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Abstract

We present some new regularity criteria for “suitable weak solutions” of the Navier–Stokes equations
near the boundary in dimension three. We prove that suitable weak solutions are Hölder continuous up to
the boundary provided that the scaled mixed norm L

p,q
x,t with 3/p+2/q � 2, 2 < q � ∞, (p, q) �= (3/2,∞)

is small near the boundary. Our methods yield new results in the interior case as well. Partial regularity of
weak solutions is also analyzed under some additional integral conditions.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this note, we study the boundary regularity problem for suitable weak solutions (u,p) :
QT → R3 × R to the Navier–Stokes equations

{
ut − Δu + (u · ∇)u + ∇p = f,

divu = 0
in QT = Ω × (0, T ), (1)

✩ The research of the first and third authors is partly supported by NSERC grants nos. 22R80976 and 22R81253. The
second author is partly supported by a PIMS PDF.

* Corresponding author. Fax: +82 (031) 290 7033.
E-mail addresses: gustaf@math.ubc.ca (S. Gustafson), kkang@skku.edu (K. Kang), ttsai@math.ubc.ca (T.-P. Tsai).
0022-0396/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2005.12.007



S. Gustafson et al. / J. Differential Equations 226 (2006) 594–618 595
where Ω is a domain in R3, u(x, t) is the velocity field and p(x, t) is the pressure. By suitable
weak solutions we mean functions which solve the Navier–Stokes equations in the sense of
distribution, satisfy some integrability conditions, and satisfy the local energy inequality (for
details, see Definition 4 in Section 2). We assume that Ω and f are sufficiently regular and will
give the specifics later. For a point z = (x, t) in Ω × (0, T ], denote Bx,r = {y ∈ R3: |y −x| < r},

Qz,r := Bx,r × (
t − r2, t

)
, Q+

z,r := Qz,r ∩ QT .

A solution u is said to be regular at z if u is uniformly Hölder continuous (for some exponent)
in both x and t in Q+

z,r for some r > 0.
After the seminal work of Leray [12] and Hopf [8] on the existence of weak solutions, the

problems of uniqueness and regularity of weak solutions remain unsolved. A set of criteria which
guarantee uniqueness and regularity is the zero-dimensional integral conditions: any weak so-
lution u of the Navier–Stokes equations is unique and regular in QT if it satisfies, for some
p,q � 1,

‖u‖Lp,q (QT ) < ∞,
3

p
+ 2

q
� 1. (2)

Here

‖u‖Lp,q (QT ) := ∥∥‖u(·, t)‖L
p
x (Ω)

∥∥
L

q
t (0,T )

.

Note that a weak solution satisfying (2) is automatically a suitable weak solution: interpolat-
ing with u ∈ L2,∞(Q) ∩ L6,2(Q), a weak solution u satisfying (2) belongs to L4,4(Q) (see,
e.g., [1, pp. 778–780] for definitions of weak solutions and suitable weak solutions). Hence
one can use u multiplied by a cut-off function as a test function and derive the local energy
inequality from the weak formulation of (1). We now briefly review regularity results for the
zero-dimensional integral class. See [4,27] for more references. Assuming (2), Serrin [24,25]
proved regularity when 3/p + 2/q < 1 (see also [10,15]). The cases 3/p + 2/q = 1, 3 < p � ∞
were proved by Fabes, Jones and Rivière [5] for Ω = R3, by Sohr [26] and Giga [6] for Ω a do-
main, and by Struwe [30] for the interior case. See [2,27] for results in the setting of Lorentz and
Morrey spaces. These results were recently extended up to a flat boundary by the second author
[9] and to a curved boundary by Solonnikov [29]. A flat boundary is a portion of the boundary
which lies on a plane. The endpoint case (p, q) = (3,∞) was recently resolved by Escauriaza,
Seregin and Šverák [4] for the R3 and interior cases, and by Seregin [22] for domains.

Recently, there have been many works on regularity criteria with conditions involving only p.
We will not try to give a list here.

After the partial regularity theory of Scheffer in a series of papers [16–19], Caffarelli, Kohn
and Nirenberg [1] proved that the one-dimensional parabolic Hausdorff measure of the set S
of possible interior singular points of suitable weak solutions is zero, denoted P1(S) = 0. This
implies that the one-dimensional Hausdorff measure of S is also zero. See Section 2 for the defi-
nition of parabolic Hausdorff measures. The key to the analysis in [1] is the following regularity
criterion. There is an absolute constant ε > 0 such that, if u is a suitable weak solution of the
Navier–Stokes equations in QT and for an interior point z = (x, t) ∈ QT ,

lim sup
r→0+

1

r

∫
Qz,r

∣∣∇u(y, s)
∣∣2

dy ds � ε, (3)

then u is regular at z. See [13] for a simplified proof and [11] for more details.
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Recently, Seregin [21] extended the interior partial regularity result up to a flat boundary.
More precisely, there exists an absolute constant ε > 0 such that, if a suitable weak solution u

satisfies

lim sup
r→0+

1

r

∫
Q+

z,r

∣∣∇u(y, s)
∣∣2

dy ds � ε, (4)

where z ∈ Γ × (0, T ) and Γ is a flat boundary of Ω , then u is regular at z. Combining the
results in [1,21], one can conclude that suitable weak solutions are Hölder continuous up to the
flat boundary away from a closed set S ⊂ QT with P1(S) = 0. The same assertion for a curved
boundary is believed to be true, but there seems no written proof yet.

The objective of this paper is to present new sufficient conditions for the regularity of suitable
weak solutions to the Navier–Stokes equations near the flat boundary (and in the interior). Our
main result is that, in place of condition (4), Hölder continuity of u near the boundary can be
ensured by the smallness of the scaled mixed Lp,q -norm of the velocity field u. We assume that
f belongs to M2,γ for some γ > 0 (this is a parabolic Morrey space, to be defined in Section 2).
We have the following theorem.

Theorem 1 (Regularity criteria). Suppose f ∈ M2,γ (Q) for some γ > 0, a parabolic Morrey
space. For every pair p,q satisfying

1 � 3/p + 2/q � 2, 2 < q � ∞, (p, q) �= (3/2,∞), (5)

there exists a constant ε > 0 depending only on p,q, γ and ‖f ‖M2,γ
such that, if the pair u,p

is a suitable weak solution of the Navier–Stokes equations (1) vanishing on a flat boundary Γ

according to Definition 4, and for some point z = (x, t) ∈ Γ × (0, T ), u is locally in Lp,q near z

and

lim sup
r→0+

r
−( 3

p
+ 2

q
−1)

∥∥‖u(y, s)‖Lp(B+
x,r )

∥∥
Lq(t−r2,t)

� ε, (6)

then z is a regular point.

Comments for Theorem 1.

1. The same statement for an interior point z remains true, see Appendix A.
2. The quantities in (6) are invariant under the scaling u(x, t) → su(sx, s2t). Scaling invariant

quantities have been important in the study of (1), see, e.g., [1].
3. The exponents (p, q) in Theorem 1 correspond to region II in Fig. 1, which is a solid paral-

lelogram excluding its top borderline and the corner point (2/3,0). By Hölder’s inequality,
it suffices to prove the cases 3

p
+ 2

q
= 2, 2 < q < ∞, the right borderline of region II. Our

method fails for the end points (p, q) = (3/2,∞) and (3,2) for the lack of L3/2,1 and L1,2

estimates for the Stokes system.
4. The usual zero-dimensional integral conditions correspond to region I and imply (6) point-

wise. Thus, also by Hölder’s inequality, regularity under the zero-dimensional integral
conditions is a corollary of Theorem 1, except in the endpoint cases (p, q) = (3,∞) or
(p, q) = (∞,2) (see Corollary 12 for the details). Regularity up to the boundary under the
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Fig. 1. Regularity criteria. Fig. 2. Partial regularity.

zero-dimensional integral conditions is proved in [9,29] but the proof of Theorem 1 seems
easier.

5. One key feature of Theorem 1 is that condition (6) does not involve any scaled norm of the
pressure p. A previous such result is by Tian and Xin [31] for the special case of (6) with
(p, q) = (3,3). Another such result is by Seregin and Šverák [23] for (p, q) = (2,∞). Both
results are for interior points, and are included in region II.

6. Another regularity criterion in [31] is the uniform boundedness supr<R0
(r−1/2‖u‖L2,∞(Qz,r )

)

� M for some M < ∞, and the condition (6) with (p, q) = (2,2) and a small con-
stant e depending on M . Although (p, q) = (2,2) lies outside of region II, using ‖u‖L2,4 �
‖u‖1/2

L2,∞‖u‖1/2
L2,2 , one obtains (6) with (p, q) = (2,4), which falls in region II. Thus this result

is also implied by Theorem 1.
7. Equation (6) is a uniform estimate for r sufficiently small. There are conditions which only

require one r . For example, there is an e > 0 such that the condition

r−2
∫

Qz,r

(|u|3 + |p|3/2)dx dt � e for some r > 0

implies regularity at z. This is essentially [1, Proposition 1] and is stated as above in [13,14].
Also see [21] and our Lemma 7 when z is on boundary.

The main tools of our analysis are a standard “blow up” method and the decomposition of
the pressure as introduced in [21], which enable us to prove a decay property of the scaled
Lebesgue norms of velocity and pressure in both the interior and boundary cases (see Lemma 8
and Appendix A). Combining this with the local estimate of the Stokes system for the pressure,
we can estimate the pressure for the Navier–Stokes equations near the boundary (see Lemma 11).

As mentioned earlier, the best available estimate for the singular set is that P1(S) = 0 (in
[3] the estimate of the Hausdorff measure of the singular set for suitable weak solutions was
improved by a logarithmic factor for the interior case). In the following theorem we improve the
estimate using Theorem 1, assuming some additional integral conditions of velocity fields.
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Theorem 2 (Partial regularity). Suppose f ∈ M2,γ (Q) for some γ > 0, a parabolic Morrey
space. Suppose (u,p) is a weak solution of the Navier–Stokes equations (1) according to Defin-
ition 2.2 and assume that

u ∈ Lm
(
(0, T );Ll(Ω)

)
, (l,m) ∈ region V,

where region V is the triangular region in Fig. 2 satisfying 3
l
+ 2

m
> 1, 1

l
+ 1

m
< 1

2 , and 3
l
+ 1

m
< 1.

Let S denote the singular set of u up to the flat boundary where u vanishes, and

d(l,m) =
{

3 − m + 2m
l

if l > m,

2 − m + 3m
l

if l � m.

Then the d(l,m)-dimensional parabolic Hausdorff measure of S is zero, i.e., Pd(l,m)(S) = 0.

In Theorem 2 we only require a weak solution. As for the zero-dimensional integral class,
these solutions are automatically suitable weak solutions, see Section 4. Note that weak solutions
are known to lie in region IV of Fig. 2, including the solid line from ( 1

2 ,0) to ( 1
6 , 1

2 ). Assuming
u ∈ Lp,q , one can use Theorem 1 to estimate the dimension of the singular set for all (p, q) in
region II with q < ∞, but only those in region V give us dimensions less than 1.

The plan of this paper is as follows: In Section 2 we introduce the notion of suitable weak
solutions near the boundary, which is a slightly modified version of that used in [21]. We also
show the decay property of the velocity field and pressure (see Lemmas 7 and 8). In Section 3 we
present the proof of the main Theorem 1. In Section 4, as an application, we investigate the size
of the possible singular set under our additional integrability assumption on u (see Theorem 2).
In Appendix A we present a brief sketch of the proof that the regularity criteria (6) is valid in the
interior.

2. Preliminaries

In this section we introduce notation, define suitable weak solutions, and give some lemmas
on the decay properties of the velocity and pressure.

We start with notation. Denote by Ω an open domain in R3 and by ∂Ω its boundary. Γ in-
dicates an open subset of ∂Ω which lies on a plane. In this article, for simplicity, we assume Γ

lies on the plane {x3 = 0}.
For 1 � q � ∞, Wk,q(Ω) denotes the usual Sobolev space, i.e., Wk,q(Ω) = {u ∈ Lq(Ω):

Dαu ∈ Lq(Ω),0 � |α| � k}. As usual, W
k,q

0 (Ω) is the completion of C∞
0 (Ω) in the Wk,q(Ω)

norm. We also denote by W−k,q ′
(Ω) the dual space of W

k,q

0 (Ω) where q and q ′ are Hölder
conjugates.

For a domain Q ⊂ R3 × I , we denote by Cα, α
2

x,t (Q) the Banach space of functions that are
Hölder continuous with exponent α ∈ (0,1), with respect to the parabolic metric d(z, z′) =
|x − x′| + |t − t ′| 1

2 where z = (x, t) and z′ = (x′, t ′).
We denote by �

∫
E

f the average of f on E; i.e., �
∫

E
f = ∫

E
f/|E|.

We denote by M2,γ a parabolic version of Morrey’s spaces (see, e.g., [21, p. 3]). For ω ⊂
R3 × R and a positive number γ ∈ (0,2], we define the space

M2,γ

(
ω;R3) := {

f ∈ L2,loc
(
ω;R3): mγ (f ;ω) < ∞}

,
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where

mγ (f ;ω) := sup

{
1

rγ−2

(
�

∫
Q(z,r)∩ω

|f |2 dz′
) 1

2

: z ∈ ω̄, r > 0

}
. (7)

Parabolic Hausdorff measures are defined in [1] using parabolic cylinders instead of usual
balls. For any X ⊂ R3 × R and k � 0 one defines

Pk(X) = inf
δ→0+ P

k
δ (X), Pk

δ (X) = inf

{ ∞∑
i=1

rk
i : X ⊂

⋃
i

Qzi ,ri , ri < δ

}
.

Finally, by N = N(α,β, . . .) we denote a constant depending on the prescribed quantities
α,β, . . . , which may change from line to line.

Next, we define several scaling-invariant functionals. Let z = (x, t) ∈ Γ × I . As in [1,11,13,
21], let

A(r) := sup
t−r2�s<t

1

r

∫
B+

x,r

∣∣u(y, s)
∣∣2

dy,

C(r) := 1

r2

∫
Q+

z,r

∣∣u(y, s)
∣∣3

dy ds, E(r) := 1

r

∫
Q+

z,r

∣∣∇u(y, s)
∣∣2

dy ds.

Let κ, κ∗ and λ be numbers satisfying

3

κ
+ 2

λ
= 4,

1

κ∗ = 1

κ
− 1

3
, 1 < λ < 2. (8)

We also introduce new functionals, which are useful for us:

D̃(r) := 1

r

( t∫
t−r2

( ∫
B+

x,r

∣∣p(y, s) − (p)B+
x,r

(s)
∣∣κ∗

dy

) λ
κ∗

ds

) 1
λ

, (9)

where (p)B+
x,r

(s) = �
∫

B+
x,r

p(y, s) dy,

D̃1(r) := 1

r

( t∫
t−r2

( ∫
B+

x,r

∣∣∇p(y, s)
∣∣κ dy

) λ
κ

ds

) 1
λ

, (10)

and finally,

G(r) := 1

r

( t∫
t−r2

( ∫
B+

∣∣u(y, s)
∣∣p dy

) q
p

ds

) 1
q

,

x,r
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where p and q are the Hölder conjugate exponents of κ∗ and λ in (8), i.e.,

1

p
+ 1

κ∗ = 1,
1

q
+ 1

λ
= 1. (11)

It is straightforward from (8) that p and q satisfy

3

p
+ 2

q
= 2, 2 < q < ∞. (12)

Remark 3. In [21] the following functionals are used, instead of D̃(r), D̃1(r),

D(r) := 1

r2

∫
Q+

z,r

∣∣p − (p)B+
x,r

∣∣ 3
2 dz, D1(r) := 1

r
3
2

t∫
t−r2

( ∫
B+

x,r

|∇p| 9
8 dy

) 4
3

ds.

We note that D1(r) is a special case of D̃1 with κ = 9
8 , λ = 3

2 .

Let Q = Ω × I where Ω ⊂ R3 and I = [0, T ]. A weak solution of the Navier–Stokes equa-
tions (1) is a vector field u ∈ L∞(I ;L2(Ω)) ∩ L2(I ;W 1,2

0 (Ω)) satisfying

∫
Q

(
u · φt − ∇u · ∇φ − (u · ∇)u · φ + f φ

)
dz = 0,

∫
Ω

u(x, t) · ∇ψ(x)dx = 0

for any divergence-free vector field φ ∈ C∞
0 (Q) and any smooth function ψ ∈ C∞

0 (Ω) for all
t ∈ [0, T ] (see, e.g., [8,12]).

Next we define suitable weak solutions for the Navier–Stokes equations.

Definition 4. Let Q = Ω × I where Ω ⊂ R3 and I = [0, T ) and Γ be an open subset of the
set ∂Ω . Suppose that f belongs to the parabolic Morrey space M2,γ (Q) for some γ ∈ (0,2].
A pair of (u, p) is a suitable weak solution to the Navier–Stokes equation (1) in Q near the
boundary Γ and vanishing on Γ if the following conditions are satisfied.

(a) The functions u :Q → R3 and p :Q → R satisfy

u ∈ L∞(
I ;L2(Ω)

) ∩ L2(I ;W 1,2(Ω)
)
, p ∈ Lλ

(
I ;Lκ∗

(Ω)
)
, (13)

∇2u ∈ Lλ
(
I ;Lκ(Ω)

)
, ∇p ∈ Lλ

(
I ;Lκ(Ω)

)
, (14)

where κ, κ∗ and λ are fixed numbers satisfying (8).
(b) u and p solve the Navier–Stokes equations (1) in Q in the sense of distributions and u

satisfies the boundary condition u = 0 on Γ × I .
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(c) u and p satisfy the local energy inequality∫
Ω

∣∣u(x, t)
∣∣2

φ(x, t) dx + 2
∫
Q

∣∣∇u(x, t ′)
∣∣2

φ(x, t ′) dx dt ′

�
∫
Q

(|u|2(∂tφ + Δφ) + (|u|2 + 2p
)
u · ∇φ + 2f · uφ

)
dx dt ′ (15)

for almost all t ∈ (0, T ) and for all nonnegative functions φ ∈ C∞
0 (R3 × R), vanishing in a

neighbourhood of the set (Ω × {t = 0}) ∪ ((∂Ω \ Γ ) × (0, T )).

Let us make several comments on the above definition.

Remark 5. Sohr and Von Wahl [28] showed that, under reasonable assumptions on f and u0, the

pressure p of a weak solution belongs to L
5
3 (Ω × I ), which corresponds to κ∗ = λ = 5

3 in (13).
Here Ω ⊂ R3 can be either a bounded domain, an exterior domain, or a half-space. Giga and
Sohr [7] later proved that ut ,∇2u,∇p ∈ Lκ,λ(Q) and p ∈ Lκ∗,λ(Q) where κ, κ∗ and λ are any
numbers satisfying (8). Therefore, it seems reasonable to make assumptions (13) and (14) for
suitable weak solutions.

Remark 6. The main difference between suitable weak solutions and the original Leray–Hopf
weak solutions is the additional condition of the local energy inequality (15). The existence of
suitable weak solutions is proved in [1,17]. Slightly modified definitions are used in [11,13,21].
As indicated in [1, Remark 4, p. 823], it is an open question if all weak solutions are suitable
weak solutions.

Next we show the local regularity criterion near the boundary, which is analogous to [21,
Proposition 2.6]. Although our proof is based on a standard “blow up” method similar to that
of [21], we present its details since different functionals are used for the pressure, and therefore
modifications are needed.

Lemma 7. There exists ε > 0 depending only on λ, γ and ‖f ‖M2,γ
, such that if u is a suitable

weak solution of the Navier–Stokes equations satisfying Definition 4, z = (x, t) ∈ Γ × I , and

lim inf
r→0+

(
C

1
3 (r) + D̃(r)

)
< ε,

then z is a regular point.

Before we prove Lemma 7, we first prove the following lemma, which gives a decay property
of u and p in some Lebesgue spaces.

Lemma 8. Let 0 < θ < 1/2 and 0 < β < γ � 2. There exist ε1, r1 > 0 depending on λ, θ, γ and β

such that if u is a suitable weak solution of the Navier–Stokes equations satisfying Definition 4,

z = (x, t) ∈ Γ × I , and C
1
3 (r) + D̃(r) + mγ (f )rβ+1 < ε1 for some r ∈ (0, r1), then(

C
1
3 (θr) + D̃(θr)

)
< Nθ1+α

(
C

1
3 (r) + D̃(r) + mγ (f )rβ+1),

where 0 < α < 1 and N > 0 are absolute constants.
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Proof. For simplicity we assume f = 0. The general case follows similarly. For convenience,

we denote ϕ(r) := C
1
3 (r) + D̃(r). Suppose the statement is not true. Then for any α ∈ (0,1) and

N > 0, there exist zn = (xn, tn), rn ↘ 0, and εn ↘ 0 such that

ϕ(rn) = εn, ϕ(θrn) > Nθ1+αϕ(rn) = Nθ1+αεn. (16)

Let w = (y, s) where y = r−1
n (x − xn), s = r−2

n (t − tn) and we define vn and qn as follows:

vn(w) = ε−1
n rnu(z), qn(w) = ε−1

n r2
n

(
p(z) − (p)B+

rn
(t)

)
.

For convenience we also define C(vn, θ), D̃(qn, θ), and D̃1(qn, θ) by

C(vn, θ) := 1

θ2

∫
Q+

θ

|vn|3 dw,

D̃(qn, θ) := 1

θ

( 0∫
−θ2

( ∫
B+

θ

∣∣qn − (qn)B+
θ

∣∣κ∗
dy

) λ
κ∗

ds

) 1
λ

,

D̃1(qn, θ) := 1

θ

( 0∫
−θ2

( ∫
B+

θ

|∇qn|κ dy

) λ
κ

ds

) 1
λ

,

where κ∗, κ and λ are numbers in (8). By the change of variables, we have

1

εn

ϕ(θrn) = C
1
3 (vn, θ) + D̃(qn, θ). (17)

For convenience, we denote ψn(θ) := C
1
3 (vn, θ) + D̃(qn, θ). Due to (16) and (17), we get

ψn(1) = ‖vn‖L3(Q+
1 ) + ‖qn‖Lκ∗,λ(Q+

1 ) = 1, (18)

ψn(θ) = C
1
3 (vn, θ) + D̃(qn, θ) � Nθ1+α. (19)

On the other hand, vn, qn solve the following system in a weak sense

∂svn − Δvn + εn(vn · ∇)vn + ∇qn = 0, divvn = 0 in Q+
1

with

vn = 0 on
(
B1 ∩ {x3 = 0}) × (−1,0).

Because of (18), we have following weak convergence (possibly subsequences of vn and qn

should be taken, however we use the same symbol for simplicity)

vn ⇀ v in L3(Q+)
, qn ⇀ q in Lκ∗,λ(Q+)

, (q)B+(s) = 0.
1 1 1
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In addition, we note that ∂svn is uniformly bounded in Lλ((−1,0); (W 2,2(B+
1 ))′), and, therefore,

we also have

∂svn ⇀ ∂sv in Lλ
(
(−1,0); (W 2,2(B+

1

))′)
. (20)

Next we show that ∇vn is uniformly bounded in L2(Q+
3
4
). Let φ be a standard cut off function

satisfying φ is smooth,

φ = 1 on Q3/4, φ = 0 on
(
R3 × (−∞,0)

) \ Q1, 0 � φ � 1.

From the local energy inequality, for every τ ∈ (−1,0), we obtain

∫
B+

1

∣∣vn(·, τ )
∣∣2

φ2(x, τ ) dy +
τ∫

−1

∫
B+

1

|∇vn|2φ2 dy ds

� N

( τ∫
−1

∫
B+

1

|vn|2
(|∂sφ| + |Δφ| + |∇φ|)dy ds

+ εn

τ∫
−1

∫
B+

1

|vn|3|∇φ|dy ds +
τ∫

−1

∫
B+

1

|qnvn · ∇φφ|dy ds

)
.

Consider the last term in the above inequality. Using the Hölder inequality, we have

τ∫
−1

∫
B+

1

|qnvn · ∇φφ| �
( τ∫

−1

( ∫
B+

1

|qn∇φ|κ∗
) λ

κ∗
) 1

λ
( τ∫

−1

( ∫
B+

1

|vnφ|p
) q

p

) 1
q

,

where κ∗, λ,p, and q are numbers in (8), (11), and (12). We recall that p and q are in the ranges
3/2 < p < 3 and 2 < q < ∞. In case q � 3, since p,q � 3, we have

‖vnφ‖Lp,q ((−1,τ );B+
1 ) � N‖vnφ‖L3(Q+

1 ).

Therefore, in this case, ∇vn is uniformly bounded in L2(Q+
3/4) because of (18). It remains to

consider the case 3 < q < ∞ (equivalently 3/2 < p < 9/4). Suppose 2 < p < 9/4, which is
equivalent to 4 < q < ∞. In this case, by interpolation, one can see the following estimate:

‖vnφ‖Lp,q (Q+
1 ) � N sup

−1<s<τ

∥∥vnφ(·, s)∥∥ 2α
p

L2(B+
1 )

‖vnφ‖
3(1−α)

p

L3(Q+
1 )

,

where α = 3 − p. In the above inequality, we used that (1 − α)q/p < 1. Since τ is arbitrary
between −1 and 0, we obtain
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sup
−1<τ<0

∥∥vnφ(·, τ )
∥∥

L2(B+
1 )

+ ‖∇vnφ‖L2(Q+
1 )

� N
(
‖vn‖L2(Q+

1 ) + +εn‖vn‖L3(Q+
1 ) + sup

−1<s<0

∥∥vnφ(·, s)∥∥ 2(3−p)
p

L2(B+
1 )

‖vnφ‖
3(p−2)

p

L3(Q+
1 )

‖qn‖Lκ∗,λ(Q+
1 )

)
.

Therefore, using Young’s inequality, we obtain

sup
−1<τ<0

∥∥vnφ(·, τ )
∥∥

L2(B+
1 )

+ ‖∇vnφ‖L2(Q+
1 )

� N
(
‖vn‖L2(Q+

1 ) + εn‖vn‖L3(Q+
1 ) + ‖vnφ‖L3(Q+

1 )‖qn‖
p

3(p−2)

Lκ∗,λ(Q+
1 )

)
.

Therefore, we have

‖∇vn‖L2(
Q+

3/4)
� N

(
‖vn‖L2(Q+

1 ) + εn‖vn‖L3(Q+
1 ) + ‖vnφ‖L3(Q+

1 )‖qn‖
p

3(p−2)

Lκ∗,λ(Q+
1 )

)
.

Therefore, ∇vn is also uniformly bounded in L2(Q+
3/4) for the case 2 < p < 9/4. For the case

3/2 < p � 2 (equivalently 3 < q � 4) we have

‖vnφ‖Lp,q (Q+
1 ) � N sup

−1<s<τ

∥∥vnφ(·, s)∥∥
L2(B+

1 )
.

By proceeding as for the previous case, we can obtain the uniform bound of ∇vn in L2(Q+
3/4).

So together with (20), we get

∇vn ⇀ ∇v in L2(Q+
3/4

)
, vn → v in L3(Q+

3/4

)
.

Moreover, v and q solve the following linear Stokes system

∂sv − Δv + ∇q = 0, divv = 0 in Q+
1

with

v = 0 on
(
B1 ∩ {x3 = 0}) × (−1,0).

Next we show that

∂svn,∇2vn,∇qn ⇀ ∂sv,∇2v,∇q in Lκ,λ
(
Q+

5
8

)
, respectively. (21)

Indeed, after direct calculations, we obtain

∥∥(vn · ∇)vn

∥∥
Lκ,λ(Q+

3/4)
� N‖∇vn‖

2
λ

L2(Q+
3/4)

‖vn‖
3−2κ

κ

L2,∞(Q+
3/4)

. (22)

Due to the local boundary estimate for the Stokes system (see [20, Proposition 1]), we have the
following estimate for vn and qn:
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‖∂svn‖Lκ,λ(Q+
5/8)

+ ∥∥∇2vn

∥∥
Lκ,λ(Q+

5/8)
+ ‖∇qn‖Lκ,λ(Q+

5/8)

� N
(‖vn‖Lκ,λ(Q+

3/4)
+ ‖∇vn‖Lκ,λ(Q+

3/4)
+ ‖qn‖Lκ,λ(Q+

3/4)
+ εn

∥∥(vn · ∇)vn

∥∥
Lκ,λ(Q+

3/4)

)
.

Therefore, we obtain

‖∂svn‖Lκ,λ(Q+
5/8)

+ ∥∥∇2vn

∥∥
Lκ,λ(Q+

5/8)
+ ‖∇qn‖Lκ,λ(Q+

5/8)
� N(1 + εn), (23)

where we used (22). The assertion (21) is established.
According to Hölder estimate of the Stokes system near boundary (see [20, Lemma 1]), v

is Hölder continuous in Q+
1/2 with the exponent α with 0 < α < 2(1 − 1/λ). Here we fix α =

1 − 1/λ, denoted by α0 from now on. Then, by Hölder continuity of v and strong convergence
of the L3-norm of vn, we obtain

C
1
3 (v, θ) � N1θ

1+α0 , C(vn, θ) → C(v, θ). (24)

Let B̃+ be a domain with smooth boundary such that B+
11/16 ⊂ B̃+ ⊂ B+

3/4, and Q̃+ := B̃+ ×
(−(3/4)2,0). Now we consider the following initial and boundary problem:

∂s v̂n − Δv̂n + ∇q̂n = −εn(vn · ∇)vn, div v̂n = 0 in Q̃+,

(q̂n)B̃+(s) = 0, s ∈
(

−
(

3

4

)2

,0

)
,

v̂n = 0 on ∂B̃+ ×
[
−

(
3

4

)2

,0

]
, v̂n = 0 on B̃+ ×

{
s = −

(
3

4

)2}
.

Using the global estimate of the Stokes system (see [7, Theorem 3.1]), we get the following
estimate

‖∂s v̂n‖Lκ,λ(Q̃+) + ‖v̂n‖Lκ((−( 3
4 )2,0);W 2,λ

0 (B̃+))
+ ‖q̂n‖Lκ((−( 3

4 )2,0);W 1,λ(B̃+))

� εn

∥∥(vn · ∇)vn

∥∥
Lκ,λ(Q̃+)

� Nεn. (25)

Next we define ṽn and q̃n as follows:

ṽn = vn − v̂n, q̃n = qn − q̂n.

Then it is straightforward that ṽn and q̃n solve

∂s ṽn − Δṽn + ∇q̃n = 0, div ṽn = 0 in Q̃+,

ṽn = 0 on
(
B̃+ ∩ {x3 = 0}) ×

[
−

(
3

4

)2

,0

]
and ṽn, q̃n satisfy the following estimate∥∥∇2ṽn

∥∥
Lκ,λ(Q+ )

+ ‖∇q̃n‖Lκ,λ(Q+ ) � N(1 + εn),

5/8 5/8
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and furthermore, for κ̃ with 3/κ̃ + 2/λ = 1 we obtain∥∥∇2ṽn

∥∥
Lκ̃,λ(Q+

9/16)
+ ‖∇q̃n‖Lκ̃,λ(Q+

9/16)
� N(1 + εn). (26)

Those estimates are again due to the local boundary estimate for the Stokes system (see
[20, Proposition 1-2]). By the Poincaré inequality, we have

D̃(qn, θ) � N
(
D̃1(q̂n, θ) + D̃1(q̃n, θ)

)
.

We note that D̃1(q̂n, θ) goes to zero as n → ∞ because of the estimate (25). On the other hand,
using the Hölder inequality and the estimate (26), we can show

D̃1(q̃n, θ) = 1

θ

( 0∫
−θ2

( ∫
B+(θ)

|∇q̃n|κ dy

) λ
κ

ds

) 1
λ

� θ2

( 0∫
−θ2

( ∫
B+(θ)

|∇q̃n|κ̃ dy

) λ
κ̃

ds

) 1
λ

� Nθ2(1 + εn).

So summing up, we obtain

lim inf
n→∞ D̃(qn, θ) � lim

n→∞N2θ
2(1 + εn) � N2θ

1+α0 , (27)

where N2 is an absolute constant. At the beginning in (19) we can take an absolute constant N

bigger than 2(N1 + N2), where N1 and N2 are absolute constants in (24) and (27), respectively.
Then this leads to a contradiction since

2(N1 + N2)θ
1+α0 � Nθ1+α0 � lim inf

n→∞ ψn(θ) � (N1 + N2)θ
1+α0 .

This completes the proof. �
The lemma above is the main part of the Lemma 7. Since the rest of the proof of Lemma 7

can be achieved by following similar procedures in [21], we present only a brief sketch of the
main idea of Lemma 7.

The sketch of the proof of Lemma 7. We first note that the lemma above allows iterations
(compare [21, Lemma 4.2]), and therefore, there exists a positive constant α1 < 1 such that
(compare [21, Lemmas 4.3 and 4.4])

(
C

1
3 (r) + D̃(r)

)
� N

(
r

ρ

)1+α1(
C

1
3 (ρ) + D̃(ρ) + mγ (f )ρβ+1), r � ρ.

We consider for any w ∈ Q+
z,r1/2

C̃(w, r) := 1

r2

∫
Qw,r∩Q+

z,r /2

∣∣u − (u)a
∣∣3

dz, (u)a = �

∫
Qw,r∩Q+

z,r /2

u(z) dz,
1 1
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and we can show that for any r < r1/4

C̃
1
3 (w, r) � Nr1+α1 ,

where N = N(λ,γ,‖f ‖M2,γ ) is an absolute constant. This argument can be proved using the
same method as in [21, Lemma 5.2], and therefore we omit the details. The regularity of u at z

is a standard consequence of this estimate. This completes the sketch of the proof. �
3. Local boundary regularity

In this section, we will present the proof of our main theorem (see Theorem 1). We first begin
with an estimate for the scaled L3-norm of suitable weak solutions.

Lemma 9. Suppose (without loss of generality) z = (0,0). Let p,q be the numbers in (12) and
Q+

r = B+
r × (−r2,0). Suppose u is a suitable weak solution of the Navier–Stokes equations

satisfying Definition 4. If u ∈ Lp,q(Q+
r ) and u = 0 on (Br ∩ {x3 = 0}) × (−r2,0), then

C(r) � NA
1
q (r)E

1− 1
q (r)G(r). (28)

Proof. We take α,β, and δ such that α = 1/q,β = (1/3)(1 − 1/q), and δ = 1/p. Thus 2α +
6β + pδ = 3, and, therefore, using the Hölder inequality, we obtain

∫
B+

r

|u|3 dx �
( ∫

B+
r

|u|2 dx

)α( ∫
B+

r

|u|6 dx

)β( ∫
B+

r

|u|p dx

)δ

� N

( ∫
B+

r

|u|2 dx

)α( ∫
B+

r

|∇u|2 dx

)3β( ∫
B+

r

|u|p dx

)δ

,

where Sobolev embedding is used. Integrating in time, we obtain

∫
Q+

r

|u|3 dz � N

(
sup

−r2�t�0

∫
B+

r

|u|2 dx

)α
0∫

−r2

( ∫
B+

r

|∇u|2 dx

)3β( ∫
B+

r

|u|p dx

)δ

dt

� N

(
sup

−r2�t�0

∫
B+

r

|u|2 dx

)α( ∫
Q+

r

|∇u|2 dz

)3β( 0∫
−r2

( ∫
B+

r

|u|p dx

) q
p

dt

) 1
q

,

where we used 3β + α = 1 and Hölder inequality. Dividing both sides by r2, we obtain (28).
This completes the proof. �
Remark 10. The above estimate (28) is also true in the case 1 < q � ∞ and 1 < p < ∞, although
we restrict to numbers p,q satisfying (12).
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An immediate consequence of the local energy inequality is

A

(
r

2

)
+ E

(
r

2

)
� N

(
C

2
3 (r) + C(r) + G(r)D̃(r) + r

∫
Q+

r

|f |2 dz

)
,

� N
(
C

2
3 (r) + C(r) + G(r)D̃(r) + r2(γ+1)m2

γ

)
. (29)

For those exponents κ and λ in (8) and (11), we can show (compare (22))

∥∥(u · ∇)u
∥∥

Lκ,λ(Q+
ρ )

� NρE
1
λ (ρ)A

3−2κ
2κ (ρ). (30)

Its verification is straightforward, and we omit the details.
In next lemma we prove an estimate for the pressure.

Lemma 11. Suppose z = (x, t), x ∈ Γ, t − ρ2 > 0, and t < T . Then for 0 � r � ρ/4,

D̃1(r) � N

((
ρ

r

)(
E

1
λ (ρ)A

3−2κ
2κ (ρ) + ργ+1mγ

) +
(

r

ρ

)(
E

1
2 (ρ) + D̃1(ρ)

))
, (31)

where κ and λ are numbers in (8) and (11).

Proof. Without loss of generality, we assume x = 0. We choose a domain B̃+ with a smooth
boundary such that B+

ρ/2 ⊂ B̃+ ⊂ B+
ρ , and we denote Q̃+ := B̃+ × (t −ρ2, t). We note first that,

by the definition of mγ and the Hölder inequality, we have

‖f ‖Lκ,λ(Q+
ρ ) � Nργ+2mγ , ‖∇u‖Lκ,λ(Q+

ρ ) � Nρ2E
1
2 (ρ). (32)

Let v and p1 be the unique solution to the following initial boundary value problem for the Stokes
system

∂tv − Δv + ∇p1 = (u · ∇)u + f, divv = 0 in Q̃+,

(p1)B̃+(t) = �

∫
B̃+

p1(y, t)dy = 0, t ∈ (
t − ρ2, t

)
,

v = 0 on ∂B̃+ × [
t − ρ2, t

]
, v = 0 on B̃+ × {

t = t − ρ2}.
Then v and p1 satisfy the following estimate (see [7, Theorem 3.1])

1

ρ2
‖v‖Lκ,λ(Q̃+) + 1

ρ
‖∇v‖Lκ,λ(Q̃+) + ‖∂tv‖Lκ,λ(Q̃+) + ∥∥∇2v

∥∥
Lκ,λ(Q̃+)

+ 1

ρ
‖p1‖Lκ,λ(Q̃+) + ‖∇p1‖Lκ,λ(Q̃+)
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� N
(‖u∇u‖Lκ,λ(Q̃+) + ‖f ‖Lκ,λ(Q̃+)

)
� N

(‖u∇u‖Lκ,λ(Q+
ρ ) + ‖f ‖Lκ,λ(Q+

ρ )

)
� N

(
ρE

1
λ (ρ)A

3−2κ
2κ (ρ) + ργ+2mγ

)
,

where we used (30) and (32).
Let w = u − v and p2 = p − (p)B+

ρ/2
− p1. Then w,p2 solve the following boundary value

problem:

∂tw − Δw + ∇p2 = 0, divw = 0 in Q̃+, w = 0 on
(
∂B̃+ ∩ {x3 = 0}) × [

t − ρ2, t
]
.

Now we take κ ′ (κ ′ is different than κ∗) such that 3/κ ′ + 2/λ = 2. Then from the local estimate
near the boundary for the Stokes system (see [20, Proposition 2]), we obtain∥∥∇2w

∥∥
Lκ′,λ(Q+

ρ
4
)
+ ‖∇p2‖Lκ′,λ(Q+

ρ
4
)

� N

ρ2

(
1

ρ2
‖w‖Lκ,λ(Q+

ρ
2
) + 1

ρ
‖∇w‖Lκ,λ(Q+

ρ
2
) + 1

ρ
‖p2‖Lκ,λ(Q+

ρ
2
)

)
≡ N

ρ2
I.

Using Sobolev imbedding, the right side can be estimated as follows:

I �
(

1

ρ
‖∇u‖Lκ,λ(Q+

ρ
2
) + ‖∇p‖Lκ,λ(Q+

ρ
2
) + 1

ρ
‖∇v‖Lκ,λ(Q+

ρ
2
) + 1

ρ
‖p1‖Lκ,λ(Q+

ρ
2
)

)
.

Due to the second inequality in (32), we obtain

‖∇p2‖Lκ′,λ(Q+
ρ
4
)
� N

ρ2

(
ρE

1
2 (ρ) + ρD̃1(ρ) + ρE

1
λ (ρ)A

3−2κ
2κ (ρ) + ργ+2mγ

)
= N

ρ

(
E

1
2 (ρ) + D̃1(ρ) + E

1
λ (ρ)A

3−2κ
2κ (ρ) + ργ+1mγ

)
.

Now we assume 0 � r � ρ/4. Noting that ‖∇p2‖Lκ,λ(Q+
r ) � Nr2‖∇p2‖Lκ′,λ(Q+

r )
, we have

D̃1(r) = 1

r
‖∇p‖Lκ,λ(Q+

r ) � 1

r

(‖∇p1‖Lκ,λ(Q+
r ) + ‖∇p2‖Lκ,λ(Q+

r )

)
� 1

r

(‖∇p1‖Lκ,λ(Q+
ρ ) + r2‖∇p2‖Lκ′,λ(Q+

r )

)
� N

(
ρ

r

)(
E

1
λ (ρ)A

3−2κ
2κ (ρ) + ργ+1mγ

)
+ N

(
r

ρ

)(
E

1
2 (ρ) + D̃1(ρ) + E

1
λ (ρ)A

3−2κ
2κ (ρ) + ργ+1mγ

)
� N

(
ρ

r

)(
E

1
λ (ρ)A

3−2κ
2κ (ρ) + ργ+1mγ

) + N

(
r

ρ

)(
E

1
2 (ρ) + D̃1(ρ)

)
.

This completes the proof. �
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Now we are ready to present the proof of Theorem 1.

Proof of Theorem 1. We recall first, due to Lemma 9,

C(r) � NAα(r)E3β(r)G(r), α = 1

q
, β = q − 1

3q
, (33)

and, due to Sobolev imbedding, we have

D̃(r) � NdD̃1(r). (34)

Let 4r < ρ. We consider C(r)+ D̃1(r). Recalling the estimate (31) for the pressure, we obtain

D̃1(r) + C(r) � NAα(r)E3β(r)G(r) + N

(
ρ

r

)(
E

1
λ

(
ρ

4

)
A

3−2κ
2κ

(
ρ

4

)
+ mγ ργ+1

)
+ N

(
r

ρ

)(
E

1
2

(
ρ

4

)
+ D̃1

(
ρ

4

))
≡ I + II + III.

We first consider the first term I. Since α + 3β = 1, by using the local energy inequality (29), we
have

I � N
(
C

2
3 (2r) + C(2r) + G(2r)D̃(2r) + r2(γ+1)m2

γ

)
G(r)

� N

((
ρ

r

) 7
3

C
2
3 (ρ)G(ρ) +

(
ρ

r

)3

C(ρ)G(ρ) +
(

ρ

r

)3

G2(ρ)D̃1(ρ) +
(

ρ

r

)
r2(γ+1)m2

γ G(ρ)

)

� N

((
ρ

r

)3

C(ρ)G(ρ) +
(

ρ

r

)3

G2(ρ)D̃1(ρ) +
(

ρ

r

)
G(ρ) +

(
ρ

r

)
ρ2(γ+1)m2

γ G(ρ)

)
, (35)

where we used Young’s inequality and

C(2r) � N

(
ρ

r

)2

C(ρ), D̃1(2r) � N

(
ρ

r

)
D̃1(ρ), G(2r) � N

(
ρ

r

)
G(ρ).

For the third term III, again using energy inequality (29), we have

III � N

(
r

ρ

)((
C

1
3

(
ρ

2

)
+ C

1
2

(
ρ

2

)
+ G

1
2

(
ρ

2

)
D̃

1
2
1

(
ρ

2

)
+ mγ ργ+1

)
+ D̃1

(
ρ

2

))
� N

(
r

ρ

)(
G

(
ρ

2

)
+ C

1
3

(
ρ

2

)
+ C

(
ρ

2

)
+ D̃1

(
ρ

2

)
+ mγ ργ+1

)
,

where we used Young’s inequality, i.e., ab � al/ l +bm/m where 1/l +1/m = 1, 1 < l,m < ∞.
By (35), note that
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C
1
3

(
ρ

2

)
� NA

α
3

(
ρ

2

)
Eβ

(
ρ

2

)
G

1
3

(
ρ

2

)
� N

(
C

2
3 (ρ) + C(ρ) + G(ρ)D̃1(ρ) + m2

γ ρ2(γ+1)
) 1

3 G
1
3 (ρ)

� N
(
C

2
9 (ρ) + C

1
3 (ρ) + G

1
3 (ρ)D̃

1
3
1 (ρ) + m

2
3
γ ρ

2
3 (γ+1)

)
G

1
3 (ρ).

Again applying Young’s inequality, we obtain

C
1
3

(
ρ

2

)
� N

(
C(ρ) + D̃1(ρ) + G

3
7 (ρ) + G(ρ) + m

2
3
γ ρ

2
3 (γ+1)G

1
3 (ρ)

)
.

Summing up, we obtain

III � N

(
r

ρ

)(
C(ρ) + D̃1(ρ) + G(ρ) + G

3
7 (ρ) + mγ ργ+1 + m

2
3
γ ρ

2
3 (γ+1)G

1
3 (ρ)

)
. (36)

It remains to consider the second term II. Since 1/λ + (3 − 2κ)/(2κ) = 1, by (29), we obtain

II � N

(
ρ

r

)(
C

2
3

(
ρ

2

)
+ C

(
ρ

2

)
+ G

(
ρ

2

)
D̃1

(
ρ

2

)
+ ρ2(γ+1)m2

γ + mγ ργ+1
)

.

Using the same procedure as above, using (33) and Young’s inequality, we obtain

C
2
3

(
ρ

2

)
� N

(
C

4
9 (ρ) + C

2
3 (ρ) + G

2
3 (ρ)D̃

2
3
1 (ρ) + m

4
3
γ ρ

4
3 (γ+1)

)
G

2
3 (ρ)

� N
((

G(ρ) + G
1
2 (ρ)

)
C(ρ) + G(ρ)D̃1(ρ) + +G2(ρ) + G

4
5 (ρ) + m

4
3
γ ρ

4
3 (γ+1)G

2
3 (ρ)

)
,

and

C

(
ρ

2

)
� N

(
C

2
3 (ρ) + C(ρ) + G(ρ)D̃1(ρ) + m2

γ ρ2(γ+1)
)
G(ρ)

� N
(
C(ρ)G(ρ) + G2(ρ)D̃1(ρ) + G(ρ) + m2

γ ρ2(γ+1)G(ρ)
)
.

Summing up all together, we have

II � N

(
ρ

r

)((
G(ρ) + G

1
2 (ρ)

)
C(ρ) + (

G(ρ) + G2(ρ)
)
D̃1(ρ)

+ G
4
5 (ρ) + G2(ρ) + m

4
3
γ ρ

4
3 (γ+1)G

2
3 (ρ) + ρ2(γ+1)m2

γ + mγ ργ+1). (37)
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Adding (35), (36), and (37), we obtain

C(r) + D̃1(r) � N

((
ρ

r

)3

G(ρ) +
(

ρ

r

)(
G(ρ) + G

1
2 (ρ)

) +
(

r

ρ

))
C(ρ)

+ N

((
ρ

r

)3

G(ρ) +
(

ρ

r

)(
G(ρ) + G2(ρ)

) +
(

r

ρ

))
D̃1(ρ)

+
(

ρ

r

)(
G

3
7 (ρ) + G2(ρ)

) +
(

ρ

r

)
mγ ργ+1 +

(
ρ

r

)
m2

γ ρ2(γ+1)G(r)

+
(

ρ

r

)
m2

γ ρ2(γ+1) + m
2
3
γ ρ

2
3 (γ+1)G

1
3 (ρ) + m

4
3
γ ρ

4
3 (γ+1)G

2
3 (ρ).

We first choose θ ∈ [0,1/2] such that Nθ < 1/4 where N is an absolute constant in the above
inequality. By replacing r, ρ by θr and r , we obtain

C(θr) + D̃1(θr) � N

((
1

θ3
G(r) + 1

θ
G

1
2 (r) + θ

)
C(r)

+
(

1

θ3
G(r) + 1

θ
G2(r) + θ

)
D̃1(r) + φ(r)

)
, (38)

where

φ(r) = 1

θ

(
G

3
7 (r) + G2(r)

) + 1

θ
mγ rγ+1 + 1

θ
m2

γ r2(γ+1)G(r)

+ 1

θ
m2

γ r2(γ+1) + m
2
3
γ r

2
3 (γ+1)G

1
3 (r) + m

4
3
γ r

4
3 (γ+1)G

2
3 (r).

Now we fix r0 < min{1, θε3/(1 + mγ )} such that for all r � r0

G(r) < min

{
θ3

210N
,

θ2

210N
,

ε3θ

210N(Nd + 1)m2
γ

,

(
ε3θ

210N(Nd + 1)

) 7
3

,
ε9

(210N(Nd + 1))3m2
γ

}
,

where N,Nd are absolute constants in (38) and (34), respectively, and ε is the fixed positive
number in Lemma 7. Then one can check that φ(r) < ε3/64N(Nd + 1) and moreover, we can
show that for any r < r0

C(θr) + D̃1(θr) � 1

2

(
C(r) + D̃1(r)

) + φ(r).

By iterating, we have

C
(
θkr

) + D̃1
(
θkr

)
�

(
1

2

)k(
C(r) + D̃1(r)

) +
k−1∑
i=0

N

2k−1−i
φ
(
θir

)
.

�
(

1
)k(

C(r) + D̃1(r)
) + ε3

. (39)

2 64(Nd + 1)
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If z is a singular point, then there exists r1 > 0 such that C
1
3 (r) + D(r) � ε for every r � r1 by

Lemma 7. However, this leads to a contradiction since for a sufficiently small r2 < r1

C(r2) + D̃(r2) � C(r2) + NdD̃1(r2) � ε3

64
,

which immediately implies that C
1
3 (r) + D(r) � ε/2. This completes the proof. �

The following is a direct consequence of Theorem 1.

Corollary 12. Let u be a weak solution of the Navier–Stokes equations satisfying Definition 4.
Assume further that z = (x, t) ∈ Γ × I and for some r0 > 0

u ∈ Lr,s
(
Q+

z,r0

)
,

3

r
+ 2

s
= 1, 3 < r < ∞. (40)

Then z is a regular point.

Proof. We observe that, as mentioned in the introduction, u ∈ L4(Q+
z,r0

) for weak solutions
satisfying (40). To be more precise, we can show by interpolation that

‖u‖L4(Q+
z,r0 ) � ‖u‖

1
2

Lr,s (Q+
z,r0 )

‖u‖
1
q

L2,∞(Q+
z,r0 )

‖u‖
3

2p

L6,2(Q+
z,r0 )

.

The above estimate is true even in case (r, s) = (3,∞) or (r, s) = (∞,2), although our analysis
does not include such cases. We conclude by the above estimate that u is a suitable weak solution
in Q+

z,r0
, namely u satisfies the local energy inequality (15) in a neighborhood of z. We also note

that there exists a number r̃ such that 3/r̃ + 2/s = 2 and, by the Hölder inequality, we have

1

ρ
‖u‖Lr̃,s (Q+

z,ρ ) � C‖u‖Lr,s (Q+
z,ρ ), for any ρ � r0.

Since the right-hand side above is finite, and it can be arbitrary small for sufficiently small ρ by
assumption (40), condition (6) in Theorem 1 is satisfied. This completes the proof. �
Remark 13. Condition (40), including the case (r, s) = (∞,2), is called a zero-dimensional
integral condition. It is known that weak solutions of the Navier–Stokes equations are locally
regular at an interior point provided that a zero-dimensional integral condition is assumed near
the point (see [24,30]). This result, recently, was extended up to the boundary (see [9,29]), and,
therefore, Corollary 12 is already implied by [9,29]. Our regularity criterion (6), however, gives
a simple proof of the regularity of weak solutions near the boundary under a zero-dimensional
integral condition (although the case (r, s) = (∞,2) is not covered by our analysis).

4. Partial regularity

In this section, as an application of Theorem 1, we investigate the size of the possible singu-
lar set under additional integrability assumptions on weak solutions (see Assumption 14 below).
As we saw in Corollary 12, we have a simple proof for weak solutions that a zero-dimensional



614 S. Gustafson et al. / J. Differential Equations 226 (2006) 594–618
integral condition implies regularity up to the boundary. It is, however, an open question whether
or not weak solutions (or suitable weak solutions) satisfy the zero-dimensional integral con-
ditions. It was proved that the size of a possible singular set for suitable weak solutions is of
1-dimensional Hausdorff measure zero (see [1,21] for the interior case and for the boundary
case, respectively). We remark that in [3] the estimate of the Hausdorff measure of the singular
set for suitable weak solutions was improved by a logarithmic factor for the interior case.

Our aim in this section is to present the proof of Theorem 2, which says that the size of
singular set for weak solutions can be reduced under additional integrability assumptions, which
are weaker than zero-dimensional integral conditions. We note, however, that our result is weaker
than what one gets from the zero-dimensional integral conditions; in that case full regularity is
implied, but in our case we have partial regularity.

We start with recalling the following condition that is assumed in Theorem 2 for weak solu-
tions.

Assumption 14. Let u be a weak solution of the Navier–Stokes equations satisfying Definition 4
and

u ∈ Lm,l(Q) = Lm
(
(0, T );Ll(Ω)

)
,

where either

1 <
3

l
+ 2

m
,

2

l
+ 2

m
< 1, l > m, or (41)

1 <
3

l
+ 2

m
,

3

l
+ 1

m
< 1, l � m. (42)

We remark that although Assumption 14 is not justified by the formulation of weak solutions,
it seems to be of independent interest to characterize the size of the singular set depending on the
mixed norm Ll,m of u.

We observe first that solutions satisfying Assumption 14 are in fact suitable weak solutions.
This can be done by the interpolation argument of Corollary 12. More precisely, we can show

‖u‖L4(Q) � ‖u‖σ
Ll,m(Q)

‖u‖
(6−α)

2α
(1−σ)

L2,∞(Q)
‖u‖

2
β
(1−σ)

L6,2(Q)
,

where

α =
3
l
+ 2

m
− 5

4
1
l
+ 1

2m
− 3

8

, β = 4
( 3

l
+ 2

m
− 5

4

)
3
( 1

l
+ 1

m
− 1

2

) , σ = l(4 − l)

4(l − α)
.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We consider first the case that l,m satisfy (42). For convenience, we define
ς as ς := 3/l + 2/m − 1. For given R > 0 we set SR := S ∩ BR(0), where S is the singular set
of u. Let z = (x, t) ∈ SR and Q̃r (z) = Q̃r (x, t) := Qr(x, t) ∩ Q. Using Theorem 1 (boundary
case) and Theorem 18 (interior case) in Appendix A, we see that there exists e0 such that

lim sup r−ς‖u‖Lm
t Ll

x(Q̃r (z))
� e0. (43)
r→0+
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It is clear that the Lebesgue measure of SR is zero, and so we can choose an open bounded
set V ⊂ R3 containing SR with the volume of V as small as we like. Moreover, due
to (43), for any given δ > 0, and for any z = (x, t) ∈ SR , there exists rz ∈ (0, δ) such that
‖u‖Lm

t Ll
x(Q̃rz (z)) � r

ς
z e0. We denote by O = {Q̃rz (z): z ∈ SR} the collection of such open

neighbourhoods. We note that O is an open covering of SR , and, therefore, by a covering
lemma (e.g., see [1, Lemma 6.1]), we can find a countable subfamily of disjoint cylinders
Q̃j = Q̃rzj

(zj ), j ∈ J such that SR ⊂ ⋃
z∈SR

Q̃rz (z) ⊂ ⋃
j∈J Q̃5rj (zj ). Denoting uj (z) = u(z)

if z ∈ Q+
j , uj (z) = 0 otherwise, we have

em
0

∑
j∈J

r
ςm
j �

∑
j∈J

∫
I

(∫
Ω

|uj |l dx

)m/l

dt �
∫
I

(∑
j∈J

∫
Ω

|uj |l dx

)m/l

dt � ‖u‖m
Lm

t Ll
x(V )

,

where we used l � m in the second inequality. Since the volume of V can be taken arbi-
trarily small, as can δ, we conclude that the ςm-dimensional Hausdorff measure of SR is
zero: Pςm(SR) = 0. Since R is arbitrary, we conclude that the singular set S is of ςm =
(2 − m + 3m/l)-dimensional parabolic Hausdorff measure zero. Observe that 0 < ςm < 1.

Next we consider the case l,m satisfy (41). In this case we show, by interpolation, that

‖u‖Lk(Q) � ‖u‖1−σ

Ll,m(Q)
‖u‖σ

L2,∞(Q)
,

where

k = 2

(
1 − m

l

)
+ l

m

l
= 2 + m − 2m

l
, σ = m

k
.

It is clear that 4 < k < 5 and m/k � 1, and therefore, due to the analysis of the case l � m, we
conclude that the singular set is at most of (5−k)-dimensional parabolic Hausdorff measure zero
up to the boundary. This completes the proof. �
Appendix A

In this appendix we show that the regularity criterion (6) holds also for the interior case, whose
proof requires slightly different estimates. Since its verification for the interior case can be done
by following a procedure similar to that of the boundary case, with no significant difficulty, we
just present a sketch of the proof. From now on we replace Q+

z,r and B+
x,r by Qz,r and Bx,r in the

scaling invariant functionals below, because we are concerned with local regularity at an interior
point. The interior case is in fact simpler than the boundary case, because the pressure is much
easier to handle. We begin with the following lemma, which is analogous to Lemma 8 of the
boundary case.

Lemma 15. Let 0 < θ < 1/2 and 0 < β < γ � 2. There exist ε2, r2 > 0 depending on λ, θ, γ and
β such that if u is a suitable weak solution of the Navier–Stokes equations satisfying Definition 4,

z = (x, t) ∈ Q = Ω × I is an interior point, and C
1
3 (r) + D̃(r) + mγ (f )rβ+1 < ε2 for some

r ∈ (0, r2), then (
C

1
3 (θr) + D̃(θr)

)
< Nθ1+α

(
C

1
3 (r) + D̃(r) + mγ (f )rβ+1),

where 0 < α < 1 and N > 0 are absolute constants.
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The sketch of the proof of Lemma 15. Again assume f = 0 for simplicity. Suppose that the
assertion is not true. Then there exist zn = (xn, tn), rn ↘ 0, and εn ↘ 0 such that ϕ(rn) = εn but

ϕ(θrn) > Nθ1+αεn, where ϕ(r) = C
1
3 (r)+D̃(r). Using the change of variables y = r−1

n (x −xn)

and s = r−2
n (t − tn), we set vn(w) := ε−1

n rnu(z) and qn(w) := ε−1
n r2

n(p(z) − (p)B+
rn

(t)). By the
“blow up” procedure and compactness arguments, the limit equations become the Stokes system.
Since the pressure of the Stokes system is harmonic in the spatial variables for the interior case,
our arguments are much simpler than in the boundary case. The other parts of the arguments are
the same as in Lemma 8, and we omit the details. �

Due to the Lemma 15, we have the following lemma (compare to Lemma 7). Since the argu-
ments are straightforward, we state it without proof.

Lemma 16. There exists a constant ε > 0 depending on λ,γ and ‖f ‖M2,γ
such that if u is a

suitable weak solution of the Navier–Stokes equations satisfying Definition 4, z = (x, t) ∈ Q =
Ω × I is an interior point, and

lim inf
r→0+

(
C

1
3 (r) + D̃(r)

)
< ε,

then z is a regular point.

Next we need the estimate for the pressure. To do that, we observe that at an interior point,
instead of (28) for the boundary case, we can show

C(r) � N
(
A

1
q (r)E

1− 1
q (r)G(r) + A

1
2 (r)G2(r)

)
. (A.1)

Indeed,

∫
Br

|u|3 dy � N

(∫
Br

∣∣u − (u)a
∣∣3

dy +
∫
Br

∣∣(u)a
∣∣3

dy

)
,

where (u)a = �
∫

Br
u(y) dy. We note that the first of the above inequalities can be estimated as the

same way as Lemma 9, and thus it is enough to consider the second one. We observe that

∣∣(u)a
∣∣ � N

r3/2

( ∫
Br

∣∣u(y)
∣∣2

dy

) 1
2

� N

r
A

1
2 (r),

∣∣(u)a
∣∣ � N

r3/p

( ∫
Br

∣∣u(y)
∣∣p dy

) 1
p

.

The second one is estimated as follows:

∫ ∣∣(u)a
∣∣3

dy � N

r6/p−2
A

1
2 (r)

( ∫ ∣∣u(y)
∣∣p dy

) 2
p

.

Br Br
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Integrating in time, and using q > 2, we obtain (A.1). Since the computations are straightforward,
the details are skipped. In a similar manner, we also have the following estimate in the interior
case (compare to (30) for the boundary case).∥∥(u · ∇)u

∥∥
Lκ,λ(Qρ)

� Nρ
(
E

1
λ (ρ)A

3−2κ
2κ (ρ) + E

1
2 (ρ)A

2−κ
2κ (ρ)G

κ−1
κ (ρ)

)
. (A.2)

Since its verification is similar to (A.1), we omit the details.
Using the above estimate, we have the pressure estimate, equivalent to Lemma 11 of the

boundary case. Since the estimates (A.2) and (A.1) are slightly different than (28) and (30) of the
boundary case, the estimate of the pressure is slightly modified in the interior case. But it can be
derived in the same manner, and so we skip its proof and just state it.

Lemma 17. Suppose that z = (x, t) ∈ Ω × I is an interior point, and t − ρ2 > 0, t < T . Then
for 0 � r � ρ/4,

D̃1(r) � N

(
ρ

r

)(
E

1
λ (ρ)A

3−2κ
2κ (ρ) + E

1
2 (ρ)A

2−κ
2κ (ρ)G

κ−1
κ (ρ) + ργ+1mγ

)
+ N

(
r

ρ

)(
E

1
2 (ρ) + D̃1(ρ)

)
,

where κ and λ are numbers satisfying (8) and (11).

Using the estimate of the pressure in Lemma 17, the same regularity criterion for interior
points can be proved as in the boundary case. We have:

Theorem 18. The same statement of Theorem 1 remains correct when z ∈ Q is an interior point,
with B+

x,r replaced by Bx,r .
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