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a b s t r a c t

We present a numerical study of the elastic properties of bulk nanocrystalline materials based on a
continuum theory, introduced by Fried and Gurtin (2009), for nanoscale polycrystalline elasticity that
captures length-scale effects and accounts for interactions across grain boundaries via interface and
junction conditions. The theory involves a balance equation containing fourth-order gradients of the dis-
placement field. A relatively inexpensive, non-conforming finite-element method based on C0-continuous
basis functions is presented. We develop the variational form of the method and establish consistency. The
formulation weakly enforces continuity of derivatives of the displacement field across interelement
boundaries and stabilization is achieved via Nitsche’s method. Based on this approach, numerical studies
are performed for a polycrystal subject to an uniaxial deformation. Results indicate that the theory predicts
lower Young’s modulus for bulk nanocrystalline materials than for conventional coarsely-grained poly-
crystals. Moreover, as the grain size decreases below a certain threshold, the effective elastic modulus
decreases and the effective Poisson’s ratio increases. The distribution of the effective stress shows that
the theory captures high strain gradients in the vicinity of the grain boundaries and triple junctions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A bulk nanocrystalline material is a polycrystal with a grain size
of characteristic linear dimension less than 100 nm. Applications of
these materials are rapidly growing. For example, nanocrystalline
coatings and thin films are applied to protect cutting tools and
engineering components from abrasion, erosion, and corrosion
(Suryanarayana and Koch, 2000; Tjong and Chen, 2004) and to
reduce the friction of bearings and sliding components operating
without liquid lubricants (Koch, 2007).

The novel properties of nanocrystalline materials are generally
attributed to the high density of grain boundaries and junctions.
Due to the very small grain size, a larger number of the atoms lie
within grain boundaries and junctions than in conventional (i.e.,
coarsely-grained) polycrystals. Roughly 25% of the atoms of nano-
crystalline materials with a grain size of 10 nm and a grain bound-
ary thickness of about 1 nm are contained in grain boundaries and
grain junctions and that percentage increases twofold when the
grain size is reduced to 5 nm (Siegel, 1991; Sharma and Ganti,
2003). Grain-size dependence can be somewhat more pronounced
for nanocrystalline ceramics (Yeheskel et al., 2005). Strategies that
seek to capitalize on these features of nanocrystalline materials
have grown significantly over the past decade (Gleiter, 1989,
ll rights reserved.
2000; Suryanarayana and Koch, 2000; Kumar et al., 2003; Tjong
and Chen, 2004; Han et al., 2005; Meyers et al., 2006; Dao et al.,
2005; Koch, 2007; Ramesh, 2009).

While considerable attention has been and continues to be paid
to understanding the inelastic behavior of nanocrystalline materi-
als, relatively little work has been performed on the grain-size
dependent elastic properties of polycrystals. The earliest measure-
ments of the Young’s modulus for various nanocrystalline materi-
als such as iron (Fe), copper (Cu), and palladium (Pd) reported
values substantially lower than those of conventional polycrystals
(Gleiter, 1989; Nieman et al., 1991; Fougere et al., 1995; Sanders
et al., 1997). Although these low values were later attributed to
pores with cracks growing out of them (Fougere et al., 1995;
Sanders et al., 1997; Krstic et al., 1993; Shen et al., 1995), subse-
quent measurements on porosity-free pure cubic nanocrystalline
metals revealed reductions of moduli of up to 20% for sufficiently
small grains (Gallas and Piermarini, 1991; Tanimoto et al., 1999).

Recently, Fried and Gurtin (2009) introduced a continuum
theory for nanoscale polycrystalline elasticity that captures
length-scale effects and endows junctions with gradient-energy
induced conditions. The theory is aimed at situations that arise
before the onset of inelastic processes such as interfacial slip and
separation. The purpose of this paper is to explore the elastic
properties of nanocrystalline materials based on this theory
through the development and application of a relatively inexpen-
sive finite-element method.
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Fig. 1. Schematic view of a polycrystal with three grains ðB1;B2;B3Þ, three grain
boundaries ðI1; I2; I3Þ, three boundary junctions ð@J 1; @J 2; @J 3Þ, and a triple
junction J representing the intersection of I1; I2, and I3. Here, ni and mi (i ¼ 1;2;3)
are unit vectors normal and tangent to I i , respectively.
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Most numerical work on nanocrystalline materials has focused
on inelastic behavior. For example, molecular dynamics has been
widely used to predict that the primary mechanism responsible
for plastic deformation in nanocrystalline metals is grain boundary
sliding (Schiotz et al., 1999; Van Swygenhoven and Derlet, 2001;
Hasnaoui et al., 2003). While molecular dynamics has been a useful
tool in this regard, calculations for samples with experimentally
useful sizes and for realistic strain rates are prohibitively expen-
sive. Some numerical work has also been performed on elastic
properties of nanocrystalline materials. Bush (1993) used a bound-
ary-element method to study the effective Young’s modulus for
nanocrystalline palladium. Based on the work of Bush, Kim et al.
(1998) presented a similar approach and, in addition, they consid-
ered porosity and used the finite-element method. Kim and Bush
(1999) developed a phase mixture model consisting of a mixture
of crystalline phase, intercrystalline phase (grain boundary, triple
line junction, and quadratic node), and pores and investigated
the effects of grain size and porosity on the Young’s modulus of
nanocrystalline materials.

The balance equation arising from the theory of Fried and Gurtin
(2009) involves fourth-order partial derivatives. Hence, a standard
Galerkin approximation requires C1-continuous basis functions
such that both the displacement field and its first derivatives are
continuous. Examples include functions based on Hermite polyno-
mials. While relatively simple to construct on uniform meshes,
unstructured meshes present difficulties and certain partitions are
not permissible with isoparametric versions of Hermite elements
(e.g., Petera and Pittman, 1994). Mixed finite-element methods
present a relatively expensive alternative, requiring separate
approximations for primary and secondary fields (e.g., Fortin and
Brezzi, 1991). While isogeometric analysis (Hughes et al., 2005)
circumvents some of these issues, generating B-spline bases that
conform to a polycrystalline geometry is not a trivial exercise.

To overcome some of the drawbacks of these traditional meth-
ods, we adapt a continuous–discontinuous Galerkin (CDG) method
proposed by Engel et al. (2002). This is essentially a non-conforming
method — as the basis functions, while continuous, do not lie in the
proper space for a strict Galerkin method. Continuity requirements
for the derivatives are weakly satisfied by borrowing concepts from
discontinuous Galerkin methods, in particular by extending the
variational equation to include stabilization terms on interelement
boundaries. Engel et al. (2002) applied the method to solve prob-
lems involving fourth-order elliptic operators arising from theories
for thin beams and plates and strain-gradient elasticity. Moreover,
Kim et al. (2007) employed this method to study a fourth-order
balance equation arising from a second-gradient theory for fluid
flows at small length scales.

In the present paper, we develop a comparable formulation of
the second-gradient theory for the study of polycrystalline elastic-
ity. The CDG method we employ here builds upon important con-
cepts from the discontinuous Galerkin literature, in particular
those schemes designed for spatial discontinuities. The method
we present is closely tied to an approach introduced by Nitsche’s
(1970) for elliptic and parabolic problems. A similar effort to
consistently embed constraints into a weak form was proposed
by Babuška (1973). Douglas and Dupont (1976) subsequently aug-
mented Nitsche’s method by developing interior penalty methods
for linear second-order elliptic and parabolic equations. The work
of Baumann (1997) on a discontinuous finite-element method for
fluid mechanics also relies on concepts that can be traced back to
the work of Nitsche. Detailed descriptions of Nitsche’s method
are provided by Griebel and Schweitzer (2002), Wriggers and
Zavarise (2008), and Annavarapu et al. (2012).

The outline of this paper is as follows. In the next section, we pres-
ent the system of general balance equations along with interfacial
and junction conditions at grain boundaries developed by Fried
and Gurtin (2009). In Section 3, the variational formulation for those
equations and conditions is described. In Section 4, we introduce the
non-conforming variational formulation and discretization with
finite elements. In Section 5, results of numerical studies designed
to explore the performance of the theory are described. Finally, a
summary and concluding remarks are given in Section 6.

2. Governing equations

We work with the generalized balance equations, introduced by
Fried and Gurtin (2009), associated with grain boundaries and
triple junctions for second-grade nanocrystalline elastic materials
undergoing infinitesimal deformations. The theory is based on a
nonstandard form of the principle of virtual power pioneered by
Gurtin (2001). The principle of virtual power is used as a basic tool
in determining the structure of the tractions, grain boundary and
junction conditions, and the local force balances. We remark that
the theory neglects stresses, such as surface tension, acting within
grain boundaries and the free energy of the grain boundaries. The
theory also assumes that the displacement field remains continu-
ous across grain boundaries.

We consider a closed polycrystalline body B consisting of N
grains identified with the closed regions B1;B2; . . . ;BN that occupy:

B ¼ B1 [ B2 [ � � �BN : ð1Þ

The system

@B ¼ @B1 [ @B2 [ � � � @BN

of grain boundaries is assumed to be the union of @B. A finite number
of smooth surfaces which pairs of grains intersect are called inter-
faces I and triple junctions J are curves at which three interfaces
intersect. Boundary junctions @J are curves along which an interface
abuts the boundary @B. Fig. 1 shows a schematic view of a polycrys-
tal with three grains and internal boundaries including a triple
junction. The triple junction J at which the grain boundaries
I1; I2, and I3 intersect can be defined by

J ¼ I1 \ I2 \ I3; ð2Þ

and three boundary junctions are defined as

@J 1 ¼ I1 \ @B; @J 2 ¼ I2 \ @B; @J 3 ¼ I3 \ @B: ð3Þ

Mechanical balances associated with grain boundaries and triple
junctions are derived, assuming that

surface stress within the grain boundaries is negligible: ð4Þ
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In addition, the body B is assumed to be a closed region, and, as is
customary,

all test fields / are required to be smooth on B: ð5Þ

In view of (4), it seems reasonable to assume that the internal
power W intð/;RÞ for an arbitrary subregion R of B is obtained by
summing over the internal power over the individual grains in R.
Then,

W intð/;RÞ ¼
Z

R
ðT : grad/þ G : rcurl/Þdv ; ð6Þ

whereZ
R
ðT : grad/þG :rcurl/Þdv ¼

X
Bn2R

Z
Bn

ðT : grad/þG :rcurl/Þdv; ð7Þ

in which T the Cauchy stress and T : grad/ is the stress power. A
second-order tensor-valued hyperstress G is introduced via an inter-
nal power expenditure of the form G : rcurl/.

In conjunction with the internal power expenditure (6), the cor-
responding external power expenditure has the form

Wextð/;RÞ ¼
Z
S

tS � /þmS �
@/

@n

� �
daþ

Z
R

b � /dv; ð8Þ

in which tS and mS represent tractions on the bounding surface
S ¼ @R, while b represents the net inertial and noninertial body force
acting within the body. In (8), the term

mS �
@/

@n
;

which is absent from classical theories, is needed to balance the ef-
fects of the internal-power term G : rcurl/, which involves the
second gradient of /.

Here, rather than work with an arbitrary subregion R, we work
with the region B occupied by the body, assuming throughout that
@B is smooth. The principle of virtual power with R ¼ B and S ¼ @B
is therefore based on the requirement that the external and inter-
nal powers be balanced asZ

B
ðT : grad/þ G : rcurl/Þdv

¼
Z
@B

tS � /þmS �
@/

@n

� �
daþ

Z
B

b � /dv ð9Þ

for all arbitrary regions B and any choice of the virtual field /. Un-
like test fields /, which are smooth, the stresses T and G generally
suffer jump discontinuities across grain boundaries.

Consequences of the virtual power principle and the require-
ment that the internal power expenditure be frame-indifferent
are that:

(i) the classical balance divTþ b ¼ 0 must be replaced by the
internal balance
divTþ curldivGþ b ¼ 0; in each grain interior; ð10Þ
with interfacial conditions
sTtn ¼ divSðsGtn�Þ � n� divsGt;

n� sGtn ¼ 0;

�
on I ; ð11Þ
and a triple junction condition
X3

ı¼1

mı � sGtını ¼ 0 on J ; ð12Þ
(ii) Cauchy’s classical condition tS ¼ Tn for the traction across a
surface S with unit normal n must be replaced by boundary
conditions
tS ¼ Tn� divSðGn�Þ þ n� ðdivGþ 2HGnÞ;
mS ¼ Gn� n;

�
on @B n @J ;

ð13Þ
and a boundary junction condition
m � sGtn ¼ �mI � sGtnI on @J ; ð14Þ
in which divS is the divergence operator on S ¼ @B and
H ¼ � 1

2 divSn is the mean curvature of S. In (11)1 and (13)1, w�
denotes the axial tensor of a vector w, as defined via the require-
ment that

ðw�Þv ¼ w� v

for all vectors v; alternatively, given an orthonormal Cartesian basis
fe1; e2; e3g and using �ijk to denote the alternating symbol,

ðw� Þij ¼ ei � ½ðw�Þej� ¼ �ikjwk:

Consider an interface I separating grains Bm and Bn, and let

R ¼ Bm [ Bn; Rþ ¼ Bn; R� ¼ Bm:

Further, let n be the unit normal field on I directed outward from
R�. Given any field f , sft is the jump in f across I , i.e.,

sft ¼ fþ � f�; ð15Þ

where fþ and f� are the values of f at the Rþ side and the R� side of
I , respectively.

When supplemented by constitutive equations for the stress
and hyperstress, the balance (10) yields a force balance equation.
We restrict attention to a homogeneous and isotropic elastic mate-
rial. In view of the assumption of infinitesimal deformations, Fried
and Gurtin (2009) provided in which case the stress T and hyper-
stress G are given by

T ¼ 2lEþ kðtrEÞ1 ð16Þ

and

G ¼ �lðgradxþ ðgradxÞ>Þ; ð17Þ

where E is the strain tensor with

E ¼ 1
2
ðgraduþ ðgraduÞ>Þ ð18Þ

for the displacement field u.
Substituting (16) and (17) into (10) yields the force balance

equation

lDuþ ðkþ lÞrdivuþ �lDðrdivu� DuÞ þ b ¼ 0; ð19Þ

which is non-dimensionalized by introducing a characteristic
length scale L and a characteristic displacement U. For convenience,
the symbols used in the original dimensional variables are retained,
in which case the dimensionless version of (10) reads

Duþ kþ l
l
rdivuþ

�l
lL2 Dðrdivu� DuÞ þ b ¼ 0: ð20Þ

The dimensionless interfacial conditions (11) and boundary condi-
tions (13) consistent with the nondimensionalization leading to
(20) are

sT0tn ¼
�l

lL2 divSðsG0tn�Þ �
�l

lL2 ðn� divsG0tÞ;

t0S ¼ T0n�
�l

lL2 divSðG0n�Þ þ
�l

lL2 ½n� ðdivG0 þ 2HG0nÞ�;
ð21Þ

where T0 ¼ 2Eij þ k
l ðtrEÞ1, G0 ¼ ðgradxþ ðgradxÞ>Þ, and t0S ¼ LtS=l.

Notice that the dimensionless equations for the remaining condi-
tions are unchanged.
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The dimensionless equations result in the parameter:

d ¼
�l

lL2 ; ð22Þ

where l is the standard shear modulus, �l is a corresponding gradi-
ent modulus that enters the constitutive relation for the hyperstress
G, and L might be chosen to coincide with the size of a grain. Impor-
tantly, the classical balance equations are recovered from (20) as d
approaches to zero. On the other hand, as d increases, both the
balance equation (20) and interfacial and boundary conditions
(21) indicate that the influence of the gradient modulus and the
size-dependence of the material properties becomes significant.

3. Variational formulation for a polycrystal

For numerical simulations, we consider a mixed boundary-
value problem in which a portion Sfree of S ¼ @B is loaded by
tractions tS and hypertractions mS and the remainder Sfxd is fixed,
in which case

tS ¼ Tn� divSðGn�Þ þ n� ðdivGþ 2HGnÞ;
mS ¼ Gn� n

�
on Sfree ð23Þ

and

u ¼ @u
@n
¼ 0 on Sfxd: ð24Þ

Consistent with (24), we refer to an arbitrary test field ~u as kinemat-
ically admissible if

~u ¼ @
~u
@n
¼ 0 on Sfxd: ð25Þ

Given such a field, we derive the variational formulation of the gov-
erning equation (10) for a polycrystal with internal grain bound-
aries and triple junctions. We emphasize that the stresses T and G
generally suffer jump discontinuities across grain boundaries. As-
sume that the displacement field u is smooth across grain bound-
aries and the moduli l; k, and �l vary smoothly from grain to grain.

With these assumptions, we choose the admissible space
V � H2ðBÞ for the solution field, where HmðBÞ denotes the classical
Sobolev space of order m. Using the principal of virtual power,
Fried and Gurtin (2009) derived the variational formulation with
internal conditions that hold across interfaces and at triple junc-
tions. The variational formulation reads: find u 2 V, such that

Tðu; ~uÞ ¼ ‘ð~uÞ 8~u 2 V; ð26Þ

where

Tðu; ~uÞ ¼ WBðu; ~uÞ �WIðu; ~uÞ �WJ ðu; ~uÞ �W@J ðu; ~uÞ; ð27Þ

WBðu; ~uÞ ¼
Z

B
ðT : grad ~uþ G : gradcurl ~uÞdv ; ð28Þ

WIðu; ~uÞ ¼
Z
I
ðsTtn� divSðsGtn�Þ þ 2Hn� sGtn

þ n� divsGtÞ � ~uda�
Z
I
ðn� sGtnÞ � @

~u
@n

da; ð29Þ

WJ ðu; ~uÞ ¼
X3

ı¼1

Z
J
ðmı � sGtnıÞ � ~uds; ð30Þ

W@J ðuh; ~uhÞ ¼
Z
@J
ðm � sGtnþ mI � sGtnI Þ � ~uds; ð31Þ

and

‘ð~uÞ ¼
Z
Sfree

tS � ~uþmS �
@~u
@n

da: ð32Þ
4. Finite-element discretization

We introduce our numerical formulation based on the non-
conforming method proposed by Engel et al. (2002). In this
approach, the basis functions are C0-continuous — so that their first
and higher-order derivatives are discontinuous. Continuity of the
first and higher-order derivatives is weakly enforced by adding
weighted residual terms to the variational equation on element
boundaries and invoking stabilization techniques. The number of
unknowns per element arising for this method is considerably
fewer than for alternatives based on traditional strategies such as
C1-continuous basis functions. Hereafter, to avoid confusion with
interfaces between grain boundaries, the term element interior
boundaries is used to describe interelement boundaries.

We use a Galerkin method to approximate the solution to
(26) and state the weak form of the variational problem in
terms of finite-dimensional spaces Vh. We use a nonconforming
method where Vh is not a subspace of V. To construct the
bases, we consider a regular finite-element partition Qh for B as
defined via

Qh ¼
[N
n¼1

Qh
n;

where N is the number of grains and the finite-element partition Qh
n

for each grain Bn is constructed as

Qh
n ¼

[Mn

e¼1

Qe;

with an element Qe and Mn the total number of elements in the
mesh of Bn. Hence, the total number of elements M for B is the
sum of all the elements in grains — i.e., M ¼

PN
n¼1Mn and Qh � B.

We choose approximation functions that are continuous on the
entire domain but discontinuous in first and higher-order deriva-
tives across element interior boundaries. Further, we consider ele-
ment interiors ~Q defined via

~Q ¼
[M
e¼1

Qe: ð33Þ

The union ~C of element interior boundaries is expressed as

~C ¼
[Ni

i¼1

Ci; ð34Þ

where Ni denotes the number of element interior boundaries. In
two dimensions, these refer only to those element edges that are
shared by two spatially adjacent elements, and do not include edges
along the physical boundary @B.

The jump across element interior boundaries is also defined as
in (15). The average hhfii of f across element interior boundaries is
defined as

hhfii ¼ 1
2
ðfþ þ f�Þ: ð35Þ

From the definitions of the jump and average operators, we have
the useful identity

sfgt ¼ sfthhgii þ hhf iisgt: ð36Þ

The method we propose to approximate the solution to the
force balance equation (10) can then be stated as: find uh 2 Vh,
such that

Tcdðuh; ~uhÞ ¼ ‘cdð~uhÞ; 8~uh 2 Vh; ð37Þ

where
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Tcdðuh; ~uhÞ ¼ WBðuh; ~uhÞ �WIðuh; ~uhÞ �WJ ðuh; ~uhÞ �W@J ðuh; ~uhÞ;
ð38Þ

WBðuh; ~uhÞ ¼
Z

~Q
ðTh : grad ~uh þ Gh : gradcurl ~uhÞdv

�
Z

~C
hh~Ghnii � scurluhtda�

Z
~C
scurl ~uht � hhGhniida

þ si

Z
~C
scurl ~uht � scurluhtdaþ sg

Z
I

s~uht � suhtda; ð39Þ

WIðuh; ~uhÞ¼
Z
I
ðsTh

tn�divSðsGh
tn�Þþ2Hn� sGh

tn

þn�divsGh
tÞ � ~uh da�

Z
I
ðn� sGh

tnÞ �@
~uh

@n
da; ð40Þ

WJ ðuh; ~uhÞ ¼
X3

ı¼1

Z
J
ðmı � sGh

tnıÞ � ~uh ds; ð41Þ

W@J ðuh; ~uhÞ ¼
Z
@J
ðm � sGh

tnþ mI � sGh
tnI Þ � ~uds; ð42Þ

and

‘cdð~uhÞ ¼
Z
Sfree

tS � ~uh þmS �
@~uh

@n

� �
da: ð43Þ

In (39), si and sg denote the stabilization parameters for element
interior boundaries and grain boundaries, respectively. The basic
structure ofWB follows from Nitsche’s (1970) method for enforcing
constraints on element interfaces.WI ;WJ , andW@J represent jump
conditions at grain boundaries, triple junctions, and boundary junc-
tions, respectively.

4.1. Consistency

The consistency of the method is derived through successive
application of the divergence theorem to (37). Using the equality
(36), we deriveZ

~Q
Th : grad ~uh dv ¼�

Z
~Q

divTh � ~uh dv þ
Z
S

Thn � ~uh da

þ
Z

~C
ðsThnt � hh~uhii þ hhThnii � s~uhtÞda: ð44Þ

Similarly, the divergence theorem applied twice yieldsZ
~Q

Gh : gradcurl ~uh dv

¼ �
Z

~Q
ðcurldivGhÞ � ~uh dv þ

Z
S
ðGhn � curl ~uh

þ ðn� divGhÞ � ~uhÞdaþ
Z

~C
ðsGhnt � hhcurl ~uhii

þ hhGhnii � scurl ~uhtÞdaþ
Z

~C
ðsn� divGh

t � hh~uhii

þ hhn� divGhii � s~uhtÞda: ð45Þ

Here, we take advantage of the equalityZ
S

Ghn � curl ~uh da ¼
Z
S
ðdivSðGhn�Þ � 2Hn� GhnÞ � ~uh
�

þðn� GhnÞ � @
~uh

@n

�
da: ð46Þ

A detailed derivation of this equality is provided by Fried and Gurtin
(2009).

The consistency of the method then follows upon substituting
the results (44)–(46), into (37), viz.
0 ¼ Tcdðuh; ~uhÞ � ‘cdð~uhÞ

¼
Z

~Q
ðcurldivGh þ divThÞ � ~uh dv �

Z
~C
hh~Ghnii � scurluhtda

þ
Z

~Q
sThn� n� divGh þ divSðGhn�Þ � 2Hn� Ghnt � hh~uhiida

þ
Z

~Q
sn� Ghnt �

��
@~uh

@n

��
da�

Z
Sfree

ðtS � Thn� n� divGh

þ divSðGhn�Þ � 2Hn� GhnÞ � ~uh da

�
Z
Sfree

ðmS þ n� GhnÞ � @
~uh

@n
daþ si

Z
~C
scurl ~uht � scurluhtda

þ sg

Z
I

s~uht � suhtda�WIðuh; ~uhÞ �WJ ðuh; ~uhÞ �W@J ðuh; ~uhÞ:

ð47Þ

From (47), we deduce the governing equations

divTh þ curldivGh ¼ 0 in ~Q; ð48Þ

tS ¼ Thn� divSðGhn�Þ þ n� ðdivGh þ 2HGhnÞ;
mS ¼ Ghn� n;

)
on Sfree;

ð49Þ

with interfacial conditions

sTh
tn ¼ divSðsGh

tn�Þ � 2Hn� sGh
tn� n� divsGh

t;

n� sGh
tn ¼ 0;

)
on I ;

ð50Þ

the triple-junction conditionX3

ı¼1
ðmı � sGh

tnıÞ ¼ 0; on J ; ð51Þ

the boundary-junction condition

m � sGh
tn ¼ �mI � sGh

tnI ; on @J ; ð52Þ

and jump conditions

scurl ~uht ¼ 0;

sThn� n� divGh þ divSðGhn�Þ � 2Hn� Ghnt ¼ 0;

sn� Ghnt ¼ 0;

9>=
>; on ~C:

ð53Þ

In the above, (48) and (49) enforce the force balance equation on
the element interiors and the traction boundary conditions on free
surfaces of the domain, respectively. In addition, (50)–(52) enforce
the interfacial condition, the triple-junction condition, and the
boundary-junction condition, respectively. Finally, (53)1 ensures
the continuity of the first derivatives across element boundaries,
and (53)2,3 ensure the continuity of the traction across the interel-
ement boundaries.

4.2. Element choice for the displacement field

We establish our formulation using four-node isoparametric
quadrilateral elements with piecewise-quadratic basis functions
for the displacement field. To begin, we introduce the space

PjðQeÞ ¼ fv : v is a polynomial of degree 6 j on Qeg ð54Þ

of complete polynomials over element Qe. Using M to denote the
number of nodes in the mesh, we then write

f/Ig ¼ f/I 2 C0ðQhÞ : /IjQe 2 P2ðQeÞg; I ¼ 1 . . . M; ð55Þ

for the set of quadratic Lagrangian isoparametric functions. The
approximation to the displacement field is then given by



Fig. 2. Schematic of a polycrystal with displacement free to slide vertically on the
left end and uniform traction r0 applied to the right end.
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uhðxÞ ¼
XM

I¼1

/IðnðxÞÞuI; ð56Þ

where uI is the nodal value at node I and n the coordinates in a ref-
erence element.

To approximate the virtual displacement ~uh, we use expansions
analogous to (56). Upon substituting these expressions into (37)
and invoking the arbitrariness of the virtual function, we obtain
the linear algebraic system of equations

Kd ¼ f; ð57Þ

which can be solved to yield the discrete approximation d to the
solution.

5. Numerical studies

In this section, numerical simulations designed to explore the
performance of the theory are described. In particular, we investi-
gate the elastic properties of nanocrystalline materials along with
the effects of the length scale d and interface and junction condi-
tions across grain boundaries.

To simulate the behavior of polycrystals, we consider a two-
dimensional polycrystal, shown in Fig. 2, with length L = 100 nm
and height h = 100 nm and displacement free to slide vertically
on the left end. The polycrystal is also subject to a uniform traction
Fig. 3. (a) Schematic view of a computational domain for a polycrystal with three grains a
elements.
r0 applied to the right end. Conditions of plane stress are assumed
to prevail.

5.1. Effective stress distribution for a polycrystal

To begin, we study the distribution of the effective stress for a
polycrystal with the elastic modulus of E ¼ 1:0� 109 and Poisson’s
ratio of m ¼ 0:30. The uniform traction r0 ¼ 1:0� 107 is applied to
the right end of the polycrystal. The variational formulation (37)
involves two stabilization parameters si and sg . For the stabiliza-
tion parameters, we take si ¼ sg ¼ 1:0� 1012.

The first structure we tested is a polycrystal with three grains as
shown in Fig. 3(a). Three grains meet at a common triple-junction,
at which three grain boundaries intersect. The mesh model, refined
at the triple-junction, with 3944 elements is also shown in
Fig. 3(b).

The plot of the stress rxx, normalized by the applied uniform
traction r0, is displayed in Fig. 4. For comparison, the stress distri-
bution for the polycrystal without grains is also presented in panel
(a) of the figure. The stress distribution for the polycrystal without
grains is uniform over the entire domain. On the other hand, the
result for a polycrystal with grains in panel (b) of the figure shows
a high stress concentration at the triple-junction.

Fig. 5 shows the plot of the normalized effective stress distribu-
tion for a polycrystal with eight grains and multiple triple
junctions. The plot is obtained using the mesh model with 8816
elements as shown in the figure. As shown in the previous exam-
ple, the result shows higher stress concentrations at triple junc-
tions than at grain interiors and boundaries. These results
indicate that our theory can describe high strain gradients in the
vicinity of the grain boundaries and triple junctions for nanoscale
polycrystals.

5.2. Influence of the length scale d

We investigate the influence of the length scale d ¼ �l=lL2 on
the effective elastic properties. To avoid confusion, we denote by
E0 and m0 the elastic modulus and Poisson’s ratio of conventional
coarsely-grained polycrystals, respectively. On the other hand, E
and m represent the effective elastic modulus and effective
Poisson’s ratio for nanocrystalline materials, respectively. In this
section, our simulations are performed for two cases of elastic
moduli E0 ¼ 1:0� 105 Pa and 1:0� 109 Pa and Poisson’s ratio
m0 ¼ 0:3. We take si ¼ sg ¼ 1:0� 108 Pa for E0 ¼ 1:0� 105 Pa and
si ¼ sg ¼ 1:0� 1012 Pa for E0 ¼ 1:0� 109 Pa.
nd one triple-junction. (b) The mesh model, refined at the triple-junction, with 3944



Fig. 4. Distribution of the effective stress rxx , normalized by the applied traction r0,
for a polycrystal (a) without grains and (b) with three grains (d ¼ 4:68� 10�6).

Fig. 7. A stress–strain diagram showing the linear elastic deformation for
E0 ¼ 1:0� 105 Pa and the slope represents the effective elastic modulus E.
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As shown in Fig. 6, simulations are performed for three cases:
two grains without triple junctions and eleven and twenty-three
grains with multiple triple junctions. We apply uniform tractions
of r0 ranging from 1:0� 103 Pa to 4:0� 103 Pa for E0 ¼ 1:0� 105

Pa and from 1:0� 107 Pa to 4:0� 107 Pa for E0 ¼ 1:0� 109 Pa to
the right end. Recall that the theory under consideration was
developed to study the elastic response of nanocrystalline
materials undergoing infinitesimal deformations. Fig. 7 shows a
stress–strain diagram for E0 ¼ 1:0� 105 Pa and two cases of
d ¼ 1:3� 10�6 and 2:6� 10�5. Not surprisingly, the plot shows that
the theory gives rise to a linear elastic relationship between stress
and strain. Notice that stress–strain diagrams for other cases of d
and elastic moduli also show linear relationships. As a conse-
quence, we obtain the effective elastic modulus E from the slope
of a stress–strain curve as shown in the figure. The strain � in the
x-direction is computed at the right end.
Fig. 5. (a) The mesh model, with 8816 elements, for a polycrystal with eight grains and m
of the effective stress rxx normalized by the applied stress r0 (d ¼ 1:25� 10�6). (For inter
web version of this article.)

Fig. 6. Schematic of polycrystals with (a) 2 grains witho
Fig. 8 shows log–log plots of the effective elastic modulus E,
normalized by E0, versus d for E0 ¼ 1:0� 105 Pa and 1:0� 109 Pa.
Plots are provided for three cases of polycrystals shown in Fig. 6.
While the effective elastic modulus decreases with increasing d
for polycrystals with triple junctions, the modulus is almost inde-
pendent of a change of d for a polycrystal without triple junctions.
Both results also show that, as the number of grains increases (i.e.,
grain size decreases), the effective elastic modulus decreases. This
is because the length scale effects and interactions across grain
boundaries become significant with increasing d and the number
of grains. Importantly, as might be expected, the elastic modulus
ultiple triple junctions and the red line represents grain boundaries. (b) Distribution
pretation of the references to color in this figure legend, the reader is referred to the

ut triple junctions, (b) 11 grains, and (c) 23 grains.



Fig. 8. Log–log plots of the effective elastic modulus E, normalized by E0, versus d for (a) E0 ¼ 1:0� 109 Pa and (b) E0 ¼ 1:0� 105 Pa.

Fig. 9. A log–log plot of the effective Poisson’s ratio m, normalized by m0, versus d for
E0 ¼ 1:0� 105 Pa.

Fig. 10. Schematic of polycrystals with (a) 6 grains, (b) 10 grains
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E0 of the conventional grain-sized polycrystal is recovered in the
limit d! 0.

The effective Poisson’s ratio m, normalized by m0, versus d is plot-
ted in Fig. 9. Here, the effective Poisson’s ratio is computed from
the ratio of the lateral strain �yy and the axial strain �xx — i.e.,
m ¼ ��xx=�yy. Interestingly, in contrast to the effective elastic mod-
ulus, the effective Poisson’s ratio increases with increasing d and
the number of grains (i.e., decreasing grain size). Importantly, the
effective Poisson’s ratio m reduces to Poisson’s ratio m0 of the con-
ventional grain-sized polycrystal in the limit d! 0.
5.3. Effective elastic properties for nanocrystalline copper

As we mentioned in the introduction, early observations for
nanocrystalline materials gave lower Young’s properties than for
conventional coarsely-grained polycrystals. We investigate whether
our theory can predict the variation of the Young’s properties with
grain size for a nanocrystalline metal. The nanocrystalline material
, (c) 11 grains, (d) 14 grains, (e) 23 grains, and (f) 30 grains.



Fig. 11. Plots of the predicted variation of (a) the normalized effective elastic modulus and (b) the normalized effective Poisson’s ratio with the normalized grain area A=A0 for
nanocrystalline copper.

Fig. 12. Comparison of numerical results with experimental results obtained by
Sanders et al. (1996) (M), Sanders et al. (1997) (�), and Nieman et al. (1991) (�).
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we used to test is copper (Cu), which, for a material with conven-
tional grain size has Young’s modulus E0 ¼ 115 GPa and Poisson’s ra-
tio m0 ¼ 0:33 (Sharma and Ganti, 2003; Kim et al., 1998).

We consider a polycrystal of length L ¼ 100 nm and height
h ¼ 100 nm and take d ¼ 1:39� 10�5. Simulations are performed
on polycrystals, displayed in Fig. 10, ranging from six grains to
Fig. 13. Distribution of the effective stress rxx , normalized by the applied stress r0, for N
thirty grains. The size of grains, based on the maximum distance
between edges in a grain, approximately ranges from 27 nm to
73 nm. We note that as the number of grains increases, the portion
of grain boundaries and triple junctions is increased and grain size
decreases.

Fig. 11 shows plots of the predicted variation of the normalized
effective elastic modulus and Poisson’s ratio versus grain area A,
normalized by the total area A0 (i.e., A0 ¼ Lh), for nanocrystalline
copper. The effective elastic modulus reduces as the grain area de-
creases. In contrast to the effective elastic modulus, as grain area
decreases, the effective Poisson’s ratio increases. These results
are reasonable, as a larger fraction of the atoms belongs to the
grain boundaries and the material comprising those boundaries
is softer than that of the adjacent grains. In particular, the result
shows an approximate 5% reduction of the effective elastic modu-
lus for nanocrystalline copper with a grain size of 27 nm. This re-
sult is comparable to the experimental result which shows about
a 6% reduction of the elastic modulus for nanocrystalline copper
with grain size of 26 nm obtained by Sanders et al. (1996) and
compares favorably with the analytical results of Sharma and Ganti
(2003). This finding indicates that our theory can be used to
capture the reduction of the elastic moduli of nanocrystalline
materials. In Fig. 12, we provide a plot of the effective elastic mod-
ulus which shows comparison of our numerical results with exper-
imental results. Despite the simplicity of our theory, the numerical
results reproduce the experimental results obtained by Sanders
et al. (1996, 1997) fairly well.
C copper with (a) 23 grains at 14,560 elements and (b) 30 grains at 18,648 elements.
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In Fig. 13, we display the distribution of the effective stress for
nanocrystalline copper with twenty-three and thirty grains as
shown in panels (e) and (f) in Fig. 10. Both results show high strain
gradients near grain boundaries and triple junctions. These results
support observations due to Maranganti and Sharma (2007), who
note that ‘‘strain gradients are generally large only at nanoscale
dimensions or in the vicinity of defects’’. In a polycrystal, grain
boundaries and triple junctions represent defects at which the
lattices of adjacent grains do not match.
6. Summary and conclusions

In this paper, we investigate the elastic properties of a nano-
scale polycrystal based on the continuum theory introduced by
Fried and Gurtin (2009). The theory gives rise to a balance equation
that is fourth-order in the displacement field and incorporates
interfacial conditions and junction conditions across grain bound-
aries. Rather than employing C1-continuous basis functions, we
present a relatively efficient finite-element method using C0-
continuous basis functions. Continuity of higher-order displace-
ment derivatives is enforced between elements using a variation
of Nitsche’s (1970) method, involving jump quantities across inter-
element boundaries.

Using the finite-element method, we examine the capability of
our theory by performing numerical simulations for a polycrystal
subject to an uniaxial deformation. The distribution of the effective
stress for polycrystals shows that our theory can capture large
strain gradients near triple junctions and grain boundaries. We also
study the influence of the gradient length scale d, which represents
the length scale effect at the nanoscale. As d increases, the effective
Young’s modulus decreases and Poisson’s ratio increases. Impor-
tantly, the effective elastic modulus and the effective Poisson’s ra-
tio reduce to Young’s modulus and Poisson’s ratio of conventional
grain-sized polycrystal in the limit d! 0. Of particular interest is
the observation that our theory captures lower Young’s modulus
for bulk nanocrystalline materials than for conventional coarsely-
grained polycrystals. The result shows about a 5% reduction of
the effective elastic modulus for nanocrystalline copper and it
compares favorably with experimental results.

The non-conforming method we have developed includes
parameters si and sg to stabilize higher-order derivatives across
interelement boundaries and the displacement field at grain
boundaries. The accuracy depends on the choice of these stabiliza-
tion parameters. To overcome this drawback, we intend to develop
a more robust algorithm based on the variational multiscale meth-
od in which the fine-scale bulk field is approximated with higher-
order edge-bubbles. This approach will provide static condensation
and eliminate the stabilization parameters. Along these lines, Kim
and Dolbow (2009) have recently developed an edge-bubble stabi-
lized finite-element method for fourth-order parabolic problems
that stabilization parameters follow automatically from the
approximation to the fine scale.

Fried and Gurtin (2009) provided constitutive relations with
both isotropic and cubic parts of the stress T and the hyperstress
G. Our current work neglects the cubic part of the stresses. Future
work will explore the impact of anisotropy. Our current studies are
performed for nanocrystalline materials consisting of grains of
equiaxed shape, in which all characteristics of grain size are of
the same order. In the future, we plan to study nanocrystalline
materials with columnar and other nonequiaxed geometries.
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