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Background: Genome-wide expression analysis using microarrays has been used as a research strategy to dis-
covery new biomarkers and candidate genes for a number of diseases. We aim to find new biomarkers for the
prediction of acute coronary syndrome (ACS) with a differentially expressed mRNA profiling approach using
whole genomic expression analysis in a peripheral blood cell model from patients with early ACS.
Methods and results: This study was carried out in two phases. On phase 1 a restricted clinical criteria
(ACS-Ph1, n = 9 and CG-Ph1, n = 6) was used in order to select potential mRNA biomarkers candidates.
A subsequent phase 2 study was performed using selected phase 1 markers analyzed by RT-qPCR using a
larger and independent casuistic (ACS-Ph2, n = 74 and CG-Ph2, n = 41). A total of 549 genes were found
to be differentially expressed in the first 48 h after the ACS-Ph1. Technical and biological validation further
confirmed that ALOX15, AREG, BCL2A1, BCL2L1, CA1, COX7B, ECHDC3, IL18R1, IRS2, KCNE1, MMP9, MYL4 and

TREML4, are differentially expressed in both phases of this study.
Conclusions: Transcriptomic analysis by microarray technology demonstrated differential expression during a
48 h time course suggesting a potential use of some of these genes as biomarkers for very early stages of ACS,
as well as for monitoring early cardiac ischemic recovery.
© 2013 Elsevier B.V. Open access under the Elsevier OA license. 
1. Introduction

Cardiovascular diseases, including acute coronary syndrome (ACS),
are the leading cause of death in developed countries. Inappropriate
diagnosis of ACS, particularly acute myocardial infarction (AMI), may
lead to high mortality rates, while unnecessary admissions to cardiac
care units may waste financial and medical resources [1]. The identifi-
cation of new circulating biomarkers that provide early and specific
diagnosis of acute cardiac injury has been proposed to improve diagno-
sis [2,3].

Genomic wide expression analysis using microarray has become a
useful tool for the detection of new biomarkers, with multiple appli-
cations, such as the classification of different subtypes of ovarian
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cancer [4], the definition of transcriptional changes associated with
smoking [5] and the evaluation of drug response [6].

Microarray studies of human disease are often limited by chal-
lenges in obtaining human tissues and by the lack of models that ef-
fectively capture clinically relevant disease features [7]. In this
context, transcriptional profiling from whole-blood cells by microar-
ray analysis has become an alternative in a search for genetic bio-
markers of heart failure [8]. The dynamic and interactive properties
of blood give rise to the possibility that subtle changes occurring
within the body, such as changes in association with a disease process
or in response to an injury, may leave ‘footprints’ in blood [7]. This ap-
proach has emerged in recent years as surrogate markers of several
complex diseases including inflammatory process and malignant
diseases [9].

In this study, our main goal was to identify new biomarkers with a
differentially expressedmRNA profiling approach usingwhole genomic
expression analysis in a peripheral blood cell model from patients with
early ACS followed-up over the first 48 hour-period after admission in a
hospital emergency room.
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2. Material and methods

An expanded Methods section is available online as a Supplemen-
tary material.
2.1. Study population

Eighty-three individuals with ACS, including acute ST-segment
elevation myocardial infarction (STEMI, n = 16), non-ST segment ele-
vation myocardial infarction (non-STEMI, n = 41) and unstable angina
(UA, n = 25), were selected at the emergency room of the Institute
Dante Pazzanese of Cardiology. Diagnosis of ACS at admission was
defined in Supplementary material.

This study included subjects suffering their first ACS (1ACS) and
those with a second one within one year after the first event
(2ACS). 2ACS individuals were taking multiple cardiac related medi-
cations (aspirin, clopidogrel, beta-blockers, diuretics, statins, nitrates,
anti-arrhythmics, angiotensin converting enzyme inhibitors, calcium
channel blockers and angiotensin II receptor blockers) [10].

A control group (n = 47) was selected among blood donor volun-
teers at the Fundação Pró-SangueHemocentro de São Paulo. All controls
without ACS had normal ergometric test and serum cardiac biomarkers.

This study was approved by the Institutional Ethics Committee of
Faculty of Pharmaceutical Sciences of the University of Sao Paulo and
Institute Dante Pazzanese of Cardiology of Sao Paulo, and written
informed consents were obtained from all the participants, which
conforms to the Declaration of Helsinki.
Fig. 1. Candidate gene expression biomarkers history of heart ischemia CG-Ph1: control gro
historic of heart ischemia from phase 1; 2ACS-Ph1: patient with acute coronary syndrome
phase 2;ACS-Ph2: patient with acute coronary syndrome from phase 2; T0: first stage; T2: s
2.2. Experiment design

This study was made in two phases. On phase 1 a restricted clinical
criteria (ACS-Ph1, n = 9 and CG-Ph1, n = 6) was used for entrance
and a genomic wide expression analysis performed in order to select
potential mRNA biomarker candidates. A subsequent study phase 2
was applied to the first-round markers using a larger and indepen-
dent casuistic (ACS-Ph2, n = 74 and CG-Ph2, n = 41) (Fig. 1).

Blood samples from ACS-Ph1 were obtained from an antecubital
vein at six time points following STEMI diagnosis. The first time (T0)
was on patient admission to the emergency room prior to receiving
any medication. The second time (T2) blood collection was taken
was after successful mechanical reperfusion and artery stenting with-
in 2 h after T0. After 12 h a subsequent sample collection was made at
12 h (T12), 24 h (T24), 36 h (T36) and 48 h (T48) of first blood collec-
tion. For CG-Ph1, peripheral blood was collected at one time point
[11].

On phase 2 seventy-four ACS patients with acute ischemic-type chest
pain under 48 h, diagnosed as previously described were evaluated by a
single peripheral blood sample collection, just after their admission at
the emergency room prior to receiving any medication.

2.3. Total RNA extraction from peripheral whole-blood cells

Total RNA was isolated from whole blood samples collected in
PAXgene tube using the PAXGene Blood RNA extraction system
(PreAnalytiX, Hilden, Germany) following the manufacturer's proto-
cols including a RNase-free DNase (Qiagen, Valencia, CA, USA) step
up from phase 1; 1ACS-Ph1: patient with acute coronary syndrome without previously
with previously history of heart ischemia from phase 1; CG-Ph2: control group from
econd stage; T12: third stage; T24: fourth stage; T36: fifth stage; T48: sixth stage.
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to remove genomic DNA. PAXgene tubes were stored at −80 °C until
RNA isolated procedure, not exceeding 6 months of storage. The
quantity of RNA was measured using a Nanodrop ND-1000 Spectro-
photometer to give the yield and a 260/280 ratio (Nanodrop Technol-
ogies, Delaware, USA). Agilent Bioanalyser Lab-on-a-chip RNA chips
(Agilent Technologies, Waldbronn, Germany) were used for each
sample to evaluate the quality of RNA using the RNA Integrity Num-
ber (RIN) scores and for check of evidence for lack of contamination
of DNA. The RNA samples were stored at −80 °C until later cDNA
conversion.

2.4. Transcriptomic analysis study

Transcriptomic analysis was performed in GeneChip® Human Exon
1.0 ST array (Affymetrix, CA, USA), following manufacturer's protocols.
After obtaining microarray data, all filtering procedures as well as
statistical validation analysis were performed in oneChannelGUI
Bioconductor package [12]. Ingenuity Pathway Analysis Application
(IPA) (Ingenuity Systems, California, USA) was used to identify
modules of functionally related genes involved in specific pathways.
Significant gene expression was set for P b 0.001 and fold-change ≥1.
See the Supplementary material for more information about bioinfor-
matics data analysis.

Microarray data reported in the manuscript was described in accor-
dance with MIAME guidelines and were deposited in the GEO database
(http://www.ncbi.nlm.nih.gov/projects/geo/) as GSE29532 series.

2.5. Validation of gene differently expressed by RT-qPCR

Total RNA was converted to cDNA using High-Capacity cDNA Re-
verse Transcription Kits (Applied Biosystems) using Veriti™ 96-Well
Fast Thermal Cycler (Applied Biosystems). cDNA was prepared from
1 μg of total RNA, with random hexamer primers into 20 μL of reac-
tion volume in triplicate, RNA was converted to cDNA using the
following conditions: 25 °C for 10 min, 37 °C for 120 min, 85 °C for
5 s, and 4 °C until further processing or storage. cDNA samples were
kept at −80 °C for further RT-qPCR analysis. For technical validation,
the cDNA samples were preamplified using TaqMan PreAmp Master
Mix (Applied Biosystems) following the manufacturer's instructions.
The preamplified cDNA samples were kept overnight at 4 °C.

Putative biomarkers selected for technical and biological valida-
tion were measured by Inventoried TaqMan® gene expression assays
which were carried out using primer and probe sets from Applied
Biosystems. Each assay was designed using ABI's primer/probe
Table 1
Clinical and laboratory data of the study phases.

Variable Phase 1

CG-Ph1 (6) 1ACS-Ph1(5) 2ACS-Ph1(4)

Age, years 48 ± 8 53 ± 10 53 ± 11
BMI, kg/m2 26 ± 2 27 ± 5 26 ± 3
Gender male, % 100 (6) 100 (5) 100 (4)
Diabetes, % 0 (0) 0 (0) 0 (0)
Hypertension, % 33 (2) 40 (2) 100 (5)
Smoking, % 67 (4) 60 (3) 80 (4)
Sedentary lifestyle, % 83 (5) 40 (2) 60 (3)
UA, % 0 (0) 0 (0) 0 (0)
STEMI, % 0 (0) 100 (5) 100 (5)
non-STEMI,% 0 (0) 0 (0) 0 (0)
Total cholesterol, mmol/l 5.7 ± 1.2 5.3 ± 1.2 4.8 ± 0.7
HDL cholesterol, mmol/l 0.4 ± 0.1 0.3 ± 0.0 0.3 ± 0.0
LDL cholesterol, mmol/l 3.7 ± 1.1 3.7 ± 1.1 3.1 ± 0.7
VLDL cholesterol, mmol/l 0.5 ± 0.2 0.3 ± 0.3 0.4 ± 0.2
Triglycerides, mmol/l 2.3 ± 0.8 1.7 ± 1.5 2.0 ± 0.8
Glucose, mmol/l 5.4 ± 0.4 5.5 ± 0.6 5.4 ± 0.6

Number of individuals in parenthesis. Continuous variables are presented as mean ± SD
chi-square test, null values were not considered for statistic test. ND: not determinate.
selection algorithm and bionformatics pipeline which includes access
to both public and Celera DNA sequence databases. Glyceraldehyde-
3-phosphate dehydrogenase gene (GAPD) as reference gene, by pre-
senting the average logarithmic intensity of expression close to target
genes and a low coefficient of variation among all samples studied
based on geNorm software [13], through the analysis of data from
microarray experiments.

Hundred nanograms cDNA templates were used in duplicated, in a
total reaction volume of 25 μL. The cDNA was amplified using 90 nM
of specific primers, 250 nM of probes and 1× Gene Expression Mater
Mix (Applied Biosystems), with the following cycling parameters:
40 cycles at 95 °C for 15 s and at 60 °C for 1 min using 7500 Real-
Time PCR System (Applied Biosystems). Sample quantification cycle
(Cq) values were determined from plots of normalized fluorescence
versus number of PCR cycles during exponential amplification by
Sequence Detection Software v. 2.0.1 (Applied Biosystems). The rela-
tive quantification value of each target gene was analyzed using a
comparative Ct method [14].
3. Results

3.1. Biodemographic and clinical laboratory measure

The prevalence of risk factors for myocardial infarction in the
ACS-Ph1, ACS-Ph2, CG-Ph1 and CG-Ph2 is shown in Table 1. Several
parameters, includingmean age, bodymass index (BMI), hypertension,
dyslipidemia, cigarette smoking, sedentary lifestyle, serum concentra-
tions of total cholesterol, HDL cholesterol, LDL cholesterol, VLDL choles-
terol, triglycerides and glucose were similar between phase 1 groups
(P > 0.05).

Serum concentrations of CK and CK-MB (Table S2) showed that
values greater than the upper reference limit were found at T12.
Significant increase of these biomarkers was detected only after ap-
proximately 12 h post ACS-Ph1 diagnosis (P b 0.05). No statistical
differences of cardiac markers were observed among 1ACS-Ph1 and
2ACS-Ph1 (P > 0.05).

The mean age and BMI were higher in patients with 1ACS-Ph2 and
2ACS-Ph2 than CG-Ph2 (P b 0.05). Moreover, differences were found
in the number of individuals with diabetes, dyslipidemia, cigarette
smoking, sedentary lifestyle and UA among phase 2 groups (P b 0.05).
Serum concentration of HDL was higher in CG-Ph2 than 1ACS-Ph2
and 2ACS-Ph2 (P b 0.05) while VLDL cholesterol, triglycerides and glu-
cose concentrations were lower (P b 0.05). No statistical differences
Phase 2

P CG-Ph2 (41) 1ACS-Ph2 (45) 2ACS-Ph2 (29) P

0.42 40.4 ± 6.9 59.2 ± 10.7 65.0 ± 11.2 b0.01
0.97 24.3 ± 3.4 27.9 ± 4.9 29.3 ± 4.4 b0.01
ND 80 (33) 78 (35) 76 (22) 0.03
ND 0 (0) 20 (9) 48 (14) 0.01
0.58 0 (0) 60 (27) 83 (24) 0.04
0.78 7 (3) 38 (17) 29 (8) b0.01
0.33 2 (1) 70 (30) 89 (25) b0.01
ND 0 (0) 24 (11) 52 (15) 0.02
ND 0 (0) 13 (6) 3 (1) 0.16
ND 0 (0) 62 (28) 45 (13) 0.14
0.41 4.8 ± 0.9 5.2 ± 1.5 4.3 ± 1.3 0.10
0.16 0.6 ± 0.2 0.5 ± 0.3 0.4 ± 0.1 b0.01
0.53 2.8 ± 0.8 3.2 ± 1.3 2.8 ± 1.3 0.15
0.44 0.2 ± 0.2 0.4 ± 0.2 0.3 ± 0.1 b0.01
0.48 1.1 ± 0.6 2.4 ± 2.1 2.2 ± 2.5 b0.01
0.88 5.0 ± 0.6 5.9 ± 2.7 6.3 ± 1.8 0.02

and were compared by Kruskal–Wallis test. Categorical variables were compared by

http://www.ncbi.nlm.nih.gov/projects/geo/
ncbi-geo:GSE29532
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were found in the number of patientwith STEMI and non-STEMI among
1ACS-Ph2 and 2ACS-Ph2 (P > 0.05).
3.2. Microarray differentially expressed gene

The complexity of the dataset was reduced by removing
non-significant probe sets (i.e. those without expression or change).
This filtering procedure reduced the initial set from 21,806 to
16,417 probes that were used for further analysis.

Four hundred and seventy-nine genes were differentially
expressed between 1ACS-Ph1 and CG-Ph, the time course analyzed
revealed different expressions of 29, 390, 102, 3, 23 and 22 genes at
T0, T2, T12, T24, T36 and T48, respectively (P b 0.001; Tables S3–S8;
Fig. S1 gene at T0).

Ninety-two genes were differentially expressed between 2ACS-
Ph1 and CG-Ph1, the time course analysis revealed different expres-
sions of 7, 13, 38, 17, 19 and 22 genes at T0, T2, T12, T24, T36 and T48,
respectively (P b 0.001; Tables S9 to S14; Fig. S2 gene at T0).

Therefore the total sum of genes differentially expressed at phase
1 was 549 genes (P b 0.001). Among them twenty-two genes were
found at both situations at 1ACS-Ph1 and 2ACS-Ph1, their signal and
intensity of expression are shown in Fig. S3.

Gene expression of 31 representative genes in all samples of phase
1 was assessed using RT-qPCR (Table S16). No further genes were se-
lected because of the limited amount of RNA obtained from
whole-blood cell extraction. Among these genes, six genes (COX7B,
ECHDC3, FOLR3, RCN3, SLITRK4 and SLC29A1) were selected because
they were differently expressed at T0; the other 5 genes (CREM,
GPX3, IRS2, PER1 and THBS1) because they were significantly
expressed by ACS-Ph1 at T0 compared with CG-Ph1 previously associ-
ated with cardiovascular disease according the IPA analysis; 4 genes
(AREG, CSF1, SAMSN1 and TREML4) because they were significantly
expressed at T0 according to a conservative false discovery rate test
(FDR b0.05); eleven genes (ADORA3, ALOX15, BCL2A1, BCL2L1, CA1,
GSTM1, IL1R1, IL1RL1, KCNE1, MMP9 and TLR4) because they were sig-
nificantly regulated at more than one time point of ACS-Ph1, com-
pared with controls previously associated with cardiovascular
disease by other studies; and lastly, 5 genes (IL18R1, MYL4, MYO5C,
Table 2
Relative mRNA expression of the twenty genes selected for biologic validation by qPCR in s

Gene CG-Ph2 1ACS-Ph2

ALOX15 0.055 (0.026–0.074) 0.021 (0.008–0.062)
AREG 0.003 (0.001–0.016) 0.008 (0.004–0.015)
BCL2A1a 1.481 (0.814–3.534) 1.032 (0.621–2.682)
BLC1L1b 0.037 (0.028–0.065) 0.033 (0.018–0.061)
CA1 0.006 (0.002–0.012) 0.002 (0.001–0.007)
COX7B 0.202 (0.150–0.268) 0.128 (0.113–0.161)
ECHDC3 0.005 (0.003–0.008) 0.010 (0.006–0.028)
FOLR3 0.050 (0.031–0.210) 0.061 (0.032–0.259)
GSTM1 0.008 (0.001–0.017) 0.007 (0.001–0.015)
IL18R1 0.008 (0.007–0.014) 0.018 (0.008–0.036)
IL1R1 0.002 (0.001–0.004) 0.001 (0.001–0.003)
IRS2c 0.186 (0.111–0.259) 0.325 (0.131–0.911)
KCNE1 0.135 (0.105–0.395) 0.048 (0.017–0.253)
MMP9 0.276 (0.223–0.532) 0.505 (0.288–1.066)
MYL4 0.006 (0.002–0.013) 0.003 (0.002–0.005)
PER1 0.031 (0.017–0.063) 0.043 (0.029–0.088)
POLE2 0.002 (0.002–0.004) 0.003 (0.002–0.004)
SMPD3 0.013 (0.007–0.020) 0.009 (0.004–0.026)
THBS1 0.075 (0.049–0.272) 0.062 (0.047–0.134)
TREML4 0.008 (0.002–0.017) 0.008 (0.001–0.019)

Expression values are represented with means and quartiles range (25–75). The genes are
P b 0.05 for Mann–Whitney nonparametric test between CG-Ph2 vs. 1ACS-Ph2 and CG-Ph2

a Women and subjects > 65 years old were excluded from the statistical analysis;
b Patients > 65 years old were excluded from the statistical analysis;
c Women, subjects > 65 years old and those with unstable angina were excluded from t
POLE2 and SMPD3) were included because they were significantly
expressed at T0 not previously associated with cardiovascular disease.

3.3. Technical validation by RT-qPCR (phase 1)

Twenty-one out of the 31 genes differentially expressed by micro-
array analysis were positively correlated with RT-qPCR data and were
considered technically validated at the phase 1 of the study (Table
S16, P b 0.05, r > 0.50). The genes were ALOX15, AREG, BCL2A1,
BLC2L1, CA1, COX7B, ECHDC3, FOLR3, GSTM1, IL18R1, IL1RL1, IRS2,
KCNE1, MMP9, MYL4, PER1, POLE2, SLC29A1, SMPD3, THBS1 and
TREML4.

3.4. Biological validation by RT-qPCR (phase 2)

Biological validation was carried out using the ACS samples from
phase 2. Eight genes, ALOX15, CA1, COX7B, ECHDC3, IL18R1, KCNE1,
MMP9 and MYL4, were significantly regulated at 1ACS-Ph2 and
2ACS-Ph2, when each group was compared with CG-Ph2 (P b 0.05,
Table 2) irrespectively of previous history of cardiac events and
medications.

The AREG and TREML4 genes were differently expressed between
1ACS-Ph2 versus CG-Ph2 (P b 0.02) and 2ACS-Ph2 versus CG-Ph2
(P b 0.01), respectively. Moreover the BCL2A1 and BCL2L1 genes
were differentially expressed when comparing 2ACS-Ph2 versus
CG-Ph2 and IRS2 in 1ACS-Ph2 versus CG-Ph2, and when at least
some of the divergent variables between the casuistic proposed in
phase 1 and phase 2 were excluded, such as patients with UA,
women and older patients (ages > 65 years; Table 2). Therefore 13
genes were considered biologically validated at study phase 2.

3.5. Time course analysis of validated genes and association with ACS

IPA analysis was used to investigate the biological relevance of the
observed gene expression pattern by categorizing the data set into dis-
tinct groups depending on the biological function and/or disease
(Fig. 2A). Therefore categories corresponding to cell death (ALOX15,
AREG, BCL2A1, BCL2L1, IRS2 and MMP9), cardiovascular disease
(ALOX15, BCL2L1, CA1, IRS2, KCNE1 and MMP9), cardiovascular system
tudy phase 2.

P 2ACS-Ph2 P

0.03 0.025 (0.003–0.063) 0.05
0.02 0.004 (0.002–0.010) 0.49
0.28 1.006 (0.570–1.183) 0.03
0.44 0.022 (0.016–0.031) b0.01
0.02 0.001 (0.001–0.003) b0.01

b0.01 0.139 (0.116–0.221) b0.01
b0.01 0.012 (0.007–0.020) 0.00
0.61 0.061 (0.032–0.117) 0.90
0.40 0.009 (0.002–0.016) 0.93

b0.01 0.017 (0.008–0.028) 0.01
0.31 0.002 (0.000–0.003) 0.45
0.07 0.369 (0.213–0.747) 0.186

b0.01 0.061 (0.018–0.140) b0.01
0.01 0.569 (0.345–0.956) 0.02
0.03 0.002 (0.001–0.006) b0.01
0.11 0.034 (0.022–0.077) 0.40
0.60 0.003 (0.002–0.004) 0.70
0.23 0.011 (0.005–0.018) 0.45
0.21 0.080 (0.059–0.182) 0.71
0.99 0.028 (0.016–0.039) 0.01

named in accordance with HUGO (Human Genome Organization). In bold, gene with
vs. 2ACS-Ph2.

he statistical analysis.



Fig. 2. Ingenuity Pathway Analyses. A: Top functional categories and B: canonical pathways from the present study data set based on significance.
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development and function (BCL2A1, BCL2L1, KCNE1 and MMP9) and
gene expression (BCL2L1 and IL18R1) were formed. Gene lists were
also searched and a number of significant canonical pathways form
IPA library identified, including pathways involved in docosahexaenoic
acid (DHA) signaling (ALOX15, BCL2A1 and BCL2L1), ILK signaling (IRS2,
MMP9 and MYL4), GM-CSF signaling (BCL2A1 and BCL2L1), apoptosis
signaling (BCL2A1 and BCL2L1), atherosclerosis signaling (ALOX15 and
MMP9), B cell receptor signaling (BCL2A1 and BCL2L1) and IL-8 signal-
ing (BCL2L1 andMMP9) (Fig. 2B). Network analysis was also performed
to provide a graphical representation of genes having a known biolog-
ical relationship. The first top five networks were related to the
ALOX15, AREG, BCL2A1, BCL2L1, IL18R1, IRS2 and MMP9 (Fig. 3A),
while the next four top networks were related to the COX7B, MYL4,
CA1 and KCNE1. A merged network can be seen in Fig. 3B.

The time-course of the 13 validated genes were evaluated using
the microarray data set (phase 1, Fig. S1). The results revealed that
these genes were expressed with significant differences within 12 h
after 1ACS-Ph1 and 2ACS-Ph1 and the level of expression tends to re-
turn to normal values after the peak of expression, except for the
TREML4 gene, which was up regulated during the 48 h.

A comparison of the expression of all 13 genes between UA-Ph2,
non-STEMI-Ph2 and STEMI-Ph2 versus CG-Ph2 is shown in Fig. S2.
ECHDC3 mRNA expression was significantly increased in the following
order: UA-Ph2 b non-STEMI-Ph2 b STEMI-Ph2 (P b 0.05). In addition,
CA1, COX7B, KCNE1 and MYL4 were significantly down regulated in
UA-Ph2 and non-STEMI-Ph2 (P b 0.05). Moreover ALOX15 and MMP9
were differently expressed down and up regulated in non-STEMI-
Ph2, respectively (P b 0.05).
4. Discussion

Transcriptome technologies have provided new opportunities to
identify gene expression profiles related to cardiovascular disease.
We have analyzed previously white blood cell transcriptome since
gene expression patterns in peripheral blood have been validated in
humans [15] as a basis for the detection and diagnostic biomarkers
for chronic [16,17] and acute heart failure [18], and asymptomatic
left ventricular dysfunction [8]. Indeed, the blood is a dynamic and in-
teractive tissue that communicates with all cells of the body and can
therefore display perturbations indicative of disease [8].

In the present study, peripheral blood cell transcriptome profiles
of ACS patient were analyzed by microarray over a pre-determined
time course with the aim to identify potential cardiac ischemia-
related biomarkers during the first 48 hour-period after admission
to an emergency room.

The first step to achieve the objective of this study was to select
patients with similar clinical variables between ACS-Ph1 and CG-Ph1
for large scale transcriptomic studies. Controlling the biologic variables
in microarray studies is important, in order to obtain more reliable
results. Data processing of microarray and analysis was performed sep-
arating the phase 1 casuistic in two subgroups according to previous
cardiovascular history as previously proposed in our proteomic study
[11]. We observed ~85% fewer differentially expressed protein peaks
by SELDI-TOF-MS in the 2ACS (76) compared with the 1ACS (510),
with maximum differentially expressed protein values at T12 and T2
at the 1ACS and 2ACS, respectively. The pharmacological intervention
may be responsible for the fold-change profile modification between

image of Fig.�2


Fig. 3. Network analysis was performed to provide a graphical representation of genes having known biological relationships. A: first network (score 17, focus on 7 genes) and
B: merged network (score > 2, focus on 4 genes). Genes in dark gray showed increased expression in ACS patients while genes in gray decreased their expression in ACS. Relationships
are marked by arrows: dashed line arrows mark indirect interaction; filled line arrows mark direct interaction.
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the ACS groups. The same was observed in this transcriptomic study,
we observed 81% fewer differentially gene expressed in the 2ACS-Ph1
(92) compared with the 1ACS-Ph1 (479). Therefore the revasculariza-
tion using stent and pharmacological treatment might change the dy-
namic of response in the inflammatory response and an injury
changing the kinetic of mRNA and protein profile delivery in the circu-
lation. However with the objective to eliminate the pharmacological
intervention the peripheral blood samples of all patients on phase 2
were collected just after their admission at the emergency room prior
to receive any medication.

Thirteen genes were considered technical and biologically validat-
ed by real-time PCR in our study: ALOX15, AREG, BCL2A1, BCL2L1, CA1,
COX7B, ECHDC3, IL18R1, IR2, KCNE1, MMP9, MYL4 and TREML4. All of
them were significantly differently expressed between ACS and CG
in both phases of this study.

Although the role of the ALOX15 gene in atherosclerosis is still not
clear, we observed a significant down regulation of this gene within
12 h ACS patients. There are in vitro and in vivo studies that suggest
pro-atherosclerotic effect and also anti-atherosclerotic effect of
ALOX15 [19]. ALOX15 is a member of the LOX family, responsible for
the metabolism of arachidonic acid into 15-HETE together with
GPX3 (up regulated at phase 1). Another function is to increase the
uptake of oxidized LDL by macrophages through the increase in the
expression of the scavenger receptor CD36, favoring the formation
of foam cells, characterizing its atherogenic role.

On the other hand, it has also been observed that 15-HETE and the
linoleic acid when metabolized by the enzyme LOX12 (13-HODE) gen-
erate a ligand of the proliferative peroxissoma isoform activator recep-
tor alpha (PPARα) of the macrophages, activating the transcription of
the ATP-binding cassette, sub-family A, member 1 (ABCA1) gene, that
promotes efflux of cholesterol and phospholipids from intracellular
compartments to the extracellular environment. Cholesterol acts as op-
posed to the pro-atherosclerotic effect.

In the present study, a significant reduction in ALOX15 gene expres-
sion was observed together with a significant increase in MMP9, when
comparing control individuals with ACS patients. Some authors have
also observed that the activation of PPARs by metabolites of ALOX15
can down-regulate IL-1β, IL-6 and TNFα expressions, reducing the
expression of MMP9 [20]. Thus, it leads to the question of whether
the low expression of the ALOX15 gene in the peripheral blood cells
promotes the instability [21] and rupture of atherosclerotic plaque
[22] by MMP9, or the increased expression of MMP9 is a response to
lesion, promoting the migration of endothelial progenitor cells to the
site of the lesion [23] and cardiac remodeling [24].

Furthermore, the low mRNA expression of ALOX15 may be also
contribute to the low expression of BCL2A1 and BCL2L1, which were
associated with apoptosis signaling and the signalization pathway of
IL-8 by IPA analysis.

In the present study, IL18R1 was significantly up regulated within
2 h ACS when compared with CG. Chandraseker and collaborators
(2006) demonstrated that expression of MMP9 and NFKB- is induced
by the cytokine IL18, with the gene IL18R1 being essential for the trans-
duction of the signal. This cytokine is responsible for the proliferation
and migration of cells from the smooth muscle to the arterial vessel
wall, contributing to the development and progression of atherosclero-
sis, and it can further promote the migration and hyperplasia of the
smooth muscle cells in the arterial neointima [25].

AREG gene was also up-regulated at hospital admission. In a cellu-
lar model of head and neck cancer increased expression of the AREG
gene is associated to a higher expression level of MMP9 and VEGF,
stimulating angiogenesis and metastatic processes [26]. In addition,
AREG and MMP9 were also involved with cell death by IPA analysis
in the present study. And the genes IRS2 (up regulated within 2 h)
and MYL4 (down regulated within 12 h) were involved in ILK signal-
ization together with MMP9.

In this study, CA1 is shown to have significantly decreased expres-
sion levels compared to controls with ACS. Alvarez and collaborators
(2007) described the relationship between carbonic anhydrase (CA)
and cardiomyocyte hypertrophy and found that cardiomyocyte
cultures of rodents treated with phenylephrine and CA don't develop
hypertrophy [27].

A significant increased in the expression of TREML4 gene was also
observed in patients with ACS in comparison with controls. The
TREML4 gene is part of the TREM (Triggering Receptor Expressed on
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Myeloid cells) family discovered in 2000 [28]. However, their physio-
pathological role is still not completely understood. It is believed that
they play an important role in the regulation of the innate immune
response to intracellular microorganisms, together with the toll-like
receptors (TLR) via LPS [28].

We found that expression of ECHDC3was correlated with the sever-
ity of ACS. A greater difference in expression was noted in patients with
STEMI-Ph2 than in non-STEMI-Ph2 patients, who in turns, differed from
those diagnosed with UA-Ph2. In addition, expression of ECHDC3 was
significantly increased within 2 h after ACS. This gene was described
for the first time in the literature in 1996, as a new inhibitor of mito-
chondrial fatty acid oxidation [29]. However, up to now, little is
known that could shed some light on its putative role in ACS.

One possibility is that ALOX15, CA1 and KCNE1 are involved in a
protective systemic response to the development of cardiac insuffi-
ciency in the face of partial or total occlusion of the coronary artery,
as a result of the reduced blood flow in the coronary arteries.
BCL2A1 and COX7B could be involved in the regulation of the apopto-
tic process of the injured cardiac and endothelial cells. AREG, IL18R1,
IRS2,MYL4, BCL2L1 andMMP9 could be involved in the post-lesion en-
dothelial and cardiac remodeling. Another possibility is that ALOX15,
IL18R1 and MMP9 have pro-atherogenic actions involved in the
progression and rupture of atherosclerotic plaque. In addition, the re-
cently discovered TREML4 gene may trigger the body's inflammatory
cascade in the destabilization of atherosclerotic plaque caused by
the possible presence of infectious agents.

Further functional experiments must be conducted with the pur-
pose of evaluating their relation with myocardium damage or vessel
occlusion status. Moreover future studies with a large casuistic of
ACS patients after their condition became stabilized, example one
month, six month and one year past-ACS, it should be very interesting
to evaluate these potential mRNA biomarker candidates.

In conclusion, the transcriptional profiling presented here sug-
gests a potential use of ALOX15, AREG, BCL2A1, BCL2L1, CA1, COX7B,
ECHDC3, IL18R1, IR2, KCNE1, MMP9, MYL4 and TREML4 as gene expres-
sion biomarkers for very early stages of ACS. Further studies must be
conducted with the purpose to determine possible interferences in
the evaluation of the diagnostic sensitivity and specificity and their
prognostic applicability.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.cca.2013.03.011.
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