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Relapse is a devastating event for patients with hematologic cancers treated with hematopoietic stem cell
transplantation. In most situations, relapse treatment options are limited. Maintenance therapy offers the
possibility of delaying or avoiding disease recurrence, but its role remains unclear in most conditions that we
treat with transplantation. Here, Dr. Hourigan presents an overview of minimal residual disease (MRD)
measurement in hematologic malignancies and the applicability of MRD-based post-transplantation in-
terventions. Dr. McCarthy reviews current knowledge of maintenance therapy in the autologous trans-
plantation context, with emphasis on immunologic interventions and immune modulation strategies
designed to prevent relapse. Dr. de Lima discusses current lines of investigation in disease recurrence pre-
vention after allogeneic transplantation, focusing on acute myeloid leukemia and myelodysplastic syndrome.
� 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
INTRODUCTION performed. This includes patients after transplantation with

The popularity of maintenance therapy has waxed and

waned in the management of hematologic malignancies.
Enthusiasm has often been hampered by toxicity, lack of
efficacy, or difficulty proving efficacy, especially in the post-
transplantation setting. The biologic revolution has brought
us a plethora of less toxic new agents, creating renewed in-
terest in intervening after auto or allogeneic hematopoietic
stem cell transplantation (HCT).

In addition, new technologies are dramatically changing
our ability to measure residual hematologic malignancy,
allowing a more direct evaluation of potential maintenance
of remission strategies. It is also important to emphasize that
the problem of post-transplantation recurrence seems to
be getting worse, not better, in recent years. This is possibly
the reflection of increased access to HCT for older patients,
who have diseases with intrinsically worse prognoses, and
the use of reduced-intensity preparative regimens, which
carry the trade-off of less toxicity at the expense of increased
likelihood of relapse.

Therefore, it seems appropriate to highlight this rapidly
evolving area of investigation in autologous HCT (auto-HCT)
and allogeneic HCT (allo-HCT), where solid tumor and
hematologic malignancy treatments are now joining forces
with hematopoietic stem cells, T cells, NK cells, and other
immunologically active types of cells.
INVESTIGATING MINIMAL RESIDUAL DISEASE
The most common cause of treatment failure after HCT is

the primary malignancy for which the transplantation was
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either “refractory” disease or those previously in remission
with a clinical complete response (CR) who have recurrent
disease or “relapse.” In patients treated for hematological
cancers, the remaining total disease burden is a continuous
variable, and clinical response criteria, therefore, simply
represent artificial thresholds based on the technical sensi-
tivity of standard assays to detect disease. Patients with
disease classified as being in remission or reaching CR after
HCT, therefore, represent a highly heterogeneous group in
terms of the residual disease burden (ranging from no
remaining disease to up to a billion malignant cells) and,
consequently, also have heterogeneous clinical outcomes (ie,
25% to 50% will relapse). Maintenance therapy, that is, ther-
apy given to patients in a CR after completion of standard
therapy to prevent future relapse, can be effective, but it may
also be associated with significant toxicity, potentially
limiting its applicability. It is now clear, however, that high
sensitivity measurements of remaining disease burden
(minimal residual disease [MRD]) in patients with CR (ie,
quantification below the traditional threshold of hemato-
logic CR) can have significant utility in patient selection and
making decisions regarding maintenance therapy after HCT.

MRD can be measured for both lymphoid and myeloid
hematological malignancies (Table 1) and these measure-
ments can be informative when taken either before or after
HCT, and in both autologous and allo-HCT. MRD can be
detected from a number of sources including bone marrow
(BM) or peripheral blood. MRD can be measured in a variety
of ways, ranging from fluorescent in situ hybridization (FISH)
for cytogenetic abnormalities and (in the posteallo-HCT
setting) donor cell chimerism [1] to higher sensitivity
methods [2], such as flow cytometry, polymerase chain re-
action (PCR)ebased methods to quantify genes overex-
pressed in malignant clones (PCR-GE, eg, WT1) or for unique
tumor-specific somatic mutations, splice variants or other
Transplantation. Published by Elsevier Inc. All rights reserved.
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Table 1
Methods to Detect Minimal Residual Disease (MRD) in Hematological Malignancies for Which Hematopoietic Stem Cell Transplantation is Commonly Performed

Disease MRD Methods Available* Notes References

AML NGS Standard of Care in APL;
Multiple clinical trials ongoing using MRD. Lack of universal target in non-APL AML makes
MRD assessment challenging.

[17,18,45-48]
PCR-mut
PCR-GE
MFC
Cytogenetics

MDS PCR-GE Use of donor chimerism for MDS MRD well established but generally underdeveloped area
of research.

[18,49]
MFC
FISH

ALL PCR-mut (Phþ) 25-year history of being able to detect MRD in ALL. Deeply integrated into clinical trials
for a decade.

[32,33,50]
NGS
MFC

CLL NGS Well established, with multiple modalities available. [51]
PCR
MFC

CML PCR-mut (Phþ) Standard of care [15,50]
MM PCR-mut (BM) As therapy in MM has become more effective, MRD measurements have become integrated

in standard response criteria definitions.
[10]

PCR-mut (PB)
NGS
MFC
Imaging

AML indicates acute myeloid leukemia; MDS, myelodysplastic syndrome; ALL, acute lymphoblastic leukemia, CLL, chronic lymphoid leukemia; CML, chronic
myeloid leukemia; MM,multiple myeloma;MFC, multiparameter flow cytometry; PCR-GE, PCR for gene overexpressed in disease compared with healthy tissue;
PCR-mut, PCR for sequence, somatic mutation, or splice variant specific to tumor; Phþ, Philadelphia positive ie: Bcr:Abl translocation; NGS, next-generation
sequencing; BM, bone marrow; PB, peripheral blood.

* Donor chimerism analysis post allo-HCT is an MRD testing option in all listed disease indications.
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pathognomonic sequences (PCR-mut, eg, t(9;22)BCR-ABL or
t(15:17) PML/RARA) and by next generation sequencing [3,4].
We review here contemporary use and capabilities of MRD
testing in multiple myeloma (MM), myeloid, and lymphoid
malignancies before discussing how such measurements
could have utility for management of post-HCT maintenance
therapy.

Over a quarter of the approximately 18,000 stem cell
transplantations performed in adults in the United States in
2011 were for MM. These were predominantly auto-HCT [5].
The biology of this monoclonal plasma cell neoplasm (in-
cluding nongermline rearranged receptor sequence, atypical
cell surface protein phenotype and characteristic excreted
proteins) allows for multiple approaches for tracking disease
burden, including quantitative immunoglobulin and free
light chain assays [6,7], imaging [8], multiparameter flow
cytometry (MFC) [6,9,10], and immunoglobulin gene rear-
rangements using allele specific oligonucleotides by PCR
methods [9,11,12]. As in other hematological malignancies
PCR-based methods offer advantages of high sensitivity and
specificity, low cost, lack of requirement for expert patholo-
gist interpretation but with the disadvantages of need for a
unique sequence target and time taken to establish and run
the assays. Although appropriate questions have been raised
regarding the lackof standardization offlowcytometry-based
MRD assays inMM [13], and perhaps a lack of deep sensitivity
compared with PCR-based methods [10,11], this modality is
generally considered easy to perform with quick turnaround
and sufficient sensitivity to discriminate patients into groups
reflective of relapse risk. For example, a recent analysis of
patients treated on theMRCMyeloma IX study demonstrated
that the absence of bonemarrowaspirateMFC-detectedMRD
at 100 days after autologous (ASCT) was strongly associated
with favorable progression-free survival (PFS) and overall
survival (OS) [14]. MRD status remained predictive of
improved outcome when used within subgroups, such as
those with adverse or favorable cytogenetics and those with
or without CR defined by immunofixation. The combination
of cytogenetic risk information and MRD status after ASCT
was exceptionally powerful. In addition to the ability to
determineefficacyofASCT (half ofMRDpositivepatients after
induction became negative after ASCT) and predict prognosis
based on day 100 post-HCT assessment, MRD could also be
used to track efficacy of maintenance therapy (8 of 29 MRD
positive patients after ASCT who were randomly assigned to
thalidomide maintenance became MRD-negative when
checked approximately 10months after ASCT, comparedwith
1 of 29 patients who did not receive maintenance).

In the myeloid malignancies, MRD monitoring is already
the standard of care in both chronic myeloid leukemia [15]
and acute promyelocytic leukemia [16]. The literature on
noneacute promyelocytic leukemia acute myeloid leukemia
(AML) MRD measurement has recently been reviewed by
ourselves [17] and others [2,18,19]. It is now well established
that both MFC- and PCR-based MRD measurements are
technically possible, predictive of relapse risk and overall
survival when measured either before [20-22] or after
[23,24] HCT, and can be used to guide dose escalation of
chemotherapy before HCT [25] and initiation of post-HCT
maintenance [26,27]. In myelodysplastic syndrome (MDS),
decreasing donor chimerism post allo-HCT is well estab-
lished as independently predictive of both inevitable hema-
tologic relapse and inferior survival [1], and MFC-based [28]
and PCR-based [29] MRD detection methodologies are also
being developed.

MRD monitoring after HCT is also possible in the lym-
phoid malignancies. In acute lymphoblastic leukemia (ALL),
MRD has been detectable for over 25 years [30] with the
prognostic significance of MRD after treatment known [31]
and the ability to use post-HCT MRD-guided therapy to
reduce relapse risk available for over a decade. More recently
a consensus panel defined technical standards for MRD
assessment by MFC and PCR for European clinical trials [32],
and the American guidelines now specifically comment
on MRD assessment [33]. In chronic lymphocytic leukemia
(CLL) donor chimerism [34], PCR [35], MFC [36] and next-
generation sequencing [37] approaches have all been used,
and MRD has been used to risk-stratify patients for



Table 2
Phase III Studies Comparing Maintenance Therapy or Consolidation versus Observation after Autologous Hematopoietic Cell Transplantation

Study Disease Intervention Benefit in EFS/PFS Benefit in OS

Furman et al. [54] B cell NHL B4 blocked ricin No difference Favors observation
Gisselbrecht et al. [55] DLBC NHL Rituximab No difference No difference
Pettengell et al. [56] Follicular NHL Rituximab Favors rituximab No difference
Thompson et al. [57] NHL, low, int, high IL-2 No difference No difference
Blaise et al. [72] AL (AML þ ALL) IL-2 No difference No difference
Attal et al. [63] ALL IL-2 No difference No difference
Bolaños-Meade et al. [58] Poor Risk NHL CSA IFNgþIL-2 to generate

autologous GvHD
No difference No difference

Simonsson et al. [59] AML Linomide No difference No difference
Attal et al. [63] MM Thalidomide Favors thalidomide Favors thalidomide
Barlogie et al. [64] MM Thalidomide Favors thalidomide Trend to thalidomide
Lokhurst et al. [65] MM Thalidomide Favors thalidomide No difference
Morgan et al. [66] MM Thalidomide Favors thalidomide No difference
Morgan et al. [66] MM Thalidomide Favors thalidomide Worse in high risk

cytogenetic patients
Spencer et al. [67] MM Thalidomide and prednisone Favors thalidomide Favors thalidomide
Krishnan et al. [68] MM Thalidomide and dexamethasone Trend toward thalidomide No difference
Maiolino et al. [69] MM Thalidomide and dexamethasone Favors thalidomide No difference
Stewart et al. [70] MM Thalidomide and prednisone Favors thalidomide No difference
McCarthy et al. [71] MM Lenalidomide Favors lenalinomide Favors lenalinomide
Attal et al. [72] MM Lenalidomide Favors lenolinomide No difference
Boccadoro et al. [73] MM Lenalidomide Favors lenolinomide Favors lenalinomide
Sonneveld et al. [74] MM Bortezomib versus thalidomide Favors bortezomib in del17

patients and those with renal failure
Favors bortezomib in del17
patients and those with
renal failure

Cavo et al. [75] MM Bortezomib and thalidomide
versus thalidomide

Favors bortezomib and thalidomide No difference

Mellqvist et al. [76] MM Bortezomib Favors bortezomib No difference

AL indicates aAcute leukemia; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; EFS, event-free survival; PFS, progression-free survival; NHL,
non-Hodgkin lymphoma; OS, overall survival; MM, multiple myeloma; DLBC, diffuse large B cell; CsA, cyclosporine; IFN, interferon; GVHD, graft-versus-host
disease.
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additional therapy after HCT [34]. MRD is also quantifiable
for Hodgkin’s and non-Hodgkin lymphomas (NHL) [38,39], is
predictive of outcome, and can be used to guidemaintenance
therapy [40,41].

It is important to remember that absence of detectable
MRD is not necessarily equivalent to absence of disease. In all
but the most sensitive of assays, MRD-negative patients are
still at risk of relapse and may still benefit from maintenance
therapy. Additionally, most hematological diseases are not
homogenous, and both oligoclonality [42] and the presence
of residual precursor cells of a different phenotype are
possible [43]. MRD testing, however, with appropriate
thresholds set on high sensitivity assays, may be useful in
management of post-HCT maintenance therapy in at least
3 distinct ways. First, “landmark” MRD testing using high-
sensitivity methods in the peri-HCT period can help stratify
patients in CR to identify those at the greatest risk of relapse
so that potential benefit can be weighed when the potential
risks of maintenance therapy are considered. For example,
the hazard ratio for post-HCT relapse for patients with MRD
detectable by MFC in BM was 4.9 to 8.49, compared with
those who were MRD-negative before allo-HCT for AML in
CR, even after adjustment for other risk factors [20,21].
Similarly, increased relapse risk has also been noted for
detection of MRD at single landmarks when measured after
HCT [9,23,34,44]. Second, serial monitoring of MRD might
help guide maintenance therapy in patients who have a
hematological andmolecular CR after HCT [45]. This group of
patients has a small but significant risk of hematological
relapse, and the ability to detect “molecular relapse” during
surveillance with sufficient lead time to allow therapeutic
intervention before the development of frank hematological
relapse could be of significant benefit. Third, MRD mea-
surements offer highly sensitive quantification of disease and
can, therefore, be used as an accurate biomarker to deter-
mine the efficacy of any proposed maintenance therapy
[46-51]. Adoption of this approach after HCT would poten-
tially allow rapid drug screening of potential agents to
prevent relapse and the opportunity for real-time personal-
ization of maintenance treatment for any individual patient
based on objective molecular response criteria.

PREVENTING RELAPSE AFTER AUTOLOGOUS
HEMATOPOIETIC CELL TRANSPLANTATION

Auto-HCT is a primary form of therapy for high-risk ma-
lignant hematologic disorders. These include first remission
high-risk or relapsed and refractory lymphomas, leukemias,
and MM. Myeloablative doses of chemotherapy, with or
without radiation, are given to destroy the tumor with an
infusion of hematopoietic cells to rescue the patient from
the marrow-toxic effects of the high-dose regimen. There
is no graft-versus-tumor effect accompanying auto-HCT,
unlike the case in allo-HCT. Thus auto-HCT relies on the
dose-intensive effects of the treatment regimen, resulting in
a higher relapse risk when compared with allo-HCT. How-
ever, allo-HCT is often complicated by graft-versus-host
disease, resulting in a higher treatment-related mortality
rates. Thus, strategies have been developed to increase
antitumor effects after auto-HCT to decrease relapse.

An early study demonstrated that relapse can occur due
to infusion of cancer cells in the graft [52]. Other studies have
demonstrated that the major source of relapse after auto-
HCT is endogenous tumor remaining in the patient and
that positive selection for CD34þ hematopoietic cells does
not result in improved survival [53]. Over the past 3 decades,
different strategies have been tested in efforts to improve
auto-HCT outcomes, including purging of the graft and
posteauto-HCT treatments to decrease relapse incidence.
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The use of posteauto-HCT treatments is attractive, since
the burden of malignant cells in the recipient is frequently
low after auto-HCT. In addition, the immune system has
been “reset” after the dose-intensive regimen, facilitating
immune manipulation against the primary cancer. Thus,
posteauto-HCT could be the optimal time to use mainte-
nance treatment.

There has been limited success using monoclonal anti-
bodies as maintenance therapy for B cell NHL. Neither
B4-blocked ricin (anti-CD19 conjugated with ricin) nor rit-
uximab (anti-CD20) improved event-free survival or OS in
this setting (Table 2) [54-56]. Rituximab improved PFS in
follicular lymphoma patients but had no effect on OS.

Induction of an antitumor immune response by immu-
nostimulatory agents has been tested. Interleukin-2 (IL-2)
maintenance has been given in a variety of dosing schedules
to up-regulate T cell immunity, but phase III studies showed
no effect on outcome after auto-HCT for NHL, AML, or ALL
[57]. Another approach was the induction of autologous
graft-versus-host disease using cyclosporine A with inter-
feron-g and IL-2. However, a randomized trial showed no
benefit with this approach in patients with poor-risk lym-
phoma [58]. Another randomized study compared linomide,
an immune-stimulatory agent, with placebo after auto-HCT
for AML and showed no difference in disease-free survival
or OS [59]. Other approaches evaluated in phase I/II studies
include IL-1 and granulocyte-macrophage colony stimu-
lating factor.

Chemotherapy has been used after auto-HCT in diseases
with a high probability of relapse, keeping in mind that
the role of auto-HCT in ALL and AML with or without he-
matopoietic graft purging has been uncertain due to the
persistently high-risk of post-transplantation relapse. Thus,
standard chemotherapeutic strategies have been tested but
are notwidely used for ALL or AML. Tyrosine kinase inhibitors
(TKIs) have been used as part of induction, consolidation
and maintenance therapy for Phþ ALL [60]. Generally, TKIs
(imatinib and dasatinib) have been well tolerated after auto-
HCT. One study showed evidence that auto-HCT followed by
TKI resulted in similar outcomes as allo-HCT [61].

PreventingMM relapse after auto-HCT has been a priority
because the disease recurs in most patients after transplan-
tation. MM MRD evaluation is important for determining
long-term disease control [14]. Several strategies have been
studied. These have included interferon, glucocorticoids, and
more recently, the immunomodulatory drugs, thalidomide,
lenalidomide and the proteasome inhibitor, bortezomib [62].
Thalidomide maintenance improved PFS but had less con-
sistent effects on OS [63-70]. Maintenancewith lenalidomide
improved PFS in all placebo-controlled studies [71-73]
(Table 2). One study did not show an OS benefit whereas
the other 2 did. Unexpectedly, the results also showed app-
roximately a 3-fold increased risk of second primary malig-
nancies in patients receiving lenalidomide maintenance
when compared with placebo. The CALGB 100104 study
showed an increased incidence of second primary malig-
nancies in patients receiving lenalidomide, whereas there
was an increased incidence of progression and death among
placebo arm patients [71]. The CALGB 100104 study de-
monstrated an increased incidence of second myeloid ma-
lignancies, whereas the IFM05-02 study demonstrated an
increased incidence of second lymphoid malignancies. The
IFM05-02 study did not show an OS difference and is the only
large study that discontinued lenalidomide maintenance (at
approximately a median time of 32 months). Bortezomib,
given as part of induction and maintenance, improved PFS
and OS as compared with chemotherapy induction (vincris-
tine/doxorubicin/dexamethasone) followed by thalidomide
maintenance [74]. The major benefit was seen primarily in
del17 cytogenetic disease and in patients with renal failure at
diagnosis.

Chemotherapy consolidation is another strategy used
to maintain disease response after auto-HCT. This approach
has been studied more often in Europe than in the United
States. Cavo et al. demonstrated that bortezomib/thalido-
mide/dexamethasone consolidation improved PFS when
compared with thalidomide/dexamethasone [75]. Mellqvist
et al. showed that single-agent bortezomib improved PFS
when compared with no therapy [76]. The IFM05 02 study
contained lenalidomide consolidation for both arms, so it
was not possible to determine the effect of consolidation. So
far, consolidation strategies have not shown OS benefit.

Immunomodulatory drugs have many different mecha-
nisms of action [77] (Table 3). In addition to a direct anti-MM
effect, lenalidomide and pomalidomide have potent immu-
nomodulatory effects. Lenalidomide reverses T cell anergy
at the immune synapse in CLL patients and could be utilized
to enhance immune surveillance after auto-HCT [78]. Lena-
lidomide potentiates the action of the anti-CS1 antibody
elotuzumab, resulting in clinical responses in patients with
relapsed and refractory MM [79]. Phase III trials are ongoing
to define the role of elotuzumab. A potential clinical trial
could examine elotuzumab with lenalidomide after auto-
HCT to determine whether the combination improves PFS
and OS as compared with lenalidomide alone. Lenalidomide
and rituximab have increased activity against relapsed
or refractory mantle cell lymphoma when retrospectively
compared with each agent alone [80].

Other strategies for maintaining response include the use
of antibody-drug conjugates, such as brentuximab-vedotin
(anti-CD30 and auristatin), inotuzumab-ozogamicin (anti-
CD22 and calicheamicin), and gemtuzumab ozogamicin [81-
83]. The latter is not available for clinical use in the United
States, but a pediatric AML study showed that it could be
used to decrease the burden of MRD [83]. Another antibody
strategy employs chimeric antibodies known as bispecific
T cell engagers (BiTEs) containing 2 different binding sites.
One binding site is for the target of interest and the other is
specific for CD3 so as to engage T cells and bring them close
to the target. Blinatumomab is a novel BiTE that binds CD19,
present on B cells, in NHL, CLL, and ALL [84]. The other
binding target of blinatumomab is CD3, which is associated
with the T cell receptor. In this way, the tumor cell functions
as an antigen-presenting cell (APC) and as the T cell target.
This close interaction results in T cell activation, T cell cyto-
toxicity, and target cell lysis. Maintenance protocols using
BiTE antibodies after auto-HCT may eradicate MRD and
provide prolonged disease control.

Targeted cellular therapy has been used to successfully
treat B cell malignancies. Chimeric antigen receptor T cells
(CAR Tcells) contain a receptor with a defined specificity. The
receptor is introduced into the patient’s immune effector
T cells in vitro. CAR T cells recognize and kill targets
expressing the B cell antigen CD19, for example. The cells are
expanded ex vivo and administered to the patient. The first
effective CAR T cell studies demonstrated efficacy in patients
with B cell malignancies [85-88]. The CAR T cells contain a
lentiviral vector or a gamma-retroviral vector expressing a
CD19 extracellular domain linked to T cell costimulatory re-
ceptor (CD137 or CD28) and CD3-zeta (a signal-transduction



Table 3
Summary of the Major Mechanisms of Action of Immunomodulatory Drugs

Effect Mechanism Relative Potencyþ ¼ Potency Factor of 10

Thalidomide Lenalidomide Pomalidomide

Immune modulation
CD4þ/CD8 þ T cell co-stimulation Increased tyrosine phosphorylation of CD28 and PI3-K

signaling pathway.
Increased activated protein-1 leading to increased IL-2
production.

þ þþþþ þþþþþ

Treg suppression Len and Pom inhibit Treg expansion and Foxp3
expression without affecting Treg survival and
apoptosis or IL-10 and TGFb expression.

� þ þ

Th1 cytokine production IMiD co-stimulation effect on T and NKT cells results in
increased Th1-cytokines IL-2 and IFNg.

þ þþþþþ þþþþþ

NK and NKT cell activation IMiDs DC-induced NKT cell expansion and IFNg
secretion.

þ þþþþ þþþþþ

ADCC Enhanced NK cell ADCC with len and pom correlates
with increased NK cell FasL and granzyme B but not
perforin expression.

� þþþþ þþþþ

Interference with tumor microenvironment interactions
Anti-angiogenesis (AA) IMiDs inhibit endothelial sprout formation and vessel

migration in vitro. AA occurs via modulation of
chemotactic factors involved in endothelial cell
migration including TNFa, VEGF and bFGF secreted by
BMSC instead of inhibition of endothelial cell
proliferation.

þþþþ þþþ þþþ

Anti-inflammation Thal, len and pom downregulate TNFa from LPS-
stimulated monocytes, shorten the half-life of COX-2
mRNA that resulted in reduction in PGE2. The exact
signaling pathway involved is uncertain.

þ þþþþ þþþþþ

Down regulation of adhesion molecules IMiDs downregulate surface adhesion molecule
expression plasma cells and PBMC, partially via the
downregulation of TNFa.

þ þþþþ þþþþþ

Anti-osteoclastogenic properties IMiDs:
downregulate osteoclastogenic mediator production
from BMSC, including IL-6, TNFa, MIP1-a and RANKL.
inhibit osteoclast maturation.
inhibit Wnt/b-catenin signalling pathway, that is
associated with osteoblastogenesis via the activation of
DKK1, a negative regulator of Wnt signalling.

þ þþþþ þþþþþ

Direct antitumor effects
Antiproliferative activity IMiDs induce (CDK) inhibitors: p21, p27 and p15,

resulting in CDK inhibition causing cell cycle arrest in
the G0/G1 phase of the cell cycle

þ þþþ þþþ

IMiDs induce changes in expression of Erg-1, 2 and
SPARC.

þ þþþ þþþ

IMiDs downregulate NFkB with leading to reduction of
the anti-apoptotic protein cIAP2 and FLIP expression.

þ þþþ þþþ

IMiDs variably inhibit caspase 3, 8 and 9. þ þþþ þþþ
AA indicates anti-angiogenesis; ADCC, antibody-dependent cellular cytotoxicity; bFGF, basic fibroblast growth factor; BMSC, bone marrow stromal cells; cIAP2,
cellular inhibitor of apoptosis protein 2; CD, cluster of differentiation; CKD, cyclin-dependent kinase; COX-2, cyclo-oxygenase-2; DC, dendritic cell; DKK1,
Dickkopf-related protein 1; Erg, early growth response genes; FasL, Fas ligand; FLIP, FLICE inhibitor protein; FOXP3, Forkhead box P3; IFN, interferon; IL,
interleukin; Len, lenalidomide; MIP-1a, macrophage inflammatory protein-1a; NK, natural killer; NKT, natural killer T; NFkB, nuclear factor kappa-light-chain-
enhancer of activated B cells; PBMC, peripheral blood mononuclear cells; Pom, pomalidomide; PI3-K, phosphatidylinositide 3-kinase; PGE2, prostaglandin E-2;
RANKL, receptor activator of nuclear factor kappa-b ligand; SPARC, secreted protein acidic and rich in cysteine; Treg, regulatory T cells; TGFb, transforming growth
factor b; TNFa, tumor necrosis factor alpha; Wnt, wingless/integration-1; VEGF, vascular endothelial growth factors. Adapted from Quach H et al. [77].
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component of the T cell antigen receptor) intracellular sig-
naling domains. A cytokine-release syndrome has occurred
with CAR T cell infusions and has been treated with gluco-
corticoids or tocilizumab. The former can damage the CAR
T cells, whereas the latter appears to mitigate the inflam-
mation without affecting the modified T cells. Of note, many
patients develop B cell aplasiawith hypogammaglobulinemia
requiring gammaglobulin replacement. Another example of
CAR T cell therapy utilized the Lewis-Y antigen in an AML
study [89]. Other approaches include genetically modified
APC with the generation of Epstein Barr virusespecific T cells
to treat Epstein Barr viruseassociated lymphoma [90].

Many issues require further study, including the ability
to regulate or terminate CAR T cell activity. Anaphylaxis
has been reported in some cases [91]. CAR T cells with an
antimelanoma-associated antigen specificity for the therapy
of melanoma and MM cross-reacted with the myocardial
protein titin. Two patients with melanoma and MM devel-
oped fatal cardiotoxicity due to this unexpected cross-
reactivity [92]. Therefore, many unanswered questions
remain. What is the long-term safety of the CAR T cells?
Many target antigens can be utilized for a variety of diseases,
making it necessary to identify the most appropriate target
for specific diseases [93]. Will auto-HCT be utilized for
cytoreduction or will CAR T cell therapy decrease the need
for auto-HCT? How will the cost for the generation of these
treatments be managed?

Immune strategies that incorporate pharmaceuticals, anti-
bodies directed to immunoregulatory pathways, and cellular
treatments, including dendritic cell vaccines, can be used to
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decrease the risk of relapse after auto-HCT. We are beginning
to understand the regulation of T cell immunity. The use of
immune checkpoint blockade therapy to magnify anticancer
activity of T cells is summarized in Table 4 [94]. A complex and
overlapping set of immunomodulatory molecules inhibits or
stimulates the T cell response to antigenic stimulation. The
antiePD-1 antibody pidilzumab has already been utilized to
reverse immune tolerance after auto-HCT for diffuse large
B cell NHL [95]. Other strategies include blocking the killer-
cell immunoglobulin-like receptor (KIR) pathway, blocking
indoleamine 2,3-dioxygenase to inhibit regulatory T cell (Treg)
production, blocking CTLA-4 with the use of ipilimumab, or
blocking the binding of Fas to Fas-ligand. Another approach
under investigation includes antibody-mediated blockade of
the CD200-CD200R inhibitory axis, which could magnify im-
mune response against tumors that express CD200. UsingAML
cells as APC alongwith immune upregulation to enhance Tcell
activity after auto-HCT is another strategy for generating T cell
immunity against AML. Strategies for preventing AML relapse
are reviewed in Martner et al. [96].

A recent NCI workshop summarized strategies for pre-
venting relapse after auto-HCT with a particular emphasis on
MM [97]. The ability of lenalidomide and dendritic cell/MM
Table 4
Potential Immune Checkpoint Intervention Targets to Increase Antitumor
Lymphocyte Activity

Antigen Presenting Cell Ligand Receptor Effect on
T cell
Response

PD-L1 (CD274) PD-1 (CD279) Negative
PD-L2 PD-1 Negative
B7-H3 Unknown Negative
B7-H4 Unknown Negative
GAL9, adenosine TIM3, A2aR Negative
CD200 C200R Negative
TNFSF14 (HVEM) BTLA Negative
B7-1/B7-2
(CD80/CD86)

CTLA-4 (CD152) Negative

MHC-Peptide TCR (first signal) KIR, LAG3
negative

B7-1/B7-2
(CD80/CD86)

CD28 Positive

B7RP1
(B7-H2 or L-ICOS)

ICOS Positive

CD137L CD137 Positive
OX40L OX40 Positive
CD70 CD27 Positive

Effect on APC response Receptor Ligand

Negative/Positive* CD200R CD200 (OX-2)

A2aR (also known as ADORA2A) indicates adenosine A2a receptor; B7RP1,
B7-related protein 1; BTLA, B and T lymphocyte attenuator; CD, cluster of
differentiation; CTLA4, cytotoxic T-lymphocyte antigen 4; GAL9 (also known
as LGALS9), galectin 9; HVEM (also known as TNFRSF14), herpesvirus entry
mediator; ICOS, inducible T cell costimulator; KIR, killer cell
immunoglobulin-like receptor; LAG3, lymphocyte activation gene 3; OX-2
membrane glycoprotein, orexin receptor type 2; PD-1 (also known as
PDCD1), programmed cell death protein 1; PD-L1 (also known as CD274),
PD-1 ligand; PD-L2 (also known as PDCD1LG2), PD-2 ligand; TIM-3 (also
known as HAVCR2), T cell membrane protein 3; TNF, tumor necrosis factor.
Multiple cosignaling by costimulatory (positive) and inhibitory molecules
(negative) interactions regulate T cell responses.
The major histocompatibility complex (MHC) molecule and peptide com-
plex is recognized by the T cell receptor (TCR). This occurs via an antigen-
presenting cell (APC) or a tumor cell. Several ligands and receptors have
been described as inhibitory or costimulatory with multiple possibilities,
including up and down regulation of TCR-mediated activation or anergy.
B7 family of co-stimulatory molecules.

* Negative: T cell coreceptors transmitting inhibitory signals after specific
ligand binding expressed by APCs or cancer cells. Positive: T cell coreceptors
transmitting stimulatory signals. Adapted from Ramsay AG [94].
fusion vaccines to enhance anti-MM immunity was among
the highlighted approaches [98].

Improving our knowledge of immune tolerance and
activation will likely lead to the application of new ap-
proaches that harness the immune system to treat and
eradicate MRD after auto-HCT. Thus, some of the original
hypotheses of immunosurveillance and growth of cancer
cells may be better understood so as to prevent tumor
growth in the context of immune activation without leading
to anergy. Employing a spectrum of pharmacologic, immu-
nologic cellular and antibody treatments may harness the
immune system and eradicate clonogenic cells and reduce
the likelihood of disease recurrence.

MAINTENANCE THERAPY AFTER ALLOGENEIC
TRANSPLANTATION

The hypothesis that the graft-versus-leukemia effect can
be completely dissociated from graft-versus-host disease
(GVHD) has driven a significant part of stem cell trans-
plantation research over the last 20 years, with limited suc-
cess. Most postestem cell transplantation interventions have
aimed at preventing GVHD while attempting to preserve
antitumor activity. The principles and advances discussed in
the previous sections of this review also apply here, and have
increased the interest in augmenting the graft-versus-
leukemia effect by pharmacologic (Table 5) or cellular ap-
proaches [99-102]. Although chronic myeloid leukemia and
Philadelphia-positive ALL remain the prototypes of the dis-
eases in which maintenance after allo-HCT has been pro-
posed and used, the availability of new monoclonal
antibodies and small molecules is leading investigators to
consider post-transplantation approachesmore often than in
the past. In addition, refinement of conditioning regimens
has led to significantly less toxicity but has not increased the
cure rate for most diseases.

Azacitidine, a DNA methyl transferase inhibitor, is argu-
ably the drug that has been most extensively studied in this
scenario (and is the only one currently in phase III evalua-
tion). In 2003, we hypothesized that low doses of this agent
could decrease the risk of relapse after allo-HCT, based on a
series of experiments in the 1980s and early 1990s showing
increased expression of tumor antigens and HLA molecules
in leukemia cells in vitro after exposure to hypomethylating
agents. In addition, growing evidence at the time suggested a
malignant cell differentiating effect of decitabine. Clinical
and laboratory studies showed that longer exposure to lower
doses were sufficient for demethylation and activation of
tumor suppressor gene promoters and were more effective
than higher doses that induced classic cytotoxic effects. A
phase I study indicated the dose of 32 mg/m2 daily for 5 days
was well tolerated and also suggested that the risk of chronic
GVHD incidence was decreased among patients receiving
longer schedules of the drug (administered in 30 day cycles)
[103]. Subsequently, investigators showed in murine models
that decitabine or azacitidine could induce tolerance,
possibly by increasing the numbers of T regulatory (Tregs)
[104,105]. Craddock et al. in England then showed that AML
patients receiving low-dose azacitidine had an increase in
CD8 þ T cell response to a variety of tumor antigens and also
augmented reconstitution of T regulatory cells after T
celledepleted transplantation [106]. Longer follow-up of the
British multicenter study showed that no patient developed
severe acute GVHD or chronic extensive GVHD. Interestingly,
azacitidine induced a CD8 þ T cell response to at least 1
tumor-specific peptide in 16 of 31 patients who received



Table 5
Highlighted Studies

Trial Title Clinicaltrials.gov
Responsible Party/Sponsor

Randomized controlled study of post-transplant azacitidine for
prevention of acute myelogenous leukemia and myelodysplastic
syndrome relapse (VZ-AML-PI-0129)

NCT00887068
MD Anderson Cancer Center

Safety study of oral azacitidine (cc-486) as maintenance therapy after
allogeneic hematopoietic stem cell transplantation in subjects with
acute myeloid leukemia or myelodysplastic syndromes

NCT01835587
Celgene Corporation.
Centers: University Hospitals Case Western Reserve University; MD
Anderson Cancer Center; Queen Elizabeth Hospital, Birmingham, UK;
Fred Hutchinson Cancer Research Center; Memorial Sloan Kettering
Cancer Center

Decitabine maintenance for acute myelogenous leukemia (AML) and
myelodysplastic syndrome (MDS) post transplant (AML MDS)

NCT00986804
Washington University School of Medicine

Dose-finding study of post-bmt decitabine maintenance treatment in
higher-risk MDS and MDS/AML (PODAC)

NCT01277484
Seoul St. Mary’s Hospital

VIDAZA-DLI Pre-emptive azacitidine and donor lymphocyte infusions
following allogeneic hematopoietic stem cell transplantation for high
risk acute myeloid leukemia and myelodysplastic syndrome

NCT01541280
Nantes University Hospital

Phase I/II study with oral panobinostat maintenance therapy following
allogeneic stem cell transplantation in patients with high risk
myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML)
(PANOBEST)

NCT01451268
Johann Wolfgang Goethe University Hospitals

Protocol in acute myeloid leukemia with FLT3-ITD (midostaurin) NCT01477606
University of Ulm

Standard of care þ/� midostaurin to prevent relapse post stem cell
transplant in patients with FLT3-ITDemutated AML (ARMOR)

NCT01883362
Novartis Pharmaceuticals/multicenter

Sorafenib maintenance therapy for patients with AML after allogeneic
stem cell transplant

NCT01398501
Massachusetts General Hospital

A study of AC220 given after transplant in subjects with acute myeloid
leukemia (AML)

This study is ongoing, but not recruiting participants.

NCT01468467
Sponsor: Ambit Biosciences Corporation

Dose-finding of lenalidomide as maintenance in multiple myeloma NCT00778752
Universitätsklinikum Hamburg-Eppendorf

Safety and efficacy of lenalidomide as maintenance therapy in patients
with newly diagnosed multiple myeloma following a tandem
autologous-allogeneic transplant

NCT01264315
Fondazione Neoplasie Sangue Onlus

Azacitidine after allo blood and marrow transplantation (BMT) for
chronic myelogenous leukemia (CML)

NCT00813124
MD Anderson Cancer Center

Allo transplant followed by lenalidomide and sirolimus maintenance in
high-risk multiple myeloma (MM)

NCT01303965
Indiana University School of Medicine

Lenalidomide after donor stem cell transplant and bortezomib in
treating patients with high risk multiple myeloma

NCT01954784
Case Comprehensive Cancer Center

Ofatumumab induction and maintenance in elderly patients with poor-
risk CLL in the context of allogeneic transplantation

NCT01809847
Technische Universität Dresden/Multicenter

Study of dasatinib to treat Philadelphia-positive acute lymphoblastic
leukemia (DASA-TRAS)

NCT01310010
Grupo Espanol de trasplantes hematopoyeticos y terapia celular

Brentuximab vedotin after donor stem cell transplantation in treating
patients with hematologic malignancies

NCT01620229
Fred Hutchinson Cancer Research Center

Registered in http://clinicaltrial.gov/.
Search terms: maintenance AND allogeneic, accessed on October 30, 2013.
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more than 3 treatment cycles, and this T cell response was
linked to improved 1-year OS (Craddock, personal commu-
nication). These exciting findings justify further prospective
evaluation of this approach. Meanwhile, a phase III study
comparing 1 year of low-dose azacitidine maintenance
therapy versus standard of care (no maintenance) is ongoing
at MD Anderson Cancer Center (Table 5). This study aims at
improving event-free survival of patients receiving allo-HCT
for high-risk AML and MDS.

The complexity of analyzing the effect of post-HCT in-
terventions is illustrated by the proposed effect of azacitidine
on Tregs. Komanduri et al. at the University of Miami
assessed the longitudinal recovery of Tregs in 12 patients
treated with varying numbers of azacitidine cycles, after T
cellereplete HCT at MD Anderson Cancer Center. Tregs were
defined by the CD4þCD25þCD127 low phenotype, which
was highly enriched for FOXP3 þ cells, and were assessed at
varying time points after 3 to 12 cycles of azacitidine (n ¼ 23
post-treatment samples). A preliminary analysis showed no
significant difference in the frequencies of Tregs within the
CD4þ compartment after treatment with azacitidine,
compared with the preazacitidine baseline. The Treg frac-
tions of CD4þ cells before and after azacitidine exposure
were 6.1% � 1.37 and 4.8% � .95, respectively (mean � SEM;
P ¼ .08; NS by paired, 2-tailed t test; Komanduri, personal
communication). It is possible that the T cell depletion used
in the British cohort could account for the difference be-
tween the 2 studies. The data illustrate the need for
controlled studies, as the Komanduri cohort did not include a
comparator group not receiving azacitidine.

FLT-3 inhibitors are also under active investigation as
maintenance therapy after HCT (Table 5). The rationale is
similar to the use of these drugs to treat AML, ie, patients
bearing the ITD mutation have a higher likelihood of relapse,
and maintenance therapy with FLT-3 inhibitors could reduce
recurrence rates after HCT. As with other drugs, tolerance
andmedication interactions after HCTare potential problems
to be addressed in future studies.

http://clinicaltrial.gov/
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Bug et al. in Germany are investigating another innovative
approach, using the deacetylase inhibitor panobinostat after
allo-HCT for AML or MDS. This drug has immunomodulatory
effects and is moderately active against myeloid leukemias.
The maximum tolerated dose is 20 mg 3 times weekly, with
treatment starting at day 60 after HCT. The dose-limiting
toxicity was colitis and nausea at the 30-mg dose [107].

The hypothesis that newer pharmacologic interventions
could have an addictive effect with cellular treatments post-
HCT is fascinating and opens a wide array of investigations,
as discussed in previous sections of this review. Conceivably,
antigen-specific or nonspecific cellular maintenance strate-
gies could be magnified by concomitant administration of
drugs that might enhance the effects of cellular therapy.
Several groups are currently investigating this possibility.
CONCLUSION
Post-transplantation treatments are under active inves-

tigation and are an exciting field of research. Treating
physicians, however, should keep in mind that the burden
of the proof falls on the investigators and that significant
costs are associated with maintenance therapy. Therefore,
well-conducted prospective, controlled clinical trials will be
necessary to demonstrate the benefits and risks of these new
approaches.
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