Mod is A-biprojective. Hence
the monoidal structure of U -Mod extends to a monoidal structure on D−(U ) with unit object given
by A and product being the total tensor product ⊗L = ⊗L

A (the A-biprojectivity of U -projectives is
needed for example to have [26, Lemma 10.6.2]).

Together with the shift functor T : D−(U ) → D−(U ), (T C)n = Cn+1, D−(U ) becomes what is called
a suspended monoidal category in [23]. This just means that for all C, D ∈ D−(U ), the canonical
isomorphisms

T C ⊗L D � T (C ⊗L D) � C ⊗L T D

given by the obvious renumbering make the diagrams
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A ⊗L T C T C

T (A ⊗L C)

T C ⊗L A T C

T (C ⊗L A)

commutative and the diagram

T C ⊗L T D T (C ⊗L T D)

T (T C ⊗L D) T 2(C ⊗L D)

anticommutative (commutative up to a sign −1).

3.2. � and ◦ [23]

As a special case of the constructions from [23], we define for any A-biprojective ×A -bialgebra U
and L, M, N ∈ U -Mod the cup product

� : Extm
U (A, M) × Extn

U (A, N) → Extm+n
U (A, M ⊗ N)

and the classical Yoneda product

◦ : Extm
U (N, M) × Extn

U (L, N) → Extm+n
U (L, M).

The latter is just the composition of morphisms in D−(U ) if one identifies

Extn
U (L, N) � HomD−(U )

(
L, T n N

)
,

and

Extm
U (N, M) � HomD−(U )

(
N, T m M

) � HomD−(U )

(
T n N, T m+n M

)
.

The former is obtained as follows: given

ϕ ∈ Extm
U (A, M) � HomD−(U )

(
A, T m M

)
,

ψ ∈ Extn
U (A, N) � HomD−(U )

(
A, T n N

)
,

one defines ϕ � ψ as the composition

A � A ⊗L A
ϕ⊗ψ

T m M ⊗L T n N � T m(
M ⊗L T n N

) � T m+n(M ⊗L N)

T m+n(M ⊗ N),

where the last map is the augmentation M ⊗L N → H0(M ⊗L N) � TorA
0 (M, N) � M ⊗ N , or rather

T m+n applied to this morphism in D−(U ).
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A straightforward extension of Theorem 1.7 from [23] now gives:

Theorem 3. If U is an A-biprojective ×A -bialgebra, then we have

ψ ◦ ϕ = ϕ � ψ = (−1)mnψ � ϕ, ϕ ∈ Extm
U (A, A), ψ ∈ Extn

U (A, M),

as elements of Extm+n
U (A, M) � Extm+n

U (A, A ⊗ M) � Extm+n
U (A, M ⊗ A).

In particular, ExtU (A, A) becomes through either of the products a graded commutative algebra over the
commutative subring HomU (A, A).

Proof. This is proven exactly as in [23]. For the reader’s convenience we include one of the diagrams
involved. The unlabelled arrows are canonical maps coming from the suspended monoidal structure.

A

ϕ

A ⊗ A

id⊗ϕ
ψ⊗id

T m A

id

A ⊗ T m A

ψ⊗id

T n M ⊗L A

id⊗ϕ

T m(A ⊗ A)

T m(ψ⊗id)

T n M ⊗L T m A

T m A

T m(ψ)

T m(T n M ⊗L A) T n(M ⊗L T m A)

T m+n M T m+n(M ⊗L A)

The morphism ψ ◦ϕ ∈ HomD−(U )(A, T m+n M) is the path going straight down from A to T m+n M , and
ψ � ϕ is the one which goes clockwise round the whole diagram. All faces of the diagram commute
except the lower right square which introduces a sign (−1)mn , so we get ψ ◦ ϕ = (−1)mnψ � ϕ . The
other identity is shown with a similar diagram. �
3.3. Tensoring projectives

This paragraph is a small excursus about the projectivity of the tensor product of two projective
objects of a monoidal category. For example, U ⊗ U ∈ U -Mod is not necessarily projective even for a
bialgebra U over a field A = k (so the A-projectivity of U or the exactness of ⊗ does not help). Here
is a simple example (for a detailed study of examples of categories of Mackey functors see [14]):

Example 3. Consider the bialgebra U = C[a,b, c] over A = k = C with

�(a) = a ⊗ a, �(b) = a ⊗ b + b ⊗ c, �(c) = c ⊗ c,

ε(a) = 1, ε(b) = 0, ε(c) = 1.
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Geometrically, U is the coordinate ring of the complex algebraic semigroup G of upper triangular
2 × 2-matrices, and � and ε are dual to the semigroup law G × G → G and the embedding of the
identity matrix into G .

We prove that U ⊗ U ∈ U -Mod is not projective by considering the fibres of the semigroup law
G × G → G . The fibre over a generic and hence invertible element is 3-dimensional, but over 0 it is
4-dimensional, and this will imply our claim. We can use for example [15, Theorem 19 on p. 79]:

Theorem 4. Let U ⊂ V be a flat extension of commutative Noetherian rings, p ⊂ V be a prime ideal and
q := U ∩ p. Then

dim(Vp) = dim(Uq) + dim
(

Vp ⊗U U (q)
)
,

where dim denotes the Krull dimension of a ring, Vp is the localisation of V at p and U (q) := Uq/qUq is the
residue field of the localisation Uq .

Apply this to our example U � �(U ) ⊂ V := U ⊗ U : let p be the ideal of V generated by a ⊗C 1,
1 ⊗C a, b ⊗C 1, 1 ⊗C b, c ⊗C 1, 1 ⊗C c. Geometrically, V is the coordinate ring of C

6 and Vp is the
local ring in 0, so dim(Vp) = 6. Since 1 /∈ p, q = U ∩ p is proper, and it contains the ideal generated
by �(a) = a ⊗C a, �(b) = a ⊗C b + b ⊗C c, �(c) = c ⊗C c which is maximal in U , so q ⊂ U is the
ideal generated by a,b, c, and Uq is the local ring of C

3 at 0 with dim(Uq) = 3. The field U (q) is
obviously C, and we can write Vp ⊗U U (q) also as Vp/�(q)Vp . Since �(q)Vp is contained in the
ideal r generated in Vp by the elements a ⊗C 1, 1 ⊗C c, we have dim(Vp/�(q)Vp) � dim(Vp/r). Now
Vp/r is the local ring of C

4 ⊂ C
6 at 0 and hence dim(Vp/r) = 4. In total, we get the strict inequality

3 + dim(Vp/�(q)Vp) � 3 + 4 = 7 > 6, and hence V is not flat over U and in particular not projective.

For ×A -Hopf algebras the situation is, however, much simpler: notice that

� U ⊗Aop M � := U ⊗k M/span{a � u ⊗k m − u ⊗k m �a | u ∈ U , a ∈ A, m ∈ M}
is for any ×A -bialgebra U and M ∈ U -Mod a left U -module by left multiplication on the first factor.
Just as for M = U , there is a Galois map

βM : � U ⊗Aop M � → U ⊗ M, u ⊗Aop m �→ u(1) ⊗A u(2)m,

and we have:

Lemma 1. For any ×A -bialgebra U , the generalised Galois map βM is a morphism of U -modules. If U is a
×A -Hopf algebra, then βM is bijective.

Proof. The U -linearity of βM follows immediately from the fact that �̂ : U → U ×A U is a homomor-
phism of algebras over Ae . Furthermore, if β is a bijection, then βM is so as well since we can identify
βM with β ⊗U idM , and then the inverse is simply given by β−1

M (u ⊗A m) = u+ ⊗Aop u−m. �
Using this one now gets:

Theorem 5. If U is a ×A -Hopf algebra and U � ∈ Aop-Mod is projective, then P ⊗ Q ∈ U -Mod is projective
for all projectives P , Q ∈ U -Mod.

Proof. By assumption, a projective U -module is also projective over Aop, and if ϕ : R → S is any ring
map, then S ⊗R · : R-Mod → S-Mod maps projectives to projectives. This shows that � U ⊗Aop U �
and hence (Lemma 1) U ⊗ U is projective. Since ⊗ = ⊗A commutes with arbitrary direct sums, P ⊗ Q
is projective for all projectives P , Q . �
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Corollary 1. If U is as in Theorem 5 and P ∈ D−(U ) is a projective resolution of A ∈ U -Mod, then so is
P ⊗ P := Tot(P• ⊗ P•) = P ⊗L P .

This leads to the traditional construction of � given for A = k in [3, Chapter XI]: one fixes a
projective resolution P of A, and by the above, ExtU (A, M ⊗ N) is the total (co)homology of the
double (cochain) complex

C2
mn := HomU (Pm ⊗ Pn, M ⊗ N).

Then � is given as the composition of the canonical map

⊕
m+n=p

Extm
U (A, M) ⊗k Extn

U (A, N)

�
⊕

m+n=p

Hm(
HomA(P•, M)

) ⊗k Hn(HomA(P•, N)
)

→ H p
( ⊕

m+n=•
HomA(Pm, M) ⊗k HomA(Pn, N)

)
= H p(

Tot
(
C1••

))

where C1
mn := HomU (Pm, M) ⊗k HomU (Pn, N), with the map

H
(
Tot

(
C1••

)) → H
(
Tot

(
C2••

)) � ExtU (A, M ⊗ N)

that is induced by the morphism of double complexes

C1
mn  ϕ ⊗k ψ �→ {

x ⊗ y �→ ϕ(x) ⊗ ψ(y)
} ∈ C2

mn.

For the sake of completeness let us finally remark that as for A = k one can in particular use the
bar construction to obtain a canonical resolution:

Lemma 2. For any ×A -bialgebra U , the complex of left U -modules

Cbar
n := (� U � )⊗Aop n+1, u(v0 ⊗Aop · · · ⊗Aop vn) := uv0 ⊗Aop · · · ⊗Aop vn

whose boundary map is given by

b′ : u0 ⊗Aop · · · ⊗Aop un �→
n−1∑
i=0

(−1)iu0 ⊗Aop · · · ⊗Aop uiui+1 ⊗Aop · · · ⊗Aop un

+ (−1)nu0 ⊗Aop · · · ⊗Aop ε(un)� un−1

is a contractible resolution of A ∈ U -Mod with augmentation

ε : Cbar
0 = U → A =: Cbar

−1 ,

and if U � ∈ Aop-Mod is projective, then Cbar
n ∈ U -Mod is projective.
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Proof. All claims are straightforward: there is a contracting homotopy

s : Cbar
n → Cbar

n+1, u0 ⊗Aop · · · ⊗Aop un �→ 1 ⊗Aop u0 ⊗Aop · · · ⊗Aop un, n � 0,

s : A = Cbar
−1 → U = Cbar

0 , a �→ η(a ⊗ 1),

and the projectivity of Cbar
n follows as in the proof of Theorem 5. �

3.4. The functor ⊗ : U -Mod × U op-Mod → U op-Mod

Now we introduce the functor ⊗ mentioned in Theorem 1.

Lemma 3. Let U be a ×A -Hopf algebra and M ∈ U -Mod, P ∈ U op-Mod be left and right U -modules, respec-
tively. Then the formula

(m ⊗A p)u := u−m ⊗A pu+, u ∈ U , m ∈ M, p ∈ P , (19)

defines a right U -module structure on the tensor product

M ⊗A P := M ⊗k P/ span{m �a ⊗k p − m ⊗k a � p | a ∈ A}. (20)

If N is any other (left) U -module, then the canonical isomorphism

(M ⊗ N) ⊗A P � M ⊗A (N ⊗A P ) (21)

of A-bimodules is also an isomorphism in U op-Mod. Finally, the tensor flip

(M ⊗A P ) ⊗U N → P ⊗U (N ⊗A M), m ⊗A p ⊗U n �→ p ⊗U n ⊗A m

is an isomorphism of k-modules.

Proof. To show firstly that (19) is well defined over A, we compute

(
m ⊗A (a � p)

)
u = u−m ⊗A pη(1 ⊗ a)u+ = u−m ⊗A p(u+ �a)

= (a � u−)m ⊗A pu+ = u−
(
η(1 ⊗ a)m

) ⊗A pu+

= (
(m �a) ⊗A p

)
u,

where (12) and the action properties were used. Together with (20) this also proves the well-
definedness with respect to the presentation of u+ ⊗Aop u− . With the help of (14) one sees im-
mediately that for u, v ∈ U we have

(m ⊗A p)(uv) = (uv)−m ⊗A p(uv)+ = v−u−m ⊗A pu+v+ = (
(m ⊗A p)u

)
v,

since P and M were right and left U -modules, respectively. As a conclusion, M ⊗A P ∈ U op-Mod.
Eq. (21) is a direct consequence of the associativity of the tensor product of A-bimodules and of (13).
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For the last part one has to check that the flip is well defined: we have

η(1 ⊗ a)m ⊗A p ⊗U n �→ p ⊗U n ⊗A η(1 ⊗ a)m = p ⊗U η(1 ⊗ a)(n ⊗A m)

= pη(1 ⊗ a) ⊗U (n ⊗A m),

which is what m ⊗A pη(1 ⊗ a) ⊗U n gets mapped to. And secondly, we have

m ⊗A p ⊗U un �→ p ⊗U un ⊗A m = p ⊗U (u+)(1)n ⊗A (u+)(2)u−m

= p ⊗U u+(n ⊗A u−m) = pu+ ⊗U n ⊗A u−m,

which is what u−m ⊗A pu+ ⊗U n = (m ⊗A p)u ⊗U n gets mapped to. �
Definition 5. We denote the above constructed U op-module by M ⊗ P .

Thus an unadorned ⊗ refers from now on either to the monoidal product on U -Mod or to the just
defined action of U -Mod on U op-Mod. For example, (21) would now simply be written as

(M ⊗ N) ⊗ P � M ⊗ (N ⊗ P ).

Example 4. Let (A, L) be a Lie–Rinehart algebra and M be a left and N a right U (A, L)-module,
respectively (or, in the terminology of [6,7], left and right (A, L)-modules). Using (18), one gets the
right U (A, L)-module structure on M ⊗A N from formula (2.4) in [7, p. 112]:

(m ⊗A n)X = m ⊗A nX − Xm ⊗A n, m ∈ M, n ∈ N, X ∈ L.

If we assume again that U is A-biprojective, then the above results extend directly to the derived
category D−(U op): we obtain a functor

⊗L = ⊗L
A : D−(U ) × D−(

U op) → D−(
U op)

and we have for all M, N ∈ D−(U ), P ∈ D−(U op) canonical isomorphisms

(M ⊗L N) ⊗L P � M ⊗L (N ⊗L P ), (M ⊗L P ) ⊗L
U N � P ⊗L

U (N ⊗L M). (22)

3.5. � and •

These products are dual to � and ◦. The first one is

• : Extm
U (L, M) × TorU

n (N, L) → TorU
n−m(N, M),

which exists for a ring U and L, M ∈ U -Mod, N ∈ U op-Mod: an element

ϕ ∈ Extm
U (L, M) � HomD−(U )

(
L, T m M

)

defines a morphism in D−(Z),

N ⊗L
U L → N ⊗L

U T m M, x ⊗U y �→ x ⊗U ϕ(y),
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and ϕ • · is the induced map in (co)homology

TorU
n (N, L) � H−n(N ⊗L

U L)

H−n(id⊗ϕ)

H−n(N ⊗L
U T m M

) � Hm−n(N ⊗L
U M) � TorU

n−m(N, M).

For M ∈ U -Mod, N ∈ U op-Mod as before, the cap product

� : Extm
U (A, M) × TorU

n (N, A) → TorU
n−m(M ⊗ N, A)

involves the functor ⊗ from the previous paragraph, so for this we want U to be an A-biprojective
×A -Hopf algebra again. Similarly as for •,

ϕ ∈ Extm
U (A, M) � HomD−(U )

(
A, T m M

)

defines a morphism in D−(k),

N ⊗L
U A � N ⊗L

U (A ⊗ A)

id⊗id⊗ϕ
N ⊗L

U

(
A ⊗L T m M

) � N ⊗L
U

(
T m A ⊗L M

) � (M ⊗L N) ⊗L
U T m A

(M ⊗ N) ⊗L
U T m A,

where the last � in the second line is induced by the tensor flip as in the derived version (22) of
Lemma 3, and the morphism from the second to the third line is similarly as in the definition of �
induced by the morphism M ⊗L N → M ⊗ N in D−(U op) that takes zeroth cohomology. Passing to
cohomology we get ϕ � · : TorU

n (N, A) → Torn−m(M ⊗ N, A).
Explicitly, if P ∈ D−(U ) is a projective resolution of A, then � is induced by

B1
i j  n ⊗U (x ⊗A y) �→ {

ϕ �→ (
ϕ(y) ⊗A n

) ⊗U x
} ∈ B2

i j

which is a morphism of double complexes between

B1
i j := N ⊗U (Pi ⊗A P j)

whose total homology is TorU (N, A) and the double complex

B2
i j := Homk

(
HomU (P j, M), (M ⊗ N) ⊗U Pi

)

whose homology has a natural map to Homk(ExtU (A, M),TorU (M ⊗ N, A)).
In direct analogy with Theorem 3 we get:

Theorem 6. If U is an A-biprojective ×A -Hopf algebra, then we have

ϕ • (x ⊗U y) = ϕ � (x ⊗U y), ϕ ∈ Extm
U (A, A), x ⊗U y ∈ N ⊗L

U A,

as elements of N ⊗L
U A � (A ⊗ N) ⊗L

U A.
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4. Duality and the proof of Theorem 1

4.1. The underived case

In the special case that A is finitely generated projective itself, Theorem 1 reduces to standard
linear algebra. We go through this case first since it is both instructive and used in the proof of the
general case. For the reader’s convenience we include full proofs.

Lemma 4. Let U be a ring, A ∈ U -Mod be finitely generated projective, and A∗ be HomU (A, U ) with its
canonical U op-module structure.

1. A∗ is finitely generated projective, and if e1, . . . , en are generators of A, then there exist generators
e1, . . . , en ∈ A∗ with

∑
i

ei(a)ei = a,
∑

i

eiα(ei) = α

for all a ∈ A and α ∈ A∗ . The element

ω :=
∑

i

ei ⊗ ei ∈ A∗ ⊗U A

is independent of the choice of the generators ei, e j .
2. For all U op-modules M, the assignment

δ(m ⊗ a)(α) := mα(a), m ∈ M, a ∈ A, α ∈ A∗,

extends uniquely to an isomorphism of abelian groups

δ : M ⊗U A → HomU op
(

A∗, M
)
.

3. One has (A∗)∗ � A and A∗ ⊗U M � HomU (A, M) for M ∈ U -Mod.

Proof. Since A is projective, there is a splitting ι : A → Un of

π : Un → A, (u1, . . . , un) �→
∑

i

uiei .

Hence Un � A ⊕ A⊥ for some A⊥ ∈ U -Mod. Dually this gives A∗ ⊕ (A⊥)∗ = (Un)∗ � Un , whence A∗ is
finitely generated projective. The ei can be defined as the composition of ι with the projection of Un

on the i-th summand. This proves the first parts of 1. For 2 just note that

HomU op
(

A∗, M
)  ϕ �→

∑
i

ϕ
(
ei) ⊗ ei ∈ M ⊗U A

inverts δ. Since ω = δ−1(idA∗ ), it does not depend on the choice of generators. 3 now follows from 1
and 2. �

As in the introduction, let us abbreviate in the situation of this theorem

H0(X, M) := HomU (A, M), H0(X, N) := N ⊗U A
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for M ∈ U -Mod, N ∈ U op-Mod, and call ω ∈ H0(X, A∗) the fundamental class of (U , A). Then 3 says
for M = A that we have an isomorphism

· • ω : H0(X, A) → H0
(

X, A∗), ϕ �→
∑

i

ei ⊗ ϕ(ei). (23)

Using Lemma 3 we can upgrade this to the underived case of Theorem 1:

Lemma 5. Let U be a ×A -Hopf algebra and assume A is finitely generated projective as a U -module. Then the
cap product with the fundamental class ω ∈ H0(X, A∗) = A∗ ⊗U A defines for all M ∈ U -Mod an isomor-
phism

· � ω : H0(X, M) → H0
(

X, M ⊗ A∗), X := (U , A).

Proof. We have ϕ � ω = ∑
i(ϕ(1) ⊗A ei) ⊗U ei , and Lemma 3 identifies

H0
(

X, M ⊗ A∗) = (
M ⊗ A∗) ⊗U A � A∗ ⊗U (A ⊗ M) � A∗ ⊗U M.

In this chain of identifications, ϕ � ω is mapped to

ϕ � ω �→
∑

i

ei ⊗U
(
ei ⊗A ϕ(1)

) �→
∑

i

ei ⊗U
(
eiϕ(1)

) =
∑

i

ei ⊗U ϕ(ei)

which is identified with ϕ under the isomorphism HomU (A, M) � A∗ ⊗U M given by ϕ �→ ∑
i ei ⊗U

ϕ(ei) as in (23). The claim follows. �
4.2. The derived case

It remains to throw in some homological algebra to obtain Theorem 1 in general. To shorten the
presentation, we use the following terminology:

Definition 6. A module A over a ring U is perfect if it admits a finite resolution by finitely generated
projectives. We call such a module a duality module if there exists d � 0 such that Extn

U (A, U ) = 0 for
all n �= d. We abbreviate in this case A∗ := Extd

U (A, U ) and call d the dimension of A.

The main remaining step is to prove a derived version of Lemma 4. One could use a result of Nee-
man by which A ∈ U -Mod is perfect if and only if HomU (A, ·) commutes with direct sums [10,18], or
the Ischebeck spectral sequence which degenerates at E2 if A is a duality module [9,12,22]. However,
we include a more elementary and self-contained proof.

Theorem 7. Let A ∈ U -Mod be a duality module of dimension d.

1. The projective dimension of A ∈ U -Mod is d.
2. A∗ is a duality module of the same dimension d.
3. If P• → A is a finitely generated projective resolution of length d, then P∗

d−• = HomU (Pd−•, U ) is a
finitely generated projective resolution of A∗ and the canonical isomorphism

δ : M ⊗U Pi → HomU
(

P∗
i , M

)
, m ⊗U p �→ {

α �→ mα(p)
}
,
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induces for all U op-modules M a canonical isomorphism

TorU
i (M, A) → Extd−i

U op

(
A∗, M

)
.

4. There is a canonical isomorphism (A∗)∗ � A.

Proof. Let P• → A be a finitely generated projective resolution of finite length m � 0 (which exists
since A is perfect). Then the (co)homology of

0 → P∗
0 → ·· · → P∗

m → 0, P∗
n = HomU (Pn, U ),

is Ext•U (A, U ), so by assumption we have m � d and the above complex is exact except at P∗
d where

the homology is A∗ = Extd
U (A, U ). Furthermore, all the P∗

n are finitely generated projective since the
Pn are so (Lemma 4).

Let πi be the map P∗
i → P∗

i+1 and put K := kerπd+1. By construction,

0 → K → P∗
d+1 → ·· · → P∗

m → 0 (24)

is exact. If one compares this exact sequence with the sequence

. . . → 0 → 0 → P∗
m → P∗

m → 0

using Schanuel’s lemma (see [16, 7.1.2]), one obtains that K is projective.
The exactness of P∗• at P∗

d+1 gives K = imπd , and by the projectivity of K , the map πd : P∗
d → K ⊂

P∗
d+1 splits so that P∗

d � K ⊕ K⊥ , K⊥ := kerπd . In particular, both K and K⊥ are finitely generated.
It follows from all this that the complex

0 → P∗
0 → ·· · → P∗

d−1 → K⊥ → 0 (25)

is a finitely generated projective resolution of A∗: since imπd−1 ⊂ P∗
d is contained in kerπd = K⊥ ,

the above complex is still exact at P∗
d−1, and the homology at K⊥ is the homology of P∗• at P∗

d , that
is, A∗ .

Since (24) is a finitely generated projective resolution of 0 and P∗
d−• is as a complex a direct

sum of (25) and (a shift of) (24) we also know that Ext•U op (A∗, M) is for any M ∈ U op-Mod the
(co)homology of HomU (P∗

d−•, M). By Lemma 4, this is isomorphic as a chain complex to M ⊗U Pd−•
via the isomorphism given in 3, and the homology of this complex is TorU

d−•(M, A). This proves 3. The
special case M = U implies the remaining claims. �

Assume finally that in the situation of the above theorem, U is an A-biprojective ×A -Hopf algebra.
Since P is a finitely generated projective resolution, we have M ⊗U P � M ⊗L

U P and HomU (P∗, M) �
RHomU (P∗, M), and δ gives an isomorphism between these two complexes. The fundamental class is
defined to be

ω := δ−1(idA∗) ∈ A∗ ⊗L
U A � P∗ ⊗U A � A∗ ⊗U P ,

and Theorem 7 gives immediately:
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Corollary 2. If e1, . . . , en and ẽ1, . . . , ẽn are generators of A and of A∗ , respectively, then there are e1, . . . , en ∈
P∗

0 and ẽ1, . . . , ẽn ∈ Pd such that

ω =
∑

i

ei ⊗U ei =
∑

i

ẽi ⊗U ẽi,

and δ is given by the Yoneda product · • ω.

Theorem 1 follows as in the underived case (Lemma 5) working with RHomU (A, M) and
(M ⊗L A∗) ⊗L

U A instead of H0(X, M) = HomU (A, M) and H0(X, M ⊗ A∗) = (M ⊗ A∗) ⊗U A: using
Theorem 6 and (22) one gets

(
M ⊗L A∗) ⊗L

U A � A∗ ⊗L
U (A ⊗L M) � A∗ ⊗L

U M

� P∗ ⊗L
U M � RHomU (P , M)

� RHomU (A, M),

where we hide the reindexing of the complexes for the sake of better readability (so P∗ stands for
P∗

d−• , and RHomU (P , M) and RHomU (A, M) are reindexed in the same way). This leads to a conver-
gent spectral sequence

TorU
p

(
TorA

q

(
M, A∗), A

) ⇒ Extd−p−q
U (A, M),

and under the last assumption of Theorem 1 (TorA
q (M, A∗) = 0 for q > 0) this spectral sequence de-

generates to the claimed isomorphism.
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