

Review of Direct Anatomical Open Surgical Management of Atherosclerotic Aorto-Iliac Occlusive Disease

K.W.H. Chiu, R.S.M. Davies, P.G. Nightingale, A.W. Bradbury, D.J. Adam*

University of Birmingham, Department of Vascular Surgery, Heart of England NHS Foundation Trust, Netherwood House, Solihull Hospital, Birmingham B91 2JL, UK

Submitted 18 August 2009; accepted 13 December 2009 Available online 20 March 2010

KEYWORDS Atherosclerotic aorto- iliac occlusive disease; Anatomical open	Abstract <i>Background:</i> Aortofemoral bypass(AFB), iliofemoral bypass(IFB), and aortoiliac endarterectomy(AIE) are the three most common techniques for anatomical open surgical revas- cularisation for patients with aorto-iliac occlusive disease(AIOD), but the optimal method of reconstruction is unknown.
surgical management	<i>Aims:</i> To review and compare mortality, morbidity and short- and long-term patency rates for AFB, IFB and AIE in patients with AIOD reported in the English language literature <i>Methods:</i> A MEDLINE(1970–2007) and Cochrane Library search for articles relating to AFB, IFB, AIE and AIOD was undertaken. Studies were included if: a) patency rates based on life-tables were available, and b) patient/study characteristics were reported.
	<i>Results</i> : 29 studies(5738 patients) for AFB, 11 studies(778 patients) for IFB and 11 studies(1490 patients) for AIE were included. Operative mortality was 4.1% for AFB, 2.7% for IFB and 2.7% for AIE ($p < 0.0001$). Systemic morbidity was 16.0% for AFB, 18.9% for IFB and 12.5% for AIE ($p < 0.05$). Overall 5-year primary patency rates were 86.3%, 85.3% and 88.3% for AFB, IFB and AIE, respectively ($p = NS$).
	<i>Conclusion:</i> Aorto-iliac endarterectomy was associated with significantly lower peri-operative morbidity and mortality rates compared with bypass grafting. All three techniques were equally effective in terms of long-term patency. © 2010 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

Introduction

* Corresponding author. Tel.: +44 121 4242000.

Open surgical reconstruction represents the evidencebased treatment of choice for Trans-Atlantic Inter-Society Consensus (TASC) II type-C and D aortoiliac lesions.^{1,2} Since the pioneering work by dos Santos in the area of aortoiliac endarterectomy, a variety of anatomical and extra-

1078-5884/\$36 © 2010 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.ejvs.2009.12.014

E-mail address: donald.adam@heartofengland.nhs.uk (D.J. Adam).

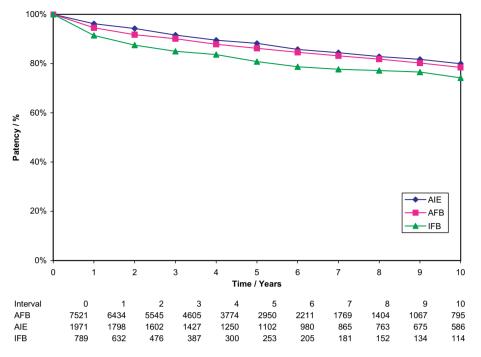


Figure 1 Cumulative patency for patients who underwent Aortofemoral Bypass, Iliofemoral Bypass and Aortoiliac Endarterectomy.

anatomical open surgical arterial reconstructions have been described for the management of patients with symptomatic aorto-iliac occlusive disease (AIOD).³ The most widely utilised anatomical open surgical reconstructions are: aortofemoral bypass (AFB), iliofemoral bypass (IFB) and aortoiliac endarterectomy (AIE). Descending thoracic aortofemoral bypass (DTAF) has also been described but is predominantly reserved for patients in which the aforementioned reconstructions are unsuitable.^{4,5} Bypass grafting is widely accepted as the anatomical procedure of choice for AIOD and aortoiliac endarterectomy has fallen out of favour with the majority of vascular surgeons. To date, no comparative study has been undertaken to determine the optimal method of anatomical reconstruction for AIOD.

The aims of this study were a) to review and compare the short- and long-term outcomes of AFB, IFB, AIE and DTAF for the treatment of AOID and b) to provide an evidence-based benchmark with which to compare the results of established and evolving endovascular therapies.

Materials and methods

We performed a MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials (CENTRAL) databases search looking for English language articles relating to AFB, IFB, AIE, DTAF and AIOD between January 1970 and August 2007. The terms aorta, iliac artery and aortoiliac were included amongst others. These were linked with terms such as reconstruction, revascularisation, bypass, endarterectomy, atherosclerosis and occlusion. Further articles were identified by following MEDLINE links, by cross-referencing from the reference lists of major articles and by following citations for these studies. Table 1Overview of patient demographics, risk factors,peri-operative surgical and long-term outcomes.

	AFB	AIE	IFB	DTAF
Characteristics				
No of Studies	29	11	11	2
No. of Subjects	5738	1490	778	174
No. of Limbs	7521	1971	789	192
Mean age (years)	58.8	58.7	61.6	_
Female/%	24.4	21.0	21.8	_
Claudication/%	64.3	70.9	52.7	_
Ischaemia/%	35.7	29.1	47.3	_
Risk factors				
Smokers/%	89.9	95.0	77.9	_
Diabetes/%	17.4	10.9	15.6	_
IHD/%	41.4	28.9	42.1	_
Hypertensive/%	39.6	32.1	36.8	_
Surgical outcomes				
Operative Mortality/%	4.1	2.7	2.7	4.6
Early Systemic Morbidity/%	16.0	12.5	18.9	-
Early Local Morbidity/%	6.3	3.4	5.7	_
Early Graft-related Morbidity or intervention failure/%	3.1	3.8	4.2	4.5
Primary patency				
Overall 5 yr patency/%	86.3	88.3	85.3	79.6
Patency for Claudication/%	89.8	90.8	86.7	-
Patency for Ischaemia/%	79.8	81.7	74.1	_

Author	Study years	Patients	Limbs	Female (%)	Mean	Claud (%)	lsch (%)	A(F/I)2	A(F/I)1	Other	lliac (%)
D 10	407(4000	2/			age (yr)			27			
Bowes ¹⁰	1976-1990	26	52	54 27	59	65 5 (35	26	0	0	13
Brewster ⁵²	1963-1977	341	657	27	58	56	44	316	25	0	29
Couch ¹⁴	1972-1985	111	208	-	-	68	32	97	14	0	_
Dunn ¹⁵	1968-1979	192	384	28	60	64	36	192	0	0	3
Friedman ¹⁶	1986-1989	60	120	37	68	67	33	60	0	0	58
Harris ¹⁸	1979–1984	200	377	26	58	71	29	177	23	0	0
Jackson ²¹	1992-2003	111	222	37	49	42	58	111	0	0	0
Jensen ²²	1979–1986	56	112	68	45	80	20	40	2	14	33
Johnson ²³	1965–1975	88	176	-	53	66	34	88	0	0	—
Lau ²⁶	1977–1998	94	176	12	58	39	61	82	12	0	0
Littooy ²⁷	1977—1988	224	440	1	59	63	37	216	8	0	2
Martinez ²⁸	1967—1977	376	752	33	58	72	28	376	0	0	0
Mason ²⁹	1980–1985	59	114	-	59	75	25	55	4	0	0
Meister ³⁰	1989—1992	150	300	9	59	66	34	150	0	0	0
Melliere ³¹	1977—1996	108	108	8	-	72	28	0	108	0	0
Mingoli ³²	1973–1990	238	476	23	58	39	61	476	0	0	34
Mulcare ³³	1964—1975	114	228	32	-	54	46	114	0	0	50
Naylor ³⁴	1975–1984	241	476	29	60	71	29	235	6	0	0
Hsiang ¹⁹	1970–1984	80	_	35	55	70	30	_	_	0	0
Passman ³⁹	1988–1993	139	278	1	68	58	42	139	0	0	0
Piotrowski ⁴¹	1975–1985	32	64	6	59	63	37	32	0	0	0
Prager ⁴²	1991-1998	149	298	30	59	67	33	149	0	0	0
Prediville ⁴³	1978–1989	145	285	_	64	30	70	140	5	0	0
Schneider ⁴⁵	1986-1991	119	238	36	61	45	55	119	0	0	0
Sladen ⁴⁶	1968—1980	100	196	29	59	100	0	96	4	0	0
Szilagy ⁴⁷	1954—1983	1748	3010	_	_	66	34	1262	41	445	6
Timaran ⁴⁸	1996-2001	60	102				17	42	6	12	46
Van der Vliet ⁴⁹	1976—1987	350	700	18	59	80	20	350	0	0	_
Yamazaki ⁵¹	1992-1995	27	40	7	70	78	22	13	14	0	_
All studies		5738	10 589	24	59	64	36	5153	272	471	9

 Table 2
 Patient demographics of Aortofemoral Bypass studies.

Studies reporting long-term primary patency data following open anatomical repair of aorto-iliac occlusive disease were included if a) the results for patients with AIOD were reported separately; b) the primary patency data were presented in a life-table format that met the Society for Vascular Surgery/International Society for Cardiovascular Surgery ISCVS/SVS criteria, using yearly or smaller intervals, or such life-tables could be reconstructed from the presented data; c) the patient demographics and study characteristics were reported in sufficient detail to allow for adjustment for the case-mix and the reporting methods in the analysis; and d) the study cohort was greater than 10 patients. In instances whereby more than one publication from the same cohort was available, we

```
        Table 3
        Patient demographics of Iliofemoral Bypass studies.
```

Author	Study years	Patients	Limbs	Female (%)	Mean Age (yr)	Claud (%)	lsch (%)	IF	Other
Cham ¹³	1972-1986	105	105	15	62	46	54	105	0
Harrington ¹⁷	1965-1991	68	68	48	66	44	56	68	14
Jorgensen ²⁴	1980-1982	62	62	35	61	19	81	62	0
Kalman ²⁵	1976-1985	50	50	38	59	56	44	50	0
Mason ²⁹	1980-1985	39	50	_	62	31	69	50	0
Melliere ⁵⁵	1977-1996	144	144	13	_	69	31	144	0
Ng ³⁵	1984–1990	72	75	19	65	63	37	75	0
Oliveira ³⁷	1981-1991	16	16	0	65	31	69	16	0
Perler ⁴⁰	_	21	22	29	64	53	47	22	0
Piotrowski ⁴¹	1975-1985	17	17	29	50	47	53	17	0
Van der Vliet ⁴⁹	1976–1987	184	114	15	60	61	39	114	70
All studies		778	723	22	62	53	47	723	84

Table 4 Pa	atient demogra	phics of Ao	rtoiliac Er	ndarterectomy	studies.					
Author	Study years	Patients	Limbs	Female (%)	Mean age (yr)	Claud (%)	lsch (%)	AIFE	IFE	Other
Aguiar ⁹	Not stated	71	128	24	57	59	41	107	21	0
Brewster ⁵²	1963-1977	241	448	27	58	56	44	448	0	0
Butcher ¹²	Not stated	100	185	23	_	78	22	144	41	0
Inahara ²⁰	1962-1978	201	321	21	65	59	41	321	0	0
Melliere ³¹	1977-1996	108	108	6	_	74	26	0	108	0
Naylor ³⁴	1974–1984	57	109	39	53	86	14	109	0	0
Hsiang ¹⁹	1970–1987	45	_	35	55	70	30	45	0	0
0ertli ²	1959-1972	415	514	15	58	81	20	84	430	0
Oskam ³⁸	1971-1990	94	163	29	52	85	15	163	0	0
Radoux ⁴⁴	1982-1995	98	121	8	57	71	29	0	121	0
Vitale ⁵⁰	1966-1988	60	70	40	67	65	35	0	70	0
All studies		1490	2167	21	59	71	29	1421	791	0

included only the most recent publication unless; a) evidence was available that the patient population did not overlap and b) the most recent publication was unsuitable for data extraction or a more complete data set was available from previous publications.

Table 5 Patient risk factors for Aortofemoral Bypass studies.

Author	Risk factors							
	Smoker	Diabetes	IHD	HT				
	(%)	(%)	(%)	(%)				
Bowes ¹⁰	73	27	58	27				
Brewster ⁵²	100	12	40	35				
Couch ¹⁴	77	14	46	53				
Dunn ¹⁵	_	9	29	41				
Friedman ¹⁶	73	22	50	50				
Harris ¹⁸	_	8	_	_				
Jackson ²¹	98	22	29	63				
Jensen ²²	_	_	_	_				
Johnson ²³	_	_	_	_				
Lau ²⁶	90	21	30	53				
Littooy ²⁷	89	_	48	44				
Martinez ²⁸	87	24	_	30				
Mason ²⁹	_	21	57	_				
Meister ³⁰	97	27	37	49				
Melliere ³¹	—	8	15	26				
Mingoli ³²	88	31	62	54				
Mulcare ³³	_	_	_	_				
Naylor ³⁴	_	_	_	_				
Hsiang ¹⁹	86	11	33	29				
Passman ³⁹	82	19	38	—				
Piotrowski ⁴¹	75	19	53	22				
Prager ⁴²	88	22	—	—				
Prediville ⁴³	97	11	16	33				
Schneider ⁴⁵	97	20	41	56				
Sladen ⁴⁶	99	_	_	_				
Szilagy ⁴⁷	_	18	47	35				
Timaran ⁴⁸	83	21	60	62				
Van der Vliet ⁴⁹	87	11	24	45				
Yamazaki ⁵¹	-	-	_	-				
All studies	90	17	41	40				

A proforma was used to extract the data from the articles; these data included study design, reporting methods, patient risk factors, operative morbidity/mortality and primary and secondary patency rates. The patient demographics, risk factors, and short- and long-term outcomes used in this study were previously identified as relevant factors by other studies.^{6,7}

The definition of 'peri-operative' period varied between studies, but was generally defined as within 30 days of the index intervention. Thus, we defined operative mortality as death within this period. A systemic complication was defined as a dysfunction of one or more major organ systems within 30 days of the index procedure. A local complication was defined as a non-fatal complication limited to the site of operation and occurring within 30 days of the index procedure. Graft-related complication was defined as all non-fatal damage or disease related to the graft including intervention failures (i.e. failed procedures). For AIE, as no prosthetic graft was used, we only collected data for intervention failures (i.e. failed endarterectomy).

In order to calculate primary patencies, data from the studies needed to be presented or able to be converted to a life-table format. In 49% of the studies (22/45), patency

Author	Risk factors							
	Smoker (%)	Diabetes (%)	IHD (%)	HT (%)				
Cham ¹³	_	10	_	26				
Harrington ¹⁷	68	32	63	60				
Jorgensen ²⁴	_	6	26	_				
Kalman ²⁵	_	18	38	_				
Mason ²⁹	_	26	69	_				
Melliere ⁵⁵	_	11	20	19				
Ng ³⁵	_	17	91	45				
Oliveira ³⁷	100	25	44	63				
Perler ⁴⁰	69	31	_	69				
Piotrowski ⁴¹	76	0	41	24				
Van der Vliet ⁴⁹	83	15	28	44				
All studies	78	16	42	37				

Table 6 Pati studies.	ent risk fa	ctors for Ilic	ofemoral	Bypass
Author	Risk factors			
	Smoker (%)	Diabetes (%)	IHD (%)	HT (%)
Cham ¹³	-	10	_	26
Harrington ¹⁷	68	32	63	60
Jorgensen ²⁴	_	6	26	_
Kalman ²⁵	_	18	38	_
Mason ²⁹	_	26	69	_
Melliere ⁵⁵	—	11	20	19

Vitale⁵⁰

All studies

88

95

Author **Risk factors** Smoker (%) Diabetes (%) IHD (%) HT (%) Aguiar⁹ 99 17 27 48 Brewster⁵² 100 12 40 35 Butcher¹² 23 17 16 Inahara²⁰ 94 6 25 25 Melliere³¹ 9 17 23 Naylor³⁴ Hsiang¹⁹ 29 86 11 33 0ertli³⁶ _ _ _ _ Oskam³⁸ _ _ Radoux⁴⁴ 91 10 27 43

Table 7Patient risk factors for Aortoiliac Endarterectomystudies.

data were presented in life-table formats. In the remaining studies, life-tables were reconstructed from survival curves with sufficient data. We assumed that the lowest point at each time interval in a survival curve represented the patency rate of the observed unit at that time.

12

11

Patient demographics and risk factors from each study were pooled for analysis. Statistical comparison of aggregated patency data was based on Cox proportional hazard regression. Spearman correlation was used to quantify the association of each of the outcomes with patient demographics and risk factors. Life-table analysis was carried out. A covariate, symptomatic status of patients prior to interventions, was included for further sub-analysis using methodology previously described by Hunink and Wong. This methodology allows the combination of failure-time data from various sources, adjusting for differences in case-mix among studies. It is based on the proportionalhazards model and the actuarial life-table approach. Twosided *p*-values are reported and differences in results were considered to be "statistically significant" if the p-value was <0.05. Microsoft Excel 2000 and the statistical package Graphpad Prism[®] version 5.00 were utilised for analysis.

Results

590 studies were identified, 331 (56%) studies were excluded from their abstracts alone, resulting in 259 (44%) articles being retrieved. A further 214 (36%) publications

 Table 8
 Short and long-term outcomes for Aortofemoral Bypass studies.

32

29

52

32

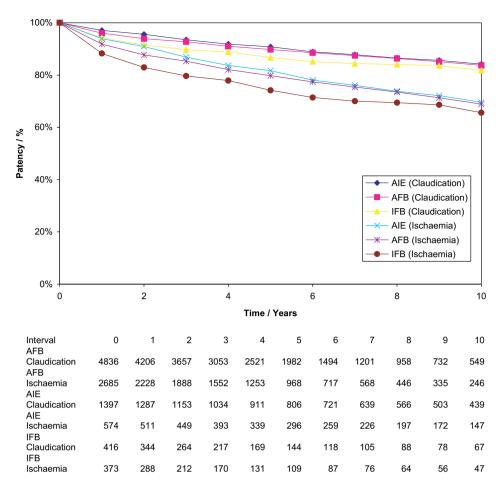
Author	Early morbidity							
	Operative morality (%)	Systemic (%)	Local (%)	Graft related (%)	5-year patency rate			
Bowes ¹⁰	7.7	4.2	_	3.8	92.0			
Brewster ⁵²	2.6	_	_	1.2	90.5			
Couch ¹⁴	1.0	16.1	_	_	_			
Dunn ¹⁵	3.1	17.2	3.1	5.7	86.0			
Friedman ¹⁶	0.0	8.3	11.7	0.0	95.5			
Harris ¹⁸	3.5	_	_	_	91.0			
Jackson ²¹	1.6	19.4	21.0	3.6	78.0			
Jensen ²²	0.0	5.4	14.3	3.6	_			
Johnson ²³	5.7	_	_	_	76.9			
Lau ²⁶	8.7	_	_	_	89.0			
Littooy ²⁷	4.9	4.0	9.8	4.5	87.6			
Martinez ²⁸	5.6	25.3	4.0	0.5	88.3			
Mason ²⁹	6.8	30.5	5.2	3.6	_			
Meister ³⁰	2.0	14.0	14.0	_	91.8			
Melliere ³¹	0.9	_	0.0	3.7	82.0			
Mingoli ³²	3.4	3.8	6.7	2.5	82.5			
Mulcare ³³	8.8	_	_	5.3	_			
Naylor ³⁴	_	_	_	_	92.8			
Hsiang ¹⁹	_	_	_	_	86.5			
Passman ³⁹	0.7	19.4	12.4	1.4	74.0			
Piotrowski ⁴¹	3.0	13.0	22.0	_	97.0			
Prager ⁴²	4.0	_	_	_	89.0			
Prediville43	3.0	_	_	_	90.5			
Schneider ⁴⁵	0.8	_	_	4.2	62.5			
Sladen ⁴⁶	0.0	_	_	2.0	83.0			
Szilagy ⁴⁷	5.0	18.0	4.3	3.7	85.3			
Timaran ⁴⁸	_	5.0	1.7	1.7	86.0			
Van der Vliet ⁴⁹	4.9	13.4	8.0	_	86.4			
Yamazaki ⁵¹	11.1	-	-	3.7	85.9			
All AFB studies	4.1	16.0	6.3	3.1	86.3			

Author	Early morbidity	Early morbidity						
	Operative morality (%)	Systemic (%)	Local (%)	Graft related (%)	5-year patency rate			
Cham ¹³	1.9	_	_		86.0			
Harrington ¹⁷	2.9	_	_	4.4	73.4			
Jorgensen ²⁴	5.0	_	_	-	83.0			
Kalman ²⁵	0.0	_	_	_	_			
Mason ²⁹	0.0	11.1	_	-	_			
Melliere ⁵⁵	1.4	_	0.7	2.1	73.0			
Ng ³⁵	5.6	35.7	11.0	9.3	75.0			
Oliveira ³⁷	12.5	_	6.3	-	64.0			
Perler ⁴⁰	9.0	16.9	14.0	0.0	88.0			
Piotrowski ⁴¹	0.0	18.0	6.0	_	48.0			
Van der Vliet ⁴⁹	1.6	11.4	7.0	-	87.9			
All studies	2.7	18.9	5.7	4.2	85.3			

Table 9 Short and long-term outcomes for Iliofemoral Bypass studies.

were excluded for various reasons. Thus, 45 (8%) articles were included in the process of data extraction and analysis (Fig. 3). $^{4,5,9-51}$

Of the 45 studies included, 29 studies (5738 patients) included data for AFB, 11 studies (778 patients) for IFB and 11 studies (1490 patients) for AIE. Two studies (174 patients) were identified for DTAF.^{4,5} Six studies included data for both AFB and IFB and one study included data for AFB, IFB and AIE^{19,29,34,41,49,52} (Tables 1–7).


More patients underwent AFB than AIE or IFB. The majority of these patients were male (76.5%) and their main indication for intervention was intermittent claudication (IC). There were significant inter-study differences for patient demographics and risk factors: male:female ratio (p < 0.02), smoking history, diabetes, ischaemic heart disease (IHD) and hypertension (HT) (all p < 0.0001). The AFB cohort had the highest proportion of patients with diabetes and HT while the IFB cohort had the highest proportion of surgery. The AIE cohort had the highest proportion of smokers. There were insufficient data to analyse mean age between the cohorts (Table 1).

The operative mortality rate for AFB, IFB and AIE was reported in 93% (42/45) of the studies and was 4.1%, 2.7% and 2.7%, respectively (p < 0.0001). Systemic morbidity was reported in 56% (25/45) of studies, local morbidity in 51% (23/45) and graft-related morbidity/failed endarterectomy in 71% (32/45). The systemic morbidity rate was 16% for AFB, 18.9% for IFB and 12.5% for AIE (*p* < 0.0001). The local morbidity rate was 6.3% for AFB, 5.7% for IFB and 3.4% for AIE (p < 0.003). There was no correlation between operative mortality and systemic or local morbidity, and patient demographics or risk factors. The graft-related morbidity/intervention failure rates for AFB, IFB and AIE were 3.1%, 4.2% and 3.8%, respectively (p = 0.31). For AFB, 8 studies (2619 patients) quoted graft infection rates and the combined rate was calculated to be 0.7%. As for IFB, only 3 studies (237 patients) mentioned graft infection rates specifically and was calculated to be 0.4%. There are insufficient data to analysis the severity of these infections.

Patency criteria were defined in 58% (26/45) of studies and these varied from clinical symptomatology/examination to radiological assessment. All studies except one^{23}

Author	Early morbidity				
	Operative morality (%)	Systemic (%)	Local (%)	Failed AIE (%)	5-year patency rate
Aguiar ⁹	4.2	_	_	18.3	87.0
Brewster ⁵²	5.0	_	_	3.7	86.8
Butcher ¹²	6.0	24.0	2.0	4.0	72.0
Hsiang ¹⁹	_	_	_	_	82.0
Inahara ²⁰	5.0	15.0	2.0	2.2	92.0
Melliere ³¹	2.8	_	2.8	2.8	92.0
Naylor ³⁴	0.0	9.0	5.3	3.5	92.0
Oertli ³⁶	1.2	_	_	2.7	93.5
Oskam ³⁸	0.0	10.3	2.1	3.2	83.0
Radoux ⁴⁴	0.0	4.0	6.1	6.1	78.9
Vitale ⁵⁰	0.0	5.3	6.7	0.0	80.4
All studies	2.7	12.5	3.4	3.8	88.3

Table 10	Short and long-term outcomes for Aortoiliac Endarterectomy studies.
----------	---

Figure 2 Patency rates for patients undergoing Aortofemoral Bypass, Iliofemoral Bypass and Aortoiliac Endarterectomy for intermittent claudication and critical limb ischaemia.

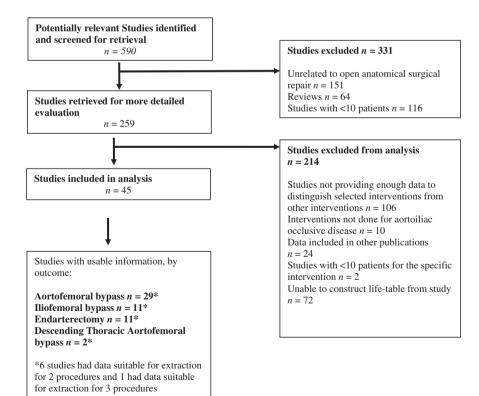


Figure 3 Data selection.

reported primary patency data. Although Johnson *et al.*²³ reported secondary patency in isolation we were able to reconstruct a primary patency life-table from the published data. The 5-year primary patency rates were 86.3%, 85.3% and 88.3% for AFB, IFB and AIE, respectively (p = 0.12).

Outcomes following AFB, IFB and AIE were further subanalysed according to patient clinical presentation. The 5year primary patency rates for patients with IC were 89.8%, 86.7% and 90.8% for AFB, IFB and AIE, respectively (p = 0.07) and, for patients with CLI, were 79.8%, 74.1% and 81.7% for AFB, IFB and AIE, respectively (p = 0.06). There was a significant difference in 5-year patency rates for patients with IC and CLI (p < 0.0001) (Tables 1, 8–10 and Figs. 1 and 2).

The pooled results were further analysed according to the decade during which the studies were undertaken. For AFB, the 5-year patency in studies carried out during the 1970s was 88.4% and gradually decreased to 76.1% for studies carried out after the millennium (p = 0.03). For IFB, data were only available for studies carried out in the 1980s and 1990s and this also demonstrated a fall in 5-year patency rate from 88.6% to 73.1% (p = 0.001). The results were not statistically significant for AIE.

The small number of patients who underwent DTAF precluded reliable statistical comparison with the other three techniques. Operative mortality for DTAF was 4.6%. Systemic and local morbidities were not reported in the published studies but graft-related morbidity was 4.5%. The 5-year primary patency rate for DTAF was 79.6% (Table 11).

Discussion

The present review represents more than 35 years of experience in anatomical open surgical revascularisation for patients with symptomatic AIOD and, to our knowledge, the first comparative analysis of major outcomes following aortofemoral bypass, iliofemoral bypass and aortoiliac endarterectomy.

The principal finding of the present study is that AIE appears to be associated with significantly lower operative mortality (2.7%) and systemic (12.5%) and local complication rates (3.3%) compared with the two bypass procedures. The reason for this finding is not obvious from the data collected and presented but intuitively one would assume that patient selection is important with AIE being utilised predominantly for localised aortoiliac disease and AFB and IFB may be used for more extensive disease.⁵³ All three techniques were equally effective in terms of 5-year primary patency rates. There was a trend toward improved 5-year patency rates for both IC and CLI following AFB and AIE when compared to IFB.

Several studies have compared prosthetic bypass with endarterectomy for the treatment of AOID with conflicting results. Some authors have reported higher morbidity and lower patency rates for AIE^{52,54} while others have demonstrated lower morbidity and comparable long-term outcomes when compared with bypass in appropriately selected patients.^{53,55,56} There are no trials directly comparing AFB and IFB, and those observational studies that exist are inconclusive with some reporting comparable outcomes while others report poorer long-term outcomes

Table 11 Patient demographics, risk factors, short- and	lemographics, risk	factors, short- and	long-term out	long-term outcomes of DTAF studies.	ies.				
Author	Study years	Patients	Limbs	Female (%)	Mean Age (yr)	Claud (%)	Isch (%)	DTAF	Other
Schultz ⁵	19721985	28	46	29	62	37	63	25	0
Criado ⁴	1982—1993	146	146	Ι	Ι	Ι	I	146	0
All DTAF studies		174	192					171	0
Risk factors									
	Smoker (%)	Diabetes (%)	(%) OHI	HTN (%)					
Schultz ⁵	89.3	25.0	25.0	42.9					
Criado ⁴	I	I	I	1					
Early morbidity									
	Operative	Systemic	Local	Graft related	Unit of	Source	Patency	5-year	
	Morality (%)	(%)	(%)	(%)	Observation	of data	reported	patency rate	
Schultz ⁵	3.6	33.3	1	6.3	Limbs	Figure	Primary	80.4	
Criado ⁴	4.8	1	I	3.4	Patients	Table	Primary	78.7	
All DTAF studies	4.6			4.5				79.6	

Author	Type of Study	Retrospective/ Prospective	Materials used	Unit of observation	Source of data	Patency reported
Bowes ¹⁰	Observation	Retrospective	Not mentioned	Limb	Figure	Primary
Brewster ⁵²	Observation	Retrospective	Not mentioned	Limb	Table	Primary
Couch ¹⁴	Observation	Retrospective	Dacron/PTFE	Limb	Figure	Primary
Dunn ¹⁵	Observation	Retrospective	Not mentioned	Patient	Table	Primary
Friedman ¹⁶	Randomised	Prospective	Dacron/PTFE	Limb	Table	Primary
Harris ¹⁸	Observation	Retrospective	Dacron	Limb	Figure	Primary
Jackson ²¹	Observation	Retrospective	SFP vein/Dacron	Patient	Table	Primary
Jensen ²²	Observation	Retrospective	Not mentioned	Patient	Table	Primary
Johnson ²³	Observation	Retrospective	Dacron	Patient	Table	Secondary
Lau ²⁶	Observation	Retrospective	Dacron	Limb	Figure	Primary
Littooy ²⁷	Observation	Retrospective	Dacron	Limb	Table	Primary
Martinez ²⁸	Observation	Retrospective	Dacron	Limb	Table	Primary
Mason ²⁹	Observation	Retrospective	Dacron/PTFE	Limb	Figure	Primary
Meister ³⁰	Randomised	Prospective	Not mentioned	Patient	Figure	Primary
Melliere ³¹	Observation	Prospective	Dacron/PTFE/SFP vein	Patient	Table	Primary
Mingoli ³²	Observation	Retrospective	Not mentioned	Limb	Figure	Primary
Mulcare ³³	Observation	Retrospective	Not mentioned	Patient	Table	Primary
Naylor ³⁴	Observation	Retrospective	Not mentioned	Both	Figure	Primary
Hsiang ¹⁹	Observation	Retrospective	Not mentioned	Patient	Figure	Primary
Passman ³⁹	Observation	Retrospective	PTFE	Patient	Table	Primary
Piotrowski ⁴¹	Observation	Retrospective	Not mentioned	Patient	Figure	Primary
Prager ⁴²	Randomised	Prospective	Dacron/PTFE	Patient	Figure	Primary
Prediville ⁴³	Observation	Retrospective	Dacron	Limb	Figure	Primary
Schneider ⁴⁵	Observation	Retrospective	Dacron/PTFE	Patient	Figure	Primary
Sladen ⁴⁶	Observation	Retrospective	Not mentioned	Patient	Table	Primary
Szilagy ⁴⁷	Observation	Retrospective	Dacron/others	Patient	Table	Primary
Timaran ⁴⁸	Observation	Retrospective	PTFE/polyester	Patient	Figure	Primary
Van der Vliet ⁴⁹	Observation	Retrospective	Dacron/PTFE	Patient	Table	Primary
Yamazaki ⁵¹	Observation	Retrospective	PTFE	Patient	Table	Primary

Table 12	Study design ar	d reported results	of Aortofemoral	Bypass studies.
----------	-----------------	--------------------	-----------------	-----------------

with IFB.^{17,25,41,57} However, IFB is consistently reported as being less traumatic and requiring shorter exposure time when compared to AFB.^{13,58}

As expected, patients presenting with CLI demonstrated poorer 5-year patency rates when compared with patients with IC irrespective of reconstruction.^{7,34,59,60} Unfortunately, there was insufficient breakdown of published data to perform sub-analysis according to patient characteristics, risk factors and operative risks.

Interestingly, when data were compared by decade of publication there was a decrease in patency rates for AFB and IFB over time. Previous studies have shown either no statistical difference or improved patency over time.^{7,52,61} When each of the patient characteristics were analysed there were statistical differences over time, but no obvious trend to explain why patency rates fell with time. For AFB, patients were younger, more presented with CLI, systemic morbidity fell, local morbidity increased and operative

Table 13 Study	design and reporte	ed results of Iliofemo	oral Bypass studies.	Table 13Study design and reported results of Iliofemoral Bypass studies.					
Author	Type of Study	Retrospective/ Prospective	Materials used	Unit of observation	Source of data	Patency reported			
Cham ¹³	Observation	Retrospective	Dacron/PTFE	Limb	Figure	Primary			
Harrington ¹⁷	Observation	Retrospective	Dacron/PTFE	Patient	Table	Primary			
Jorgensen ²⁴	Observation	Retrospective	Not mentioned	Limb	Figure	Primary			
Kalman ²⁵	Observation	Retrospective	Not mentioned	Patient	Figure	Primary			
Mason ²⁹	Observation	Retrospective	Dacron/PTFE	Limb	Figure	Primary			
Melliere ⁵⁵	Observation	Prospective	Dacron/PTFE/SFP vein	Patient	Table	Primary			
Ng ³⁵	Observation	Retrospective	Not mentioned	Patient	Figure	Primary			
Oliveira ³⁷	Observation	Retrospective	Not mentioned	Patient	Figure	Primary			
Perler ⁴⁰	Observation	Retrospective	Dacron/PTFE	Patient	Figure	Primary			
Piotrowski ⁴¹	Observation	Retrospective	Not mentioned	Patient	Figure	Primary			
Van der Vliet ⁴⁹	Observation	Retrospective	Dacron/PTFE	Patient	Table	Primary			

Author	Type of Study	Retrospective/Prospective	Unit of Observation	Source of data	Patency reported
Aguiar ⁹	Observation	Prospective	Patient	Figure	Primary
Brewster ⁵²	Observation	Retrospective	Limb	Table	Primary
Butcher ¹²	Observation	Retrospective	Patient	Table	Primary
Hsiang ¹⁹	Observation	Retrospective	Patient	Figure	Primary
Inahara ²⁰	Observation	Prospective	Limb	Table	Primary
Melliere ³¹	Observation	Retrospective	Patient	Table	Primary
Naylor ³⁴	Observation	Retrospective	Limb	Figure	Primary
Oertli ³⁶	Observation	Retrospective	Limb	Figure	Primary
Oskam ³⁸	Observation	Retrospective	Limb	Figure	Primary
Radoux ⁴⁴	Observation	Retrospective	Limb	Table	Primary
Vitale ⁵⁰	Observation	Retrospective	Limb	Table	Priamry

Table 14 Sludy design and reported results of Autolliac Endarterectority slud	Table 14	nd reported results of Aortoiliac Endarterectomy studies.
---	----------	---

mortality remained unchanged. These results are similar to those observed by de Vries and colleagues with the exception that we did not reveal a statistically significant change in mortality rate.⁷ As for IFB, patients were similar in age, less likely to have CLI, systemic morbidity rose, and minor morbidity and mortality remained unchanged. A factor to consider when analysing these results is that there may be overlaps between decades when the operations were carried out. We aggregated our results depending on when the studies were published.

The majority of these studies are retrospective observational studies with the exception of two prospective observational studies^{9,31} and 3 randomised trials.^{16,30,42} As none of the patients nor surgeons involved in any of the studies were blinded, these data may be biased. Although it is difficult to minimise problems such as selection, performance and detection bias as patients selected into the studies, we attempted to minimise the effect by selecting studies with larger groups (i.e. studies involving more than 10 patients). We further attempted to minimise analysis bias by carrying out our statistical analysis by an external statistician with no prior knowledge in any of the techniques or preferences of the other authors.

Nearly half of the studies did not mention the types of grafts used in their studies. The majority of the remainder used a combination of Dacron and PTFE, while others used only Dacron, PTFE or superficial femoral vein. Amongst the studies that use a combination of graft materials, only 3 studies provided sufficient data to allow different types of grafts used to be separately analysed (Tables 12–14). ^{16,42,48} Thus further analysis on how different types of grafts affect patency were not carried out.

Only two studies reporting results for DTAF were identified as suitable for data extraction.^{4,5} As one might expect, these data suggest that DTAF is associated with higher operative mortality and graft-related complication rates and lower 5-year patency rate than the other three techniques. However, as DTAF was not included in the statistical analysis it is difficult to draw robust conclusions.

In conclusion, the present review demonstrates that AIE is associated with significantly lower morbidity and mortality rates and equivalent patency rates to AFB and IFB. In appropriately selected patients AIE remains an acceptable, relatively low-risk and robust reconstruction. In patients who do not have a pattern of disease amenable to endarterectomy, AFB or IFB can provide equally effective long-term outcomes albeit with higher peri-operative risk. These data provide an important benchmark with which to compare the short- and long-term results of emerging endovascular interventions.

Conflict of Interest

None.

Funding

None.

References

- Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC working Group. TransAtlantic inter-Society Consensus (TASC). J Vasc Surg 2000 Jan;31(1 Pt 2):S1– S296.
- 2 Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG. Inter-Society Consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 2007 Jan; 45(Suppl. S):S5–S67.
- 3 Brewster DC. Current controversies in the management of aortoiliac occlusive disease. *J Vasc Surg* 1997 Feb;**25**(2):365–79.
- 4 Criado E, Johnson Jr G, Burnham SJ, Buehrer J, Keagy BA. Descending thoracic aorta-to-iliofemoral artery bypass as an alternative to aortoiliac reconstruction. J Vasc Surg 1992 Mar; 15(3):550–7.
- 5 Schultz RD, Sterpetti AV, Feldhaus RJ. Thoracic aorta as source of inflow in reoperation for occluded aortoiliac reconstruction. *Surgery* 1986 Oct; **100**(4):635–45.
- 6 Cacoub P, Godeau P. Risk factors for atherosclerotic aortoiliac occlusive disease. Ann Vasc Surg 1993 Jul;7(4):394–405.
- 7 de Vries SO, Hunink MG. Results of aortic bifurcation grafts for aortoiliac occlusive disease: a meta-analysis. J Vasc Surg 1997 Oct;26(4):558–69.
- 8 Hunink MG, Wong JB. Meta-analysis of failure-time data with adjustment for covariates. *Med Decis Making* 1994 Jan;14(1): 59–70.

- 9 Aguiar ET, Lederman A, Sitrangulo Jr CJ, Puech-Leao P. Aortofemoral thromboendarterectomy. *Rev Hosp Clin Fac Med Sao Paulo* 2002 Jul;**57**(4):147–60.
- 10 Bowes DE, Youkey JR, Franklin DP, Benoit CH, Pharr WF. An algorithm for the surgical management of chronic abdominal aortic occlusion and occluded aortofemoral grafts. *J Cardiovasc Surg (Torino)* 1992 Nov;33(6):650–9.
- 11 Brewster DC, Meier III GH, Darling RC, Moncure AC, LaMuraglia GM, Abbott WM. Reoperation for aortofemoral graft limb occlusion: optimal methods and long-term results. *J Vasc Surg* 1987 Feb;5(2):363–74.
- 12 Butcher Jr HR, Jaffe BM. Treatment of aortoiliac arterial occlusive disease by endarterectomy. Ann Surg 1971 Jun; 173(6):925–32.
- 13 Cham C, Myers KA, Scott DF, Devine TJ, Denton MJ. Extraperitoneal unilateral iliac artery bypass for chronic lower limb ischaemia. Aust N Z J Surg 1988 Nov;58(11):859–63.
- 14 Couch NP, Clowes AW, Whittemore AD, Lombara JA, Henderson BA, Mannick JA. The iliac-origin arterial graft: a useful alternative for iliac occlusive disease. *Surgery* 1985 Jan;**97**(1):83–7.
- 15 Dunn DA, Downs AR, Lye CR. Aortoiliac reconstruction for occlusive disease: comparison of end-to-end and end-to-side proximal anastomoses. *Can J Surg* 1982 Jul;25(4):382–4.
- 16 Friedman SG, Lazzaro RS, Spier LN, Moccio C, Tortolani AJ. A prospective randomized comparison of Dacron and polytetrafluoroethylene aortic bifurcation grafts. *Surgery* 1995 Jan; 117(1):7–10.
- 17 Harrington ME, Harrington EB, Haimov M, Schanzer H, Jacobson JH. Iliofemoral versus femorofemoral bypass: the case for an individualized approach. *J Vasc Surg* 1992 Dec;16(6): 841–52.
- 18 Harris PL, Bigley DJ, McSweeney L. Aortofemoral bypass and the role of concomitant femorodistal reconstruction. Br J Surg 1985 Apr;72(4):317-20.
- 19 Hsiang Y, Hildebrand HD. Results of vascular surgery in younger versus older patients. *Am J Surg* 1989 Apr;**157**(4):419–22.
- 20 Inahara T. Eversion endarterectomy for aortoiliofemoral occlusive disease. A 16 year experience. Am J Surg 1979 Aug; 138(2):196–204.
- 21 Jackson MR, Ali AT, Bell C, Modrall JG, Welborn III MB, Scoggins E, et al. Aortofemoral bypass in young patients with premature atherosclerosis: is superficial femoral vein superior to Dacron? J Vasc Surg 2004 Jul;40(1):17–23.
- 22 Jensen BV, Egeblad K. Aorto-iliac arteriosclerotic disease in young human adults. *Eur J Vasc Surg* 1990 Dec;4(6):583–6.
- 23 Johnson WC, LoGerfo FW, Vollman RW, Corson JD, O'Hara ET, Mannick JA, et al. Is axillo-bilateral femoral graft an effective substitute for aortic-bilateral iliac/femoral graft?: an analysis of ten years experience. *Ann Surg* 1977 Aug;186(2):123–9.
- 24 Jorgensen PE, Lundsgaard C, Jelnes R, Frimodt-Moller C. Iliofemoral bypass surgery for lower limb ischaemia. A follow-up of 62 patients. Ann Chir Gynaecol 1986;75(3):155–9.
- 25 Kalman PG, Hosang M, Johnston KW, Walker PM. Unilateral iliac disease: the role of iliofemoral bypass. J Vasc Surg 1987 Aug; 6(2):139-43.
- 26 Lau H, Cheng SW. Long-term outcome of aortofemoral bypass for aortoiliac occlusive disease. Ann Acad Med Singapore 2000 Jul;29(4):434-8.
- 27 Littooy FN, Steffan G, Steinam S, Saletta C, Greisler HP. An 11-year experience with aortofemoral bypass grafting. *Cardiovasc Surg* 1993 Jun;1(3):232–8.
- 28 Martinez BD, Hertzer NR, Beven EG. Influence of distal arterial occlusive disease on prognosis following aortobifemoral bypass. Surgery 1980 Dec;88(6):795–805.
- 29 Mason RA, Smirnov VB, Newton GB, Giron F. Alternative procedures to aortobifemoral bypass grafting. *J Cardiovasc Surg* (*Torino*) 1989 Mar;30(2):192–7.

- 30 Meister RH, Schweiger H, Lang W. Knitted double-velour Dacron prostheses in aortobifemoral position-long-term performance of different coating materials. *Vasa* 1998 Nov;27(4):236-9.
- 31 Melliere D, Labastie J, Becquemin JP, Kassab M, Paris E. Proximal anastomosis in aortobifemoral bypass: end-to-end or endto-side? J Cardiovasc Surg (Torino) 1990 Jan; 31(1):77-80.
- 32 Mingoli A, Sapienza P, Feldhaus RJ, Di ML, Burchi C, Cavallaro A. Aortoiliofemoral bypass graft in young adults: long-term results in a series of sixty-eight patients. *Surgery* 1997 Jun;121(6):646-53.
- 33 Mulcare RJ, Royster TS, Lynn RA, Conners RB. Long-term results of operative therapy for aortoiliac disease. *Arch Surg* 1978 May; 113(5):601-4.
- 34 Naylor AR, Ah-See AK, Engeset J. Morbidity and mortality after aortofemoral grafting for peripheral limb ischaemia. J R Coll Surg Edinb 1989 Aug;34(4):215–8.
- 35 Ng RL, Gillies TE, Davies AH, Baird RN, Horrocks M. Iliofemoral versus femorofemoral bypass: a 6-year audit. *Br J Surg* 1992 Oct;**79**(10):1011–3.
- 36 Oertli D, Wigger P, Landmann J, Waibel P. Long-term results after open and semiclosed thrombendarterectomy for aortoiliac occlusive disease. Eur J Vasc Endovasc Surg 1996 May;11(4): 432-6.
- 37 Oliveira M, Wilson SE, Williams R, Freischlag JA. Iliofemoral bypass: a 10-year review. Cardiovasc Surg 1993 Apr;1(2):103-6.
- 38 Oskam J, van den Dungen JJ, Boontje AH. Thromboendarterectomy for obstructive disease of the common iliac artery. *Cardiovasc Surg* 1996 Jun;4(3):356–9.
- 39 Passman MA, Taylor LM, Moneta GL, Edwards JM, Yeager RA, McConnell DB, et al. Comparison of axillofemoral and aortofemoral bypass for aortoiliac occlusive disease. J Vasc Surg 1996 Feb;23(2):263–9.
- 40 Perler BA, Burdick JF, Williams GM. Femoro-femoral or iliofemoral bypass for unilateral inflow reconstruction? *Am J Surg* 1991 Apr;**161**(4):426–30.
- 41 Piotrowski JJ, Pearce WH, Jones DN, Whitehill T, Bell R, Patt A, et al. Aortobifemoral bypass: the operation of choice for unilateral iliac occlusion? J Vasc Surg 1988 Sep;8(3):211-8.
- 42 Prager MR, Hoblaj T, Nanobashvili J, Sporn E, Polterauer P, Wagner O, et al. Collagen- versus gelatine-coated Dacron versus stretch PTFE bifurcation grafts for aortoiliac occlusive disease: long-term results of a prospective, randomized multicenter trial. *Surgery* 2003 Jul;**134**(1):80–5.
- 43 Prendiville EJ, Burke PE, Colgan MP, Wee BL, Moore DJ, Shanik DG. The profunda femoris: a durable outflow vessel in aortofemoral surgery. *J Vasc Surg* 1992 Jul;**16**(1):23–9.
- 44 Radoux JM, Maiza D, Coffin O. Long-term outcome of 121 iliofemoral endarterectomy procedures. *Ann Vasc Surg* 2001 Mar; 15(2):163–70.
- 45 Schneider JR, Besso SR, Walsh DB, Zwolak RM, Cronenwett JL. Femorofemoral versus aortobifemoral bypass: outcome and hemodynamic results. *J Vasc Surg* 1994 Jan;**19**(1):43–55.
- 46 Sladen JG, Gilmour JL, Wong RW. Cumulative patency and actual palliation in patients with claudication after aortofemoral bypass. Prospective long-term follow-up of 100 patients. *Am J Surg* 1986 Aug;152(2):190–5.
- 47 Szilagyi DE, Elliott Jr JP, Smith RF, Reddy DJ, McPharlin M. A thirty-year survey of the reconstructive surgical treatment of aortoiliac occlusive disease. J Vasc Surg 1986 Mar;3(3):421–36.
- 48 Timaran CH, Stevens SL, Freeman MB, Goldman MH. Infrainguinal arterial reconstructions in patients with aortoiliac occlusive disease: the influence of iliac stenting. *J Vasc Surg* 2001 Dec;34(6):971–8.
- 49 van der Vliet JA, Scharn DM, de Waard JW, Roumen RM, van Roye SF, Buskens FG. Unilateral vascular reconstruction for iliac obstructive disease. J Vasc Surg 1994 Apr; 19(4):610–4.
- 50 Vitale GF, Inahara T. Extraperitoneal endarterectomy for iliofemoral occlusive disease. *J Vasc Surg* 1990 Oct;**12**(4): 409–13.

- 51 Yamazaki I, Karube N, Soma T, Noishiki Y, Ichikawa Y. Long-term outcomes using vascular grafts sealed with fragmented autologous adipose tissue for aortoiliac occlusive disease. J Artif Organs 2005;8(1):67–70.
- 52 Brewster DC, Darling RC. Optimal methods of aortoiliac reconstruction. *Surgery* 1978 Dec;**84**(6):739-48.
- 53 Connolly JE, Price T. Aortoiliac endarterectomy: a lost art? Ann Vasc Surg 2006 Jan;20(1):56-62.
- 54 Gaspard DJ, Cohen JL, Gaspar MR. Aortoiliofemoral thromboendarterectomy vs bypass graft. A randomized study. Arch Surg 1972 Dec;105(6):898–901.
- 55 Melliere D, Blancas AE, Desgranges P, Becquemin JP. The underestimated advantages of iliofemoral endarterectomy. *Ann Vasc Surg* 2000 Jul;14(4):343–9.
- 56 Urayama H, Ohtake H, Yokoi K, Fujimori H, Kawaguchi M, Ishikawa T, et al. Long-term results of endarterectomy, anatomic bypass and extraanatomic bypass for aortoiliac occlusive disease. Surg Today 1998;28(2):151–5.

- 57 Kram HB, Gupta SK, Veith FJ, Wengerter KR. Unilateral aortofemoral bypass: a safe and effective option for the treatment of unilateral limb-threatening ischemia. *Am J Surg* 1991 Aug; 162(2):155–8.
- 58 Zukauskas G, Ulevicius H, Janusauskas E. An optimal inflow procedure for multi-segmental occlusive arterial disease: iliofemoral versus aorto-bifemoral bypass. *Cardiovasc Surg* 1998 Jun;6(3):250–5.
- 59 Nevelsteen A, Suy R. Graft occlusion following aortofemoral Dacron bypass. *Ann Vasc Surg* 1991 Jan;5(1):32–7.
- 60 van den Akker PJ, van Schilfgaarde R, Brand R, van Bockel JH, Terpstra JL. Long term success of aortoiliac operation for arteriosclerotic obstructive disease. *Surg Gynecol Obstet* 1992 Jun;**174**(6):485–96.
- 61 Nevelsteen A, Wouters L, Suy R. Long-term patency of the aortofemoral Dacron graft. A graft limb related study over a 25-years period. J Cardiovasc Surg (Torino) 1991 Mar;32(2): 174–80.