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Abstract A simple alternative method for obtaining ‘‘random
coil’’ chemical shifts by intrinsic referencing using the protein’s
own peptide sequence is presented. These intrinsic random coil
backbone shifts were then used to calculate secondary chemical
shifts, that provide important information on the residual second-
ary structure elements in the acid-denatured state of an acyl-
coenzyme A binding protein. This method reveals a clear corre-
lation between the carbon secondary chemical shifts and the
amide secondary chemical shifts 3–5 residues away in the pri-
mary sequence. These findings strongly suggest transient forma-
tion of short helix-like segments, and identify unique sequence
segments important for protein folding.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.

Keywords: Protein folding; NMR; Chemical shift; Intrinsic
random coil chemical shifts; Residual dipolar coupling;
Unfolded states
1. Introduction

The processes leading from the unfolded state of a polypep-

tide chain to the formation of the stable folded state of a native

protein are crucial for the function of any living organism. The

molecular details of these interactions hold the key to under-

standing the origin of the protein folding processes, which were

selected for during the early evolution of life to form the glob-

ular folds of proteins. A search for generic molecular mecha-

nisms for protein folding may hold the key to an ab initio

understanding of the relationship between primary and tertiary

structure based on understanding the processes of formation

of structure rather than predictions based on the correlation

between the known primary structures and the end product

of protein folding, the three-dimensional structures of pro-

teins.
Abbreviations: ACBP, acyl-coenzyme A binding protein; RDC, resid-
ual dipolar coupling
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The spontaneous processes of protein folding often occur in

a micro- to millisecond time range. It is therefore technically

demanding to measure the kinetic details and relevance of

the multitude of processes, which are involved in the folding

of a protein. Alternatively, it is possible to study the dynamic

processes, which occur in the unfolded state of the protein by

monitoring the equilibrium between different states of unfold-

edness. By combining such studies with measurements of pro-

tein folding kinetics and the effects of site specific mutagenesis

on these, it may become possible to examine the nature of the

interactions that lead to productive folding.

One model system of protein folding that has been studied

extensively in this respect is the four helix protein acyl-coen-

zyme A binding protein (ACBP). Originally the folding of

ACBP was identified as a ‘‘two state process’’ [1], but subse-

quent studies have identified intermediate processes both in

the folding and in the unfolding pathway [2,3]. Interactions be-

tween a number of conserved hydrophobic residues were iden-

tified to be rate determining in the folding process [4,5]. These

residues are found in three segments of the peptide chain,

which in the native state stabilize the three of the four helices

(helix 1, 2 and 4). Further, kinetic studies of the protection to-

wards amide hydrogen exchange have shown that residues,

particularly in the C-terminal helix, are already strongly pro-

tected in the burst phase of folding suggesting that local helix

formation precedes the formation of persistent structure [6].

This is in good agreement with equilibrium residual dipolar

coupling (RDC) measurements of the HN–15N coupling in

the unfolded state of ACBP, which suggested a significant pro-

pensity to form helical conformations for the same segments in

ACBP [7]. This effect was particularly strong for residues in the

C-terminal part of the sequence involved in helix formation in

the folded state. Experimental studies of ACBP have the

advantage that the unfolding and folding processes at room

temperature and unfolding conditions are in slow exchange

[8]. This permits separate observations of the signals from

the folded and unfolded forms, and this has had distinct

advantages for the NMR studies of the unfolded form.

Nitroxide induced paramagnetic relaxation studies have

shown, that the two segments forming helix 2 and helix 3 in

the folded state are more likely to form interactions than any

other part of the chain in the unfolded form of ACBP [9,10].

Other native-like structures in the unfolded state were formed

less frequently, in keeping with the observation that in the

folding process the formations of native like interactions
blished by Elsevier B.V. All rights reserved.
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between residues in the N- and C-terminal part of the sequence

were rate limiting. Isoleucine 27 in the ACBP sequence is

known to form important interactions in the rate determining

step of folding, and the mutation of this residue to alanine de-

creases the folding rate by a factor of five. Analysis of the effect

of the same mutation on the RDCs of the unfolded state

showed clearly that residues were involved not only in the

sequential vicinity of the mutation site, but also at sites known

to be interaction partners in the folded state [7]. This suggests

that long range native like interaction formed in the unfolded

state are important for the measured RDCs and indicates that

these long range interactions may stabilize local helix-like con-

formations in the peptide segments.

It therefore appears that both short range and long range

interactions forming in the unfolded state of ACBP as ob-

served by NMR spectroscopic methods are important for the

formation of the rate-limiting structures. The ability of

NMR spectroscopy to observe features in atomic detail means

that NMR spectroscopy of the unfolded state can provide

information about the structure formation and the dynamics

of the processes leading to the folding of ACBP.

The chemical shift is probably the most sensitive nuclear

magnetic resonance probe of local structure in proteins, even

though the many contributions render the information content

hard to disentangle [12–18]. We describe, here, the measure-

ment and analysis of the chemical shifts of four types of nuclei,

HN, 15N, 13Ca and 13C 0, in the residues throughout the peptide

backbone to study the unfolded state of ACBP. Our results

show a striking profile of chemical shift variations that reveal

transient formation of helical segments in the unfolded state.

The implications for the folding processes of ACBP are dis-

cussed.
2. Results and discussion

The Ca, C, N and HN shifts of bovine ACBP were recorded

at pH 2.3, 25 �C and six different urea concentrations between

0 and 5 M, Fig. 1. At these conditions ACBP is fully denatured
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Fig. 1. The difference between Ca chemical shifts of a 60 lM ACBP sample at
4.1 and 5.1 M urea, respectively. The symbols are explained in the insert. The
state.
as demonstrated by equilibrium pH titrations [8] using NMR

spectroscopy.

The urea dependence of the chemical shifts of the backbone

atoms indicates that local conformational preferences become

more random with increasing urea concentration. Examina-

tion of the changes of the chemical shifts as the urea concentra-

tion is varied reveals an obvious correlation between those

residues in the amino acid sequence, which are involved in he-

lix formation in the folded state and the residues, whose chem-

ical shift values change the most (Fig. 1). Another interesting

observation is that there is a regular variation along the se-

quence and that certain residues, particularly those in the heli-

cal sequence segments, have a very strong dependence of the

urea concentration with well-defined local minima or maxima

at specific residues as shown in Fig. 1. For Ca the local minima

are observed in the helical regions as indicated in Fig. 1, sug-

gesting that residual structural elements which are responsible

for the residual chemical shift are being affected and most

likely abolished by urea. The Ca chemical shift of a number

of residues in the sequence segments between the helical seg-

ments show very little effect of urea indicating that little resid-

ual structure is present at these residues in the unfolded state at

pH 2.3 and that the effects of urea binding to the unfolded pep-

tide backbone are very small. However, for certain residues in

these segments there is a positive change in chemical shift with

increasing urea concentration. The origin of this behaviour is

not known. However, we notice that this is true for all glycine

residues and for residues in the vicinity of proline residues in

the sequence.

In order to quantify the chemical shift information a second-

ary shift analysis was performed. The definition of the second-

ary chemical shift is Dd ¼ d� drc, where the chemical shift d is

referenced to a random coil shift drc. It has been shown in sev-

eral studies that Dd can be a strong indicator of secondary

structure type in folded proteins [14,19]. The secondary chem-

ical shifts are also used as a standard tool in the search for

residual secondary structure in non-native protein states

[7,20–25]. The main challenge is the definition of drc, which

has received a great deal of attention over the years. In the
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Fig. 2. Sequence dependence of secondary chemical shift of Ca (top),
C 0 (middle) and N (bottom) of ACBP at pH 2.3 obtained by using
protein and site specific random coil chemical shift references. (See
Supplementary material for table of the secondary chemical shifts.)

Fig. 3. The correlation coefficients, r, of Dircd and Ddrc between Ca(i)
and N(i + n) (open circle, solid line), Ca(i) and HN(i + n) (filled circle,
dashed line), C 0(i) and N(i + n) (open triangle, solid line) and C 0(i) and
HN(i + n) (filled triangle, dashed line). The values calculated using the
intrinsic random coil reference are shown in the top panel and those
calculated using a peptide random coil [11] are shown in the bottom
panel. See Supplementary material.

K. Modig et al. / FEBS Letters 581 (2007) 4965–4971 4967
standard procedure, drc is measured on the central residue in

short linear peptides that are assumed to have a random coil

state [1,12,17]. To achieve a greater accuracy, the effect of dif-

fering nearest neighbours can be taken into account [12,16,17].

There are, however, a few obstacles in the standard procedure.

First, it is hard to find a general definition of a random coil

state for a given amino acid sequence. In principle, the random

coil is a state where the dihedral angles of each residue is inde-

pendent of the conformation of the neighbouring residues [26].

It is, however, very hard to imagine such a state for a complex

peptide chain where each of the 20 amino acids have distinct

steric properties [27]. Second, it is not evident a priori that

the short peptides capture the conformational space of a true

random coil, even if we could define such a state. Third,

short-lived long-range hydrogen bonds (not included in the

nearest neighbour correction), solvent binding and ring current

effects will add to drc in an complex manner.

Here, we tackle these problems by calibrating drc ‘‘intrinsi-

cally’’: the backbone chemical shifts of the acid-denatured

state of ACBP at pH 2.3 are referenced to the chemical shifts

obtained at pH 2.3 at a high urea concentration. Thus, we ad-

here to a pragmatic description of the ‘‘random coil’’ state,

where the allowed ð/;wÞ-space is given by the intrinsic proper-

ties of the specific peptide chain in question. The chemical

shifts were fitted as a function of urea concentration, using

standard equations for fitting equilibrium denaturation curves

[28], in order to obtain the intrinsically referenced ‘‘random

coil’’ shifts dirc. These shifts are reported in the Supplementary

material for all four types of atom types and compared to

those calculated using the procedures described in [11,12].

Using the intrinsic random coil shift for ACBP to calculate

the sequence specific secondary shifts results in the sequence

variation seen in Fig. 2 for Ca, C 0 and N. The overall trends

of the variations were already observed in the analysis of the

urea dependence of the Ca shift shown in Fig. 1. The predom-

inant positive secondary shifts for the Ca and C 0 and the neg-

ative secondary shift for N, and the presence of contiguous

sequence segments with well defined maxima and minima in

the regions that form helices in the folded form are strong indi-

cations that the residues concerned may be involved in a con-

formational equilibrium between a helical and an extended

structure. Importantly, it is seen that the variations of the sec-

ondary shifts of the N and the HN nuclei (the latter not shown)

appear to be shifted about four residues relative to the position

of the Ca and C 0 secondary shifts. The linear correlation coef-

ficients between Dircd of the carbon atoms and the amide atoms

are shown in Fig. 3 (top panel). Indeed, the correlation is max-

imal when the separation is 3–5 residues. The effect is most

dramatic for the atoms that may be directly involved in hydro-

gen bond formation, CO–HN, three or four residues apart.

While the intra-residue shifts are almost completely uncorre-

lated (r = �0.16), the shifts are highly anti-correlated when

the separation is four residues (r = �0.80). (For more details

see the Supplementary material.) Thus, a conformational equi-

librium between helical or turn structures, with hydrogen

bonds between residues i and i + 3/i + 4, and extended struc-

tures would induce a correlation between the carbon and

amide shifts over that distance of residues. It is of interest to

note that when the traditional random coil shift methods

[11,12,17,18] were used to calculate the secondary shifts these

correlations were only vaguely observable, Fig. 3 (bottom

panel). A table reporting the random coil shifts for each residue
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obtained using traditional methods [11,12] and the procedure

used here is shown in the Supplementary material.

Assuming that i + 4 hydrogen bonds are being formed in

these local conformational equilibriums we have estimated

the DG for the i + 4 hydrogen bond formation using the resi-

due type specific average Ca chemical shifts for native folded

helical structures as derived from the BioMagResBank [29],

Fig. 4.

The positive DG for (i + 4) hydrogen bond formation in all

the residues throughout the entire sequence reveals that the

equilibria are in overall favour of random coil conformations.

However, a number of sites with relatively low DG values stand

out as sites of a higher probability of (i + 4) or (i + 3) hydrogen

bond formation than others. These sites are present in the re-

gions of the peptide chain, which engage in contiguous helix

formation in the folded protein. The higher probabilities of

(i + 4) or (i + 3) hydrogen bond formation at these sites make

them likely candidates of being nucleation sites for helix for-

mation.

The combined secondary chemical shift analysis using the

intrinsic random coil chemical shift as a reference provides evi-

dence for the existence of local turns and helical loops in the

unfolded state of ACBP. This is in good agreement with stud-

ies of the rates of protection of amide hydrogen against solvent

exchange during the folding of ACBP, which showed that the

amide hydrogen atoms in four sites (Y28, L61, I74 and V77)

were being protected even prior to the pulse labelling period

[6].

Also, in previous work it was observed that positive H–N

bond RDCs at unfolding conditions were predominantly seen

in the sections forming helices in the folded protein [7]. There-

fore, we examined the correlation between the secondary shifts

at pH 2.3 and 0 M urea and the H–N RDCs, Fig. 5, and indeed

it was found that the correlation coefficient r being 0.8 both for
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Fig. 4. The sequence dependence of DG for i + 4 peptide backbone hydrogen
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Fig. 5. Comparison of the sequence dependence of H–N RDCs (open bars) an
DircdCa � DNH and DircdCO � DNH, but only �0.5 and �0.3 for

DircdN � DNH and DircdHN � DNH, respectively. Thus, the posi-

tive H–N bond RDC appears to be generated by the same

structural feature that appears to define dCa and dCO, the latent

hydrogen bond formation rather than the internal dihedral an-

gle restrictions.

In order to generate an overview of all the results of the pres-

ent and previous studies of the folding of ACBP, key sequence

positions were identified for each type of study as shown in

Fig. 6. The criteria for identifying key residues are mentioned

in the Figure legend. For each of the seven different types of

analysis the key residues have been marked in the sequence

and all together the seven sets of data clearly identify a set

of hot spot residues, which seem to play an important role in

the folding processes of ACBP. A majority of the key residues

are in the C-terminal helix 4. All the different experimental

parameters point to this part of the sequence as being the

key to the folding of ACBP. It is of interest to note that the

residues, which initially were identified as key residues for

the folding of ACBP, based on mutation studies and u-value

analysis are also identified as such by the kinetic, chemical shift

and RDC analysis, all of which primarily measure local con-

formational preferences in the unfolded state.

It was previously shown that hydrogen bond formation pre-

ceded the formation of persistent structure in the folding pro-

cess of ACBP. The present studies of ACBP in the unfolded

state have shown that particular peptide segments have rela-

tively higher propensity for local hydrogen bond formation

than others and, as shown in Fig. 6, these segments coincide

with the residues forming hydrogen bonds in the early states

of folding. This implies that the key sites of the hydrogen bond

formation seen both in the equilibrium and in the kinetic stud-

ies are important structure generators in the protein folding

processes of ACBP. The observation that residues of these
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Fig. 6. Key residues identified by seven different types of measurements. The helix regions of folded ACBP are shown in red. The key residues are
marked by bold black letters. The bottom line marks key residues identified in at least two different measurements. 1: Residues that form rate
determining interactions as identified from a u-value analysis. Residues highlighted have reduced folding rates by more than a factor of two [4,5]. 2:
Local maxima of secondary chemical shift of C 0. 3: Local maxima of secondary chemical shift of Ca. 4: Local minima of secondary chemical shift of
N; 5: DG i + 3/i + 4 hydrogen bond stability below 4.5 kJ. 6: Local maxima of H–N bond RDCs [7]. 7: Sites protected more than 15% in the 0 ms
measuring point in the pulse labelling experiment [6].
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peptide segments are rate determining in the global protein

folding process suggests that the formation of local structures

such as hydrogen bond formation is a necessary prerequisite

for later steps in the protein folding processes. In this respect

the transient formation of short helical segments in various

fragments of the peptide chain may be important for the for-

mation of the native like structures, which must be established

in order for the protein to be folded.
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3. Conclusions

Protein and sequence specific random coil reference values

for the calculation of secondary shift of the unfolded form of

ACBP have been shown to give a very clear and well defined

sequence variation of the secondary shift for ACBP compared

to results obtained by other reference methods. This has per-

mitted a clear demonstration of a correlation between the size

of secondary shift of Ca and C 0 shifts with the size of secondary

shift of the amide nuclei in the succeeding third or fourth res-

idues in the unfolded state of ACBP. This observation has

been used to calculate an apparent DG for helix formation

for each of the residues with positive Ca secondary shift in

the unfolded peptide chain. On the basis of this a number of

key residues throughout the sequence of ACBP, which have

stronger structure forming properties than other residues have

been identified. A straightforward analysis of chemical shifts

may, therefore, serve as a fast and simple measure for the pri-

mary identification of potential key residues of protein folding

and assist in the selection of mutation sites for u-analysis. It is

also anticipated that an extension of this type of analysis to a

large number of proteins may be the beginning of the establish-

ment of a database of protein folding key sites that may serve

as an auxiliary tool for prediction of the routes of protein fold-

ing. It must be emphasized that the use of intrinsic site specific

random coil shifts as a reference for determining secondary

shifts and the (i + 3/i + 4) correlations of Ca, C 0 and N chem-

ical shifts has been very important for obtaining the results re-

ported here. Hence we recommend this method of referencing

in this type of analysis.
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Fig. 7. Example of the fitting procedure used to obtain the intrinsic
random coil shift for the Ca of Glu4.
4. Materials and methods

4.1. NMR experiments
13C, 15N-labelled bovine wild-type ACBP was expressed and purified

as described [30]. The Ca, C 0, N and HN shifts of 13C and 15N-labelled
bovine ACBP were recorded at pH 2.3, 25 �C and six different urea
concentrations (0, 1.1, 2.1, 3.1, 4.1 and 5.1 M), using standard 15N-
HSQC, HNCA, HN(CO)CA and HNCO experiments on a Varian
Inova 800 MHz spectrometer. Since ACBP is known to form dimers
at low pH and higher concentrations [31], the protein concentration
was kept as low as 60 lM. The urea concentrations were determined
from the refractive index of the solution [32]. The proton and carbon
shifts were referenced internally to DSS and the nitrogen chemical
shifts were referenced indirectly as recommended [33]. At intermediate
pH values (�3), the two sets of peaks are present simultaneously,
showing that the exchange N$ U is slow on the chemical shift time
scale [8].

4.2. Fitting procedure
The chemical shifts were fitted as a function of urea concentration c

in order to obtain the internally referenced ‘‘random coil’’ shifts dirc:

dðcÞ ¼ pacidðcÞdacid þ ð1� pacidðcÞÞdirc ð1Þ

where

pacidðcÞ ¼ 1=f1þ exp½mðc� c1=2Þ=ðRT Þ�g ð2Þ

and dacid is the chemical shift in absence of denaturant. These are the
standard equations for fitting equilibrium denaturation curves [28]
but here we choose them because they conveniently represent the data
and we do not interpret the values m and c1/2. Fig. 7 shows an example
of the fitting. In the cases where the errors of dirc were large, we put
dirc ¼ dð5:1 MÞ. This happened primarily when the dependence of d
on c was weak.

4.3. Determination of the site specific fraction of helix/turn formation
The fraction of helix, F i, at site i was determined as the ratio between

the observed secondary chemical shift using intrinsically referenced
‘‘random coil’’ shifts dirc as reference, diobs � dirc, and the difference be-
tween the average chemical shift value of the residue type when occur-
ring in a-helices in native proteins dRTðaÞ, as obtained from
BioMagResBank [33] and the site specific intrinsically referenced ‘‘ran-
dom coil’’ shifts dirc
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F i ¼ ðdiobs � dirc=ðdRTðaÞ � dircÞÞ

It was decided to use the dRTðaÞ as a reference and not the chemical shift
of the a helical residues in the native state in order to avoid chemical
shift contributions from tertiary structure elements, which are barely
present in the ensemble of the unfolded forms of ACBP.

DG was calculated from

DG ¼ �RT ln K ¼ �RT lnðF i=1� F iÞ

where K is the equilibrium constant of the hydrogen bond formation.
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Appendix A. Supplementary material

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febslet.2007.

09.027.
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[13] Bundi, A. and Wüthrich, K. (1979) NMR parameters of the
common amino-acid residues measured in aqueous-solutions of
the linear tetrapeptides h-Gly-Gly-x-l-Ala-OH. Biopolymers 18,
285–297.

[14] Spera, S. and Bax, A. (1991) Empirical correlation between
protein backbone conformation and C-alpha and C-beta C-13
nuclear-magnetic-resonance chemical-shifts. J. Am. Chem. Soc.
113, 5490–5492.

[15] Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) Simple
techniques for the quantification of protein secondary structure
by H-1-NMR spectroscopy. J. Mol. Biol. 222, 311–333.

[16] Braun, D., Wider, G. and Wüthrich, K. (1994) Sequence-
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