New Characterizations of Some Mean-Values

Hiroshi Haruki

Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

and

Themistocles M. Rassias

4, Zagoras Street, Paradissos, Amaroussion, 15125 Athens, Greece

Submitted by H. M. Srivastava

Received July 10, 1995

The purpose of this paper is to give new characterizations of some mean-values of two positive real numbers. The arithmetic, geometric, and harmonic means of two positive real numbers are the fundamentals of this paper. © 1996 Academic Press, Inc.

1. INTRODUCTION

Throughout this paper, let \(a, b \) be positive real numbers. A mean-value of \(a, b \), denoted by \(M(a, b) \), is defined to be a real-valued function \(M \), which satisfies the following postulates (cf. [2, 7])

\[
\begin{align*}
(P_1) & \quad M: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}; \\
(P_2) & \quad M(a, b) = M(b, a) \text{ (symmetry property)}; \\
(P_3) & \quad M(a, a) = a \text{ (reflexivity property)}.
\end{align*}
\]

If \(a \) and \(b \) are any two positive real numbers, then their arithmetic, geometric, and harmonic mean-values are denoted by \(A = A(a, b) \), \(G = G(a, b) \), and \(H = H(a, b) \), respectively. For these three mean-values, see...
The formula
\[A(a, b) H(a, b) = \sqrt{ab} = G(a, b) \] (1)
holds for all positive real numbers \(a, b\).

The formula (1) suggests us to consider the two mean-values
\[J(a, b) \overset{\text{def}}{=} \sqrt[A]{A(a, b) G(a, b)} = \sqrt{\frac{a + b}{2}} \sqrt{ab}, \] (2)
and
\[K(a, b) \overset{\text{def}}{=} \sqrt[H]{H(a, b) G(a, b)} = \sqrt{\frac{2ab}{a + b}} \sqrt{ab}. \] (3)

Remark 1. It is easy to prove that each of \(J(a, b)\) and \(K(a, b)\) is a mean-value of \(a, b\). The formula
\[\sqrt[\text{J}(a, b) K(a, b)]{ab} = \sqrt{ab} = G(a, b) \] (4)
holds for all positive real numbers \(a, b\).

Remark 2. The formula (4) is similar to the formula (1).

In [11] is considered the following mean-value of \(a, b\),
\[M(a, b; p(r)) \overset{\text{def}}{=} p^{-1}\left(\frac{1}{2\pi} \int_{0}^{2\pi} p(r) \, d\theta\right), \] (5)
where \(p: R^+ \to R\), \(p^n(x)\) is a continuous function in \(R^+\), \(p = p(x)\) is strictly monotonic in \(R^+\), and we denote \(\sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}\) by \(r\).

Remark 3. Since the proof that \(M(a, b; p(r))\) is a mean-value of \(a, b\) is easy, we omit it.

In [11] the following theorem was proved, where we denote the arithmetic-geometric mean of Gauss for \(a, b\) (see [5, 7, 9, 11]) by \(U(a, b)\):

Theorem A.

(i) \(M(a, b; p(r)) = U(a, b)\) holds for all positive real numbers \(a, b\) iff \(p(r) = A \cdot (1/r) + B\), where \(A \neq 0\), \(B\) are arbitrary real constants.

(ii) \(M(a, b; p(r)) = (a + b)/2\) holds for all positive real numbers \(a, b\) iff \(p(r) = A \log r + B\), where \(A \neq 0\), \(B\) are arbitrary real constants.

(iii) \(M(a, b; p(r)) = \sqrt{ab}\) holds for all positive real numbers \(a, b\) iff \(p(r) = A \cdot (1/r^2) + B\), where \(A \neq 0\), \(B\) are arbitrary real constants.
(iv) $M(a, b; p(r)) = \sqrt{(a^2 + b^2) / 2}$ (the root-mean-square of a, b) holds for all positive real numbers a, b iff $p(r) = Ar^2 + B$ where $A(\neq 0), B$ are arbitrary real constants.

(v) There exists no $p(r)$ such that $M(a, b; p(r)) = 2ab/(a + b)$ (the harmonic mean of a, b) holds for all positive real numbers a, b.

The purpose of this paper is to obtain further characterizations of the means

$$A(a, b) = \frac{a + b}{2}, \quad G(a, b) = \sqrt{ab} \cdot \left(\frac{a^{1/2} + b^{1/2}}{2}\right)^2,$$

$$K(a, b) = \sqrt{\frac{2ab}{a + b} \sqrt{ab}} \quad \text{(see (3))},$$

$$H(a, b) = \frac{2ab}{a + b} \cdot \left(\frac{a^{-1/2} + b^{-1/2}}{2}\right)^{-2},$$

$$J(a, b) = \sqrt{\frac{a + b}{2} \sqrt{ab}} \quad \text{(see (2))}$$

in the spirit of Theorem A (see Theorems 1 and 2 below). To this end, instead of $p(r)$ in Theorem A, we introduce the following two functions of θ in $-\infty < \theta < +\infty$:

(i) $q(s)$ where $q: R^+ \to R, q''(x)$ is continuous in $R^+, q = q(x)$ is strictly monotonic in R^+, and we denote $a\sin^2 \theta + b\cos^2 \theta$ by s.

(ii) $u(t)$ where $u: R^+ \to R, u''(x)$ is continuous in $R^+, u = u(x)$ is strictly monotonic in R^+, and we denote $(\sin^2 \theta/a + \cos^2 \theta/b)^{-1}$ by t.

Then we introduce, instead of (5), the following two mean-values of a, b:

$$M(a, b; q(s)) = q^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta\right) \quad \text{(6)}$$

and

$$M(a, b; u(t)) = u^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta\right). \quad \text{(7)}$$

Remark 4. It is easy to prove that each of $M(a, b; q(s))$ and $M(a, b; u(t))$ is a mean-value of a, b. These two mean-values will be discussed in Theorems 1 and 2, respectively.
2. STATEMENT OF THE RESULTS

THEOREM 1. (i) \(M(a, b; q(s)) = (a + b)/2 \) holds for all positive real numbers \(a, b \) iff \(q(s) = A \cdot (1/2) + B \), where \(A \neq 0, B \) are arbitrary real constants.

(ii) \(M(a, b; q(s)) = \sqrt{ab} \) holds for all positive real numbers \(a, b \) iff \(q(s) = A \cdot (1/s) + B \), where \(A \neq 0, B \) are arbitrary real constants.

(iii) \(M(a, b; q(s)) = ((a^{1/2} + b^{1/2})/2)^2 \) holds for all positive real numbers \(a, b \) iff \(q(s) = A \log s + B \) where \(A \neq 0, B \) are arbitrary real constants.

(iv) \(M(a, b; q(s)) = \sqrt{(2ab/(a + b))\sqrt{ab}} \) holds for all positive real numbers \(a, b \) iff \(q(s) = A \cdot (1/s^2) + B \) where \(A \neq 0, B \) are arbitrary real constants.

THEOREM 2. (i) \(M(a, b; u(t)) = \sqrt{ab} \) holds for all positive real numbers \(a, b \) iff \(u(t) = At + B \) where \(A \neq 0, B \) are arbitrary real constants.

(ii) \(M(a, b; u(t)) = 2ab/(a + b) \) holds for all positive real numbers \(a, b \) iff \(u(t) = A \cdot (1/t) + B \), where \(A \neq 0, B \) are arbitrary real constants.

(iii) \(M(a, b; u(t)) = ((a^{-1/2} + b^{-1/2})/2)^2 \) holds for all positive real numbers \(a, b \) iff \(u(t) = A \cdot \log t + B \) where \(A \neq 0, B \) are arbitrary real constants.

(iv) \(M(a, b; u(t)) = \sqrt{(a + b)/2}\sqrt{ab} \) holds for all positive real numbers \(a, b \) iff \(u(t) = At^2 + B \) where \(A \neq 0, B \) are arbitrary real constants.

Remark 5. There are two characterizations for \(A(a, b) = (a + b)/2 \). See Theorem A(ii) and Theorem 1(i). Furthermore, there are three characterizations for \(G(a, b) = \sqrt{ab} \). See Theorem A(iii), Theorem 1(ii), and Theorem 2(i).

3. LEMMAS

In Sections 4 and 5 we shall apply the following three lemmas:

Lemma 1. If \(a, b \) are positive real constants, then

(i) \[\frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{a \sin^2 \theta + b \cos^2 \theta} = \frac{1}{\sqrt{ab}} \quad (\text{see [11]}), \]

(ii) \[\frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{(a \sin^2 \theta + b \cos^2 \theta)^2} = \frac{1}{2\sqrt{ab}} \left(\frac{1}{a} + \frac{1}{b} \right). \]
(iii) \[\frac{1}{2\pi} \int_0^{2\pi} \log(a \sin^2 \theta + b \cos^2 \theta) \, d\theta = \log \left(\frac{a^{1/2} + b^{1/2}}{2} \right)^2. \]

hold.

Proof. (i) Since the proof is elementary, we omit it. (ii) We apply differentiation under the integral sign for (i).

Differentiating both sides of (i) with respect to \(a \) yields

\[\frac{1}{2\pi} \int_0^{2\pi} \frac{\sin^2 \theta}{(a \sin^2 \theta + b \cos^2 \theta)^2} \, d\theta = \frac{1}{2ab} \] (8)

for all positive \(a, b \).

Differentiating both sides of (i) with respect to \(b \) yields

\[\frac{1}{2\pi} \int_0^{2\pi} \frac{\cos^2 \theta}{(a \sin^2 \theta + b \cos^2 \theta)^2} \, d\theta = \frac{1}{2b^2} \] (9)

for all positive \(a, b \).

Adding (8) and (9) side by side yields (ii).

(iii) See [11].

Lemma 2. Let \(q: R^+ \to R \). We assume that \(q''(x) \) is continuous in \(R^+ \). If we set

\[f(a, b) \overset{\text{def}}{=} \frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} q(a \sin^2 \theta + b \cos^2 \theta) \, d\theta \] (10)

for all positive \(a, b \), then

\[f_{aa}(c, c) = \frac{3}{8} q''(c), \]

where \(c \) is an arbitrarily fixed positive real number.

Proof. The proof follows from differentiation under the integral sign and the formula

\[\int_0^{2\pi} \sin^4 \theta \, d\theta = (3/4)\pi. \]

Lemma 3. Let \(u: R^+ \to R \). We assume that \(u''(x) \) is continuous in \(R^+ \). If we set

\[f(a, b) \overset{\text{def}}{=} \frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} u \left(\left(a \sin^2 \theta + b \cos^2 \theta \right)^{-1} \right) \, d\theta \] (11)
for all positive \(a, b\), then
\[
f_{aa}(c, c) = \frac{3}{8} u''(c) - \frac{1}{4c} u'(c),
\]
where \(c\) is an arbitrarily fixed positive real number.

Proof. The proof follows from differentiation under the integral sign and the formula \(\int_0^{2\pi} s^4 \sin \theta \, d\theta = (3/4)\pi\).

4. PROOF OF THEOREM 1

(i) First we shall prove the "only if" part. By hypothesis, we have
\[
M(a, b; q(s)) = \frac{a + b}{2}
\]
for all positive \(a, b\).

By (6) (the definition of \(M(a, b; q(s))\)) and (12) we obtain
\[
 q^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta\right) = \frac{a + b}{2},
\]
and so
\[
\frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta = q\left(\frac{a + b}{2}\right)
\]
for all positive \(a, b\).

Setting \(f(a, b) = (1/2\pi) \int_0^{2\pi} q(s) \, d\theta\) and using (13) yields
\[
f(a, b) = q\left(\frac{a + b}{2}\right)
\]
for all positive \(a, b\).

Let \(c\) be an arbitrarily fixed positive real number.

Operating on both sides of (14) with \(\partial^2/\partial a^2\) and setting \(a = c, b = c\) in the resulting equality yields
\[
f_{aa}(c, c) = \frac{1}{4} q''(c).
\]

By (15) and Lemma 2 we obtain
\[
\frac{3}{8} q''(c) = \frac{1}{4} q''(c),
\]
and therefore

\[q''(c) = 0. \]

Since \(c \) was an arbitrarily fixed positive real number, we can replace \(c \) by a positive real variable \(s \) in the above equality. Hence we have

\[q''(s) = 0 \quad \text{(16)} \]

in \(\mathbb{R}^+ \).

From (16) we obtain

\[q(s) = As + B \]

in \(\mathbb{R}^+ \), where \(A, B \) are real constants with \(A \neq 0 \).

(ii) First we shall prove the “only if” part. By hypothesis and by (6) we obtain

\[\frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta = q(\sqrt{ab}) \]

for all positive \(a, b \).

Operating on both sides of the above equality with \(\frac{\partial^2}{\partial a^2} \), setting \(a = c, b = c \), where \(c \) is an arbitrarily fixed positive real number, in the resulting equality, using Lemma 2, observing that

\[\left(\frac{\partial^2}{\partial a^2} q(\sqrt{ab}) \right)_{a=c,b=c} = \frac{1}{4} q''(c) - \frac{1}{4c} q'(c) \]

and simplifying the resulting equality yields

\[q''(c) + \frac{2}{c} q'(c) = 0. \]

Replacing \(c \) by a positive real variable \(s \) in the above equality yields

\[q''(s) + \frac{2}{s} q'(s) = 0 \quad \text{(17)} \]

in \(\mathbb{R}^+ \).
Solving the differential equation (17) yields

\[q(s) = A \cdot \frac{1}{s} + B \]

in \(R^+ \) where \(A, B \) are real constants with \(A \neq 0 \).

Second we shall prove the "if" part.

By using \(q^{-1}(s) = A/(s - B) \), \(s = a \sin^2 \theta + b \cos^2 \theta \), and Lemma 1(i), after some calculations we obtain

\[
q^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta\right) = q^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} \left(A - \frac{B}{s} \right) \, d\theta\right)
\]

\[
= q^{-1}\left(\frac{A}{2\pi} \int_0^{2\pi} \frac{d\theta}{a \sin^2 \theta + b \cos^2 \theta} + B\right)
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{d\theta/(a \sin^2 \theta + b \cos^2 \theta)} = \sqrt{ab}
\]

for all positive \(a, b \).

Hence, by (6) we obtain

\[M(a, b; q(s)) = \sqrt{ab} \]

for all positive \(a, b \).

(iii) First we shall prove the "only if" part.

By hypothesis and by (6) we obtain

\[\frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta = q\left(\left(\frac{a^{1/2} + b^{1/2}}{2}\right)^2\right) \]

for all positive \(a, b \).

Operating on both sides of the above equality with \(\partial^2/\partial a^2 \), setting \(a = c, b = c \), where \(c \) is an arbitrarily fixed positive real number, in the resulting equality, using Lemma 2, observing that

\[
\left(\frac{\partial^2}{\partial a^2} q\left(\left(\frac{a^{1/2} + b^{1/2}}{2}\right)^2\right)\right)_{a=c, b=c} = \frac{1}{4} q''(c) - \frac{1}{8c} q'(c)
\]

and simplifying the resulting equality yields

\[q''(s) + \frac{1}{s} q'(s) = 0, \quad (18) \]

where \(s \) is a positive real variable.
Solving the differential equation (18) yields

\[q(s) = A \log s + B \]

in \(R^+ \) where \(A, B \) are real constants with \(A \neq 0 \).

Second we shall prove the “if” part.

By using \(q^{-1}(s) = \exp((s - B)/A) \), \(s = a \sin^2 \theta + b \cos^2 \theta \) and Lemma 1(iii), after some calculations, we obtain

\[
q^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta \right) = q^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} (A \log s + B) \, d\theta \right)
\]

\[
= q^{-1}\left(\frac{A}{2\pi} \int_0^{2\pi} \log(a \sin^2 \theta + b \cos^2 \theta) \, d\theta + B \right)
\]

\[
= q^{-1}\left(A \log\left(\frac{a^{1/2} + b^{1/2}}{2} \right)^2 + B \right)
\]

\[
= \exp\left(\log\left(\frac{a^{1/2} + b^{1/2}}{2} \right)^2 \right)
\]

\[
= \left(\frac{a^{1/2} + b^{1/2}}{2} \right)^2
\]

for all positive \(a, b \).

Hence, by (6) we obtain

\[
M(a, b; q(s)) = \left(\frac{a^{1/2} + b^{1/2}}{2} \right)^2
\]

for all positive \(a, b \).

(iv) First we shall prove the “only if” part.

By hypothesis and by (6) we obtain

\[
\frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta = \sqrt{\frac{2ab}{a + b \sqrt{ab}}}
\]

for all positive \(a, b \).

Operating on both sides of the above equality with \(\frac{\partial^2}{\partial a^2} \), setting \(a = c, b = c \), where \(c \) is an arbitrarily fixed positive real number, in the resulting equality, using Lemma 2, observing that

\[
\left(\frac{\partial^2}{\partial a^2} q\left(\sqrt{\frac{2ab}{a + b \sqrt{ab}}} \right) \right)_{a=c, b=c} = \frac{1}{4} q''(c) - \frac{3}{8c} q'(c)
\]
and simplifying the resulting equality yields
\[q''(s) + \frac{3}{s} q'(s) = 0 \] (19)
in \(R^+ \).

Solving the differential equation (19) yields
\[q(s) = A \cdot \frac{1}{s^2} + B \]
in \(R^+ \) where \(A, B \) are real constants with \(A \neq 0 \).

Second we shall prove the "if" part.

By using \(q^{-1}(s) = \sqrt[2]{A/(s-B)} \), \(s = a \sin^2 \theta + b \cos^2 \theta \), and Lemma 1(ii), after some calculations, we obtain
\[
q^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} q(s) \, d\theta \right) = q^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} \left(A \cdot \frac{1}{s^2} + B \right) \, d\theta \right)
= q^{-1}\left(\frac{A}{2\pi} \int_0^{2\pi} \frac{d\theta}{(a \sin^2 \theta + b \cos^2 \theta)^2} + B \right)
= \sqrt{\frac{1}{(1/2\pi) \int_0^{2\pi} (d\theta/(a \sin^2 \theta + b \cos^2 \theta)^2)}}
= \sqrt{\frac{2ab}{a + b \sqrt{ab}}}
\]
for all positive \(a, b \).

Hence, by (6) we obtain
\[M(a, b; q(s)) = \sqrt{\frac{2ab}{a + b \sqrt{ab}}} \]
for all positive \(a, b \).

5. PROOF OF THEOREM 2

(i) First we shall prove the "only if" part.

By hypothesis we have
\[M(a, b; u(t)) = \sqrt{ab} \] (20)
for all positive \(a, b \).
By (7) (the definition of $M(a, b; u(t))$) and (20) we obtain

$$u^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta\right) = \sqrt{ab},$$

and so

$$\frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta = u(\sqrt{ab}) \quad (21)$$

for all positive a, b.

Setting $f(a, b) = (1/2\pi)\int_0^{2\pi} u(t) \, d\theta$ and using (21) yields

$$f(a, b) = u(\sqrt{ab}). \quad (22)$$

for all positive a, b.

Operating on both sides of (22) with $\partial^2 / \partial a^2$ and setting $a = c, b = c$, where c is an arbitrarily fixed positive real number, in the resulting equality yields

$$f_{aa}(c, c) = \frac{1}{4} u''(c) - \frac{1}{4c} u'(c). \quad (23)$$

By (23) and Lemma 3 we obtain

$$\frac{3}{8} u''(c) - \frac{1}{4c} u'(c) = \frac{1}{4} u''(c) - \frac{1}{4c} u'(c),$$

and so

$$u''(c) = 0.$$

Replacing c by a positive real variable t in the above equality yields

$$u''(t) = 0 \quad (24)$$

in R^+. From (24) we have

$$u(t) = At + B$$

in R^+ where A, B are real constants with $A \neq 0$.

Second we shall prove the "if" part.
By using \(u^{-1}(t) = (t - B)/A, t = (\sin^2 \theta/a + \cos^2 \theta/b)^{-1} \), after some calculations, we obtain

\[
\begin{align*}
 u^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta \right) &= u^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} (At + B) \, d\theta \right) \\
 &= u^{-1}\left(\frac{A}{2\pi} \int_0^{2\pi} \left(\frac{\sin^2 \theta}{a} + \frac{\cos^2 \theta}{b} \right)^{-1} \, d\theta + B \right) \\
 &= \frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{\sin^2 \theta/a + \cos^2 \theta/b}
\end{align*}
\]

for all positive \(a, b \).

Replacing \(a, b \) by \(1/a, 1/b \), respectively, in Lemma 1(i) yields

\[
\frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{\sin^2 \theta/a + \cos^2 \theta/b} = \sqrt{ab}
\]

for all positive \(a, b \).

From the above two equalities we obtain

\[
\begin{align*}
 u^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta \right) &= \sqrt{ab}.
\end{align*}
\]

Hence, by (7) we get

\[
M(a, b; u(t)) = \sqrt{ab}
\]

for all positive \(a, b \).

(ii) First we shall prove the "only if" part.

By hypothesis and by (7) we obtain

\[
\begin{align*}
 \frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta &= u\left(\frac{2ab}{a + b} \right)
\end{align*}
\]

for all positive \(a, b \).

Operating on both sides of the above equality with \(\partial^2/\partial a^2 \), setting \(a = c, b = c \), where \(c \) is an arbitrarily fixed positive real number, in the resulting equality, using Lemma 3, observing that

\[
\left(\frac{\partial^2}{\partial a^2} u\left(\frac{2ab}{a + b} \right) \right)_{a=c, b=c} = \frac{1}{4} u''(c) - \frac{1}{2c} u'(c)
\]

and simplifying the resulting equality yields

\[
\begin{align*}
 u''(t) + \frac{2}{t} u'(t) &= 0, \quad (25)
\end{align*}
\]

where \(t \) is a positive real variable.
Solving the differential equation (25) in R^+ yields

$$u(t) = A \cdot \frac{1}{t} + B$$

in R^+ where A, B are real constants with $A \neq 0$.

Second we shall prove the “if” part. By using $u^{-1}(t) = A/(t - B)$, $t = (\sin^2 \theta/a + \cos^2 \theta/b)^{-1}$, after some calculations, we obtain

$$u^{-1}\left(\frac{1}{2\pi \int_0^{2\pi} u(t) \, d\theta}\right) = \left(\frac{1}{2\pi \int_0^{2\pi} \left(\frac{\sin^2 \theta}{a} + \frac{\cos^2 \theta}{b}\right) \, d\theta}\right)^{-1}. \quad (26)$$

By (26) and the formulae $\int_0^{2\pi} \sin^2 \theta \, d\theta = \int_0^{2\pi} \cos^2 \theta \, d\theta = \pi$ we get

$$u^{-1}\left(\frac{1}{2\pi \int_0^{2\pi} u(t) \, d\theta}\right) = \frac{2ab}{a + b}$$

for all positive a, b.

Hence, by (7) we obtain

$$M(a, b; u(t)) = \frac{2ab}{a + b}$$

for all positive a, b.

(iii) First we shall prove the “only if” part.

By hypothesis and by (7) we obtain

$$\frac{1}{2\pi \int_0^{2\pi} u(t) \, d\theta} = u\left(\left(\frac{a^{-1/2} + b^{-1/2}}{2}\right)^{-2}\right)$$

for all positive a, b.

Operating on both sides of the above equality with $\frac{\partial^2}{\partial a^2}$, setting $a = c$, $b = c$, where c is an arbitrarily fixed positive real number, in the resulting equality, using Lemma 3, observing that

$$\left(\frac{\partial^2}{\partial a^2} u\left(\frac{a^{-1/2} + b^{-1/2}}{2}\right)^{-2}\right)_{a=c, b=c} = \frac{1}{4} u''(c) - \frac{3}{8c} u'(c)$$

and simplifying the resulting equality yields

$$u''(t) + \frac{1}{t} u'(t) = 0, \quad (27)$$

where t is a positive real variable.
Solving the differential equation (27) in R^+ yields

$$u(t) = A \log t + B$$

in R^+ where A, B are real constants with $A \neq 0$.

Second we shall prove the "if" part.

By using $u^{-1}(t) = \exp((t - B)/A)$, $t = (\sin^2 \theta/a + \cos^2 \theta/b)^{-1}$, after some calculations, we obtain

$$u^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta \right) = \exp\left(-\frac{1}{2\pi} \int_0^{2\pi} \log \left(\frac{\sin^2 \theta}{a} + \frac{\cos^2 \theta}{b} \right) \, d\theta \right)$$

(28)

for all positive a, b.

Replacing a, b by $1/a, 1/b$, respectively, in Lemma 1, (iii) yields

$$\frac{1}{2\pi} \int_0^{2\pi} \log \left(\frac{\sin^2 \theta}{a} + \frac{\cos^2 \theta}{b} \right) \, d\theta = \log \left(\frac{a^{-1/2} + b^{-1/2}}{2} \right)^2$$

(29)

for all positive a, b.

By (28), (29) we obtain

$$u^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta \right) = \left(\frac{a^{-1/2} + b^{-1/2}}{2} \right)^{-2}$$

for all positive a, b.

Hence, by (7) we obtain

$$M(a, b; u(t)) = \left(\frac{a^{-1/2} + b^{-1/2}}{2} \right)^{-2}$$

for all positive a, b.

(iv) First we shall prove the "only if" part.

By hypothesis and by (7) we obtain

$$\frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta = u \left(\sqrt{\frac{a + b}{2}}\right)$$

(30)

for all positive a, b.

Operating on both sides of (30) with $\frac{\partial^2}{\partial a^2}$, setting $a = c, b = c$, where c is an arbitrarily fixed positive real number, in the resulting equality, using Lemma 3, observing that

$$\left(\frac{\partial^2}{\partial a^2} \left(u \left(\sqrt{\frac{a + b}{2}}\right) \right) \right)_{a=c, b=c} = \frac{1}{4} u''(c) - \frac{1}{8c} u'(c)$$
and simplifying the resulting equality yields

$$u''(t) - \frac{1}{t}u'(t) = 0$$ \hspace{1cm} (31)$$

in \mathbb{R}^+.

Solving the differential equation (31) in \mathbb{R}^+ yields

$$u(t) = At^2 + B$$

in \mathbb{R}^+ where A, B are real constants with $A \neq 0$.

Second we shall prove the "if" part.

By using $u^{-1}(t) = \sqrt{(t - B)/A}$, $t = (\sin^2 \theta/a + \cos^2 \theta/b)^{-1}$, after some calculations, we obtain

$$u^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} u(t) \, dt\right) = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{(\sin^2 \theta/a + \cos^2 \theta/b)^2}}$$ \hspace{1cm} (32)$$

for all positive a, b.

Replacing a, b by $1/a, 1/b$, respectively, in Lemma 1, (ii) yields

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{(\sin^2 \theta/a + \cos^2 \theta/b)^2} = \frac{a + b}{2}\sqrt{ab}$$ \hspace{1cm} (33)$$

for all positive a, b.

By (32), (33) we obtain

$$u^{-1}\left(\frac{1}{2\pi} \int_0^{2\pi} u(t) \, d\theta\right) = \sqrt{\frac{a + b}{2}\sqrt{ab}}$$

for all positive a, b.

Hence, by (7) we obtain

$$M(a, b; u(t)) = \sqrt{\frac{a + b}{2}\sqrt{ab}}$$

for all positive a, b.

ACKNOWLEDGMENT

The authors thank Professor J. Aczel for suggesting the paper [5] and the referee for giving many useful comments.
REFERENCES