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SUMMARY

Inhibitors of heat-shock protein 90 (Hsp90) have
demonstrated an unusual selectivity for tumor cells
despite its ubiquitous expression. This phenomenon
has remained unexplained, but could be influenced
by ectopically expressed Hsp90 in tumors. In this
work, we synthesized Hsp90 inhibitors that can carry
optical or radioiodinated probes via a polyethylene-
glycol tether. We show that these tethered inhibitors
selectively recognize cells expressing ectopic Hsp90
and become internalized. The internalization process
is blocked by Hsp90 antibodies, suggesting that
active cycling of the protein occurs at the plasma
membrane. In mice, we observed exquisite accumu-
lation of the fluor-tethered versions within breast
tumors at very sensitive levels. Cell-based assays
with the radiolabeled version showed picomolar
detection in cells that express ectopic Hsp90. Our
findings show that fluor-tethered or radiolabeled
inhibitors that target ectopic Hsp90 can be used to
detect breast cancer malignancies through noninva-
sive imaging.

INTRODUCTION

The current paradigm for detection and treatment of breast can-

cer is based on clinical evaluation and anatomic imaging, usually

with mammography or (less commonly) breast MRI, followed by

biopsy and surgery or surgery plus radiotherapy. Other imaging

modalities, such as ultrasound and positron emission tomogra-

phy (PET), are not routinely used for screening, although they

have specific indications and potential (Smith et al., 2010).

Although both mammography and MRI demonstrate excellent

sensitivity for detecting tissue abnormalities, they lack sufficient
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specificity to unequivocally distinguish malignant tissue from

benign tissue (Esserman et al., 2009). The question remains as

to whether premalignant molecular markers can be used nonin-

vasively to detect aggressive cancers.

It is clear that anatomic changes are not the earliest cancer-

related transformations. Instead, breast cells with malignant

and lethal potential are characterized early on by activated onco-

genic signaling nodes. These signaling nodes have been classi-

fied into a broad set of characteristics termed the ‘‘hallmarks of

cancer’’ and are candidate molecular markers of malignant

behavior (Hanahan and Weinberg, 2011). Unfortunately, these

signaling nodes have been difficult to detect in vivo, particularly

when they are confined to small clusters of cells, as in early-

stage disease. To date, strategies to visualize these signals

in vivo, such as using 18F-fluorodeoxyglucose (18FDG)-PET to

detect increased glucose uptake, have not achieved the sensi-

tivity or specificity required to appreciably improve breast cancer

screening and diagnosis (Warning et al., 2011).

Heat-shock protein 90 (Hsp90) is a signaling node that could

be exploited as a diagnostic molecular marker to distinguish

malignant breast cells from normal tissues (Barrott and

Haystead, 2013). Hsp90 plays an essential role in cellular

homeostasis by chaperoning client proteins. Over 400 putative

Hsp90 clients have been identified, and many of these regulate

signaling pathways that govern cellular growth and differentia-

tion (Echeverrı́a et al., 2011; Moulick et al., 2011; Neckers

et al., 2009; Samant et al., 2012; Vaughan et al., 2010). Hsp90

and its family members Grp94 and Trap-1 contain an N-terminal

ATP-binding domain with ATPase activity that is necessary for

cellular function (Tsutsumi et al., 2009). Hsp90 is regulated

both translationally and posttranslationally, with the latter

affecting both ATPase activity and intracellular location

(Mollapour and Neckers, 2012). Direct evidence for Hsp90’s

participation in oncogenic protein folding/stability in vivo comes

from studies with Hsp90 inhibitors that bind competitively to its

ATP-binding domain, resulting in the degradation of its onco-

genic clients (Chiosis et al., 2003; Csermely et al., 1998; Fadden

et al., 2010). This phenomenon has also been demonstrated in
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Figure 1. Fluor-Tethered Hsp90 Inhibitors Label Breast Cancer Cell Lines

(A) HS-27 structure given to illustrate the generic inhibitor design of the Hsp90 ligand conjugated to a linker series and tethered to a fluorophore.

(B) HS-27, at 100 mM, labels native Hsp90 in breast cancer cell lines and correlates with the established malignancy level of the cell lines. HS-27 does not label

Huh7 cells under normal cell culture conditions.

(C) In a dose titration curve of HS-27, cell lines become stratified at higher doses despite having approximately equivalent levels of total Hsp90 (n = 3, ±SEM).

(D) Time-course study showing that the kinetics of HS-27 (100 mM) uptake mirror the dose assay in terms of selectivity against breast cancer cell lines and the

Huh7 cell line (n = 2, ±SDM).

(E) HS-27 on BT474 cells shows an inverse correlation between fluorescent uptake (green) and Her2 degradation (black); n = 2, ±SDM. Scale bar: 50 mm.

See also Figures S2 and S3.
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human tumor biopsies from patients undergoing Hsp90 inhibitor

therapy (Kim et al., 2009). To date, 17 different Hsp90 inhibitors

that target Hsp90’s ATP-binding site are in clinical development

for multiple indications in cancer (Kim et al., 2009; Neckers and

Workman, 2012; Trepel et al., 2010; Wang et al., 2010).

Recent studies have linked high expression of Hsp90 with

poor prognosis in malignant breast tumors (Cheng et al., 2012;

Pick et al., 2007). The role of Hsp90 in mediating malignant

behavior may be the result of oncogene-driven factors that alter

its normal cellular behavior (Whitesell and Lindquist, 2005).

Hyperactivation is postulated to result in an increased affinity

for ATP and Hsp90 inhibitors, and the expression of ectopic

Hsp90 (Tsutsumi and Neckers, 2007; Tsutsumi et al., 2008).

We reasoned that if oncogenically activated Hsp90 precedes

malignant behavior in vivo, this could be used diagnostically

(Eustace et al., 2004; McCready et al., 2010; Sims et al., 2011).

We therefore developed a series of Hsp90 inhibitors tethered

to fluorophores or radioiodine to detect Hsp90 in vivo. When

injected into mice bearing human breast tumors, the fluorophore

versions are exquisitely targeted to tumors. We show that this

targeting is achieved through interactions with ectopic Hsp90,

which undergoes active internalization along with the bound

probes. This finding suggests new roles for Hsp90 in which the

protein is not only trafficked to the plasma membrane but is

also reinternalized.

RESULTS

Synthesis and Development of Probes that Selectively
Target Ectopic Hsp90
We recently reported the development of a cleavable, tethered

Hsp90 inhibitor and demonstrated its use as an affinity resin
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(Hughes et al., 2012). When bound to the tethered ligand,

Hsp90 could be recovered along with one of its established

oncogenic clients, Her2, in a competitive manner. To extend

our tethered ligand’s utility, we synthesized several versions

tethered to a variety of fluorophores and other molecules to facil-

itate the detection of Hsp90 in vivo (Figure 1A and Figure S1

available online; Table 1). In binding studies against immobilized

ATP, the tethered inhibitors showed reduced affinity for native

Hsp90 (Kd HS-27, 288 nM; HS-69, 49 nM; and HS-70, 42 nM)

in comparison with the parent compound (HS-10, 3 nM; Table 1;

Figure S2A; Fadden et al., 2010; Grenert et al., 1997). Despite

some reduction in affinity, the addition of the tethered compo-

nents was found to increase specificity by eliminating binding

to Grp94 (Figure S2B). Previous work had also shown that the

addition of the tether at the ortho position of the parent ligand

reduced the specificity toward recombinant and native Trap-1

(Hughes et al., 2012). These findings suggest that the added

steric bulk due to, e.g., the presence of the tether and added

fluor, interferes with the ATP-binding site of Grp94 and Trap-1,

but not Hsp90. We also observed a similar specificity when we

added various nonfluorescent molecules, such as ferrocene,

iodinated benzylamine, or an additional Hsp90 inhibitor, to the

tethers to create a bifunctional inhibitor (Figure S2B; Table 1).

Next, we evaluated the specificity of the fluor probes in several

transformed cell lines by fluorescent microscopy. Figure 1B

shows that HS-27 is internalized by breast cancer cell lines,

but, remarkably, not by Huh7 cells (a hepatocarcinoma cell

line), even though the latter cell line has higher total cellular

levels of Hsp90 as determined by immunoblotting (Figure S2C).

Time-course and titration studies showed that HS-27 uptake

is variable between breast lines in the following order:

MCF10 < < < MCF7 < MDA-MB-468 < BT474 (Figures 1C and
3 Elsevier Ltd All rights reserved



Table 1. Hsp90 and Her2 Tethered Inhibitors

Designation Name Feature Structure

HS-10 parent ligand

HS-23 ligand + linker

HS-27 ligand + FITC

HS-32 bis-ferrocene

HS-42 lapatinib + fluorescein

HS-66 double ligand

HS-69 ligand + nIR (645)

HS-70 ligand + nIR (800)

HS-96 ligand + biotin

HS-105 FITC derivative w/o ligand

HS-111 iodine-containing ligand

Listed are the names, descriptive features, and structures of the compounds used in this study. For details regarding synthesis and analysis of the

compounds, see Figure S1.

Chemistry & Biology

Unique Hsp90 Inhibitor Internalization in Tumors

Chemistry & Biology 20, 1187–1197, September 19, 2013 ª2013 Elsevier Ltd All rights reserved 1189



Figure 2. HS-27 Labels Surface Hsp90 in Breast Cancer Cell Lines

(A) HS-27 labels all of the cancer lines tested upon permeabilization with 5 mM b-escin. Live-cell imaging demonstrates that the fluorescent signal is competed

with a pretreatment of 10-fold excess of a nontethered Hsp90 inhibitor, HS-10.

(B) Fixed breast cancer cell lines are treated with or without a detergent (0.3% Triton X-100) and stained by immunofluorescence with an anti-Hsp90 antibody.

Cells treated with Triton have intracellular pools that are labeled, whereas nonpermeabilized cells exhibit exclusive labeling of surface Hsp90.

(C) Antibody treatment prevents active internalization of Hsp90 and HS-27 in a dose-dependent manner. The first row shows incubation with HS-27 alone and

denotes a single field observed with different filters. Rows 2 and 3 are separate fields of cells incubated with the antibody and HS-27. Row 2 demonstrates

peripheral staining of Hsp90 (yellow arrow) by both the antibody (red) and HS-27 (green). Row 3 shows cells that are not labeled with the antibody and have

internalized HS-27 (white arrows).

(D) Diagram of an Hsp90 dimer and the distant labeling of the anti-Hsp90 antibody and HS-27.

(E) The ratio of surface HS-27 and internalized HS-27 labeled cells plotted against the Hsp90 antibody titration; R2 = 0.9903.

(F) Huh7 cells and Huh7-MCF7 cocultured cells treated with 100 mM HS-27. White scale bars: 50 mm; yellow scale bar: 20 mm; black scale bar: 10 mm.

See also Figure S4.
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1D). Interestingly, this uptake order correlates with the relative

tumorigenicity of the cells to form tumors in severe combined

immunodeficiency (SCID) mice (Neve et al., 2006). Analysis of

Her2 levels in BT474 cells showed that once HS-27 is internal-

ized, it is active as an Hsp90 inhibitor and uptake correlates

with Her2 degradation (Figures 1E and S2D). Competition exper-

iments with the untethered ligand HS-10 (Figure S2E) and com-

parisons with a control compound, fluorescein isothiocyanate

(FITC)-tethered lapatinib (HS-42), demonstrate that HS-27 up-

take and selectivity for the breast cells is Hsp90 dependent. In

the case of HS-42, despite sharing a common fluorophore with

HS-27, HS-42 was rapidly absorbed with identical kinetics in

all cells tested, including Huh7 cells (Figures S3A–S3C). These

findings show that the uptake of the two FITC-tethered inhibitors

involves different mechanisms that are ligand dependent. As for

HS-42, uptake may reflect binding to epidermal growth factor

receptor, whereas for HS-27, the apparent mechanism is binding

to ectopic Hsp90. This conclusion is consistent with other

studies that linked extracellular Hsp90with themetastatic poten-

tial of various tumor lines, including breast cancer cells (Koga

et al., 2009; Tsutsumi and Neckers, 2007; Tsutsumi et al., 2008).

Additional support for the finding that the tethered Hsp90

inhibitors bind to ectopically expressed Hsp90 in breast cell lines

came from observations made with the permeabilizing agents

b-escin and Triton X-100. In the presence of b-escin, HS-27

entered all of the cells tested. To test whether HS-27 was

nonspecifically labeling permeabilized Huh7 cells, we competed
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HS-27 binding with HS-10, which blocked binding in both cell

lines (Figure 2A). These data suggest that Huh7 cells do not

express ectopic Hsp90, but they do contain an internal pool of

Hsp90 that binds the inhibitor. We also observed other cell lines

that were unable to internalize HS-27 without permeabilization,

including lymphoma cells purified from patients with chronic

lymphocytic leukemia, human peripheral blood mononuclear

cells, or cultured fibroblasts.

Because of its polar nature, HS-27 would not be predicted

to enter cells through passive diffusion, and the competition

studies with HS-10 strongly argue that its internalization requires

binding to Hsp90 expressed at the surface. Consistent with this

hypothesis, anti-Hsp90 antibodies were found to selectively

stain the surface of the more tumorigenic MCF7 cells compared

with nontumorigenic MCF-10A cells (Figure 2B). Additionally,

when live MCF7 cells were incubated with anti-Hsp90 antibodies

in the presence of HS-27, the probe was retained at the plasma

membrane and no longer internalized, as shown by costaining at

the surface with the Hsp90 antibody (Figure 2C). A detailed

examination of the stained fields shows that cells that are not

colabeled with the antibody at the cell surface continue to inter-

nalize HS-27 (Figure 2C). Importantly, the Hsp90 antibody used

in this experiment targets the C-terminal domain of the protein

and does not interfere with the HS-27 binding at the N-terminal

ATP-binding domain (Figure 2D). In antibody titration experi-

ments, the retention of HS-27 at the surface correlates precisely

with the antibody concentration. At 10 mg/well of antibody, the
3 Elsevier Ltd All rights reserved



Figure 3. HS-27 Binds to the Active Form of Hsp90 in Breast Cancer Cell Lines and Normal Mouse Tissues

(A) Cell extracts from MDA-MB-468 were passed over immobilized Hsp90 ligand beads three times and the resin media and flowthrough were analyzed for total

Hsp90 by immunoblotting. Hsp90 continued to be detected in the flowthrough even after depletion of the active form on the resin.

(B) The resin-bound extract and flowthroughwere incubated with HS-27 and unbound probe was filtered away. Fluorescence wasmeasured on amultilabel plate

reader (n = 3, ±SEM, Student’s t test, p < 0.005).

(C) BT474 cell extracts treatedwith HS-27 (100 mM)were comparedwith purifiedHsp90 from a pig lactatingmammary glandwith HS-27 and separated on amono

Q anion-exchange column. Single fluorescent peaks were consistently observed peaking in the 49th fraction.

(D) MCF7 cells were pretreated with 10-fold excess of nonfluorescein Hsp90 inhibitors followed by 10 mMHS-27. Cell lysates were harvested and separated on a

mono Q anion-exchange column, and fluorescence from each fraction was measured.

(E) BT474 cell fractions corresponding to the fluorescent peak (48-49) and control fractions (11-12 and 21-22) were passed over the cleavable Hsp90 affinity resin

to purify the protein and characterize it by gel electrophoresis. The silver-stained band was sequenced by mass spectrometry, which confirmed the presence of

Hsp90.

(F) Mouse tissues were harvested fromBALB/Cmice and lysed tissues were incubated with HS-27. After the unbound probe was cleared away, the sampleswere

analyzed by anion-exchange chromatography. Tissues were ordered from lowest- to highest-expressing tissues.

See also Figure S5.
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ratio of cells that retained HS-27 at the surface to cells that inter-

nalized HS-27 was almost 1:1, whereas the ratio was 1:4 at an

antibody treatment of 2.5 mg/well (Figure 2E). Collectively, our

data highlight a previously unrecognized pathway in which

Hsp90 is not only trafficked to themembrane but is actively inter-

nalized. The internalization is likely not attributed to general pino-

cytosis that results in fusion with the lysosomes. Lysosomes

have internal pH values of <6, and HS-27 consists of an Hsp90

inhibitor tethered to FITC, which loses its fluorescent properties

below pH 6.5 (Figure S4A). Additionally, we failed to detect the

colocalization of HS-27with Rab5, amarker of early endosomes,

by fluorescent microscopy or centrifugal enrichment of endo-

somes. We posit that the internalization mechanism of HS-27

is Rab5 independent.

Hsp90 is thought to be constitutively secreted only from tumor

cells (Cheng et al., 2008; McCready et al., 2010; Wang et al.,

2009). To detect the presence of secreted Hsp90, we added

HS-27 to media derived from BT474, MCF7, and Huh7 cells,

and removed the free probe by ultrafiltration. BT474 and MCF7

exhibited greater recovery of fluorescence compared with

Huh7, which is consistent with the former cells actively secreting

Hsp90 (Figure S4B). To examine whether extracellular Hsp90 is

sufficient to facilitate HS-27 uptake into Huh7 cells, MCF7 cells

were cocultured with Huh7 cells and incubated with HS-27.
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Figure 2F shows that the presence of locally secreted Hsp90

from MCF7 cells is not sufficient to promote subsequent reup-

take into the Huh7 cells. This suggests that Huh7 cells lack the

necessary machinery for active internalization of HS-27 bound

to Hsp90.

Fluor-TetheredHsp90 Inhibitors Are Selective for Active
Hsp90 In Vitro
Our probes can discriminate between various cell lines, but

recent data suggest that there are distinct populations of active

and inactive Hsp90 within a given cell (Kamal et al., 2003; Mou-

lick et al., 2011). To test whether our probes could also discrim-

inate between these cellular pools in vivo, we first isolated these

pools using affinity chromatography. Briefly, cell extracts from

BT474 cells were repetitively passed over virgin Hsp90 affinity

resins. The ‘‘active pool’’ binds and the ‘‘nonactive pool’’ flows

through the resin (Figures 3A and 3B; Hughes et al., 2012).

Once it was separated, Hsp90 from the resin-bound pool

demonstrated 15.5-fold higher HS-27 binding compared with

inactive Hsp90 in the flowthrough. To further characterize the

HS-27-bound active pool of Hsp90, we separated either purified

Hsp90 (from lactating pigmammary gland) or BT474 cell extracts

incubated with HS-27 by micro-anion-exchange chromatog-

raphy. In the extracts from the BT474 cells, we expected to
7, September 19, 2013 ª2013 Elsevier Ltd All rights reserved 1191
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see multiple column fractions with fluorescence in the breast

cancer cell extract, consistent with multiple interactions of active

Hsp90 with its respective client proteins. However, in all cases,

only a single peak of fluorescence was observed, which corre-

lated precisely with the migration of purified pig mammary

Hsp90 bound to HS-27 (Figure 3C). Furthermore, we competed

the binding of HS-27 with three structurally distinct Hsp90 inhib-

itors: HS-10, PUH71, and 17-AAG. MCF7 cells were incubated

with the nonfluorescein Hsp90 inhibitors followed by HS-27.

Equal competition was observed with the three Hsp90 inhibitors

compared with the DMSO control treatment (Figure 3D). The

presence of Hsp90 in the single peak was confirmed after

column fractions containing fluorescence were passed over

the cleavable Hsp90 affinity resin followed by SDS-PAGE, silver

staining, and mass spectrometry (Figure 3E). Collectively, these

biochemical data strongly argue that the only intracellular target

for HS-27 is an active pool of Hsp90 that is largely devoid of

client proteins. These data are consistent with previous work

by our laboratory using Hsp90 small-molecule affinity resins,

which showed that the ligand-bound form is not associated

in vivo with multiple clients as was previously thought (Hughes

et al., 2012).

We next explored whether the probes could be used to mea-

sure acute activation of Hsp90 in cells in response to heat stress.

We show that heat stress produces a consistent 1.2-fold in-

crease in fluorescence eluting in the 49th fraction (Figures S5A

and S5B). We then examined whether we could use the probe

to quantify the amount of activated Hsp90 distributed in normal

tissues by adding HS-27 to homogenized mouse tissue extracts

and then fractionating the tissue extracts chromatographically.

We show that the homogenized tissues contain diverse levels

of active Hsp90, which also elutes as a single peak (Figure 3F).

The significance of these observations is that nontumorigenic

tissues contained an active pool of Hsp90, and the levels were

especially high in brain, spleen, bladder, and kidney. Irrespective

of this finding, only intact cells expressing ectopic Hsp90 are

capable of internalizing the fluor-tethered inhibitors. We suggest

that malignant tumor cells express ectopic Hsp90 and that this

pool of Hsp90 can be used to discriminate between malig-

nancies in vivo and normal tissues or more benign tumor cells.

We also conclude that although the probe can reflect the tumor-

igenic state, the drug-bound version must have a low affinity for

client proteins, in stark contrast to the conclusions reported by

others (Moulick et al., 2011).

Fluor-Tethered Hsp90 Inhibitors Specifically Target
Human Breast Tumors in Mice
To test whether fluor-tethered Hsp90 inhibitors can be exploited

to selectively visualize malignancies noninvasively, we injected

the probes into mice bearing breast-tumor-derived xenografts.

In MDA-MB-468 xenografts, we detected the tumor mass within

5 min postinjection with either HS-27 or the near-infrared (nIR)

HS-69 and HS-70 versions in an IVIS kinetic fluorescent imager

(Perkin-Elmer). In the case of HS-27, the tumorwas clearly visible

through the fur and could be discriminated from the natural

background fluorescence normally observed at 520 nm (Fig-

ure 4A). With HS-27, an 8-fold increase over control tumors

was consistently observed in mice that did not receive HS-27.

With both nIR probes, we achieved a 150-fold increase at the
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tumor site due to the low background signal at 660 nm or

800 nm (Figures 4B–4D and S6A). With nIR versions, postinjec-

tion, the probe was observed in the extremities (i.e., ears,

nose, and paws) and eyes, reflecting the circulating unbound

probe in the blood pool. This was not visible with the fluorescein

versions because of the light scattering at 520 nm. Pharmacoki-

netic studies by various methods showed dose-dependent up-

take of both the visible and nIR forms, peaking within the tumor

mass by 30 min, and with a detectable signal remaining for up to

72 hr. To test whether the probes were binding to Hsp90 in vivo

or just accumulating in the tumors because of a blood-pooling

effect, the excised tumor lysates were fractionated chromato-

graphically. As shown in Figure 3, a single major peak of fluores-

cence was observed that contained Hsp90 (Figure 4E).

Pharmacokinetic studies conducted over 96 hr by optical

spectroscopy more elegantly confirmed selective uptake of the

tethered inhibitors. In this in vivo approach, a spectral pen was

placed at either the tumor site or an adjacent skin patch, and

the fluorescence spectrum was measured from 500 to 620 nm.

Figures 4F and 4G show the signature spectrum of fluorescein

at the tumor site, but not at the adjacent skin sites, over a period

of 6–24 hr postinjection. To rule out the possibility that the

fluorescence measured in the tumor mass by IVIS imaging or

the optical method was due to local blood pooling, we analyzed

biopsied tissue sections by fluorescent microscopy (Figure 4H).

Figure 4H shows discrete uptake of HS-27 within tumor cells. As

a test of tumor selectivity in vivo, we simultaneously harvested

tumor cells, splenocytes, and hepatocytes from SCID mice

bearing MDA-MB-468 tumors over the course of 72 hr and

analyzed the viable cells by flow cytometry for the presence of

HS-27. Figure 4I shows specific uptake of the probe by tumor

cells, but not by splenocytes or hepatocytes. The selectivity of

HS-27 for tumor cells was further illustrated in pharmacokinetic

studies. Mice were injected with HS-27 and its distribution and

tissue uptake were analyzed by IVIS kinetic imaging or by fluo-

rescent reading of tissue lysates. In all cases, the probe was

retained within the tumor and there was no evidence of accumu-

lation elsewhere (Figure 4J).

To ensure that the in vivo probe accumulation within the tumor

was ligand dependent, we synthesized a control compound, HS-

105. HS-105 consists of the fluorophore and tether minus the

ligand. In affinity chromatography studies against Hsp90 bound

to immobilized ATP, HS-105 showed no affinity for the protein,

and therefore any tumor retention would be nonspecific (Fig-

ure S6B). Using IVIS kinetic imaging, we detected HS-27 through

the skin in live animals at 1 hr, whereas HS-105was below detec-

tion (Figure 5A). In more detailed necropsies, by 24 hr we found

no trace of HS-105 by fluorescence, whereas HS-27 was still

present within the tumor (Figures 5B and S6B). Next, we sought

to quantify the amount of HS-27 that accumulated in the tumor

by comparing the average radiant efficiency in the tumor with a

standard curve of HS-27 concentrations measured by the IVIS

kinetic imager (Figure 5C). We calculated that in a cohort of

five mice, the mean accumulation of HS-27 was 6.5 mM ± 2.6

(SEM). To test the utility of fluor-tethered Hsp90 inhibitors as a

potential means of noninvasive, early tumor detection, we

designed an assay to test the sensitivity of the nIR version, HS-

70, in mice. MDA-MB-468 cells were treated ex vivo with HS-

70 or control. A fixed number of cells were injected in an equal
3 Elsevier Ltd All rights reserved



Figure 4. Fluor-Tethered Hsp90 Inhibitors Target Human Breast Tumors in Mice

(A) SCID mice bearing MDA-MB-468 xenografts in the right flank were injected with HS-27, HS-69, or saline and imaged using an IVIS kinetic imager.

(B and C) HS-27 (B, green), HS-69 (C, red), and HS-70 (C, dark red) were injected with increasing doses into mice and tumors were excised (n = 2, ±SDM).

(D) Examples of excised tumors from various treatments by IVIS.

(E) Tumors from treated mice were excised, lysed, and fractionated on an anion-exchange column.

(F and G) Fluorescence spectra measured from a normal site and the tumor at different times postinjection. Spectra are corrected for the effects of scattering and

absorption from the tissue. Tumor shows signature FITC fluorescence at 6 hr and a reduced signal at 24 hr postinjection, which is also absent in the normal site.

(H) Cryosections of biopsies taken from xenografts show the presence of the internalized probe within the tumor cells.

(I) Flow cytometry of tumor cells, splenocytes, and hepatocytes over the course of 72 hr demonstrates the selectivity of the probe for tumor cells over the spleen

and liver (n = 3, ±SEM).

(J) Various tissues were excised from mice bearing tumors, injected with HS-27, and analyzed for fluorescence by IVIS imaging (n = 2).

See also Figure S6.
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volume into the right flank of SCID mice. We found that HS-70

could be detected at as little as 100,000 cells (Figures 5D and

5E). Current imaging approaches by MRI or PET/CT are esti-

mated to reliably detect tumor masses at 1 cm3 with an esti-

mated cell mass of �10 million cells (Ide and Suzuki, 2005;

Schoder and Gonen, 2007). By these criteria, 100,000 cells

would suggest that nIR probes could theoretically detectmasses

as low as 0.01 cm3.

Based upon our findingswith the nIR probes, an obvious appli-

cation for early malignancy detection would be surface tumors in

which upregulation of Hsp90 has been indicated, such as head

and neck, colorectal, bladder, and melanoma (Wang et al.,

2010; Yin et al., 2010). Because nIR probes are limited to

3–4 cm in tissue depth, to enable whole-body imaging, we inves-

tigated an alternative approach using tethered Hsp90 inhibitors

capable of carrying the radioisotope 125I ([125I]HS-111). Picomo-

lar amounts of [125I]HS-111 were added to MCF7, BT474, or

Huh7 cells, and as observed with the fluor versions, the breast

cancer cells exhibited greater uptake compared with the Huh7

cells (Figure S6C). Uptake of [125I]HS-111 into MCF7 and Huh7
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cells was then characterized after chromatographic fraction-

ation, and the probe was detected by its radioactivity. As

observed with the fluor-tethered versions, in MCF7 cells the

majority of the radioactivity migrated as a single peak, in stark

contrast to Huh7 cells, which showed no peak recovery (Fig-

ure 5F). Importantly, the signal in MCF7 cells was effectively

competed by the free ligand, HS-10 (Figure 5G). As with the fluor

versions, b-escin permeabilization of Huh7 cells permitted label-

ing of Hsp90 with [125I]HS-111 in a competitive manner (Figures

5H and 5I).

Importantly, HS-111 behaves similarly to the fluor-tethered

versions in terms of its selectivity toward the breast cancer cell

lines, and entry into these cells also clearly requires active

internalization through binding to ectopic Hsp90. Interestingly,

HS-111 is more potent than the fluor versions in Her2 knock-

down assays, suggesting faster kinetics of internalization, and

performed most similarly to HS-10, the parent untethered com-

pound. This is likely due to the differences in added steric bulk

of the attached imaging moieties. HS-111 consists of a benzyla-

mide moiety of 121.1 Da, whereas HS-27 carries a bulky
7, September 19, 2013 ª2013 Elsevier Ltd All rights reserved 1193



Figure 5. Tumor Detection Limits and Specificity Using Optical or Radioiodinated Tethered Hsp90 Inhibitors

(A) IVIS kinetic images (1 hr postinjection) of mice bearing MDA-MB-468 tumors and injected with HS-27, HS-105, or control.

(B) IVIS kinetic images (24 hr postinjection) of excised tissues from SCIDmice bearing MDA-MB-468 tumors and injected with HS-27, HS-105, or control. Liver (L)

and lung (R) are shown in the top rows and the tumors are shown in the bottom row.

(C) IVIS average radiant efficiency plotted against the concentration of HS-27; mean ± SEM.

(D and E) IVIS average radiant efficiency of live mice injected with MDA-MB-468 cells treated ex vivo with HS-70 or control; mean ± SDM.

(F–I) MCF7 and Huh7 cells treated with [125I]HS-111 and cell lysates fractioned on a mono Q anion-exchange column: (F) MCF7 and Huh7 cells under normal

conditions, (G) MCF7 cells treated with and without HS-10, (H) MCF7 and Huh7 cells treated with b-escin, and (I) MCF7 and Huh7 cells treated with b-escin and

HS-10. *p = 0.0424.

See also Figure S6.

Chemistry & Biology

Unique Hsp90 Inhibitor Internalization in Tumors
fluorescein moiety of 389.0 Da. Similarly, a lower rate of entry

was observed with HS-96, a biotin-tethered Hsp90 inhibitor

that is considered to not passively diffuse across cell mem-

branes (Figure S2D). These data strongly suggest that one can

readily manipulate the entry rate of tethered inhibitors into cells

expressing ectopic Hsp90 by changing the properties of the

tethered imaging moiety. The finding that tethered inhibitors

with structurally diverse imaging prosthetic groups only enter

cells expressing ectopic Hsp90, and at variable rates, excludes

the possibility that the entry of the tested probes occurs through

simple diffusion.

DISCUSSION

Our data show that an important frontline cancer target, Hsp90,

can be exploited through its role in the oncogenic process as a

diagnostic marker for real-time imaging of metastatic status.

This observation represents somewhat of a paradigm shift in

the way we currently view cutting-edge therapeutic targets

such as Hsp90, and the concept could be extended to other

therapeutic targets. Tethered Hsp90 inhibitors as imaging

agents potentially add an element of diagnostic detail that

cannot be garnered from expression analysis or deep-

sequencing techniques. Specifically for Hsp90, these tech-
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niques do not measure the activation state of the protein or

its localization, two important parameters that have been linked

to disease progression in breast cancer (Moulick et al., 2011;

Tsutsumi and Neckers, 2007). The urgency to exploit this

approach is made more relevant by the recent landmark studies

of Gerlinger et al. (2012), who demonstrated the degree to which

tumors exhibit phenotypic heterogeneity, even within the same

tumor. Because expression analysis and deep sequencing

reveal only a fraction of a tumor’s global heterogeneous expres-

sion pattern at a single time point, these approaches have a

limited ability to stratify and diagnose tumors. However, because

tumor growth requires the continued activation of signal path-

ways, the development of fluor-tethered and other imaging

inhibitors that target proteins such as Hsp90, or constitutively

activated oncogenes such as Her2, could provide an alternative

strategy to stratify disease progression more accurately through

real-time, noninvasive imaging.

If expression of ectopic Hsp90 signifies metastatic behavior

in vivo, the fluor- or 125I-carrying tethered Hsp90 inhibitors

could be used in conjunction with current biopsy practice to

diagnose aggressive tumors. This would simply involve histo-

logical examination to determine probe uptake following micro-

dose administration prior to the biopsy procedure. Moreover,

noninvasive whole-body PET imaging could be employed with
3 Elsevier Ltd All rights reserved
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124I-containing tethered versions. The PET-based approach is

attractive because it would allow one to determine the fate

and distribution of the tethered inhibitor in all tissues simulta-

neously and in real time. If PET analysis of a 124I-carrying

version showed highly selective targeting to the tumor in an

individual, one could proceed to a 131I version (which emits

cytotoxic b particles) with the goal of achieving complete

body-wide tumor ablation without unwanted damage in normal

tissues. The known micromolar accumulations of Hsp90 inhibi-

tors (5–20 mM; Fadden et al., 2010) within tumors, as well as

established protocols for the treatment of thyroid cancers with
131I, should help accelerate the development of such treatment

strategies.

The importance of ectopically expressed Hsp90 in the meta-

static process has been established in a variety of ways,

including the use of a functional proteomic screen (Eustace

et al., 2004) and a non-cell-permeable form of geldanamycin

(DMAG-N-oxide) and anti-Hsp90 antibodies, both of which

block cellular migration in metastatic tumor lines (Koga et al.,

2009; Sidera et al., 2011; Stellas et al., 2010; Tsutsumi et al.,

2008; Xu et al., 2005). The observation that fluor-tethered ver-

sions are selectively internalized by binding to ectopically ex-

pressed Hsp90 has revealed previously unrecognized roles

for the protein in vivo. Although the expression of surface

Hsp90 appears to be connected to cell migration and metas-

tasis, the molecular mechanism by which ectopic Hsp90 sig-

nals to the tumor cell to promote these events is not known.

Both migration to the surface and reinternalization of Hsp90

could involve low-copy clients, which may provide a means of

signaling that promotes cellular migration and metastasis.

This conclusion is supported by the finding that anti-Hsp90

antibodies blocked reinternalization of Hsp90, as reflected by

inhibition of HS-27 uptake into MCF7 cells. Irrespective of the

roles played by ectopic Hsp90 in metastatic progression, the

knowledge that the protein is reinternalized could be exploited

to improve the safety margins of existing Hsp90 therapeutics or

selectively deliver chemotoxic payloads to tumor cells. In

contrast to other cancer therapeutics, Hsp90 inhibitors are

generally well tolerated by humans, although some dose-

limiting side effects (e.g., night blindness) have been observed

(Zhou et al., 2012).

SIGNIFICANCE

To many researchers, the notion that inhibition of Hsp90

can be used therapeutically at all may seem paradoxical.

After all, Hsp90 is thought to represent 1%–3% of the

expressed protein in most cells. This paradox is even

more extraordinary in the light of the biochemical studies

presented herein, including the finding that extracts from

normal tissues contain considerable levels of active

Hsp90. Various explanations have been offered in the

past concerning the extraordinary selectivity of various

Hsp90 inhibitors for tumor cells, including the idea that

tumor cells express an oncogenically activated form of

Hsp90 with a higher affinity for Hsp90 inhibitors (Kamal

et al., 2003). Our results suggest that the expression of

ectopic Hsp90 may play a substantial role in the entry of

Hsp90 inhibitors in general. This finding also suggests
Chemistry & Biology 20, 1187–119
that in addition to tumor imaging, it may be possible to

extend the therapeutic window of Hsp90 inhibitors by

developing a range of molecules that do not passively

diffuse across the plasma membrane, and can only enter

cells expressing ectopic Hsp90.

EXPERIMENTAL PROCEDURES

Studies with HSP90 Antibodies

MCF7 and MCF10A cells were cultured and fixed in wells with 4% paraformal-

dehyde/PBS. The cells were successively incubated in blocking solution (5%

goat serum, 0.2% Na Azide, PBS) with or without 0.3% Triton X-100 for 1 hr.

After blocking with or without the detergent, the cells were incubated with a

polyclonal antibody for HSP90 at 1:100 (sc-7947; Santa Cruz Biotechnology).

The cells were sequentially incubated with a goat-anti-rabbit Alexa Fluor 488-

conjugatedantibodyat 1:1,000 (A-11008;LifeTechnologies).Cellswere imaged

with an Olympus IX 71 epifluorescence microscope. To evaluate ectopic

expression of HSP90, HSP90 antibody was incubated with live MCF7cells

(2.5 hr), and then 100 nM of HS-27 was added. Concurrently, the cells were

stained with DAPI and goat-anti-rabbit Alexa Fluor 568 secondary antibody

(A11011; Life Technologies) at 1:1,000 and incubated for 1 hr at 37�C. The cells
werewashed inPBSand imagedwith theOlympus IX71epifluorescencemicro-

scope. The ratios of cells that retained HS-27 at the cell periphery to cells that

internalized HS-27 were calculated and plotted against the antibody mass.

Anion-Exchange Chromatography

Samples from either cell or tissue lysates underwent buffer exchange using

30K filter devices. Lysis buffers were exchanged for 25 mM Tris-HCl and

1 mM dithiothreitol (DTT). Samples were centrifuged (13,000 rpm, 10 min)

and then passed through a 0.2 mm syringe filter. Next, the supernatants

were loaded onto a Pharmacia mono Q anion-exchange SMART column

(0.13 1.0 cm) that had been equilibrated in 25 mM Tris-HCl, 1 mM DTT buffer,

pH 7.4, as previously described (Ray and Haystead, 2003). The column was

eluted using a linear salt gradient over 80 min (100 ml/min) to 1 M NaCl in the

same buffer. Samples were fractionated into an opaque plate that was read

for fluorescence on a multilabel plate reader. Peak fractions of fluorescence

were passed over a cleavable affinity resin to purify Hsp90 as previously

described (Hughes et al., 2012).

IVIS Kinetic Mouse Imaging

All protocols involving the use of mice were approved beforehand by the

IACUC at Duke University and strictly adhered to throughout the studies.

SCID mice bearing MDA-MB-468 tumors were anesthetized with ketamine.

Mice received tail vein injections or abdominal injections and were imaged

postinjection at the indicated times using an IVIS kinetic imager (Caliper Life

Science) as part of the Optical Molecular Imaging and Analysis shared

resource at the Duke Cancer Institute. The following filters were used for the

corresponding small-molecule inhibitors (emission/excitation): HS-27 (468/

GFP), HS-105 (468/GFP), HS-69 (640/Cy5.5), and HS-70 (745/ICG).

Tissue Harvest and Analysis

Mouse tissues (blood, brain, eyes, heart, kidney, liver, lung, spleen, and tumor)

were obtained immediately postmortem. With the exception of the blood, the

tissues were rinsed in PBS and blotted, followed by image analysis using the

IVIS kinetic imager. Tissues were stored on dry ice or at �80�C. For analysis
of tissue lysates using SMARTmono Q fractionation and themultilabel fluores-

cent reader, tissues were dounced in mono Q buffer (25 mM Tris-HCl, 1 mM

DTT). We centrifuged the samples and transferred supernatants to be

analyzed for fluorescence and protein concentration.

Fluorescence Spectroscopy of Drug Uptake

SCID mice bearing MDA-MB-468 tumors were anesthetized with ketamine

and received tail-vein drug injections. Using an optical spectroscopy instru-

ment and a fiber-optic probe, we measured the fluorescence spectrum of

the FITC-conjugated drug in vivo at 6, 24, 48, 72, and 96 hr postinjection

(Brown et al., 2009). For optical spectroscopy, we illuminated tissues using

the light of interest and analyzed the reflected light to study the morphology
7, September 19, 2013 ª2013 Elsevier Ltd All rights reserved 1195
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and biochemical composition of the underlying tissue. The pen-shaped fiber-

optic probe had a diameter of �2 mm and was placed in gentle contact with

the tumor or adjacent normal site. Incident light at 490 nm corresponding to

FITC excitation was delivered through the probe into the tissue and the result-

ing longer-wavelength fluorescent light was collected. Although 490 nm does

not correspond to maximal absorption by FITC, this wavelength was used to

minimize fluorescent contributions from flavin adenine dinucleotide (FAD),

which fluoresces in the same wavelength range. Measured fluorescence

spectra were corrected for tissue absorption and scattering using an intrinsic

fluorescence recovery model described in the literature (Palmer and Ramanu-

jam, 2008). Briefly, the model calculates the tissue optical properties that are a

function of light scattering and absorption, and uses these properties to cor-

rect distortions in the measured fluorescence. The intrinsic fluorescence

model has been shown to recover fluorophore concentrations accurately in

tissue-mimicking phantoms (Liu et al., 2012). In addition, the intrinsic fluores-

cence calculated with this model has been used to monitor intratumor drug

concentrations in vivo and shown to be strongly correlated with concentra-

tions measured by high-performance liquid chromatography (Palmer et al.,

2010). Because optical spectroscopy measures wavelength-dependent fluo-

rescence, the background fluorescence can be accurately measured prior to

injection. This allows one to monitor the fluorophore concentration in vivo

and determine when the fluorescent tether has cleared from the tumor.

Active Hsp90 Depletion Using Affinity Resin Chromatography

MDA-MB-468 cell lysate was diluted to 1 mg/ml in low-stringency wash buffer

and 1 ml was added to 1 ml of the Hsp90 affinity resin at 50% slurry. For three

consecutive washes, fresh resin was used and 25 ml of flowthrough (<3%) was

set aside for flowthrough analysis. The resin was washed thoroughly with low-

stringency wash buffer and then Hsp90 was eluted off with 10% SDS. Both

flowthrough and resin samples were characterized by one-dimensional

SDS-PAGE and silver staining. In a separate experiment, flowthrough and

resin samples were incubated with 100 nM HS-27 and then washed using a

10K kDa filter. Samples were concentrated and analyzed on a multilabel plate

reader for fluorescence.

Ex Vivo Cell Treatment and Injection into Mice

MDA-MB-468 cells were treated with 5 mM b-escin for 5 min. Cells were har-

vested and treated with either 10 mM HS-70 or PBS. The cells were counted

and aliquots of 10 million to 10,000 cells were made in 200 ml of saline. SCID

mice were anesthetized with ketamine and received two flank injections of

the treated cells and the control cells. Mice were imaged using the IVIS kinetic

imager and the average radiant efficiency was measured.

125I-Labeled Hsp90 Inhibitor Treatment of Cells

Cells were permeabilized by treatment with 5 mM b-escin for 5 min. Competi-

tion experiments were performed by treating the cells with 1 mM of HS-10 for

5 min before exposing them to [125I]HS-111. b-escin and HS-10 were washed

away and the cells were then incubated in 5 ml of medium with the [125I]HS-

111, which had�10 mCi of activity per 10 cm dish of cells, for 45 min. The cells

were washed extensively with PBS and then lysed on an ethanol/dry ice bath

and harvested in 25 mM Tris buffer and centrifuged. Supernatants were

fractionated on a Pharmacia mono Q anion-exchange SMART column, and

fractions were counted using a PerkinElmer 1480 Wizard 3 gamma counter

for 30 s per fraction sample.

For further details regarding the materials and methods used in this work,

see Supplemental Experimental Procedures.
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