
Journal of Structural Biology 184 (2013) 345–347

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/locate /y jsbi
Technical Note
Optimal and fast rotational alignment of volumes with missing data
in Fourier space
1047-8477 � 2013 The Authors. Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.jsb.2013.08.006

⇑ Corresponding author. Address: University of California, 461 Koshland Hall,
Berkeley, CA 94720-3102, USA.

E-mail address: max.shatsky@gmail.com (M. Shatsky).

Open access under CC BY-NC-ND license.
Maxim Shatsky a,⇑, Pablo Arbelaez b, Robert M. Glaeser c, Steven E. Brenner a,d

a Physical Biosciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA
b Electrical Engineering and Computer Science Division, University of California, Berkeley, CA 94720, USA
c Life Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA
d Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
a r t i c l e i n f o

Article history:
Received 20 May 2013
Received in revised form 12 August 2013
Accepted 13 August 2013
Available online 28 August 2013

Keywords:
Missing data in Fourier space
Rotational alignment of tomograms
Spherical harmonics
Constrained cross-correlation
a b s t r a c t

Electron tomography of intact cells has the potential to reveal the entire cellular content at a resolution
corresponding to individual macromolecular complexes. Characterization of macromolecular complexes
in tomograms is nevertheless an extremely challenging task due to the high level of noise, and due to the
limited tilt angle that results in missing data in Fourier space. By identifying particles of the same type
and averaging their 3D volumes, it is possible to obtain a structure at a more useful resolution for biolog-
ical interpretation. Currently, classification and averaging of sub-tomograms is limited by the speed of
computational methods that optimize alignment between two sub-tomographic volumes. The alignment
optimization is hampered by the fact that the missing data in Fourier space has to be taken into account
during the rotational search. A similar problem appears in single particle electron microscopy where the
random conical tilt procedure may require averaging of volumes with a missing cone in Fourier space. We
present a fast implementation of a method guaranteed to find an optimal rotational alignment that max-
imizes the constrained cross-correlation function (cCCF) computed over the actual overlap of data in Fou-
rier space.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

The problem of incomplete data appears in several areas of elec-
tron microscopy (EM) applied to biological samples. For example,
EM tomographic reconstruction is achieved by combining two-
dimensional projections obtained at different tilt angles. Current
experimental methodology limits the tilt angle of a specimen to
about ±70 degrees. This results in reconstructed three-dimensional
volumes that lack significant information in the corresponding
Fourier space. This missing structural volume is called the missing
wedge and corresponds to at least 20 percent of the structural data.
If similar particles are recorded at different orientations, then
averaging these sub-tomogram volumes can restore the missing
information and at the same time improve the overall resolution.
Sub-tomogram averaging has been successfully applied in the past
(Frangakis et al., 2002; Bartesaghi and Subramaniam, 2009; Briggs
et al., 2009; Winkler et al., 2009; Stölken et al., 2011).

Volume averaging is not limited to EM tomography. In single
particle cryo-EM an initial model of negatively stained particles
is usually obtained using the Random Conical Tilt approach. For
the Random Conical Tilt approach, two images are collected, for
example, at zero and 45–60 degrees. Particles with similar 2-D
projections are identified in the untilted image and their corre-
sponding tilted counterparts are used to partially fill the Fourier
space. The volumetric space that cannot be filled with this infor-
mation results in the shape of a missing cone. Here, as well, the
missing data can be identified by combining two or more volumes
that have complementary information (Penczek et al., 1994;
Scheres et al., 2009).

Volume averaging requires solving the problem of rotational
and translational alignment since the relative orientation of the
volumes is usually not known. Volume alignment involves optimi-
zation of some similarity measure under six degrees of freedom –
three degrees for rotation and three degrees for translation. The
cross-correlation function (CCF) is widely used to measure the sim-
ilarity of images and volumetric data. This function is especially
attractive because its optimal value can be efficiently computed
by applying the Fast Fourier Transform (FFT) (Cooley and Tukey,
1965). Therefore, finding an optimal translation between two
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volumes of dimension n � n � n can be done efficiently in O(n3

log(n)) time. However, optimizing cross-correlation in rotational
space has proved to be more challenging. An exhaustive search
can take O(n6) time if sampling every 360/n degrees. Improved
algorithms came when it was realized that the FFT could success-
fully be used in the space of spherical harmonics, and that the
volume’s real space representation can be very accurately approx-
imated in the space of spherical harmonics. The first proposed
method resolved two degrees of freedom by applying the FFT on
spherical harmonics in 2-D, while the third rotational dimension
was left for the exhaustive sampling (Crowther, 1972). Two dec-
ades later, a solution for 3-D FFT on spherical harmonics was pro-
posed with time complexity of O(n4) (Kovacs and Wriggers, 2002).
Currently, this is asymptotically the fastest known algorithm to
optimally solve the rotational CCF in 3-D.

The missing wedge and the missing cone in Fourier space result
in elongated density in the real space. This in turn creates a bias
during the rotational alignment in which volumes tend to be
aligned along the axis of elongation. To avoid such bias, several
Fig. 1. (a) 70S ribosome filtered to 50 Å. (b) The average volume obtained from applying
Fourier space. (c) Fourier space wedge mask is applied to the volume from (a). (d) Result
cCCF. (e) Same as (d) but the CCF is used for the alignment. Notice elongation bias. (f) Vol
(g) Model from (e) is used to align 100 volumes using the CCF method.
solutions have been proposed (Schmid and Booth, 2008; Bartesaghi
et al., 2008; Förster et al., 2008). These are based on constraining
the CCF to the overlapping data in Fourier space between rotation-
ally aligned volumes. In terms of computational complexity these
methods can be classified into two categories: (1) exhaustive, very
slow, but accurate, and (2) faster heuristics which do not guarantee
optimal orientation. The first category comprises approaches that
apply an exhaustive rotational search in which a variant of the con-
strained CCF is calculated for each sampled rotation. These meth-
ods are very slow and supercomputers are required to process
such large numbers of alignments (Frangakis et al., 2002; Förster
et al., 2008; Scheres et al., 2009; Amat et al., 2010; Stölken et al.,
2011). The second type, faster heuristics, consists of a method that
applies the FFT and spherical harmonics to compute the con-
strained CCF faster, but does not guarantee to achieve an optimal
solution (Bartesaghi et al., 2008).

Here we present a method that is guaranteed to find an optimal
rotational alignment that maximizes the constrained cross-corre-
lation function computed over the actual overlap of data in Fourier
the CCF function on 100 randomly oriented volumes with complete information in
of averaging 100 randomly oriented, wedge mask filtered volumes aligned with the

ume refinement. Model from (d) is used to align 100 volumes using the CCF method.
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space. The method’s key idea is based on the observation that cor-
relation between two functions in real space is equivalent to corre-
lation in Fourier space. The constrained cross-correlation function
(cCCF) is defined in Fourier space as the CCF function normalized
by the size of the overlap of the two volumes’ actual experimen-
tally obtained data. The overlap function itself can be represented
as a correlation in real space of the masks that define the location
of experimental data in Fourier space. Consequently, the cCCF
function is represented as the product of two real-valued correla-
tion functions, each of which can be efficiently computed using
the algorithm by Kovacs and Wriggers (2002) (see Supplementary
information for more details). Recently, an independently realized
Matlab implementation of this approach was presented (Xu et al.,
2012) which takes minutes to rotationally align two volumes. Here
we report an implementation orders of magnitude faster, for which
we modified the source code in C of Kovacs and Wriggers (2002).

2. Validation and conclusions

We validated our implementation of the cCCF procedure on a
synthetic data set generated from a density map of the 70S ribo-
some taken from the EBI Database EMDB (Tagari et al., 2002), entry
EMD-1003, resolution 11.3 Å (Rawat et al., 2003). First, the density
map was filtered to 50 Å (Fig. 1(a)). One hundred random rotations
were applied to the filtered volume. Then, each orientation was
transformed to Fourier space and a wedge mask that corresponded
to ±40 degree tilt was applied. The volumes were then transformed
back to real space. This filtered set of one hundred volumes was
used to test the alignment. The alignment was performed by using
the first volume (Fig. 1(c)) as a model and superimposing the rest
of the volumes onto it. The average of these 99 alignments was
computed by the weighted wedge mask overlap as described in
the Suppl. Inf. The average of cCCF alignment is shown in
Fig. 1(d). Notice that the cCCF average is very close to the original
undistorted volume, while average of CCF alignment, Fig. 1(e), dis-
plays a heavy wedge bias. The averages from (d) and (e) were then
used as the models for the second round of alignment. While the
cCCF average achieves a small improvement, Fig. 1(f), the CCF aver-
age continues to be elongated in the direction of the missing
wedge, Fig. 1(g).

The method presented here is general for all types of missing
areas in Fourier space, and is not limited to a missing wedge or
cone. Its fast running time, about a second for volumes of size
135 � 135 � 135, allows thousands of alignments to be performed
in one day on a standard desktop computer. The code can be down-
loaded at: compbio.berkeley.edu/people/maxshats/volalign/.
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