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a b s t r a c t

We consider the incompressible Euler or Navier–Stokes (NS) equations on a d-dimensional
torus Td; the quadratic term in these equations arises from the bilinear map sending two
velocity fields v, w : Td

→ Rd into v ·∂w, and also involves the Leray projection L onto the
space of divergence free vector fields. We derive upper and lower bounds for the constants
in two inequalities related to the above quadratic term; these bounds hold, in particular, for
the sharp constants Knd ≡ Kn in the basic inequality ∥L(v ·∂w)∥n 6 Kn∥v∥n∥w∥n+1, where
n ∈ (d/2, +∞) and v, w are in the Sobolev spaces Hn

Σ0, Hn+1
Σ0 of zero mean, divergence

free vector fields of orders n and n + 1, respectively. As examples, the numerical values of
our upper and lower bounds are reported for d = 3 and some values of n. Some practical
motivations are indicated for an accurate analysis of the constants Kn, making reference to
other works on the approximate solutions of Euler or NS equations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The incompressible Euler or Navier–Stokes (Euler/NS) equations in d space dimensions can be written as

∂u
∂t

= −L(u • ∂u) + ν1u + f , (1.1)

where: u = u(x, t) is the divergence free velocity field; x = (xs)s=1,...,d are the space coordinates (yielding the derivatives
∂s := ∂/∂xs); ∆ :=

d
s=1 ∂ss is the Laplacian; (u • ∂u)r :=

d
s=1 us∂sur (r = 1, . . . , d); L is the Leray projection onto the

space of divergence free vector fields; ν = 0 for the Euler equations; ν ∈ (0, +∞) for the NS equations (a case that can
always be reduced to ν = 1, by rescaling); f = f (x, t) is the Leray projected density of external forces. In this paper we stick
to the case of space periodic boundary conditions; so, x ranges in the d-dimensional torus Td

:= (R/2πZ)d. As well known
(see, e.g., [7]), the analysis of (1.1) in the space periodic case can always be reduced, by suitable transformations, to the case
where the (spatial) means ⟨u⟩ := (2π)−d


Td u dx and ⟨f ⟩ (defined similarly) are zero.

Our functional setting for the incompressible Euler/NS equations relies on Sobolev spaces of the Hn type. More precisely
we consider, for suitable (integer or noninteger) values of n, the spaces

Hn
0(T

d) ≡ Hn
0 := {v : Td

→ Rd
|
√

−∆
n
v ∈ L2(Td), ⟨v⟩ = 0}, Hn

Σ0(T
d) ≡ Hn

Σ0 := {v ∈ Hn
0 | div v = 0} (1.2)
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(where 0 and Σ indicate, respectively, the vanishing of the mean and of the divergence). We equip Hn
0 with the standard

inner product and norm ⟨v|w⟩n := ⟨
√

−∆
n
v|

√
−∆

n
w⟩L2 , ∥v∥n :=

√
⟨v|v⟩n, which can be restricted to the subspace Hn

Σ0.
A fully quantitative treatment of several problems related to the above functional setting (see, e.g., the sequel of this

Introduction) relies on the constants in some inequalities about the bilinear map sending two vector fields v, w on Td into
v • ∂w, or about the composition of this map with L. Here, we wish to analyze some of these constants.

To describe precisely the contents of this paper, let us mention that the assumptions n > d/2, v ∈ Hn
Σ0 and w ∈ Hn+1

0
imply v • ∂w ∈ Hn

0, whence L(v • ∂w) ∈ Hn
Σ0. In this paper we consider the basic inequality

∥L(v • ∂w)∥n 6 Kn∥v∥n∥w∥n+1 for n ∈ (d/2, +∞), v ∈ Hn
Σ0, w ∈ Hn+1

Σ0 ; (1.3)

our aim is to give quantitative upper and lower bounds on the sharp constant Kn ≡ Knd appearing therein. We use the fact
that Kn 6 K ′

n, where K ′
n is the sharp constant in the (auxiliary) inequality

∥v • ∂w∥n 6 K ′

n∥v∥n∥w∥n+1 for n ∈ (d/2, +∞), v ∈ Hn
Σ0, w ∈ Hn+1

0 . (1.4)

Even though Eqs. (1.3) and (1.4) are well known, little information can be found in the literature about the numerical values
of the constants therein. Our approach produces fully computable upper and lower bounds K±

n ≡ K±

nd such that

K−

n 6 Kn 6 K ′

n 6 K+

n (1.5)

for all n > d/2. As examples, the numerical values of K±
n are given in dimension d = 3, for some values of n; all details on

these numerical computations can be found in an extended version of this paper [9] posted in arXiv.
In a companion paper [10], we have proposed upper and lower bounds for the constants Gnd ≡ Gn in the inequality

|⟨v • ∂w|w⟩n| 6 Gn∥v∥n∥w∥
2
n for n ∈ (d/2 + 1, +∞), v ∈ Hn

Σ0, w ∈ Hn+1
Σ0 , (1.6)

dating back to a seminal paper by Kato [3].
Let us illustrate some applications of the inequalities (1.3) and (1.6), depending on quantitative information on the

constants Kn,Gn. To this purpose, following [11] we consider the Euler/NS equations (1.1) with a specified initial condition
u(x, 0) = u0(x); let ua : Td

× [0, Ta) → Rd be an approximate solution of this Cauchy problem. Given n ∈ (d/2 + 1, +∞)
(and assuming suitable regularity for u0, f , ua), let ua possess the differential error estimator ϵn : [0, Ta) → [0, +∞), the
datum error estimator δn ∈ [0, +∞) and the growth estimators Dn, Dn+1 : [0, Ta) → [0, +∞); this means that, for
t ∈ [0, Ta),


∂ua
∂t

+ L(ua • ∂ua) − ν1ua − f


(t)


n

6 ϵn(t),

∥ua(0) − u0∥n 6 δn, ∥ua(t)∥n 6 Dn(t), ∥ua(t)∥n+1 6 Dn+1(t)

(1.7)

(with ua(t) := ua(·, t), etc.). Furthermore, let us assume the existence of a function Rn ∈ C([0, Tc), [0, +∞)) with
Tc ∈ (0, Ta], fulfilling the control inequalities

d+Rn

dt
> −νRn + (GnDn + KnDn+1)Rn + GnR

2
n + ϵn on [0, Tc), Rn(0) > δn (1.8)

(with d+/dt the right upper Dini derivative). Then, as shown in [11], the solution u of Eq. (1.1) with initial datum u0 exists
(in a classical sense) on the time interval [0, Tc), and its distance from the approximate solution admits the bound

∥u(t) − ua(t)∥n 6 Rn(t) for t ∈ [0, Tc). (1.9)

This somehow refines a previous result of [2], where the time of existence of u was estimated via an integral inequality
involving δn, ϵn, Dn, Dn+1 and the constants Kn,Gn (but with no quantitative information on these constants). For a given
datumu0, the practical implementation of the setting of [11] is performed choosing a suitableua (say, aGalerkin approximate
solution), computing the estimators ϵn, Dn, Dn+1 and then using the inequalities ((1.8)–(1.9)).

To conclude, let us mention other papers [1,4–8,12–15] where a fully quantitative approach was considered for the NS
equations, other nonlinear PDEs and/or some related inequalities, with the aim to derive conditions of existence or error
bounds on approximationmethods. In particular, in [7] we derived (fairly rough) upper bounds on the constants in a variant
of the inequality (1.4) using an approach similar to the present one, but much less refined.

2. Sobolev spaces on Td and the Euler/NS quadratic nonlinearity

Throughout the paper, we consider any space dimension d > 2; r, s are indices running from 1 to d. For a = (ar), b =

(br) ∈ Cd we put a • b :=
d

r=1 ar br and |a| :=
√
a • a, where a := (ar) is the complex conjugate of a. The d-dimensional

torus Td is the Cartesian product of d copies of T := R/(2πZ), and its elements are typically written x = (xr)r=1,...,d. The
expression ‘‘a vector field Td

→ Rd’’ can be understood, with very wide generality, as ‘‘an Rd-valued distribution on Td’’
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(see, e.g., [8]). We write D′(Td) ≡ D′ for the space of such distributions; this contains, for any p ∈ [1, +∞), the space
Lp(Td) ≡ Lp of p-summable vector fields Td

→ Rd. We are mainly interested in L2, with its inner product ⟨v|w⟩L2 :=
T3 v(x) • w(x)dx and the induced norm ∥v∥L2 =


T3 |v(x)|2dx. Any v ∈ D′ has a mean ⟨v⟩ := (2π)−d


Td dx v(x) ∈ Rd

and a family of Fourier coefficients vk := (2π)−d/2

Td dx e

−ik•xv(x) ∈ Cd, labeled by k ∈ Zd (where the last two integrals
are understood as the action of v on the test functions 1 and x → e−ik•x); we note that v−k = vk and ⟨v⟩ = (2π)−d/2v0.
From now on, we are mainly interested in the zero mean vector fields, whose relevant Fourier coefficients are labeled by
the nonzero wave vectors: throughout the paper we will put

D′

0 := {v ∈ D′
| ⟨v⟩ = 0 (i.e., v0 = 0)}; Zd

0 := Zd
\ {0}. (2.1)

The Sobolev space of zero mean vector fields of any order n ∈ R, its inner product and the induced norm are

Hn
0(T

d) ≡ Hn
0 :=


v ∈ D′

0 |
√

−∆
n
v ∈ L2,


=


v ∈ D′

0 |


k∈Zd0

|k|2n|vk|
2 < +∞


; (2.2)

⟨v|w⟩n := ⟨
√

−∆
n
v|

√
−∆

n
w⟩L2 =


k∈Zd0

|k|2nvk • wk, ∥v∥n = ∥
√

−∆
n
v∥L2 =


k∈Zd0

|k|2n|vk|
2. (2.3)

Defining div in a distributional sense, we can introduce the spaces of divergence free vector fields

D′

Σ := {v ∈ D′
| div v = 0} = {v ∈ D′

| k • vk = 0 ∀k ∈ Zd
}; D′

Σ0 := D′

Σ ∩ D′

0;

Hn
Σ0 := D′

Σ ∩ Hn
0 (n ∈ R).

(2.4)

Hn
Σ0 is a closed subspace of the Hilbert space Hn

0, that we equip with the restrictions of ⟨|⟩n, ∥ ∥n. The Leray projection is

L : D′
→ D′

Σ , v → Lv :=


k∈Zd

(Lkvk)ek, (2.5)

where, for each k, Lk is the orthogonal projection of Cd onto the orthogonal complement of k (if c ∈ Cd, L0c = c and
Lkc = c − (k • c)k/|k|2 for k ∈ Zd

0). One has

⟨Lv⟩ = ⟨v⟩ for v ∈ D′
; LD′

0 = D′

Σ0; LHn
0 = Hn

Σ0; ∥Lv∥n 6 ∥v∥n for n ∈ R, v ∈ Hn
0. (2.6)

To discuss the quadratic Euler/NS nonlinearity we start from some known facts, reviewed in this lemma for completeness.

Lemma 2.1. Let us consider two vector fields v, w on Td, such that v ∈ L2 and ∂sw ∈ L2 for s = 1, . . . , d (a fact implying
w ∈ L2); let us introduce the vector field v • ∂w on Td, of components (v • ∂w)r :=

d
s=1 vs∂swr . Then, we have the following.

(i) v • ∂w is well defined and belongs to L1. If div v = 0, one has ⟨v • ∂w⟩ = 0 (whence ⟨L(v • ∂w)⟩ = 0, see (2.6)).
(ii) The Fourier coefficients of this vector field and of its Leray projection are

(v • ∂w)k =
i

(2π)d/2


h∈Zd

[vh • (k − h)]wk−h,

[L(v • ∂w)]k =
i

(2π)d/2


h∈Zd

[vh • (k − h)]Lkwk−h for all k ∈ Zd.

(2.7)

Proof (Sketch). (i) Each component (v • ∂w)r , being a sum of products of L2 functions, is evidently in L1. The identity
Td(v • ∂w) dx = −


Td(div v) w dx is easily proved via integration by parts, and implies ⟨v • ∂w⟩ = 0 if div v = 0.

(ii) For r = 1, . . . , d, the k-th Fourier coefficient of the real function (v•∂w)r =
d

s=1 vs∂swr is easily computed noting that
(∂swr)k = iks wrk, and recalling that the pointwise product corresponds to (2π)−d/2 times the convolution of the Fourier
coefficients; this gives the relation (v • ∂w)rk = i(2π)−d/2d

s=1


h∈Zd vsh(k − h)swr,k−h, whose vector form is the first
equality (2.7). The second relation (2.7) follows from the first one and from (2.5). �

3. The basic inequality for the Euler/NS quadratic nonlinearity

From here to the end of the paper (including the Appendix) we assume d ∈ {2, 3, . . .} (as before) and

n ∈ (d/2, +∞). (3.1)

The forthcoming Proposition 3.1 is well known; as a matter of fact, the quantitative analysis performed in Section 4 will also
give, as a byproduct, a novel proof of this statement.
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Proposition 3.1. Let v ∈ Hn
Σ0, w ∈ Hn+1

0 ; then, v • ∂w ∈ Hn
0. The map Hn

Σ0 × Hn+1
0 → Hn

0, (v,w) → v • ∂w is bilinear and
continuous.

Of course, continuity of the above map is equivalent to the existence of a nonnegative constant K ′, such that ∥v • ∂w∥n 6
K ′

∥v∥n∥w∥n+1 for v, w as in the previous proposition; a similar inequality holds as well for L(v • ∂w) ∈ Hn
Σ0, since

∥L(v • ∂w)∥n 6 ∥v • ∂w∥n. So, we have the ‘‘auxiliary inequality’’ (1.4) and the ‘‘basic inequality’’ (1.3) of the Introduction;
the sharp constants therein can be defined as follows.

Definition 3.2. We put

K ′

nd ≡ K ′

n := min{K ′
∈ [0, +∞) | ∥v • ∂w∥n 6 K ′

∥v∥n∥w∥n+1 for all v ∈ Hn
Σ0, w ∈ Hn+1

0 }; (3.2)

Knd ≡ Kn := min{K ∈ [0, +∞) | ∥L(v • ∂w)∥n 6 K∥v∥n∥w∥n+1 for all v ∈ Hn
Σ0, w ∈ Hn+1

Σ0 }. (3.3)

We note that w is divergence free in (3.3), but not in (3.2). The considerations after Proposition 3.1 ensure that

Kn 6 K ′

n; (3.4)

in the rest of the section we present computable upper bounds on K ′
n and lower bounds on Kn, which are the main result of

the paper. The upper bound requires a more lengthy analysis, based on the forthcoming Definition 3.3 and, especially, on
the function Knd ≡ Kn of the subsequent Definition 3.4.

Definition 3.3. Here and in the sequel, the exterior power
2 Rd is identified with the space of real, skew-symmetric d× d

matrices A = (Ars)r,s,=1,...,d; this is equipped with the (bilinear, skew-symmetric) operation of exterior product ∧ and with
the norm | | defined as follows:

∧ : Rd
× Rd

→

2
Rd, (p ∧ q)rs := prqs − qrps; | | :

2
Rd

→ [0, +∞), |A| :=

1
2

d
r,s=1

|Ars|
2. (3.5)

It is well known that, for all p, q in Rd, the norm of p ∧ q is the area of the parallelogram with these sides. So,

|p ∧ q| = |p||q| sinϑ 6 |p||q|, (3.6)

where ϑ ≡ ϑ(p, q) ∈ [0; π ] is the convex angle between p and q (defined arbitrarily, if p = 0 or q = 0).

Definition 3.4. We put

Zd
0k := Zd

\ {0, k} for each k ∈ Zd
0;

Knd ≡ Kn : Zd
0 → (0, +∞), Kn(k) := |k|2n


h∈Zd0k

|h ∧ k|2

|h|2n+2|k − h|2n+2
.

(3.7)

The sum in (3.7) is finite for each k since, for h → ∞, |h∧k|2|h|−2n−2
|k−h|−2n−2

= O(|h|−4n−2) and 4n+2 > 2(d+1) > d.
Some information about the function Kn and its practical computation is given in Appendix and, with more details, in the
extended version of this paper in arXiv [9]. One of the facts established via this analysis is that supk∈Zd0

Kn(k) < +∞.

Proposition 3.5. The constant K ′
n defined by (3.2) has the upper bound

K ′

n 6 K+

n , K+

n :=
1

(2π)d/2


sup
k∈Zd0

Kn(k). (3.8)

Proof. See Section 4. �

Proposition 3.6. The constant Kn defined by (3.3) has the lower bound

Kn > K−

n , K−

n :=
2n/2

(2π)d/2
Ud, Ud :=


(2 −

√
2)1/2 = 0.76536 . . . if d = 2,

1 if d > 3.
(3.9)

Proof. See Section 4. �
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Putting together Eqs. (3.4), (3.8) and (3.9) we obtain the chain of inequalities, anticipated in Eq. (1.5) of the Introduction,

K−

n 6 Kn 6 K ′

n 6 K+

n ;

here and in the sequel K+
n is the upper bound in (3.8) (or some upper approximant for it), while K−

n is the lower bound in
(3.9) (or some lower approximant for it).

Examples 3.7. For d = 3 and n = 2, 3, 4, 5, 10, we can take

K−

2 = 0.126, K+

2 = 0.335; K−

3 = 0.179, K+

3 = 0.323; K−

4 = 0.253, K+

4 = 0.441; (3.10)

K−

5 = 0.359, K+

5 = 0.657; K−

10 = 2.03, K+

10 = 6.21.

In the above, the K−
n are obtained by rounding down to three digits the bound 2n/2(2π)−3/2 from (3.9); the K+

n are
obtained from upper approximation of the bound in (3.8), estimating the sup therein with the method sketched in
Appendix, and described in full detail in [9]. The ratios K−

n /K+
n are 0.376 . . . , 0.554 . . . , 0.573 . . . , 0.546 . . . , 0.326 . . . for

n = 2, 3, 4, 5, 10, respectively. One can see that K−
n /K+

n is smaller (i.e., that we have a larger uncertainty on the sharp
constant Kn) in the extreme cases n = 2, n = 10; we presume this to happen, in any space dimension d, when n approaches
the limit values d/2 and +∞.

4. Proof of Propositions 3.1, 3.5 and 3.6

Lemma 4.1. Let p, q ∈ Rd
\ {0}, z ∈ Cd, p • z = 0 and let ϑ(p, q) ≡ ϑ ∈ [0, π] be the convex angle between q and p. Then

|q • z| 6 sinϑ |q||z| =
|p ∧ q|

|p|
|z|. (4.1)

Proof. We choose an orthonormal basis (ηr)r=1,...,d of Rd so that q be a positive multiple of η1, p be in the span of η1, η2 and
p • η2 > 0; then q = |q|η1 and p = |p|(cosϑ η1 + sinϑ η2).

The (d−1) vectors (− sinϑ η1+cosϑ η2, η3, . . . , ηd) clearly form an orthonormal basis for {p}⊥ := {z ∈ Cd
| p•z = 0};

so, any z ∈ {p}⊥ has a unique expansion z = z(2)(− sinϑ η1+cosϑ η2)+z(3)η3+· · ·+z(d)ηd, with z(t)
∈ C for t = 2, . . . , d.

From these representations for q and z we get q • z = − sinϑ |q|z(2), which implies |q • z| = sinϑ |q||z(2)
| 6 sinϑ |q||z|.

So, the inequality in (4.1) is proved; the subsequent equality in (4.1) follows from (3.6). �

Proof of Propositions 3.1 and 3.5. We choose v ∈ Hn
Σ0, w ∈ Hn+1

0 and proceed in two steps; let us recall that v • ∂w has
zero mean, see Lemma 2.1.

Step 1. The Fourier coefficients of v • ∂w, and some estimates for them. First of all (v • ∂w)0 = 0. Moreover,

(v • ∂w)k =
i

(2π)d/2


h∈Zd0k

[vh • (k − h)]wk−h for k ∈ Zd
0; (4.2)

this follows from (2.7) taking into account that, in the sum therein, the term with h = 0 vanishes due to v0 = 0, and the
term with h = k is zero for evident reasons. Let us consider the above term vh • (k − h); we have h • vh = 0 due to the
assumption div v = 0, so we can apply Eq. (4.1) with p = h, q = k − h and z = vh to infer

|vh • (k − h)| 6
|h ∧ (k − h)|

|h|
|vh| =

|h ∧ k|
|h|

|vh| (4.3)

(concerning the last passage, note that h ∧ h = 0). Eqs. (4.2) and (4.3) imply the following, for each k ∈ Zd
0:

|(v • ∂w)k| 6
1

(2π)d/2


h∈Zd0k

|h ∧ k|
|h|

|vh||wk−h| =
1

(2π)d/2


h∈Zd0k

|h ∧ k|
|h|n+1|k − h|n+1


|h|n|vh||k − h|n+1

|wk−h|


; (4.4)

now, the Cauchy–Schwarz inequality (


h ahbh)2 6 (


h a
2
h)(


h b2h) (for real ah, bh) gives the following, for all k ∈ Zd
0:

|(v • ∂w)k|
2 6

1
(2π)d

Cn(k)Dn(k),

Cn(k) :=


h∈Zd0k

|h ∧ k|2

|h|2n+2|k − h|2n+2
, Dn(k) :=


h∈Zd0k

|h|2n|vh|
2
|k − h|2n+2

|wk−h|
2

(4.5)
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(in the definition of Dn(k) one can write as well


h∈Zd0
, since the general term of the sum vanishes for h = k). We now

multiply both sides of (4.5) by |k|2n; it appears that |k|2nCn(k) = Kn(k) with Kn(k) as in (3.7), so

|k|2n|(v • ∂w)k|
2 6

1
(2π)d

Kn(k)Dn(k). (4.6)

Step 2. Completing the proofs of Propositions 3.1 and 3.5. Due to (4.6),


k∈Zd0

|k|2n|(v • ∂w)k|
2 6

1
(2π)d


k∈Zd0

Kn(k)Dn(k) 6
1

(2π)d


sup
k∈Zd0

Kn(k)


k∈Zd0

Dn(k)


= (K+

n )2

k∈Zd0

Dn(k), (4.7)

(where the last passage uses the definition of K+
n in (3.8)). On the other hand, the definition of Dn gives


k∈Zd0

Dn(k) =


h∈Zd0

|h|2n|vh|
2

k∈Zd0h

|k − h|2(n+1)
|wk−h|

2
=


h∈Zd0

|h|2n|vh|
2


ℓ∈Zd0h

|ℓ|2(n+1)
|wℓ|

2



6 ∥v∥
2
n ∥w∥

2
n+1 (4.8)

(where the last inequality follows from the inclusion Zd
0h ⊂ Zd

0). Returning to (4.7), we obtain
k∈Zd0

|k|2n|(v • ∂w)k|
2 6 (K+

n )2∥v∥
2
n ∥w∥

2
n+1. (4.9)

We already know that v • ∂w has zero mean; Eq. (4.9) indicates the finiteness of


k∈Zd0
|k|2n|(v • ∂w)k|

2, so v • ∂w ∈ Hn
0.

Eq. (4.9) also gives

∥v • ∂w∥n 6 K+

n ∥v∥n∥w∥n+1. (4.10)

Now, we let (v, w) vary. The map Hn
Σ0 × Hn+1

0 → Hn
0, (v,w) → v • ∂w is clearly bilinear, and (4.10) indicates its

continuity; so, Proposition 3.1 is proved. Eq. (4.10) indicates as well that the sharp constant K ′
n in the inequality ∥v •∂w∥n 6

K ′
n∥v∥n∥w∥n+1 fulfills K ′

n 6 K+
n , thus proving Eq. (3.8) and Proposition 3.5. �

Proof of Proposition 3.6. Let us consider any v ∈ Hn
Σ0 \ {0}, w ∈ Hn+1

Σ0 \ {0}, and note that (1.3) gives

Kn >
∥L(v • ∂w)∥n

∥v∥n∥w∥n+1
. (4.11)

Hereafter we choose v, w with Fourier coefficients as below (δ denoting the usual Kronecker symbol):

vk = Aδk,a + Aδk,−a, wk = Bδk,b + Bδk,−b, (4.12)

a := (1, 0, . . . , 0), b := (0, 1, 0, . . . , 0), A := (0, α, a),

B := (β, 0, b), α, β ∈ C, a, b ∈ Cd−2, (α, a), (β, b) ≠ (0, 0).
(4.13)

The above choices of A, B ensure the conditions of zero divergence A • a = 0, B • b = 0; if d = 2, one understands a, b to be
missing from Eq. (4.13) (i.e., A := (0, α) and B := (β, 0)). As shown in [9], one has

∥v∥
2
n = 2|A|

2
= 2(|α|

2
+ |a|2), ∥w∥

2
n+1 = 2|B|2 = 2(|β|

2
+ |b|2),

∥L(v • ∂w)∥2
n =

2n+2

(2π)d
|α|

2

(2 −

√
2)|β|

2
+ |b|2

 (4.14)

(the last result depending on an elementary, but tedious computation of [L(v • ∂w)]k via Eq. (2.7)); Eqs. (4.11) and (4.14)
give

K 2
n >

2n

(2π)d

|α|
2

(2 −

√
2)|β|

2
+ |b|2


(|α|2 + |a|2)(|β|2 + |b|2)

. (4.15)

If d = 2, one understands a, b to be missing from the above formula; so, (4.15) gives K 2
n > 2n(2π)−2(2−

√
2), an inequality

that coincides with (3.9) in this case.
If d > 3, we choose (α, a), (β, b) ≠ (0, 0) so as to maximize the right hand side of Eq. (4.15). The maximum is attained

with a = 0, β = 0 and arbitrary α ∈ C \ {0}, b ∈ Cd−2
\ {0}; this choice gives K 2

n > 2n(2π)−d, yielding Eq. (3.9) for this
case. �
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Appendix. The function Kn

Hereafter we present a result allowing the practical computation of the function Kn in Eq. (3.7) and of its sup. The basic
idea is to introduce a ‘‘cutoff’’ ρ and to replace the infinite sums in Eq. (3.7) by finite sums over balls of radius ρ in Zd

0; this
gives an approximant Kn(k) of Kn(k), up to a k-independent error δKn. The behavior of Kn(k) for large k can be described
as well; all these facts emerge from the following statement.

Proposition A.1. Let us fix a cutoff ρ ∈ (2
√
d, +∞); then the following holds (with the functions and quantities Kn, δKn, . . .

mentioned in the sequel depending parametrically on d and ρ: Kn(k) ≡ Knd(ρ, k), δKn ≡ δKnd(ρ), . . .).

(i) The function Kn can be evaluated using the inequalities

Kn(k) < Kn(k) 6 Kn(k) + δKn for all k ∈ Zd
0. (A.1)

Here

Kn(k) := |k|2n


h∈Zd0k,|h|<ρ or |k−h|<ρ

|h ∧ k|2

|h|2n+2|k − h|2n+2

= |k|2n


h∈Zd0k,|h|<ρ


1 + θ(|k − h| − ρ)

 |h ∧ k|2

|h|2n+2|k − h|2n+2
, (A.2)

where θ(z) := 1 if z ∈ [0, +∞) and θ(z) := 0 if z ∈ (−∞, 0); moreover,

δKn :=
22n+3πd/2(n + 1)n+1

Γ (d/2)(n + 2)n+2

d−1
i=0


d − 1

i


dd/2−1/2−i/2

(2n − i − 1)(ρ − 2
√
d)2n−i−1

. (A.3)

(ii) One has

Kn(k) → Zn for k → ∞, (A.4)

for a suitable constant Zn > 0, defined hereafter. The approach of Kn(k) to this limit is described quantitatively as follows,
for any t ∈ {2, 4, 6, . . .}:

Zn +


ℓ=2,4,...,t−2

Qnℓ(k/|k|)
|k|ℓ

+
vnt

|k|t
6 Kn(k) 6 Zn +


ℓ=2,4,...,t−2

Qnℓ(k/|k|)
|k|ℓ

+
Vnt

|k|t
for k ∈ Zd

0, |k| > 2ρ. (A.5)

Here:


ℓ=2,...,t−2 . . . := 0 if t = 2; Zn, vnt , Vnt are nonnegative constants and Qnℓ are real polynomial functions on the
(d − 1)-dimensional unit spherical surface, defined as follows:

Zn := 2

1 −

1
d

 
h∈Zd0,|h|<ρ

1
|h|2n

; vnt := 2µnt


h∈Zd0,|h|<ρ

1
|h|2n−t

; Vnt := 2Mnt


h∈Zd0,|h|<ρ

1
|h|2n−t

; (A.6)

Qnℓ : Sd−1
→ R, u → Qnℓ(u) := 2


h∈Zd0,|h|<ρ

Ênℓ(u • h/|h|)
|h|2n−ℓ

. (A.7)

To define µnt ,Mnt and Ênℓ consider the Taylor expansion

1 − c2

(1 − 2cξ + ξ 2)n+1
=

t−1
ℓ=0

Enℓ(c) ξ ℓ
+ Rnt(c, ξ) ξ t for c ∈ [−1, 1], ξ ∈ [0, 1/2], (A.8)

where the remainder contains the continuous function (c, ξ) → Rnt(c, ξ), and each coefficient Enℓ(c) is found to be a
polynomial in c of degree ℓ + 2 with the parity of ℓ. Then

µnt := min
c∈[−1,1],ξ∈[0,1/2]

Rnt(c, ξ), Mnt := max
c∈[−1,1], ξ∈[0,1/2]

Rnt(c, ξ) (A.9)
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and, for any even ℓ,

Ênℓ(c) := enℓ0 +
enℓ2
d

+ enℓ4c4 + · · · + enℓ,ℓ+2cℓ+2

if Enℓ(c) = enℓ0 + enℓ2c2 + enℓ4c4 + · · · + enℓ,ℓ+2cℓ+2. (A.10)

(iii) Items (i)–(ii) imply

sup
k∈Zd0

Kn(k) < +∞; sup
k∈Zd0

Kn(k) 6 sup
k∈Zd0

Kn(k) 6

sup
k∈Zd0

Kn(k)


+ δKn. (A.11)

Proof. See [9], Appendices A and B. �

The upper bounds K+
n given in (3.10) for d = 3 and n = 2, 3, 4, 5, 10 have been derived from Eq. (3.8), using Proposition A.1

to estimate the function Kn and its sup; as for the cutoff, we have chosen ρ = 20 for n = 2, and ρ = 10 for n = 3, 4, 5, 10.
We refer again to [9] for the details of these computations.
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